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Claire Wladis Benjamin Sencindiver Kathleen Offenholley
BMCC/CUNY Graduate Center CUNY Graduate Center BMCC/CUNY

Elisabeth Jaffe Joshua Taton
BMCC/CUNY CUNY Graduate Center

This theoretical paper explores student conceptions of transformation as substitution
equivalence by linking it to their definitions of substitution and equivalence. This work draws on
the work of Sfard (1995) to conceptualize substitution equivalence and its components,
equivalence and substitution, as a spectrum from computational to structural. We provide
examples of students’ work to illustrate how student notions of substitution, equivalence, and
substitution equivalence as an approach to justifying transformation may related to one another.
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Transformation has often been framed as a core mathematical activity (Kieran, 2004), and all
mathematical calculation, whether arithmetic, simplifying expressions, or finding the solution
sets of equations, can be viewed as a process of transformation. Thus, with the goal of exploring
the core mathematical ideas that justify why particular transformations are mathematically valid,
we view mathematical transformation through the lens of substitution equivalence,
conceptualizing it as a process of replacing one symbolic object with an equivalent one, and
naming this process substitution (Wladis et al., 2020). This also includes the process of
identifying sub-objects and replacing them with equivalent ones in order to generate a new
equivalent object. This process is non-trivial for many students, and we hypothesize that
substitution equivalence may be intimately connected to many of the struggles that students have
with symbolic mathematics at various levels and domains. Little attention has been paid formally
to students’ notions of substitution equivalence, even though these notions may be intricately
linked to the ways in which students think about and execute various types of mathematical
transformation. In this paper we attempt to address that gap, by providing a model of student
thinking around substitution equivalence. First we describe the model, including the theories and
body of research literature which have informed its creation, and then we proceed to use the
model to analyze a few vignettes of student work, in order to illustrate its potential affordances.

Substitution Equivalence as a Lens for Mathematical Transformation

In this paper, we focus specifically on student thinking around substitution equivalence, or
the notion that two expressions, equations, or other mathematical objects are equivalent if one
can be generated from the other through a sequence of substitutions carried out through a
combination of correct interpretation of syntactic structure and appropriate use of mathematical
properties (Wladis et al., 2020).

Definition of Substitution: In order to see clearly how mathematical activity could be
viewed through the lens of substitution equivalence, we define substitution more broadly than
has been done explicitly in much existing research and curricula, as the process of replacing any
mathematical object (or any unified subpart of an object) with an equivalent object, regardless of
complexity. This includes the replacement of x in 2x? — 2x + 1 with —3, but also, e.g., the
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replacement of x? — 6x = 1 with the equivalent equation x? — 6x — 1 = 0 during solving.

Definition of Equivalence: We note that the idea of substitution equivalence is wholly
dependent upon an underlying equivalence relation of some kind and depends upon a specific
stipulated definition of equivalence. This may be a particular context-specific definition of
equivalence (e.g., two equations are equivalent if they have the same solution set), or a more
generalized concept of equivalence (e.g., an equivalence relation); however, any definition of
equivalence that satisfies the definition of an equivalence relation could be used.

Definition of Substitution Equivalence: We define the domain of substitution equivalence as
composed of two main ideas, which we illustrate in more detail in subsequent sections.
According to our model, students who have a notion of substitution equivalence recognize:

1. The general notion of substitution equivalence: They understand that we can
replace an object with any other equivalent object when problem-solving.

2. That substitution of unified sub-objects can be used to generate equivalent
objects: They understand that objects can be broken into unified sub-objects, and that
we can replace any unified sub-object with any equivalent unified sub-object (and the
process of substitution leaves the rest of the structure of that object unchanged).

The second notion leads us to another core definition: We use the term subexpression (or
sub-object, more generally) to denote a substring of an expression (or other object) that can be
treated as a unified object without changing the syntactic meaning of the original expression (or
object). E.g., a — b is a subexpression of a — b — ¢, but b — c is not (because putting
parentheses around b — ¢ would change the syntactic meaning of the expression).

Model of Operational and Structural Thinking about Substitution Equivalence
Wiadis et al (2020) described key features of student thinking around substitution
equivalence on a spectrum from structural versus operational approaches. This paper aims to take
this further by describing explicitly how student conceptions of substitution equivalence may be
dependent upon student definitions of substitution and equivalence (see Figure 1).

Definition of Definition of
Substitution Equivalence

N\ /

View of Transformation:
(Substitution Equivalence)

Figure 1: Model of Student Thinking about Substitution Equivalence

In the model in Figure 1, holding well-defined and standard definitions of both substitution
and equivalence are necessary but not sufficient conditions for students to develop a view of
transformation justified by substitution equivalence. A student may have trouble thinking of
transformation as substitution equivalence because (a) their definitions of substitution are too
narrow; (b) their definitions of equivalence are ill-defined, unstable, or invalid; (¢) they do not
draw on their knowledge of substitution and/or equivalence when performing transformation; or
a combination of all of these. We conceptualize student views of substitution, equivalence, and
transformation as being on a continuum from operational to structural (Table 1). This model is
based on the notion that the ability to conceptualize transformation as a process of substitution
equivalence may be useful for students in developing deeper understanding of the justification
behind their transformation work (and a way of checking the validity of that work).
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Table 1: Components of substitution equivalence model

Operational Thinking

Structural Thinking

View of
Transformation

Students see transformations of
expressions and equations (or
other objects) as a process of
“operating on” the original object
itself. They may or may not see
this as linked to any notion of
equivalence.

Students see each step in a transformation
as the process of replacing one object with
an equivalent one through substitution,
using properties and existing syntactic
structure. They appear to have some
notion of an equivalence class as an object
(which need not be formally defined).

Definition of
Equivalence

Students either ignore the notion
of equivalence entirely, or appear
to have only vague, ill-defined, or
unstable notions of equivalence,
or try to apply one definition of
equivalence that works only in
one context to another context.

Students have a well-defined and
relatively stable definition of equivalence,
and recognize that it is context-dependent.
They recognize that equivalence is a fixed
trait (two objects are either equivalent
under a particular definition or not—they
do not “become” equivalent).

Definition of
Substitution

Students see substitution only as
plugging a number in for a
variable (and then computing the
result). They see variables as
representing only numbers.

Students see replacement of any object (or
sub-object) with an equivalent one as
substitution. They see variables as
representing any valid mathematical
object, including numbers or (potentially

complex) expressions.

Development of the Model

This work draws on data collected from multiple classes across six years at a northeastern
community college, including classroom observations, cognitive interviews, and open-ended
questionnaires. These data were analyzed using conceptual analysis (Thompson, 2008) to
generate and refine models of students’ thinking to explain their written work and utterances. We
note that these models of students’ thinking are based on what the students communicate in the
moment and are situated within the given task. Further, their strategies and responses may be
impacted a myriad of factors, including but not limited to the wording of the question, the
environment they responded in, or the established sociomathematical norms of the classrooms
they participate (Yackel et al., 2000).

This analysis was heavily influenced by the work of Sfard (1995), and existing literature
about the students’ definitions of mathematical concepts (Edwards & Ward, 2004) and their
understanding of equals sign (e.g., Knuth et al., 2006). Sfard (1995) describes that students can
conceive of a mathematical concept as a combination of two ways: operationally (as a process,
often of computation) or structurally (abstract entities in and of themselves; Sfard, 1995). In
terms of equality, similar language and ideas are used in the literature to describe the students’
conceptions of the equals sign, often either operationally (as a ‘do something symbol’; Kieran,
1981), or relationally (as a relationship between two entities; Knuth et al., 2006), though further
refining these categories (Rittle-Johnson et al., 2011; Stephens et al., 2013) has been the focus of
other research. Though research on equality is plentiful, research on substitution and substitution
equivalence as a broader concept is comparatively minimal. For example, substitutive aspects of
equivalence have been investigated in the context of arithmetic (Jones & Pratt, 2012), and
Musgrave, Hatfield, and Thompson (2015) have found that secondary teachers had particular
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difficulty correctly applying a given substitution property to expressions when they found
operations to be unfamiliar or had difficulty thinking of symbols simultaneously as both a
process and an object. They argue that if teachers are having difficulties with these ideas, then
these are likely stumbling blocks for students as well.

Vignettes: A Model in Action

We now provide examples of students’ written work to illustrate how one might use the
model we present here. These are intended to highlight the continuum of the operational and
structural views. To see how students’ views of transformation as substitution equivalence can
vary along this spectrum, we present two developmental elementary algebra students’ responses
about assessing whether or not two expressions are equivalent (Figure 2), where the first
response (Figure 2a) exemplifies an operational view and the second response (Figure 2b)
exemplifies a structural view. The first student’s response (Figure 2a) appears to foreground
computation and symbolic manipulation. In cognitive interviews (not included here because of
lack of space), students on similar problems have explained similar work by stating that they can
only tell if two expressions are equivalent if they both simplify to the same final “answer”, so
this approach may happen when students have an internal computational definition of
equivalence as “expressions that simplify to the same thing”. Regardless, this student’s response
foregrounds computation, and hence would be considered as an operational view of
transformation. In contrast, the response in Figure 2b illustrates exactly how the two equivalent
subexpressions are substituted into the larger expressions using arrows to indicate the
relationship between each piece and to highlight the structure of the two expressions. They map
each unified subexpression in the first expression to an equivalent unified-subexpression in the
same place in the second expression, in order to illustrate how they know that the two
expressions are equivalent. Though the student doesn’t explicitly use the substitution, we do see
evidence that they are looking at the underlying structure and visualizing a replacement or
exchange of one equivalent sub-part with another.

Suppose that we know that 2x? — y is equivalent to 8z.
Does this mean that (2x? — ¥)(3z — 7) Is equivalent to (82) (3z — 7)?
Circle one: Yes) No There isn’t enough information to tell Idon't know

Suppose that we know that 2x? — y is equivalent to 8z. Please explain how you know.
{f you don't know, please explain what you are thinking that makes you unsure of the answer.)

)
Does this mean that (2x? — y)(3z :\I) is equivalent to (8z)(3z — 7)? [ g n \ . -
A (e ) s e quivaient 4:5(3?5

Circle one: Yes No There isnt enough information to tell I don’t know
- then L Ty reee
Please explain how you know. ,-" tive tend e
(If you don’t know, please explain what you are thinking that makes you unsure of the answer.) ( 4y '-‘J) ( '3'-2— ?) ( 5 Z\ !.’ Yo ;,)
Z- 19X - 3y2 1Y 2quiva lemd

(a) (b)

Figure 2: Examples of students’ responses rooted in an operational view (a) and structural view (b) of equivalence

Students’ Definitions of Equivalence

To see how students’ definitions of equivalence can vary along this spectrum, we refer to the
previous two examples and consider the definitions of equivalence the students seem to be
evoking. These responses exemplify operational and structural definitions of equivalence,
respectively. In the first response (Figure 2a), the student attempted to simplify the expressions
to determine whether they are equivalent, and then appeared to decide that they are not
equivalent after they could not immediately simplify them both to the same expression. This
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definition of equivalence appeared to be computational (e.g., “two expressions are equivalent
only if they simplify to the same thing”), and their work doesn’t seem acknowledge the
equivalence within their work. Because the student abandoned the attempt after this did not
work, this suggests that they did not see a way to use the structure of the given expressions to
determine equivalence beyond simplifying both sides to see if the results are the same.

In contrast, the response in Figure 2b that the student may have a structural definition of
equivalence. In this example, they are drawing on the structure of two complex expressions to
show how they map to one another in such a way that each subexpression is either the same or
equivalent, and leverage that equivalence to show that the final result will be equivalent. This
apparent definition of equivalence appears to be well-defined and potentially could be a fixed
trait of a set of objects.

Students’ Definitions of Substitution

To exemplify the differences along this spectrum, we look at two students’ definitions of
substitution (Figure 3). Throughout data collection, the response in Figure 3a (“putting a number
in for a letter”) is one of the most common given by students at all levels, from elementary
algebra through linear algebra. This narrow definition of substitution would be considered
operational, while the response in Figure 3b would be considered structural view of substitution.
This is because their definition affords a greater variety of terms to be replaced for one another,
which involves conceptualizing complex subexpressions as entities.

In math, what is substitution? {Or what does it mean to substitute?)
T - L re —
To subsifote - (zplace @

Nnumbe r W N & Joaable

Please give an example or two to show what you mean, .
In math, what is substitution? [Or what does it mean to substitute?)

Al yzie @ T0 replace o,
12113 PlGce One n‘vlt"\’\i’}{‘/‘_ Ln“ﬂﬁjk o
XS o Sy anotng,~ ) :

(a) (b)

Figure 3: Examples of an operational (a) and structural (b) definition of substitution.

In order to see how student views of substitution may impact their view of transformation of
expressions, we further examined students’ responses to a task to identify instances of
substitution, and found that their responses were typically consistent with their definitions (e.g.,
only recognizing transformation as substitution when it involved a number being substituted in
for a letter if that was their stated definition); we include one example of this in the next section.

Using the Framework to Analyze Student work longitudinally

In order to illustrate the potential of this model for deeper analysis, we consider responses
from an Algebra I student (whom we call Epsilon, like €) across multiple tasks and points in
time.

Substitution: We first consider Epsilon’s definition of substitution (Figure 3a), where they
have given an operational definition, rather than a structural one. This correlates with the extent
to which they identify different computations as substitution in the following work (Figure 4).

We can see in Figure 4 that Epsilon rarely identified computation as substitution when it was
more complex or generalized. They notice, for example, that the expressions in the last example
in Figure 4 are equivalent, but they do not see replacement of the subexpression x? — 9 with
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(x + 3)(x — 3) as an instance of substitution (“nothing is being replaced”), which is consistent
with the more limited operational definition of substitution that they gave in Figure 3a.

(13 Explain how you know. 7+5 Yes o . . ’ ab+ac Yes o 1 N . .
substitution? | I you don't know, please explain what you are | = 7+ (3 42) W o yoriables wie =242y ) Webhing 15 Beies
rcle one. thinking that makes you unsure of the answer. Idom'tknow | Loy’ o a4 cepaced I don't know feplace d
2x—9 [Yes) No . Yet ] - ) '
=2(3)-9 * s tina "?1‘“‘:-1 (O+2)+8 |Yes o \ ab+c Yes o p [
| don't know dh 3 =9+(2+8) © Mo wariavies Gre =2(x=1)+3y Y kh“”': V¥ Gc«n:
Lie TF 1 don't know l"‘nﬁ ey mecd 1 don't know “’9““;!:\)
10+ (3 +6)] Vi N 8(x? -9 i N i \ fan)
Sers ™ WNe Jaiables ore -E((:a’+3))(x-3}) * & lNting 3 being fplaced,
| don't know brine (gflaceo Idon'thnow | % .4 ] “'."-'f-'h*--*
g Caulvalpnd  gavudion

Figure 4: Epsilon’s interpretations of substitution in specific contexts

Equivalence: Now we consider Epsilon’s definition of equivalent expressions (Figure 5).

How could you check whether two mathematical expressions are equivalent?
{An expression is a mathematical phrase that does not contain an equals or inequality sign.}

T L + Ly oo -H'. IN [+ ‘ﬁf-h & Gappmg

Larrs o 4 Qg e £ 7

Figure 5: Epsilon’s definitions of equivalent expressions

Epsilon provided a seemingly correct (if perhaps incomplete or ill-defined) definition of
equivalent expressions. We cannot be sure the extent to which they understand that expressions
have to have the same value for every possible combination of variable values or that this applies
to algebraic and not just arithmetic expressions, and the word “answer” is also ill-defined;
however, this definition is in line with the standard definition used in algebra, and they have been
able to correctly identify equivalent algebraic expressions in last example in Figure 4 (as well as
other questions not shown here), suggesting that their definition is at least somewhat standard.
Their definition also appears to be operational, as it is rooted in computations with expressions.

Substitution equivalence: Now we consider the extent to which Epsilon recognizes instances
of substitution equivalence in certain algebra examples (see Figure 6).

Suppose that we know that 2x? — y is equivalent to Bz o Suppose that we know that 3a + b is equivalent to 4 2a.

M2t . B E
Does this mean that (2x? — y)(3z — 7) Is equivalent to (82)(3z — 7)? Does this mean that 7a — 5 + (3a + b) + 42 = 3a% is equivalent to 7a — 5 + 42a + b* = 3a??
Circie one: Yes No There isn’t enough Infarmation to tell @ Circle one: Yes No There isn't enough information to tell doﬁ([@\

Figure 6. Epsilon’s recognition of substitution equivalence in some examples

In Figure 6, Epsilon does not recognize either example as substitution equivalence. On the
left in Figure 6, they attempt to simplify one of the expressions, but this does not help them to
identify whether the two expressions are equivalent. They do not appear to draw on the given
fact that 2x% — y is equivalent to 8z when attempting to determine if the two expressions are
equivalent. This suggests that they may not have a notion of substitution equivalence or are
unable to draw on it in this problem context. Epsilon’s operational approach to determining if the
two expressions are equivalent suggests that their operational conception of equivalence may be
limiting Epsilon’s ability to recognize and use substitution equivalence when performing
mathematical transformations. Another barrier to Epsilon developing a robust notion of
substitution equivalence and linking this to their transformation work may be their narrow notion
of substitution itself. Just as they do not recognize most of the transformations in Figure 4 as
substitution, they likely do not recognize the transformations in Figure 6 as substitution either.

Potential impacts of instruction: Epsilon was actually part of a cohort that took part in a
semester-long classroom intervention in which students were taught broader structural
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definitions of substitution, equivalence, and how to view transformation as substitution
equivalence explicitly (as well as other concepts). One sample of Epsilon’s work after the
intervention can be seen in Figure 7.

Suppoaethat 3xr = 2y + 1.
Does this mean that 5a% = (3x) + 7 n Sa% = {2y 4+ 1)+ 77 Fxplain why ar whey rot,

My berause 3‘:.&\.4\: R ?1V¢itfc_$
ead F i) },ﬂ

Figure 7: Epsilon’s identification of substitution equivalence afier an intervention that addressed it explicitly

After the intervention, Epsilon was not able to identify substitution equivalence in all cases,
but they were able to recognize it in cases similar to questions where they had not recognized it
at the start of the term. In Figure 7 we see how they are able to see a complex equation as an
equivalence relationship between two structurally identical expressions where one equivalent
subexpression could be conceptualized as having been substituted for another. Epsilon’s use of
the words “plugged in” are a common phrase often used by students to indicate substitute. We do
note, however, that this language still suggests a computational approach. However, Epsilon is
drawing on structural features of equivalent algebraic expressions through the lens of substitution
equivalence, even if their approach still contains some computational elements. We have
insufficient space to discuss the intervention at length here—we simply include this short
example as a demonstration that more structural and well-defined definitions of substitution,
equivalence, and substitution equivalence approaches to transformation can all be learned, even
by students in developmental mathematics courses in college, given the right supports.

Conclusion

We have presented a model which describes how student definitions of substitution and
equivalence may related to their ability to justify computational work through the lens of
substitution equivalence. Using student examples, we have illustrated some of the affordances of
this lens. We have demonstrated how students may struggle with substitution equivalence for
different reasons, which may then require different instructional approaches. For example, if a
student’s definition of equivalence is ill-defined, it mays be important to find ways for them to
correct their internal definition; whereas if a student has broad and well-defined definitions of
substitution and equivalence, a more effective intervention may be one which helps them to see
the connections between this existing knowledge and the work that they do when they perform
transformations. These are very different approaches to solving what might on the surface look
like similar errors, but which actually stem from very different underlying patterns of student
thinking about the mathematics. Thus, we hope that this model may aid us to better tailor
instruction to respond to student thinking, and to better think about how definitions of
substitution and equivalence are presented in instruction. We have also shown through one
particular student example that students are able to learn to think about transformation through a
substitution equivalence lens with the right kind of instructional approaches, even when they are
in developmental math courses. Further research is needed to better understand what approaches
may be most effective, as well as to investigate which ways of thinking may be most productive
for students in different contexts.
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