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This theoretical paper explores student conceptions of transformation as substitution 

equivalence by linking it to their definitions of substitution and equivalence. This work draws on 

the work of Sfard (1995) to conceptualize substitution equivalence and its components, 

equivalence and substitution, as a spectrum from computational to structural. We provide 

examples of students’ work to illustrate how student notions of substitution, equivalence, and 

substitution equivalence as an approach to justifying transformation may related to one another.  
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Transformation has often been framed as a core mathematical activity (Kieran, 2004), and all 
mathematical calculation, whether arithmetic, simplifying expressions, or finding the solution 
sets of equations, can be viewed as a process of transformation. Thus, with the goal of exploring 
the core mathematical ideas that justify why particular transformations are mathematically valid, 
we view mathematical transformation through the lens of substitution equivalence, 
conceptualizing it as a process of replacing one symbolic object with an equivalent one, and 
naming this process substitution (Wladis et al., 2020). This also includes the process of 
identifying sub-objects and replacing them with equivalent ones in order to generate a new 
equivalent object. This process is non-trivial for many students, and we hypothesize that 
substitution equivalence may be intimately connected to many of the struggles that students have 
with symbolic mathematics at various levels and domains. Little attention has been paid formally 
to students’ notions of substitution equivalence, even though these notions may be intricately 
linked to the ways in which students think about and execute various types of mathematical 
transformation. In this paper we attempt to address that gap, by providing a model of student 
thinking around substitution equivalence. First we describe the model, including the theories and 
body of research literature which have informed its creation, and then we proceed to use the 
model to analyze a few vignettes of student work, in order to illustrate its potential affordances.  

Substitution Equivalence as a Lens for Mathematical Transformation 
In this paper, we focus specifically on student thinking around substitution equivalence, or 

the notion that two expressions, equations, or other mathematical objects are equivalent if one 
can be generated from the other through a sequence of substitutions carried out through a 
combination of correct interpretation of syntactic structure and appropriate use of mathematical 
properties (Wladis et al., 2020).  

Definition of Substitution: In order to see clearly how mathematical activity could be 
viewed through the lens of substitution equivalence, we define substitution more broadly than 
has been done explicitly in much existing research and curricula, as the process of replacing any 
mathematical object (or any unified subpart of an object) with an equivalent object, regardless of 
complexity. This includes the replacement of 𝑥 in 2𝑥2 − 2𝑥 + 1 with −3, but also, e.g., the 
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replacement of 𝑥2 − 6𝑥 = 1 with the equivalent equation 𝑥2 − 6𝑥 − 1 = 0 during solving. 
Definition of Equivalence: We note that the idea of substitution equivalence is wholly 

dependent upon an underlying equivalence relation of some kind and depends upon a specific 
stipulated definition of equivalence. This may be a particular context-specific definition of 
equivalence (e.g., two equations are equivalent if they have the same solution set), or a more 
generalized concept of equivalence (e.g., an equivalence relation); however, any definition of 
equivalence that satisfies the definition of an equivalence relation could be used. 

Definition of Substitution Equivalence: We define the domain of substitution equivalence as 
composed of two main ideas, which we illustrate in more detail in subsequent sections. 
According to our model, students who have a notion of substitution equivalence recognize: 

1. The general notion of substitution equivalence: They understand that we can 
replace an object with any other equivalent object when problem-solving.  

2. That substitution of unified sub-objects can be used to generate equivalent 
objects: They understand that objects can be broken into unified sub-objects, and that 
we can replace any unified sub-object with any equivalent unified sub-object (and the 
process of substitution leaves the rest of the structure of that object unchanged).  

The second notion leads us to another core definition: We use the term subexpression (or 
sub-object, more generally) to denote a substring of an expression (or other object) that can be 
treated as a unified object without changing the syntactic meaning of the original expression (or 
object). E.g., 𝑎 − 𝑏 is a subexpression of 𝑎 − 𝑏 − 𝑐, but 𝑏 − 𝑐 is not (because putting 
parentheses around 𝑏 − 𝑐 would change the syntactic meaning of the expression).  

Model of Operational and Structural Thinking about Substitution Equivalence 
Wladis et al (2020) described key features of student thinking around substitution 

equivalence on a spectrum from structural versus operational approaches. This paper aims to take 
this further by describing explicitly how student conceptions of substitution equivalence may be 
dependent upon student definitions of substitution and equivalence (see Figure 1). 

 

Figure 1: Model of Student Thinking about Substitution Equivalence  

In the model in Figure 1, holding well-defined and standard definitions of both substitution 
and equivalence are necessary but not sufficient conditions for students to develop a view of 
transformation justified by substitution equivalence. A student may have trouble thinking of 
transformation as substitution equivalence because (a) their definitions of substitution are too 
narrow; (b) their definitions of equivalence are ill-defined, unstable, or invalid; (c) they do not 
draw on their knowledge of substitution and/or equivalence when performing transformation; or 
a combination of all of these. We conceptualize student views of substitution, equivalence, and 
transformation as being on a continuum from operational to structural (Table 1). This model is 
based on the notion that the ability to conceptualize transformation as a process of substitution 
equivalence may be useful for students in developing deeper understanding of the justification 
behind their transformation work (and a way of checking the validity of that work).  
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Development of the Model 
This work draws on data collected from multiple classes across six years at a northeastern 

community college, including classroom observations, cognitive interviews, and open-ended 
questionnaires. These data were analyzed using conceptual analysis (Thompson, 2008) to 
generate and refine models of students’ thinking to explain their written work and utterances. We 

note that these models of students’ thinking are based on what the students communicate in the 
moment and are situated within the given task. Further, their strategies and responses may be 
impacted a myriad of factors, including but not limited to the wording of the question, the 
environment they responded in, or the established sociomathematical norms of the classrooms 
they participate (Yackel et al., 2000).  

This analysis was heavily influenced by the work of Sfard (1995), and existing literature 
about the students’ definitions of mathematical concepts (Edwards & Ward, 2004) and their 
understanding of equals sign (e.g., Knuth et al., 2006). Sfard (1995) describes that students can 
conceive of a mathematical concept as a combination of two ways: operationally (as a process, 
often of computation) or structurally (abstract entities in and of themselves; Sfard, 1995). In 
terms of equality, similar language and ideas are used in the literature to describe the students’ 

conceptions of the equals sign, often either operationally (as a ‘do something symbol’; Kieran, 
1981), or relationally (as a relationship between two entities; Knuth et al., 2006), though further 
refining these categories (Rittle-Johnson et al., 2011; Stephens et al., 2013) has been the focus of 
other research. Though research on equality is plentiful, research on substitution and substitution 
equivalence as a broader concept is comparatively minimal. For example, substitutive aspects of 
equivalence have been investigated in the context of arithmetic (Jones & Pratt, 2012), and 
Musgrave, Hatfield, and Thompson (2015) have found that secondary teachers had particular 

Table 1: Components of substitution equivalence model 

  Operational Thinking Structural Thinking 
View of 
Transformation 

Students see transformations of 
expressions and equations (or 
other objects) as a process of 
“operating on” the original object 

itself. They may or may not see 
this as linked to any notion of 
equivalence.  

Students see each step in a transformation 
as the process of replacing one object with 
an equivalent one through substitution, 
using properties and existing syntactic 
structure. They appear to have some 
notion of an equivalence class as an object 
(which need not be formally defined).  

Definition of 
Equivalence 

Students either ignore the notion 
of equivalence entirely, or appear 
to have only vague, ill-defined, or 
unstable notions of equivalence, 
or try to apply one definition of 
equivalence that works only in 
one context to another context.  

Students have a well-defined and 
relatively stable definition of equivalence, 
and recognize that it is context-dependent. 
They recognize that equivalence is a fixed 
trait (two objects are either equivalent 
under a particular definition or not—they 
do not “become” equivalent).  

Definition of 
Substitution 

Students see substitution only as 
plugging a number in for a 
variable (and then computing the 
result). They see variables as 
representing only numbers. 

Students see replacement of any object (or 
sub-object) with an equivalent one as 
substitution. They see variables as 
representing any valid mathematical 
object, including numbers or (potentially 
complex) expressions.  
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difficulty correctly applying a given substitution property to expressions when they found 
operations to be unfamiliar or had difficulty thinking of symbols simultaneously as both a 
process and an object. They argue that if teachers are having difficulties with these ideas, then 
these are likely stumbling blocks for students as well.  

Vignettes: A Model in Action 
We now provide examples of students’ written work to illustrate how one might use the 

model we present here. These are intended to highlight the continuum of the operational and 
structural views. To see how students’ views of transformation as substitution equivalence can 
vary along this spectrum, we present two developmental elementary algebra students’ responses 

about assessing whether or not two expressions are equivalent (Figure 2), where the first 
response (Figure 2a) exemplifies an operational view and the second response (Figure 2b) 
exemplifies a structural view. The first student’s response (Figure 2a) appears to foreground 
computation and symbolic manipulation. In cognitive interviews (not included here because of 
lack of space), students on similar problems have explained similar work by stating that they can 
only tell if two expressions are equivalent if they both simplify to the same final “answer”, so 

this approach may happen when students have an internal computational definition of 
equivalence as “expressions that simplify to the same thing”. Regardless, this student’s response 
foregrounds computation, and hence would be considered as an operational view of 
transformation. In contrast, the response in Figure 2b illustrates exactly how the two equivalent 
subexpressions are substituted into the larger expressions using arrows to indicate the 
relationship between each piece and to highlight the structure of the two expressions. They map 
each unified subexpression in the first expression to an equivalent unified-subexpression in the 
same place in the second expression, in order to illustrate how they know that the two 
expressions are equivalent. Though the student doesn’t explicitly use the substitution, we do see 
evidence that they are looking at the underlying structure and visualizing a replacement or 
exchange of one equivalent sub-part with another.  

 

  
(a)      (b) 

Figure 2: Examples of students’ responses rooted in an operational view (a) and structural view (b) of equivalence  

Students’ Definitions of Equivalence 
To see how students’ definitions of equivalence can vary along this spectrum, we refer to the 

previous two examples and consider the definitions of equivalence the students seem to be 
evoking. These responses exemplify operational and structural definitions of equivalence, 
respectively. In the first response (Figure 2a), the student attempted to simplify the expressions 
to determine whether they are equivalent, and then appeared to decide that they are not 
equivalent after they could not immediately simplify them both to the same expression. This 
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definition of equivalence appeared to be computational (e.g., “two expressions are equivalent 
only if they simplify to the same thing”), and their work doesn’t seem acknowledge the 

equivalence within their work. Because the student abandoned the attempt after this did not 
work, this suggests that they did not see a way to use the structure of the given expressions to 
determine equivalence beyond simplifying both sides to see if the results are the same.  

In contrast, the response in Figure 2b that the student may have a structural definition of 
equivalence. In this example, they are drawing on the structure of two complex expressions to 
show how they map to one another in such a way that each subexpression is either the same or 
equivalent, and leverage that equivalence to show that the final result will be equivalent. This 
apparent definition of equivalence appears to be well-defined and potentially could be a fixed 
trait of a set of objects. 

Students’ Definitions of Substitution 
To exemplify the differences along this spectrum, we look at two students’ definitions of 

substitution (Figure 3). Throughout data collection, the response in Figure 3a (“putting a number 

in for a letter”) is one of the most common given by students at all levels, from elementary 

algebra through linear algebra. This narrow definition of substitution would be considered 
operational, while the response in Figure 3b would be considered structural view of substitution. 
This is because their definition affords a greater variety of terms to be replaced for one another, 
which involves conceptualizing complex subexpressions as entities.  

  
(a)      (b) 

Figure 3: Examples of an operational (a) and structural (b) definition of substitution. 

In order to see how student views of substitution may impact their view of transformation of 
expressions, we further examined students’ responses to a task to identify instances of 
substitution, and found that their responses were typically consistent with their definitions (e.g., 
only recognizing transformation as substitution when it involved a number being substituted in 
for a letter if that was their stated definition); we include one example of this in the next section.  

Using the Framework to Analyze Student work longitudinally 
In order to illustrate the potential of this model for deeper analysis, we consider responses 

from an Algebra I student (whom we call Epsilon, like ε) across multiple tasks and points in 

time.  
Substitution: We first consider Epsilon’s definition of substitution (Figure 3a), where they 

have given an operational definition, rather than a structural one. This correlates with the extent 
to which they identify different computations as substitution in the following work (Figure 4).  

We can see in Figure 4 that Epsilon rarely identified computation as substitution when it was 
more complex or generalized. They notice, for example, that the expressions in the last example 
in Figure 4 are equivalent, but they do not see replacement of the subexpression 𝑥2 − 9 with 
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(𝑥 + 3)(𝑥 − 3) as an instance of substitution (“nothing is being replaced”), which is consistent 

with the more limited operational definition of substitution that they gave in Figure 3a.  

 
Figure 4: Epsilon’s interpretations of substitution in specific contexts  

Equivalence: Now we consider Epsilon’s definition of equivalent expressions (Figure 5).  

 
Figure 5: Epsilon’s definitions of equivalent expressions  

Epsilon provided a seemingly correct (if perhaps incomplete or ill-defined) definition of 
equivalent expressions. We cannot be sure the extent to which they understand that expressions 
have to have the same value for every possible combination of variable values or that this applies 
to algebraic and not just arithmetic expressions, and the word “answer” is also ill-defined; 
however, this definition is in line with the standard definition used in algebra, and they have been 
able to correctly identify equivalent algebraic expressions in last example in Figure 4 (as well as 
other questions not shown here), suggesting that their definition is at least somewhat standard. 
Their definition also appears to be operational, as it is rooted in computations with expressions.  

Substitution equivalence: Now we consider the extent to which Epsilon recognizes instances 
of substitution equivalence in certain algebra examples (see Figure 6).  

 
Figure 6. Epsilon’s recognition of substitution equivalence in some examples 

In Figure 6, Epsilon does not recognize either example as substitution equivalence. On the 
left in Figure 6, they attempt to simplify one of the expressions, but this does not help them to 
identify whether the two expressions are equivalent. They do not appear to draw on the given 
fact that 2𝑥2 − 𝑦 is equivalent to 8𝑧 when attempting to determine if the two expressions are 
equivalent. This suggests that they may not have a notion of substitution equivalence or are 
unable to draw on it in this problem context. Epsilon’s operational approach to determining if the 
two expressions are equivalent suggests that their operational conception of equivalence may be 
limiting Epsilon’s ability to recognize and use substitution equivalence when performing 
mathematical transformations. Another barrier to Epsilon developing a robust notion of 
substitution equivalence and linking this to their transformation work may be their narrow notion 
of substitution itself. Just as they do not recognize most of the transformations in Figure 4 as 
substitution, they likely do not recognize the transformations in Figure 6 as substitution either.  

Potential impacts of instruction: Epsilon was actually part of a cohort that took part in a 
semester-long classroom intervention in which students were taught broader structural 
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definitions of substitution, equivalence, and how to view transformation as substitution 
equivalence explicitly (as well as other concepts). One sample of Epsilon’s work after the 

intervention can be seen in Figure 7.  

 
Figure 7: Epsilon’s identification of substitution equivalence after an intervention that addressed it explicitly 

After the intervention, Epsilon was not able to identify substitution equivalence in all cases, 
but they were able to recognize it in cases similar to questions where they had not recognized it 
at the start of the term. In Figure 7 we see how they are able to see a complex equation as an 
equivalence relationship between two structurally identical expressions where one equivalent 
subexpression could be conceptualized as having been substituted for another. Epsilon’s use of 

the words “plugged in” are a common phrase often used by students to indicate substitute. We do 
note, however, that this language still suggests a computational approach. However, Epsilon is 
drawing on structural features of equivalent algebraic expressions through the lens of substitution 
equivalence, even if their approach still contains some computational elements. We have 
insufficient space to discuss the intervention at length here—we simply include this short 
example as a demonstration that more structural and well-defined definitions of substitution, 
equivalence, and substitution equivalence approaches to transformation can all be learned, even 
by students in developmental mathematics courses in college, given the right supports.  

Conclusion 
We have presented a model which describes how student definitions of substitution and 

equivalence may related to their ability to justify computational work through the lens of 
substitution equivalence. Using student examples, we have illustrated some of the affordances of 
this lens. We have demonstrated how students may struggle with substitution equivalence for 
different reasons, which may then require different instructional approaches. For example, if a 
student’s definition of equivalence is ill-defined, it mays be important to find ways for them to 
correct their internal definition; whereas if a student has broad and well-defined definitions of 
substitution and equivalence, a more effective intervention may be one which helps them to see 
the connections between this existing knowledge and the work that they do when they perform 
transformations. These are very different approaches to solving what might on the surface look 
like similar errors, but which actually stem from very different underlying patterns of student 
thinking about the mathematics. Thus, we hope that this model may aid us to better tailor 
instruction to respond to student thinking, and to better think about how definitions of 
substitution and equivalence are presented in instruction. We have also shown through one 
particular student example that students are able to learn to think about transformation through a 
substitution equivalence lens with the right kind of instructional approaches, even when they are 
in developmental math courses. Further research is needed to better understand what approaches 
may be most effective, as well as to investigate which ways of thinking may be most productive 
for students in different contexts.  
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