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Entanglement spread area law in gapped

ground states
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Ground-state entanglement governs various properties of quantum many-body systems at low temperatures and is the key to
understanding gapped quantum phases of matter. Here we identify a structural property of entanglement in the ground state
of gapped local Hamiltonians. This property is captured using a quantum information quantity known as the entanglement
spread, which measures the difference between Rényi entanglement entropies. Our main result shows that gapped ground
states possess limited entanglement spread across any partition of the system, exhibiting an area-law scaling. Our result
applies to systems with interactions described by any graph, but we obtain an improved bound for the special case of lattices.
These interaction graphs include cases where entanglement entropy is known not to satisfy an area law. We achieve our results
first by connecting the ground-state entanglement to the communication complexity of testing bipartite entangled states and
then devising a communication scheme for testing ground states using recently developed quantum algorithms for Hamiltonian

simulation.

many-body states with central importance in condensed-matter

physics, quantum chemistry and quantum complexity theory.
A unique property of these states is the presence of multipartite
entanglement, which makes them suitable for quantum compu-
tation' and leads to novel phenomena such as exotic phases of
matter’* and quantum phase transitions’. However, the existence
of entanglement also complicates the theoretical and numerical
study of these states, since an increase in entanglement is often tied
with an increase in complexity of their representation.

There have been extensive efforts in the past to characterize and
classify various features of ground-state entanglement. An impor-
tant problem in this direction is the ‘area-law conjecture’ for entan-
glement entropy in the ground state of gapped local Hamiltonians®-*.
This conjecture states that in a gapped ground state |£2), the amount
of entanglement between a subset of particles A and its complement
B is at most proportional to the number of interaction terms that
cross the boundary 0A (Fig. 1). Here the entanglement is measured
by the von Neumann entropy of the eigenvalues of the reduced state
0, =tr,|2)(2| in subset A. This behaviour is drastically different
from the generic situation where the entanglement across the cut
0A scales with the size of the smaller partition |A| rather than |0A|.
The entanglement entropy area law has been rigorously proven
for one-dimensional (1D) gapped systems, with some remarkable
implications that justify the success of numerical methods like the
density matrix renormalization group algorithm”'* and the validity
of the matrix-product state representation of ground states®’.

Unfortunately, despite research efforts spanning more than a
decade''"'%, the entanglement entropy area law has remained a con-
jecture for lattices of higher dimensions, non-Euclidean geome-
tries or more general interaction graphs. In fact, a ‘generalized
area law’ is known to be false when the systems are not placed on a
lattice'’. Such systems have become increasingly relevant in physics
in connection to quantum chaotic dynamics, holographic duality
and disordered systems'®, and have also been engineered in various
experimental setups'®-'.

| he ground states of local Hamiltonians are quantum

In this Article, we reveal a new structural property for ground-
state entanglement that applies to all gapped local Hamiltonians
with arbitrary interaction graphs. The entanglement entropy
area-law conjecture concerns the von Neumann entropy of £,,
which could be seen as an average of the log of the eigenvalues of
the state. We consider, instead, a variance-like quantity of the log of
the eigenvalues, which is a well-known quantum information quan-
tity called the entanglement spread. This quantity gives an estimate
of the spread of the eigenvalues of state 2, (Fig. 1). We prove that as
long as the Hamiltonian is gapped, its ground state possesses limited
entanglement spread on general interaction graphs, exhibiting an
‘area-law’ scaling for this quantity. We further show that on lattices,
this can be improved to sub-area scaling. The strength of our results
is that it relies on no assumption other than the presence of a gap
and uniqueness of the ground state, which are the same assump-
tions made in the 1D entanglement entropy area laws.

Our findings relate to a series of previous works”~*" that sug-
gest in two-dimensional (2D) gapped systems, the ground state in
region A resembles the Gibbs state of a local Hamiltonian (known as
the modular or entanglement Hamiltonian) acting only on bound-
ary 0A. We show how the sub-area-law scaling of the entanglement
spread proved here for lattices matches the predicted locality of
the modular Hamiltonian. We also reveal a connection between
the entanglement spread and efficient algorithms for contracting
the tensor network representations of 2D gapped ground states.
Building on another study?*, we show that if a 2D gapped ground
state is represented by a projected entangled-pair state (PEPS)* that
satisfies a variant of our sub-area entanglement spread without any
smoothing, then the information from this PEPS can be used to effi-
ciently compute the expectation value of any local observable in the
system.

Statement of main result

Consider a many-body quantum system comprising many qudits
(d-dimensional systems) interacting according to Hamiltonian H.
This can define an interaction graph (Fig. 1) where vertices
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Fig. 1| Entanglement spectrum across a general partition. a, Interacting quantum systems with a general interaction graph partitioned into two parts A
and B (shaded regions) with boundary 0A. b, A similar partition for a system on a lattice. ¢, Profile of the eigenvalues (also known as Schmidt coefficients)
M A,,.... A, of the reduced ground state in region A. This distribution fully encodes the information about the bipartite entanglement between particles in
regions A and B. Up to a smoothing step (explained in the main text) and the entanglement spread across the cut dA is defined as log(rA,) ~ log(A,/A,). We

show that the entanglement spread scales as O(|0A]). We improve this to O(4/|dA|) for lattice Hamiltonians. In comparison, the area-law conjecture for
entanglement entropy asserts that the entropy of the distribution of Schmidt coefficients is bounded by the size of the cut |0A|, that is, S(£2,) = O(|0A]).

correspond to qudits and edges to two-body interaction terms; our
results apply equally well to k-local Hamiltonians for k> 2, but the
interactions are easier to visualize for k=2.

Suppose we fix a partition of qudits into two parts A and B. We
denote the ground state by |©2),, and the non-zero eigenvalues of
the reduced state 2, =tr;|Q2)(£2| (or equivalently ;) by A,,...,A,.
These eigenvalues, which form a probability distribution, are often
called the Schmidt coefficients. We assume these coefficients are
arranged in the descending order, thatis, A, >A,>...>X,>0,and r
is referred to as the Schmidt rank of state |£2) ,;.

We are interested in obtaining a bound on the spread of the dis-
tribution of these Schmidt coefficients A,,...,A,. A natural quantity
for measuring this spread is the entanglement spread, denoted by
ES(£2,), which in its simplest form is defined by ES(£2,) =log(rA,)
(ref. *°). The connection between this quantity and the spread of
the distribution of Schmidt coefficients can be better seen by notic-
ing that ES(£2,) ~log(A,/A,), which follows from r~1/A, Hence,
if all the Schmidt coefficients are concentrated around the same
value, this quantity is small, and as these coefficients spread out, it
grows larger.

This definition of entanglement spread is, however, not robust
to small perturbation of the spectrum of eigenvalues. For instance,
the addition of a series of small eigenvalues to the tail of the distri-
bution significantly affects the Schmidt rank r, but alters the state
negligibly in trace distance. To this end, we allow for some small
5€[0,1] fraction of Schmidt coefficients to be removed from |£2) .,
(Fig. 2) before finding their entanglement spread. Let A{ be the larg-
est Schmidt coefficient in the remainder and r’ be the remaining
Schmidt rank. The robust or smooth entanglement spread, denoted
by ES,(€2,), is defined by log(#'A}) (ref. *°). This can be alternatively
written in an entropic version as

ES5(£24) = Sonax(24) — Soin($24), (1)

where S5, (£24) =logr is the smooth max-entropy and
8% (£24) = —logA{ is the smooth min-entropy, both of which are
examples of Rényi entanglement entropies. Although it is known
that von Neumann entropy captures the performance of certain
information-processing tasks involving an asymptotic number of
copies of a quantum state, the smooth min-entropy and max-entropy

have operational meanings in the ‘single-shot’ regime where only a

Fig. 2 | Smooth entanglement spread. To define a robust version of
entanglement spread, we remove the § fraction of mass from both ‘ends’
of a given distribution. The smooth entanglement spread is then defined as
ESs;(2,) =log(r'A).

single copy of a quantum state is considered®~*. This single-shot
property has been used before to derive an entanglement entropy
area law for 1D systems®. As discussed later, the entanglement
spread ES;(£2,) also has a single-shot operational interpretation in
terms of the communication complexity of testing |£2),, which is
the basis of our analysis. Having set the definition of entanglement
spread, we are now ready to state our main result.

Main result. Given a local Hamiltonian over an arbitrary interac-
tion graph, the entanglement spread of a subset of qudits A in the
ground state |€2),,; is bounded by

ESs(£24) < O (@ x log [é]) , ()

where y is the spectral gap above the ground state, |dA| is the size
of the boundary of A and ¢ is the smoothness parameter in equa-
tion (1). This establishes an area-law scaling for the entanglement
spread. Some other factors with logarithmic dependence on [0A|, ¥
and § are hidden in O(+).

This bound can be improved to a sub-area-law scaling if
the interaction graph is a lattice of a constant dimension. That is,
qudits are located at vertices of the cubic lattice ZP with D=0(1),
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Fig. 3 | Communication complexity of identity testing. a, Suppose a bipartite state |¢),; is shared between Alice and Bob who also have access to
unlimited shared EPR pairs. The parties want to determine if their shared state is the state |y),; or not by performing the two-outcome measurement

{lw) (wlag L — ly) (w|sg}- In one round of the communication protocol, Alice may perform a joint unitary operation on her share of |¢) .5 the EPR pairs
and an ancillary register, which is then sent to Bob who proceeds in the same way. b, Testing a product state simply requires one qubit of communication
since Alice can coherently test if her registers are in the desired state. She then sends the answer to Bob who compares that with the result of testing his
registers by performing a projective measurement. ¢, One might initially suspect that testing the maximally entangled state requires exchanging a large
number of qubits. However, it turns out that by using quantum expanders”, one can perform this up to an error A by exchanging C,(y) = O(log[1/A]) qubits
independent of size n. d, When the target state is a superposition of the last two cases, it holds that C,(w) = cn for some constant ¢ that depends on A.

This is because a coherent measurement on this state can be also used to reflect about it, which, in turn, allows one to create n EPR pairs from the product
states. However, it is known that this requires at least O(n) qubits of communication®*. This motivates the bound in equation (1). Indeed, in the first two

examples, ES(y) =0, whereas in the third case, ES(y) =0(n).

and they only interact if they are close in Euclidean distance. In this

case, we have
Al o [1
X log 5] (3)

Theintuitionbehind the quadraticallybetterboundinequation (3)
comes from the exponential decay of correlations for gapped ground
states on finite-dimensional lattices* %, which implies that the dis-
tant qudits along boundary dA are almost uncorrelated. This suggests
that the é)round state across the boundary is roughly in a product
form |¢) AB‘BAI composed of O(|0A|) partially entangled states |¢) .
By using conventional concentration bounds”, it can be shown that
the smooth entanglement spread obeys ES;(¢$*) = O(vk) match-
ing the scaling of the bound in equation (3). In Supplementary
Information, we show that the bound in equation (3) for lattices
cannot be, in general, improved.

ES;(£24) <O (

Entanglement spread and test of entanglement

The key to our findings is a connection to the field of quantum com-
munication complexity. A basic question here concerns the scenario
where two parties (Alice and Bob) want to test whether they share
a specific entangled state |y),, € Ha ® Hp, with Alice and Bob
owning registers 74 and #p, respectively. The testing is achieved
by performing the measurement {|w) (y|,5 1 — |w) (y| 5} and
accepting if the first outcome is obtained. Since, in general, the state
|w) 45 is an entangled state, Alice and Bob need to exchange qubits
to perform this operation. For instance, Alice can send her regis-
ter H4 to Bob who then performs the joint operation on H4 ® Hp
and sends back Alice’s register. But an improved performance can
be obtained by adapting our test to the state |y),; and also when the
parties are only required to implement an approximate testing mea-
surement {K, 1 — K} such that ||[K — |y) (y],5|| < A. The commu-
nication complexity, C,(y,), is defined as the minimum number of
qubits that the parties need to exchange to perform the test with an
error of at most A.

Since by applying local unitaries, a bipartite state |y),; can
always be transformed to the Schmidt form 3_,_ v/A¢[€) ,|€), the
communication complexity C,(y,;) depends only on the Schmidt
coefficients A,,...,A,. Figure 3 presents the communication setup
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in more detail and demonstrates the dependency of C,(y,;) on the
Schmidt coefficients for various examples. These examples reveal
that it is not the amount of entanglement that determines the cost of
testing the state but rather the spread of the distribution of Schmidt
coefficients. This motivates a general connection between the com-
munication complexity and entanglement spread ES,(y,;) of the
state |y} 5. To this end, we show that

Ca(yap) = ESar(y,) — 1, (4)

where the smoothness parameter A’ =A*3, Different variants of this
bound have been proven before, first in ref. *° and also in refs. **%.
In Supplementary Section 3.1, we prove a version of this bound tai-
lored for our own application. An interesting aspect of the bound
in equation (4) is that it continues to hold even if we allow Alice
and Bob to use unlimited EPR pairs during their testing protocol
(Supplementary Section 3.1 discusses such EPR-assisted testing
protocols). In Methods, we explain how this can be exploited to
improve our results.

With these tools in hand, our strategy is to devise an EPR-assisted
testing protocol for the gapped ground state |£2),, and use its com-
munication complexity as in equation (4) to obtain the upper
bound in equation (2) on the entanglement spread. Following other
work**"!, we will refer to the operator K in the testing measurement
{K, 1 — K} that the parties implement as an EPR-assisted approxi-
mate ground-state projector (AGSP). In Methods, we overview
our testing protocol that involves a novel construction of an AGSP
based on the quantum phase estimation (QPE) algorithm. We show
that Alice and Bob can implement a distributed version of QPE with
communication complexity O(|0A|/y) and hence achieve the upper
bound in equation (2).

Discussion

How do our bounds on entanglement spread relate to entangle-
ment entropy area laws? One implication of our results is that if
one can prove an area law for S3,;,(£24), then this yields an area law
for 85.(£24) and hence for entanglement entropy. The utility of
this is that smooth min-entropy area law may be easier to prove in
comparison to the entanglement entropy area law. For instance, for
specific models such as the sign-free local Hamiltonians, proving a
min-entropy area law can be reduced to a classical problem™.
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The area-law scaling for entanglement spread stated in
equation (2) provably applies even to interaction graphs in which
the entanglement entropy is known not to satisfy an area law. An
example of such a local Hamiltonian is constructed in another
work'” whose interaction graph can be partitioned into sets A and
B such that the size of the boundary |0A| =1, but the entanglement
entropy of A, in violation of the area law, scales as S(£2,) > |A|° for
some positive constant ¢ < 1. Nevertheless, it is shown elsewhere'”
that the ground state |£2) ,; across this cut is a maximally entangled
state, which has a constant (in fact, vanishing) entanglement spread
according to equation (1) (Fig. 3c), as predicted by our area-law
bound on ES,(£2,) in equation (2). When combined with our previ-
ous discussion on area law, this suggests the following: the ground
state of a gapped Hamiltonian always exhibits a small entangle-
ment spread. However, it either has a large min-entropy (such as
maximally entangled states in the counter-example Hamiltonian'’)
and hence does not obey an entropy area law or it possesses limited
min-entropy (such as 1D ground states) and thus obeys an entropy
area law.

Our results connect to a body of work that aims to understand
the properties of gapped phases of matter by studying not only the
entanglement entropy but also more broadly the features of the
entanglement spectrum of ground states. Given the reduced state
Q,, the modular (or entanglement) Hamiltonian H,, is defined
such that 24 = e fmod, In other words, Q, corresponds to the
Gibbs (thermal) state of H,,,4. The eigenvalues of H,,, are known as
the entanglement spectrum?®. Various works, initiated elsewhere®,
relate the entanglement spectrum to different characteristics of a
given phase”~?". These studies suggest that in 2D gapped systems,
the entanglement spectrum often has features of the spectrum of a
1D local Hamiltonian, although its features are not always isomor-
phic to the original Hamiltonian®. In particular, the entanglement
entropy area law predicts an O(|0A|) scaling for the entropy of £2,,
which matches the entropy of the Gibbs state of a 1D Hamiltonian. A
more general question is which aspects of the modular Hamiltonian
H, ., are similar to that of a 1D local Hamiltonian beyond simply
the O(]0A|) scaling of entropy. We contribute to this by showing one
further feature, namely, the O(4/|0A|) scaling of the entanglement
spread of 2,..

To see why O(4/|0A|) scaling predicted by our bound in
equation (3) for the gapped ground states is in agreement with
H,,.; being a 1D local Hamiltonian, we use the well-known fact that
at thermal equilibrium, the energy distribution of a many-body
quantum system is concentrated around the average energy.

Indeed,ifH,,  isasumofO(|0A|)localterms,eachofnorm O(1),then
the energy variance 6° = Tr[H? 4 4] — Tt[Hmoa 24]° < O([0A]),
which can be shown using the exponential decay of correlations in
the Gibbs state of such Hamiltonians*>*. It follows from Chebyshev’s
inequality on the concentration of probability distributions that the
d-smooth entanglement spread of the spectrum of the Gibbs state
satisfies ESs5(£24) < O(y/|0A|/8), yielding the same O(/|dA|)
dependency as in the bound in equation (3).

Finally, there is a close link between the features of entangle-
ment and developing efficient algorithms for simulating gapped
ground states. The tensor network states such as PEPS* are used
to efficiently represent 2D ground states. Although contracting
these tensor networks to estimate the expectation of local observ-
ables is believed to be computationally intractable in general®, find-
ing physically motivated conditions on gapped ground states that
imply efficient contraction methods has been the subject of many
past studies. This includes exploiting the locality of entanglement
spectrum®, area laws for entanglement entropy'®”** and unifor-
mity conditions on boundary eigenvalues®. In this work, we further
show that there is an efficient algorithm for computing the expecta-
tion value (O) of any local observable O if the ground state is given
by a PEPS of a small bond dimension that satisfies the exponential

decay of correlations and for which a variant of our entanglement
spread bound without any smoothing (that is, =0) holds. This
algorithm simply estimates the local expectation (O) by tr[/10]/
tr[I1], where IT is the projector onto a disk of sufficiently large,
but still constant, radius in the ground state that encloses the sup-
port of the local observable O (Supplementary Sections 2.3 and 3.4
provide the precise statements and proof). Whether this result can
be extended to the case of smooth entanglement spread—for which
we establish a sub-area scaling—is an interesting open problem.

In conclusion, this work connects two previously unrelated top-
ics: ground-state entanglement and communication complexity of
testing bipartite entangled states. We uncover a new property of
entanglement in the ground state of any gapped local Hamiltonian,
namely, an area law for the entanglement spread. We discuss the
importance of our results as follows: (1) showing how entanglement
spread can capture the unique features of gapped ground states
beyond what is evident from entanglement entropy, (2) connecting
the improved sub-area law for entanglement spread on lattices to
the conjectures regarding the locality of modular or entanglement
Hamiltonian and (3) demonstrating the relevance of entanglement
spread in devising efficient algorithms for gapped ground states.
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Methods

Testing protocol for gapped ground states. Here we detail the construction of
AGSP used in our testing protocol to prove the entanglement spread area law

in equation (2). This AGSP is based on the QPE algorithm. One advantage of
using QPE compared with conventional Chebyshev polynomials (used in earlier
works™"") is that it applies not only to geometrically local Hamiltonians on lattices
but also to any local Hamiltonian on arbitrary interaction graphs. One can view
QPE as a procedure that conditions on a time register |t), which is in a uniform
superposition of t€ [0, O(1/y)]; applies the ‘Hamiltonian simulation” operator ="
on an input state; and determines the energy of the state. Setting y to equal the

gap of the Hamiltonian and repeating QPE in parallel O(log [%] ) times, we can

use this algorithm to approximately distinguish the ground state |£2) from other
eigenstates. That is, we can perform the two-outcome measurement {K, 1 — K} on
any input state, where ||K - |[€2)(£2||| <A (Supplementary Section 3.2.3 provides a
more precise derivation).

To implement this algorithm in a distributed fashion involving two parties,
Alice and Bob need to share two copies of the time register |¢) and work
together to apply the operator e conditioned on the register |t). For a given
partition of qudits between Alice A and Bob B, we can write the Hamiltonian as
H=H,+H,, + Hj, where [H,, H;] =0. One of our main technical contributions is
designing a communication protocol for performing the Hamiltonian simulation
operator e with a communication cost that scales as O(t||H,,||) instead of
the conventional O(t||H]|). It is not hard to see how one can achieve this if
the boundary term H,, also commutes with H, and Hj. In that case, we have
e — e~itHae=itHane—tHs and the parties can implement e~ if one of them
sends the boundary qudits that are in support of H,, to the other. This yields a
communication cost that scales as O(|0A|). In general, however, H,, does not
commute with H, and Hy and finding a non-trivial protocol for the Hamiltonian
simulation becomes challenging.

One attempt to remedy this might be to use the Trotterization technique®.
This divides the simulation into # segments and implements e~ for 5
consecutive times. If 5 is large enough, [H,,/n, H, ., /7] 0, and we again recover
the commuting case. That is, the parties collaboratively implement e =/,
Unfortunately, for this to work, we need # (and therefore, the communication cost)
to be O(t||H||), which is far from the bound O(t||H,,||) that we are aiming for here.

We, instead, use a recent framework for Hamiltonian simulation developed
in another work™ known as the ‘interaction-picture’ Hamiltonian simulation.
Intuitively, one can view this as a sophisticated but widely used change of variables
that allows us to separate the contribution of the boundary term from H, and H.
Suppose we want to prepare the state |y(t)) =e *"|y/(0)). For any |y(t)), we define
its counterpart in the interaction picture by |y (t)) = et(HatHs) 1y, (1)) . Since
the operator e'(a+H5) can be locally applied by the parties, the states |y;(£)) and
|w(t)) can be switched with each other with no extra communication. The point
of this transformation is that the state |y;(t)) can be prepared starting from |y(0))
by applying unitary U(t), which is the Hamiltonian simulation operator associated
with a time-dependent Hamiltonian Hj(t) = e'!(a+Hs) b, e ~i#(Ha+Hs) pytting
the time dependence of H(f) aside, the main advantage is that ||H,(¢)|| =||Hl|-
This solves the earlier issue as the number of segments 5 used when implementing
U(t) can be taken as small as O(t||H,,||) instead of the original O(¢||H||). The
remaining task is to find a communication protocol for performing U(t/57), which
now is a more complicated operator than the previous one, that is, e ~*#4/7, This
is done in other work™*! using the linear combination of unitaries method. In
Supplementary Section 3.2.2, we present a modification of this algorithm based on
the following idea.

As explained earlier, Alice and Bob may use unlimited EPR pairs in their
protocol without affecting the bound in equation (4) on the entanglement spread.
Moreover, as shown elsewhere'” and discussed in Fig. 3, testing or performing
reflections around maximally entangled states can be done with a cost independent
of the dimension of this state. Together, these imply that we can replace the ancillary
registers that need to be shared during the linear-combination-of-unitaries-based
Hamiltonian simulation with free EPR pairs. This allows us to improve the cost of
Hamiltonian simulation and obtain tighter bounds on the entanglement spread.
Although we use the interaction-picture Hamiltonian simulation to implement
this AGSP, achieving the same results with the Trotter methods—using ideas on
information complexity”—would be valuable.

AGSP for lattices. Our improved bound in equation (3) for lattice Hamiltonians
is obtained using the AGSPs based on Chebyshev polynomials. These were
first developed in the context of the entanglement entropy area law in 1D

systems”*"**. The AGSP framework'*' already provides a framework to connect
the min-entropy and entanglement entropy***'. However, this connection

does not give us the desired bound on entanglement spread, as it relates
entanglement entropy and min-entropy by a certain multiplicative factor, which
may be large. For instance, ref. *! implies that by choosing the Chebyshev-based

AGSP that has a shrinking of O(1) and Schmidt rank of 201941 e get

S(24) = O(\/|0A|Smin (£24)), where S(£2,) is the von Neumann entropy of £2,,.
We show that a simple adaptation of Chebyshev-based AGSP, along with
appropriate smoothing, leads to a qualitatively stronger theorem for lattices, which
shows that entanglement spread scales as O(4/|dA|). We utilize the ‘truncation
step”, which is used to lower the norm of the Hamiltonian away from a cut and
maintaining its gap and ground state. We apply truncation to both frustration-free
and frustrated cases. In the former, we use the detectability lemma operator*,
whereas in the latter, we rely on recent techniques™ to perform the truncation.
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