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T
he ground states of local Hamiltonians are quantum  
many-body states with central importance in condensed-matter 
physics, quantum chemistry and quantum complexity theory. 

A unique property of these states is the presence of multipartite 
entanglement, which makes them suitable for quantum compu-
tation1 and leads to novel phenomena such as exotic phases of  
matter2–4 and quantum phase transitions5. However, the existence  
of entanglement also complicates the theoretical and numerical 
study of these states, since an increase in entanglement is often tied 
with an increase in complexity of their representation.

There have been extensive efforts in the past to characterize and 
classify various features of ground-state entanglement. An impor-
tant problem in this direction is the ‘area-law conjecture’ for entan-
glement entropy in the ground state of gapped local Hamiltonians6–8. 
This conjecture states that in a gapped ground state |Ω〉, the amount 
of entanglement between a subset of particles A and its complement 
B is at most proportional to the number of interaction terms that 
cross the boundary ∂A (Fig. 1). Here the entanglement is measured 
by the von Neumann entropy of the eigenvalues of the reduced state 
ΩA = trB|Ω〉〈Ω| in subset A. This behaviour is drastically different 
from the generic situation where the entanglement across the cut 
∂A scales with the size of the smaller partition ∣A∣ rather than ∣∂A∣. 
The entanglement entropy area law has been rigorously proven 
for one-dimensional (1D) gapped systems, with some remarkable 
implications that justify the success of numerical methods like the 
density matrix renormalization group algorithm9,10 and the validity 
of the matrix-product state representation of ground states6,7.

Unfortunately, despite research efforts spanning more than a 
decade11–16, the entanglement entropy area law has remained a con-
jecture for lattices of higher dimensions, non-Euclidean geome-
tries or more general interaction graphs. In fact, a ‘generalized 
area law’ is known to be false when the systems are not placed on a  
lattice17. Such systems have become increasingly relevant in physics 
in connection to quantum chaotic dynamics, holographic duality 
and disordered systems18, and have also been engineered in various 
experimental setups19–21.

In this Article, we reveal a new structural property for ground- 
state entanglement that applies to all gapped local Hamiltonians 
with arbitrary interaction graphs. The entanglement entropy 
area-law conjecture concerns the von Neumann entropy of ΩA, 
which could be seen as an average of the log of the eigenvalues of 
the state. We consider, instead, a variance-like quantity of the log of 
the eigenvalues, which is a well-known quantum information quan-
tity called the entanglement spread. This quantity gives an estimate 
of the spread of the eigenvalues of state ΩA (Fig. 1). We prove that as 
long as the Hamiltonian is gapped, its ground state possesses limited 
entanglement spread on general interaction graphs, exhibiting an 
‘area-law’ scaling for this quantity. We further show that on lattices, 
this can be improved to sub-area scaling. The strength of our results 
is that it relies on no assumption other than the presence of a gap 
and uniqueness of the ground state, which are the same assump-
tions made in the 1D entanglement entropy area laws.

Our findings relate to a series of previous works22–27 that sug-
gest in two-dimensional (2D) gapped systems, the ground state in 
region A resembles the Gibbs state of a local Hamiltonian (known as 
the modular or entanglement Hamiltonian) acting only on bound-
ary ∂A. We show how the sub-area-law scaling of the entanglement 
spread proved here for lattices matches the predicted locality of 
the modular Hamiltonian. We also reveal a connection between 
the entanglement spread and efficient algorithms for contracting 
the tensor network representations of 2D gapped ground states. 
Building on another study28, we show that if a 2D gapped ground 
state is represented by a projected entangled-pair state (PEPS)29 that 
satisfies a variant of our sub-area entanglement spread without any 
smoothing, then the information from this PEPS can be used to effi-
ciently compute the expectation value of any local observable in the 
system.

Statement of main result
Consider a many-body quantum system comprising many qudits 
(d-dimensional systems) interacting according to Hamiltonian H.  
This can define an interaction graph (Fig. 1) where vertices  
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The area-law scaling for entanglement spread stated in  
equation (2) provably applies even to interaction graphs in which 
the entanglement entropy is known not to satisfy an area law. An 
example of such a local Hamiltonian is constructed in another 
work17 whose interaction graph can be partitioned into sets A and 
B such that the size of the boundary ∣∂A∣ = 1, but the entanglement 
entropy of A, in violation of the area law, scales as S(ΩA) ≥ ∣A∣c for 
some positive constant c < 1. Nevertheless, it is shown elsewhere17 
that the ground state |Ω〉AB across this cut is a maximally entangled 
state, which has a constant (in fact, vanishing) entanglement spread 
according to equation (1) (Fig. 3c), as predicted by our area-law 
bound on ESδ(ΩA) in equation (2). When combined with our previ-
ous discussion on area law, this suggests the following: the ground 
state of a gapped Hamiltonian always exhibits a small entangle-
ment spread. However, it either has a large min-entropy (such as 
maximally entangled states in the counter-example Hamiltonian17) 
and hence does not obey an entropy area law or it possesses limited 
min-entropy (such as 1D ground states) and thus obeys an entropy 
area law.

Our results connect to a body of work that aims to understand 
the properties of gapped phases of matter by studying not only the 
entanglement entropy but also more broadly the features of the 
entanglement spectrum of ground states. Given the reduced state 
ΩA, the modular (or entanglement) Hamiltonian Hmod is defined 
such that Ω

A

= e

−H

mod. In other words, ΩA corresponds to the 
Gibbs (thermal) state of Hmod. The eigenvalues of Hmod are known as 
the entanglement spectrum22. Various works, initiated elsewhere22, 
relate the entanglement spectrum to different characteristics of a 
given phase23–27. These studies suggest that in 2D gapped systems, 
the entanglement spectrum often has features of the spectrum of a 
1D local Hamiltonian, although its features are not always isomor-
phic to the original Hamiltonian43. In particular, the entanglement 
entropy area law predicts an O(∣∂A∣) scaling for the entropy of ΩA, 
which matches the entropy of the Gibbs state of a 1D Hamiltonian. A 
more general question is which aspects of the modular Hamiltonian 
Hmod are similar to that of a 1D local Hamiltonian beyond simply 
the O(∣∂A∣) scaling of entropy. We contribute to this by showing one 
further feature, namely, the O(

√

|∂A|) scaling of the entanglement 
spread of ΩA.

To see why O(
√

|∂A|) scaling predicted by our bound in  
equation (3) for the gapped ground states is in agreement with  
Hmod being a 1D local Hamiltonian, we use the well-known fact that 
at thermal equilibrium, the energy distribution of a many-body 
quantum system is concentrated around the average energy.

Indeed, if Hmod is a sum of O(∣∂A∣) local terms, each of norm O(1), then 
the energy variance σ2 = Tr[H2

mod

Ω
A

]− Tr[H
mod

Ω
A

]2 ≤ O(|∂A|), 
which can be shown using the exponential decay of correlations in 
the Gibbs state of such Hamiltonians44,45. It follows from Chebyshev’s 
inequality on the concentration of probability distributions that the 
δ-smooth entanglement spread of the spectrum of the Gibbs state 
satisfies ES

δ

(Ω
A

) ≤ O(
√

|∂A|/δ), yielding the same O(
√

|∂A|) 
dependency as in the bound in equation (3).

Finally, there is a close link between the features of entangle-
ment and developing efficient algorithms for simulating gapped 
ground states. The tensor network states such as PEPS29 are used 
to efficiently represent 2D ground states. Although contracting 
these tensor networks to estimate the expectation of local observ-
ables is believed to be computationally intractable in general46, find-
ing physically motivated conditions on gapped ground states that 
imply efficient contraction methods has been the subject of many 
past studies. This includes exploiting the locality of entanglement 
spectrum25, area laws for entanglement entropy10,47,48 and unifor-
mity conditions on boundary eigenvalues28. In this work, we further 
show that there is an efficient algorithm for computing the expecta-
tion value 〈O〉 of any local observable O if the ground state is given 
by a PEPS of a small bond dimension that satisfies the exponential 

decay of correlations and for which a variant of our entanglement 
spread bound without any smoothing (that is, δ = 0) holds. This 
algorithm simply estimates the local expectation 〈O〉 by tr[ΠO]/
tr[Π], where Π is the projector onto a disk of sufficiently large, 
but still constant, radius in the ground state that encloses the sup-
port of the local observable O (Supplementary Sections 2.3 and 3.4  
provide the precise statements and proof). Whether this result can 
be extended to the case of smooth entanglement spread—for which 
we establish a sub-area scaling—is an interesting open problem.

In conclusion, this work connects two previously unrelated top-
ics: ground-state entanglement and communication complexity of 
testing bipartite entangled states. We uncover a new property of 
entanglement in the ground state of any gapped local Hamiltonian, 
namely, an area law for the entanglement spread. We discuss the 
importance of our results as follows: (1) showing how entanglement 
spread can capture the unique features of gapped ground states 
beyond what is evident from entanglement entropy, (2) connecting 
the improved sub-area law for entanglement spread on lattices to 
the conjectures regarding the locality of modular or entanglement 
Hamiltonian and (3) demonstrating the relevance of entanglement 
spread in devising efficient algorithms for gapped ground states.
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Methods
Testing protocol for gapped ground states. Here we detail the construction of 
AGSP used in our testing protocol to prove the entanglement spread area law 
in equation (2). This AGSP is based on the QPE algorithm. One advantage of 
using QPE compared with conventional Chebyshev polynomials (used in earlier 
works7,41) is that it applies not only to geometrically local Hamiltonians on lattices 
but also to any local Hamiltonian on arbitrary interaction graphs. One can view 
QPE as a procedure that conditions on a time register |t〉, which is in a uniform 
superposition of t ∈ [0, O(1/γ)]; applies the ‘Hamiltonian simulation’ operator e−itH 
on an input state; and determines the energy of the state. Setting γ to equal the 

gap of the Hamiltonian and repeating QPE in parallel O(log
[

1

∆

]

) times, we can 

use this algorithm to approximately distinguish the ground state |Ω〉 from other 
eigenstates. That is, we can perform the two-outcome measurement {K, − K} on 

any input state, where ||K – |Ω〉〈Ω||| ≤ Δ (Supplementary Section 3.2.3 provides a 
more precise derivation).

To implement this algorithm in a distributed fashion involving two parties, 
Alice and Bob need to share two copies of the time register |t〉 and work 
together to apply the operator e−itH conditioned on the register |t〉. For a given 
partition of qudits between Alice A and Bob B, we can write the Hamiltonian as 
H = HA + H∂A + HB, where [HA, HB] = 0. One of our main technical contributions is 
designing a communication protocol for performing the Hamiltonian simulation 
operator e−itH with a communication cost that scales as O(t∣∣H∂A∣∣) instead of 
the conventional O(t∣∣H∣∣). It is not hard to see how one can achieve this if 
the boundary term H∂A also commutes with HA and HB. In that case, we have 

e

−itH

= e

−itH

A

e

−itH

∂A

e

−itH

B and the parties can implement e−itH if one of them 
sends the boundary qudits that are in support of H∂A to the other. This yields a 
communication cost that scales as O(∣∂A∣). In general, however, H∂A does not 
commute with HA and HB and finding a non-trivial protocol for the Hamiltonian 
simulation becomes challenging.

One attempt to remedy this might be to use the Trotterization technique49. 
This divides the simulation into η segments and implements e−itH/η for η 
consecutive times. If η is large enough, [H∂A/η, HA or B/η] ≈ 0, and we again recover 
the commuting case. That is, the parties collaboratively implement e−itH

∂A

/η. 
Unfortunately, for this to work, we need η (and therefore, the communication cost) 
to be O(t∣∣H∣∣), which is far from the bound O(t∣∣H∂A∣∣) that we are aiming for here.

We, instead, use a recent framework for Hamiltonian simulation developed 
in another work50 known as the ‘interaction-picture’ Hamiltonian simulation. 
Intuitively, one can view this as a sophisticated but widely used change of variables 
that allows us to separate the contribution of the boundary term from HA and HB. 
Suppose we want to prepare the state |ψ(t)〉 = e–itH|ψ(0)〉. For any |ψ(t)〉, we define 
its counterpart in the interaction picture by |ψ

I

(t)⟩ = e

it(H
A

+H

B

) |ψ(t)⟩ . Since 
the operator eit(HA

+H

B

) can be locally applied by the parties, the states |ψI(t)〉 and 
|ψ(t)〉 can be switched with each other with no extra communication. The point 
of this transformation is that the state |ψI(t)〉 can be prepared starting from |ψ(0)〉 
by applying unitary U(t), which is the Hamiltonian simulation operator associated 

with a time-dependent Hamiltonian H
I

(t) = e

it(H
A

+H

B

)
H

∂A

e

−it(H
A

+H

B

). Putting 
the time dependence of HI(t) aside, the main advantage is that ∣∣HI(t)∣∣ = ∣∣H∂A∣∣. 
This solves the earlier issue as the number of segments η used when implementing 
U(t) can be taken as small as O(t∣∣H∂A∣∣) instead of the original O(t∣∣H∣∣). The 
remaining task is to find a communication protocol for performing U(t/η), which 
now is a more complicated operator than the previous one, that is, e−itH

∂A

/η. This 
is done in other work50,51 using the linear combination of unitaries method. In 
Supplementary Section 3.2.2, we present a modification of this algorithm based on 
the following idea.

As explained earlier, Alice and Bob may use unlimited EPR pairs in their 
protocol without affecting the bound in equation (4) on the entanglement spread. 
Moreover, as shown elsewhere17 and discussed in Fig. 3, testing or performing 
reflections around maximally entangled states can be done with a cost independent 
of the dimension of this state. Together, these imply that we can replace the ancillary 
registers that need to be shared during the linear-combination-of-unitaries-based 
Hamiltonian simulation with free EPR pairs. This allows us to improve the cost of 
Hamiltonian simulation and obtain tighter bounds on the entanglement spread. 
Although we use the interaction-picture Hamiltonian simulation to implement 
this AGSP, achieving the same results with the Trotter methods—using ideas on 
information complexity52—would be valuable.

AGSP for lattices. Our improved bound in equation (3) for lattice Hamiltonians 
is obtained using the AGSPs based on Chebyshev polynomials. These were 
first developed in the context of the entanglement entropy area law in 1D 

systems7,41,48. The AGSP framework40,41 already provides a framework to connect 
the min-entropy and entanglement entropy40,41. However, this connection 
does not give us the desired bound on entanglement spread, as it relates 
entanglement entropy and min-entropy by a certain multiplicative factor, which 
may be large. For instance, ref. 41 implies that by choosing the Chebyshev-based 

AGSP that has a shrinking of O(1) and Schmidt rank of 2O(
√

|∂A|), we get 

S(Ω
A

) = O(
√

|∂A|S
min

(Ω
A

)), where S(ΩA) is the von Neumann entropy of ΩA.
We show that a simple adaptation of Chebyshev-based AGSP, along with 

appropriate smoothing, leads to a qualitatively stronger theorem for lattices, which 

shows that entanglement spread scales as O(
√

|∂A|). We utilize the ‘truncation 

step7’, which is used to lower the norm of the Hamiltonian away from a cut and 
maintaining its gap and ground state. We apply truncation to both frustration-free 
and frustrated cases. In the former, we use the detectability lemma operator40, 
whereas in the latter, we rely on recent techniques53 to perform the truncation.
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