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In this study, we describe a model of student thinking around equivalence (conceptualized as any type 
of equivalence relation), presenting vignettes from student conceptions from various college courses 
ranging from developmental to linear algebra. In this model, we conceptualize student definitions 
along a continuous plane with two-dimensions: the extent to which definitions are extracted vs. 
stipulated; and the extent to which conceptions of equivalence are operational or structural. We 
present examples to illustrate how this model may help us to recognize ill-defined or operational 
thinking on the part of students even when they appear to be able to provide “standard” definitions 

of equivalence, as well as to highlight cases in which students are providing mathematically valid, if 
non-standard, definitions of equivalence. We hope that this framework will serve as a useful tool for 
analyzing student work and exploring instructional and curricular handling of equivalence. 
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Equivalence is central to mathematics at all levels, and across all domains. In mathematics education, 
much research has focused on studying how students think about the equals sign in primary (Knuth et 
al., 2006) through post-secondary (Fyfe et al., 2020) school, because student conceptions of the equals 
sign are related to their arithmetic and algebraic calculations. However, equality is just one example 
of the larger concept of equivalence—other types of equivalence occur extensively throughout the K-
16 curriculum, but are rarely, if ever, taught under one unifying idea called equivalence (Wladis et al., 
2020). On the other hand, multiple types of equivalence (e.g., similar/congruent figures, function 
types, equations with the “same form”) are contained in the U.S. Common Core Mathematics 
Standards but are never explicitly labeled as a type of equivalence. When equivalence is not explicitly 
defined, students may extract their own non-standard, ill-defined, or unstable definitions, or they may 
inappropriately use the definition of equivalence from one area (e.g., expressions) in another area 
where it cannot be directly applied to obtain the “standard” definition expected of them (e.g., 

equations). In this paper we will illustrate this problem by presenting examples of student definitions 
around equivalence and a model for analyzing student definitions, focusing on college students’ 

definitions of equivalent equations. Examples of student work will be used as vignettes to illustrate 
the model. Our aim in presenting this model is to start a conversation about student definitions of 
equivalence and to present an initial framework that can then be further tested, refined, and revised 
by future empirical work. 

Theoretical framework 
We frame the analysis of student definitions of concepts in terms of Tall and Vinner’s (1981) concept 
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image and concept definition constructs. A person’s concept image describes the “total cognitive 

structure that is associated with the concept, which includes all the mental pictures and associated 
properties and processes” (p.152). Their concept definition describes a “form of words that a learner 
uses for his own explanation of his (evoked) concept image” (p.152). Hence an individual’s personal 
concept definition is idiosyncratic to the individual, may vary based on the context it is evoked, and 
may deviate from the larger mathematical community (the formal concept definition). When we refer 
to a student’s ‘definition’, we are referring to their personal concept definition. 

In this paper, we define the formal concept definition of equivalence as an equivalence relation. The 
formal definition of an equivalence relation most often given in advanced mathematics classes is that 
of a binary relation that follows the identity, symmetry and transitive properties. However, another 
equivalent but more accessible definition of an equivalence relation is that of a partition on a set, or 
more informally: If we have a set of objects and a mathematically well-defined rule for sorting objects 
into sets so that each goes into one and only one set, then this “sorting” is an equivalence relation, and 

two objects are equivalent if they belong to the same set. Using this definition as an analysis tool 
allows us to account for many types of equivalence, with many different mathematical objects (e.g., 
numbers, algebraic expressions, algebraic equations) and equivalence relations (e.g., equality of 
expressions; insertion equivalence of equations; Wladis et al., 2020; Zwetzschler & Prediger, 2013).  
(We note that this definition is an analysis tool that is not necessarily intended to be given to students.) 

From this perspective, a student’s personal definition of equivalence in a given context is valid in so 

far as it is an equivalence relation and can be expressed in a mathematically well-defined way by the 
individual. When students have no explicit definitions of equivalence, this presents several potential 
problems: (1) students may incorrectly apply one definition to another context where it fails to produce 
the “standard” definition (e.g., definition of equivalent expressions to equations); (2) they may have 
only ill-defined or operational definitions of equivalence which inhibit their ability to reason through 
problems; or (3) they may use valid but non-standard definitions of equivalence, in which case they 
are being penalized for not knowing certain socio-mathematical norms (Yackel & Cobb, 1996) even 
when they are reasoning correctly. We argue that the model presented here allows us to better 
recognize when these three situations (as well as others) might be occurring with students. 

Model of equivalence 
Our model of student thinking about equivalence conceptualizes student definitions as existing on a 
two-dimensional plane with two axes: operational vs. structural conceptions of equivalence (Sfard, 
1992), and extracted vs. stipulated definitions of equivalence (Edwards & Ward, 2004). A student 
with an operational conception thinks of mathematical entities as a process of computation, while a 
student with a structural conception thinks of them as abstract objects which can then be acted on by  
even higher-order processes. A student with a structural conception sees objects as reified processes 
(e.g., 6𝑥 is seen as an object itself, and not just as the process of multiplying 𝑥 by 6), however when 
students view something as an object which is not the reification of any process, this is called a 
pseudostructural conception (p.75, Sfard, 1992). We see Sfard’s constructs as related to the 

computational/relational distinction made in research on the equals sign, where the computational 
view is a cue to calculate, and the relational view focuses on equality as a relationship (e.g., Knuth et 



 

 

al., 2006). Our model can be seen as a generalization of the computational/relational distinction made 
in research on the equals sign, where equivalence structures (the equivalence relationships) are core 
objects that justify computation.  This is in contrast to Sfard’s description of structures (e.g., algebraic 
expressions) being viewed as a normative process which is reified into an object.   

Extracted definitions are created to describe actual observed usage of a term (e.g., a student may 
extract a meaning for equivalence from their instructional experiences, whether or not they have 
encountered an explicit definition). In contrast, stipulated definitions are those definitions that are 
stated explicitly—to determine if something fits the definition one must consult the definition directly 
(Edwards & Ward, 2004). We note that in our model, a stipulated definition may be stipulated by the 
student or an authority—the key features we use to determine if a definition is stipulated in our 
framework is whether it appears to be explicit, well-defined, and stable across contexts. We note that 
while we have displayed our model in Table 1 as a two-by-two grid for the sake of simplicity, but we 
conceptualize these categories as a spectrum (thus, Table 1 is actually a continuous 2D plane).  

Table 1: Model of student thinking about equivalence 

  Extracted Definition Stipulated Definition 
Operational 

Conception of 
Equivalence 

Pseudo-process view: Students see equivalence 
as a computational process, and their approaches 
to those processes are dictated by prior 
experience in ways that are extracted rather than 
stipulated. Definitions of equivalence are 
typically non-standard, ill-defined, and/or 
unstable.  

Process view: Students see equivalence as a 
process, but do process computations by 
referring to stipulated rules or properties. 
Students with this view may be able to 
perform calculations correctly but this does 
not necessarily translate to being able to use 
stipulated definitions to recognize equivalent 
objects. 

Structural 
Conception of 
Equivalence 

Pseudo-object view: The student is able to 
consider whether two objects are equivalent 
without reverting to an explicit computation, 
perhaps by considering the structure of the 
objects; but definitions of equivalence are 
typically extracted in some way from experience 
rather than based on stipulated definitions of 
equivalence, and as a result are typically non-
standard, ill-defined, and/or unstable 

Object view: The student is able to consider 
whether two objects are equivalent without 
reverting to an explicit computation, perhaps 
by considering the structure of the objects; 
definitions of equivalence used to determine 
equivalence are stipulated. The student 
conceptualizes equivalence classes (or 
solution sets) as objects, although they need 
not do this formally. 

Methods 
Data for this study were collected from 124 students at an urban community college in the US through 
open-ended questions in 18 different courses, from developmental elementary algebra (similar to 
Algebra I in secondary school) to linear algebra. Student responses were analyzed using thematic 
analysis (Braun & Clarke, 2006), combining codes from the model above with an emergent coding 
scheme.   Multiple coders participated in several rounds of coding until consensus was reached. 
Responses coded as indicative of an operational view of equivalence provided evidence of thinking 
of equivalence as an algorithm; those coded as indicative of a structural view of equivalence provided 
evidence of thinking of equivalence as a fixed trait of an object, or reasoning about equivalence via 
its general properties. Further coding details are described below.  

Results 
Students often struggled to provide definitions of equivalent equations for several different reasons. 



 

 

One issue appears to be that students attempted to apply the definition of equivalent expressions to 
that of equivalent equations.  

Pseudo-process view (extracted and operational): For example, in Figure 1, we see the work of two 
students, one in elementary algebra, and one in linear algebra, both of whom give somewhat similar 
definitions of equivalent equations. The elementary algebra student gives a more ill-defined definition 
(“same answer”) but we see from the examples that they provide that they appear to be thinking about 
equivalent arithmetic expressions. We would classify this response as a pseudo-process view, as the 
definition is not well-defined and appears to center around arithmetic calculation.  

 
Figure 1: Definitions from an elementary algebra student, pseudo-process view (on left) and a linear 

algebra student, extracted view (on right) 

Operational view: We see similar work by the linear algebra student in Figure 1, with some 
differences; they give broader examples of equivalence (describing also vectors) and their definition 
is more detailed (“when two quantities are the same on both sides of an equation”). But like the 
elementary algebra student in Figure 1, they conflate the definition of equivalent expressions with 
equations (they include an algebra example, but only show identical expressions as equal). Their 
definition of equivalent equations is also not fully well-defined (“check if both sides are the same”), 

because the word “same” is not well-defined. While their answer shows signs of having seen more 
examples of mathematical equivalence, this does not appear to have positively impacted their 
definition of equivalent equations; we classify their definition as extracted, because it is ill-defined.  

Structural view: Students who apply the definition of equivalent expressions to equations may even 
do this in a way that is mathematically valid (i.e., fits the definition of an equivalence relation), even 
though it is not a “standard” definitions of equivalent equations (e.g., same solution set). Consider 
Figure 2, where a precalculus student has defined equivalent equations as two equations where “the 

result or the number after the equal sign are equivalent”. Based on their examples, they seem to be 
suggesting that any equations of the form 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑛 for fixed 𝑛 would be equivalent. This is 
similar to definitions given by other students in other research (Wladis et al., 2020). This example is 
particularly interesting, because the two equations given here also happen to have the same solution 
set, so it is unclear if this is also an implied part of the student’s definition. Whether the definition 
includes this feature or not, we would classify it as structural even though it is a “non-standard” 



 

 

definition, because the student has given what could be a well-defined but alternate definition of 
equivalence (whether or not their definition is fully well-defined is unclear)1.  

 
Figure 2. Precalculus student’s non-standard structural definition of equivalent equations 

In contrast to the previous examples, some students did draw in some way on the notion of “solving” 

equations or the solution sets of equations when defining equivalence. However, the ways in which 
students drew on notions of “solving” also fell into different areas of our framework. Simply talking 
about the “solution” of an equation was not sufficient to classify work as either stipulated or structural 

even though it sounds like it is related to the standard insertional equivalence definition of equations 
(i.e., same solution set).  

Structural view: In Figure 3(a), we see the work of a Calculus III student, who appears to have a 
well-defined and structural view of equivalent equations: they define equivalent equations as having 
the same solution set (seeming to conceptualize the solution set as a fixed object); and their definition 
appears to be well-defined, not just because of their stated definition, but also because the example 
they give which shows that their interpretation of “same solution” appears to be the “standard” one. 
We note that this is critical, as many students used the language of “same solution” but actually meant 

it to describe equivalent sides of an equation (equivalent expressions) rather than solution set.  

Pseudo-process views (operational and extracted): See, for example, the work of an introductory 
statistics student in Figure 3(b). This student wrote that two equations are equivalent if you “substitute 

the value in for 𝑥 and the solution is the same for both equations”: this sounds like the standard 

definition of equivalent equations (if an incomplete one that does not account for the possibility that 
𝑥 may have more than one value), however, looking at the example they provided, we see that to them 
“solution” denotes the quantity resulting from simplifying one side of an equation (not the solution 
set of an equation). In this sense, the student’s definition is ill-defined, because the vocabulary that 
they are using appears to be ill-defined and has multiple, perhaps vague, meanings. For these reasons, 
we would classify this work in (b) as a pseudo-process view, even though on the surface the definition 
initially looked similar to the one in (a). The student work in Figure 3(c) shows another common 
approach that students used, in which they drew on notions of solving when asked about equivalent 
equations, but struggled to relate these notions to any well-defined definition of equivalence. This 

 
1 This student may be drawing on notions of equations with the “same form” (e.g., 𝑦 = 𝑚𝑥 + 𝑏, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0) which 
is another type of equivalence that is commonly used in the algebra curriculum, even if it is not called equivalence in the 
curriculum (however, “same form” could in fact be codified as a formal equivalence relation, and students may be noticing 

this when they draw on it in their equivalence definitions (Wladis et al., 2020)). 



 

 

student has solved an equation and checked the solution by substituting it back into the original 
equation; however, it is unclear what the definition of equivalent equations is, or even which two 
objects the student is claiming are equivalent (perhaps equivalence for them is not about the 
relationship between two objects, but instead names a process of checking the solution of an equation). 
Thus, we classify this as a pseudo-process view—there is no well-defined stated definition, and the 
student’s focus is on computation.  

 
(a) Calculus III student 

       
(b) introductory stats student  (c) intermediate algebra/precalculus student 

Figure 3: Examples of different ways that students used “solving” in defining equivalent equations 

Students also gave other non-standard definitions of equivalence that might have been well-defined 
equivalence relations (e.g., equivalent arithmetic equations as ones that express the same additive 
relationship; equivalent algebraic equations as ones that express the same relationship between the 
variables). However, we note that by de-coupling our categorization of student definitions of 
equivalence from what is “standard” and thinking more carefully about the extent to which student 

definitions of equivalence are stipulated (and an equivalence relation); and the extent to which student 
conceptions of equivalence are structural or operational, we may be able to achieve two critical goals 
more effectively: (1) we may be able to better identify student thinking which “sounds right”, but is 

actually ill-defined; and (2) we may be able to identify valid student thinking that simply does not 
adhere to “standard” definitions. Both of these goals may better help us to tailor instruction to students.  

We now briefly describe some overall trends we found in coding responses to open-ended questions 
on definitions of equivalence (Table 2). Students primarily associated equivalence with equality, and 
rarely cited other forms (e.g., equivalent equations), although the incidence of non-equality examples 
rose somewhat with course level. Similarly, students at all levels were extremely likely to give ill-
defined or vague definitions of equivalence when asked. When asked about their definitions of 
equivalent equations, most students conflated this with the definition of equivalent expressions; this 
did not appear to improve with course level, suggesting that the lack of explicit definitions of 
equivalent equations in textbooks and curricula (Wladis et al., 2020) may well be contributing to 



 

 

student difficulties in understanding how definitions of equivalence vary in different contexts. Some 
of these definitions, while non-standard, may have been equivalence relations, and therefore reflect 
mathematically valid reasoning—the prevalence of this was not correlated with course level, 
suggesting that students at all levels may sometimes be generating valid but non-standard definitions. 
Many students associated equivalent equations with solving, but this was rarely done in a well-defined 
way: roughly one quarter of all students at all course levels solved an equation but did not relate this 
in any well-defined way to the definition of equivalent equations (most commonly they solved a single 
equation and then checked the answer, with no mention of which two things were equivalent); a 
smaller percentage of students did this at levels of precalculus and above, but the differences by course 
level were small. Some students interpreted equivalent equations as equations with the same solution 
set, and did so in a well-defined way; this was slightly more common as course levels went up; 
however, the vast majority of these students did so in an operational way (i.e., solved two equations 
and said they were equivalent, without discussing the solution set in a more general or structural way). 
This is perhaps to be expected, given the operational way in which the question itself was phrased, 
however, this does follow patterns observed in questions without this more operational wording, such 
as the more general question about the definition of equivalence given on this set of questions 
(although the tendency to use structural rather than operational definitions did increase with course 
level). However, we note that overall, structural and well-defined definitions were rare among all 
students, suggesting that instruction which specifically includes explicit stipulated definitions, and 
which encourages structural reasoning, is needed at all levels. 

Table 2. Summary of student definitions of equivalence 

  
elementary alg. or 

below 
intermediate alg. or 

100-level 200-level or above 
General definition of equivalence       
ill-defined or vague 67% 71% 60% 
cited equality 94% 87% 80% 
other valid definition 0% 3% 16% 
operational definition 41% 18% 17% 
structural definition 0% 2% 17% 
How to tell if two equations are equivalent     
conflated w/ equiv. expressions 44% 48% 44% 

of these, possible well-defined defn. 19% 6% 16% 
finding solution set, operational 0% 3% 8% 
related to "solving" but ill-defined 22% 29% 16% 
solution set, structural 0% 2% 4% 
total n 36 62 25 

Discussion and conclusion 
Our model of student definitions of equivalence aims to refocus our attention from whether definitions 
look “standard” to whether student definitions are well-defined equivalence relations, and whether 
their definitions are structural vs. operational. Using this lens allows us to pinpoint when students 
appear to understand a standard definition, but upon deeper analysis we find that their definition is ill-
defined or wholly operational, limiting their ability to use it. On the other hand, this model also allows 
us to recognize students’ mathematically valid definitions even when they are nonstandard or students 
are not able to explain them fully formally. Evidence from examples of student work suggests that 



 

 

students do notice many kinds of “sameness”, yet struggle to articulate this in mathematically well-
defined ways, just as they struggle to articulate “standard” definitions of equivalence in well-defined 
ways. This suggests that students are capable of noticing and using more generalized notions of 
equivalence, but need more explicit definitions and language in order to be able to do this rigorously. 
Future research is necessary to better understand what kinds of explicit definitions of equivalence 
work best for students in different contexts, and the extent to which discussions of the more general 
notion of an equivalence relation might be helpful in instruction. This framework may also be able to 
serve as a framework for instruction and curricula, to assess how the concept of equivalence is 
presented to students as they are learning at various levels in the curriculum.  
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