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Particles with ligand-receptor contacts bind and unbind fluctuating “legs” to surfaces, whose
fluctuations cause the particle to diffuse. Quantifying the diffusion of such “nanoscale caterpillars”
is a challenge, since binding events often occur on very short time and length scales. Here we derive
an analytical formula, validated by simulations, for the long time translational diffusion coefficient
of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that
the effective diffusion coefficient, which depends on the microscopic parameters governing the legs,
can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies
rapidly with temperature, and reproduces the striking variations seen in existing data and our own
measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism
of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg
is always linked to the surface, and when does it prefer to move by hopping, which requires all legs
to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood
cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated
colloids) and present guidelines to control the mode of motion for materials design.

Particles with ligand-receptor contacts – or nanocater-
pillars – harvest binding and unbinding dynamics of their
fluctuating legs at the nanoscale to move, target, stick,
or assemble into large structures [1–4]. Nanocaterpillars
are found across multiple scales, spanning a great variety
of systems in biology and biomimetic assays – see Fig. 1-
A. To name but a few, microscale white blood cells with
protein linkers stick and roll on blood vessel walls un-
til they reach a healing target [5–7]. Microscale droplets
with protein linkers are used to study cellular-like adhe-
sion [8–10]. Microscale to nanoscale colloids coated with
complementary deoxyribonucleic acid (DNA) strands
self-assemble into macroscopic crystals [4, 11, 12] with
novel optical or selectivity properties [13–16]. Nanoscale
viruses transiently adhere with spike proteins to the res-
piratory mucus to find vulnerable host cells [1, 17–19].
At even smaller scales, protein cargos bind to receptors
in the nuclear pore complex for selective transport to a
cell’s nucleus [20, 21].

For all these systems to function, a nanocaterpillar
must move relative to the surface to which its legs are
attracted. An important question therefore is to char-
acterize how it moves, over scales much larger than in-
dividual legs. Since legs constantly bind and unbind
to the surface, imparting force each time they do so,
the particle’s macroscopic mobility depends on the mi-
croscopic details of its legs. For example, leg flexibil-
ity and bond lifetimes control the average mobility of
the particle [19, 23, 24], and differences in both param-
eters can be harvested to detect infected cells [25–27] or
prevent viral infections [28]. As another example, leg
density affects how DNA-coated colloids nucleate and
grow into crystals [29, 30] and governs the long-range
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FIG. 1. Overview of nanocaterpillars. (A) Multiva-
lent ligand-receptor systems span the micro to nanoscales.
White blood cells stick to vessel walls through selectin me-
diated bonds (inspired from Ref. 7); DNA-coated colloids
self-assemble through hybridization of complementary DNA
strands; Protein cargos translocate through the polymer mesh
of the nuclear pore complex (inspired from Ref. 22). (B)
Ligand-receptor systems are modeled here with an arbitrary
number of legs N (ligands) and/or arms (receptors). The
stochastic model includes binding and unbinding rates qon and
qoff , spring constant k, and leg friction γ (all fast, in blue); and
the bare friction coefficient Γ of the nanocaterpillar (slow, in
black). We seek the long-time effective longitudinal diffusion
coefficient Deff .

alignment of crystals [31–33]. Overall, microscopic de-
tails underlie a variety of large-scale modes of motion,
such as hopping [3, 17, 34, 35], cohesive motion including
rolling and crawling [17, 36], and also transient or firm
arrest [3, 5, 37], resulting in large differences in macro-
scopic mobility.

Investigating how microscopic binding details lead to
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macroscopic mobility is challenging, as it requires prob-
ing time and length scales that can often be quite dif-
ferent [19, 38] – legs can be much smaller than the
nanocaterpillar they are attached to, while leg dynamics
can be orders of magnitude faster than the timescales of
macroscopic motion. Furthermore, many systems have
a valency of thousands of leg contacts [31, 38, 39], too
many degrees of freedom to resolve experimentally or
computationally [22, 40]. To make progress, numeri-
cal and analytical models often rely on simplified as-
sumptions, e.g. excluding stochastic relaxation of the
legs [41, 42], limiting the analysis to a small number of
legs [41, 43, 44], or assuming small perturbations [22].
Such models have given insight into a variety of phenom-
ena, such as how specific parameters could favor rolling
over sliding [7, 41, 43, 45, 46] or how specific mechanisms
could increase overall mobility (with coupling effects such
as binding dynamics depending on bond number [47–49]
or when numerous adhesive sites are available for a single
ligand [22, 50, 51]). Nevertheless, such modeling assump-
tions are not always justified; for example stochasticity
plays a critical role for mobility, facilitating rolling [37],
targeted arrest [40], or other walking modes [52]. Fur-
thermore, such models can also not reproduce the order
of magnitude decrease of diffusion of DNA-coated colloids
[31, 39]. Hence, a systematic derivation of macroscopic
mobility from microscopic details that is valid under a
broad range of parameters is needed.

In this paper we derive an analytical expression for the
effective mobility of a nanocaterpillar in an overdamped
system, by systematically coarse-graining over the micro-
scopic details of its legs. Starting from a model that in-
cludes the detailed spatial fluctuations of the legs, we use
homogenization techniques [22, 53, 54] to average over
these fluctuations. We obtain an analytical expression for
the effective long-time translational diffusion coefficient
of the particle, Deff(N,Γ, γ, k, qoff , qon), as a function of
the microscopic parameters governing the legs (Eq. (15);
see also Fig. 1-B and Sec. I.) The expression depends in a
non-trivial way on the friction coefficients of the individ-
ual components of the system (legs and particle), with
the frictions either adding up arithmetically (like springs
in parallel) or harmonically (like springs in series) accord-
ing to the mechanistic details. We validate our analytical
calculations with numerical simulations, which show the
expression is accurate over a wide range of parameter
values.

Our model gives insight into the mechanism of
nanocaterpillar motion, as it allows us to distinguish be-
tween two long term modes of motion: sliding, where
at least one bond is always attached to the surface, and
hopping, where the particle detaches completely, moves
in free space and reattaches. These regimes are controlled
by physical properties of the legs, such as stiffness and ad-
hesive strength, allowing us to investigate existing biolog-
ical and biomimetic systems in a so-called Ashby chart for
nanocaterpillars (Sec. II). We identify how critical design
parameters (such as the coating density for DNA-coated

colloids) controls the preferential mode of motion and
reconcile disparate experimental observations on similar
systems [31, 39].

Importantly, the effective diffusion can sometimes be
orders of magnitude smaller than the background diffu-
sion coefficient, showing the critical effect of the legs on
the particle’s mobility. This analytical prediction of a
dramatically decreased diffusivity is borne out with ex-
perimental measurements of the diffusion of DNA-coated
colloids, both from existing data [31, 39] and addition-
ally measured in this study. Our model agrees with the
data within experimental accuracy over a range of tem-
peratures and for different DNA coating densities on the
colloids (Sec. II).

Finally, we derive the effective diffusion coefficient for
several variations of the model with varying assumptions,
and show that our model incorporates these assumptions
as special limits [22, 54], but is accurate over a broader
range of parameters and system designs (Sec. III). In
particular, previous approaches can not describe the ob-
served orders of magnitude decrease in diffusion [22].
Overall, our results lay the ground to tune mobility fea-
tures in artificial designs, and provide methodological
tools to study more complex motion mediated through
ligand-receptors, including rolling or self-avoiding walks
due to active cutting of bonds.

I. DERIVING AN ANALYTICAL FORMULA
FOR THE EFFECTIVE DIFFUSION

COEFFICIENT

In Sections I A-I C we illustrate our homogenization
technique pedagogically by considering a 1-legged cater-
pillar. Our main result for the effective diffusion coeffi-
cient of an N -legged caterpillar, Eq. (15), is presented in
Section I D.

A. 1-legged caterpillar: constitutive equations

We begin with the simplest possible model: a
nanocaterpillar with a single leg (Fig. 2). The leg is per-
manently fixed to the caterpillar while its other end is
mobile, and can attach anywhere on the binding surface.
We consider for now a one-dimensional model, where leg
fluctuations and particle motion occur on a line, longitu-
dinal to the surface.

The dynamics of the particle position x(t) and leg
length l(t) occur over nano to microscales, mostly in
dense fluids such as water. In this context, dynamics are
well captured by overdamped Langevin equations [55],
where inertia plays a negligible role. This is in contrast to
previous modeling efforts which used the Langevin equa-
tion (with inertia) [54], a point we return to in Sec. III,
where we show that the two approaches can give pre-
dictions that are orders of magnitude different in certain
parameter regimes.
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FIG. 2. 1-legged nanocaterpillar model. (A) The longi-
tudinal extension of the single leg (l) is monitored and feeds
back into the longitudinal position (x) of the particle. (B)
Simulation trace of the position of a 1-legged particle with
time. (inset) The effective long time diffusion Deff is half the
slope of the mean squared displacement over long times.

When the legs are unbound they evolve as

dl

dt
= −k

γ
(l(t) − l0) +

√
2kBT

γ
ηl(t) . (1)

Here k is a spring constant describing the recoil force of
the leg material, γ is its friction coefficient, l0 its rest
length, kB is Boltzmann’s constant, T is temperature
and ηl is a Gaussian white noise satisfying ηl(t) = 0 and

ηl(t)ηl(t′) = δ(t− t′) where · is the average over realiza-
tions of the noise. In most systems we consider, legs are
made of polymers or proteins, where small leg deforma-
tions around equilibrium are well captured by a constant
spring constant k [56–58].

The particle’s position x when the leg is unbound obeys

dx

dt
=

√
2kBT

Γ
ηx(t) (2)

where Γ is the friction coefficient of the particle and ηx(t)
is a Gaussian white noise uncorrelated with ηl(t). The
diffusion coefficient for the unbound particle is D0 =
kBT
Γ .
We consider for now that the surface is uniformly

coated with receptors. The leg can thus bind at any loca-
tion on the surface with a constant binding rate qon and
constant unbinding rate qoff . Detailed balance requires
qon
qoff

= πb

πu
where πb/u is the equilibrium probability of the

system to be bound or unbound. Typically πb

πu
= e−β∆G,

where β−1 = kBT and ∆G < 0 is the free energy change
when the leg binds to the surface [38, 59].

We now seek to describe motion of the system when
the leg is bound. In this case, variables are constrained
as x(t) + l(t) − xr = 0 where xr is the location of the
receptor where the leg tip is attached, which is constant
until the leg detaches and reattaches to another loca-
tion. The stochastic dynamics Eqns. (1) and (2) must
be projected [32, 60] onto the constraint surface, see Ap-
pendix A. We obtain

dx

dt
= −dl

dt
=

k

Γ + γ
(l(t) − l0) +

√
2kBT

Γ + γ
η(t) (3)

where η(t) is a Gaussian white noise. Here we see that
the projected dynamics have a natural expression where
the effective friction in the bound state is the arithmetic
sum of the friction coefficients in the unbound states,
Γ + γ. Note that this projection is a crucial step that is
often ignored in such derivations [22, 32, 54], and modifies
the dynamics in non trivial ways especially with a large
number of legs.

The dynamics are now specified through the set of
Eqns. (1)-(3), together with the binding and unbinding
dynamics. To see what happens over long times, we sim-
ulate trajectories for 1 leg – see Fig. 2-B (and simulation
details in Appendix B). Over long times, the particle’s
mean-squared displacement grows linearly with time, and
we may extract an effective long time diffusion coefficient
Deff – see inset of Fig. 2-B.

B. Homogenization to coarse-grain the fast
dynamics

The computational cost of simulating Eqns. (1)-(3)
is high, since small time steps are required to resolve
the fast relaxation and binding events. We therefore
seek an analytical method to coarse-grain over these fast
timescales. To apply this method we identify a non-
dimensional separation of scales, which is novel compared
to other approaches [22, 51, 54] and will allow us to find a
result valid over a broad range of parameters. We use ho-
mogenization theory to average over the fast scales, even-
tually obtaining an effective diffusion equation, Eq. (10),
with effective diffusivity (Eq. (11)) and related effective
friction (Eq. (12)), which is one of the main results of
this paper for the special case of a 1-legged caterpillar.
A reader interested in the results and physical implica-
tions may skip to Section I C.

1. Set up: partial differential equations to be coarse-grained

The set of stochastic Eqns. (1)-(3) defines a
Markov process that is conveniently studied via the
Fokker-Planck equation and its adjoint, the Kol-
mogorov backward equation [53, 61]. Let p(x, l, t) =

(pu(x, l, t), pb(x, l, t))
T

be the probability density func-
tion of finding the system at time t and positions x, l in
the unbound or bound states. We obtain from Eqns. (1)-
(3) the Fokker-Plank equation

∂tp = L?p , (4)
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with L? = V? + Q? where

V? = diag




∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

(∂l − ∂x)
(

k
Γ+γ (l − l0) + kBT

Γ+γ (∂l − ∂x)
)


 ,

Q? =



−qon qoff

qon −qoff


 ,

with an appropriate initial condition. Additionally we re-
quire the flux in either state to vanish at infinity, to con-
serve total probability. The stationary solution of Eq. (4)

is π = e−βk(l−l0)2/2

Z (qoff , qon)
T

where Z is a normalization
constant. This is therefore the equilibrium probability
density of the system; it satisfies detailed balance.

While probability densities have an intuitive physi-
cal meaning, in the following it will be easier – and
mathematically better posed – to consider the ad-
joint of the Fokker-Planck equation and the correspond-
ing dual functions. These are functions f(x, l, t) =∫
p(x′, l′, t|x, l)g(x′, l′)dl′dx′ that give the expectation of

any scalar function g(x(t), l(t)), given an initial condition
x(0) = x, l(0) = l. Once we know how such functions f
evolve, we may calculate any statistic g of our stochas-

tic process. Writing f(x, l, t) = (fu(x, l, t), fb(x, l, t))
T

,
we have that f satisfies the Kolmogorov backward equa-
tion [61]

∂tf = Lf , f(x, l, 0) = g(x, l) . (5)

Here L is the adjoint operator of L?, defined by the op-
erator that satisfies 〈f,L?p〉 = 〈Lf, p〉 for any probabil-
ity density p and statistic f , where 〈f, p〉 =

∫∫
(fupu +

fbpb)dldx is the inner product.

2. Non-dimensionalization and assumptions on scales.

We now seek to coarse-grain the fast dynamics, by ap-
plying homogenization techniques to the backward equa-
tion, Eq. (5). To start, we non-dimensionalize the equa-
tion using

x → Lxx̃, l − l0 → Ll̃, t → τ t̃,

where L =
√
kBT/k is the reference length of the leg

fluctuations, Lx is the scale for the long-time average
motion of x, and τ is the timescale associated with this
average motion. The latter two scales are not deter-
mined a priori by any intrinsic scales in the system, but
rather are chosen large enough that averaging will be ap-
propriate over such scales; hence we choose Lx = L/ε
where ε � 1 is a small non-dimensional number. We
are interested in long time scales corresponding to the
diffusion of the particle, hence we expect τ = L2

x/D0,
which corresponds to τ = 1

ε2
Γ
k . Importantly, and in con-

trast with other works [22, 51], here ε does not measure

the value of physical parameters, but rather, it measures
the large observation time scale over which the coarse-
grained model is valid. Such long observation times are
quite likely in experiments, as typical binding rates and
leg dynamics occur at most over 1 ms − 1 s while obser-
vation (or other biophysical processes such as internali-
sation for viruses [17]) happens over the course of 10 min
at least [38]. This non-dimensionalization step is crucial
as it will allow us to find order of magnitude changes
in the diffusion coefficient according to the physical pa-
rameters, something that was not captured by previous
perturbative approaches [22, 51].

We now assume that the observation time scale is long
enough, such that binding and unbinding events, as well
as relaxation dynamics, will both occur on comparably
short time scales. We can therefore write q̃i = qiΓ/k =
Oε(1) and γ/Γ = Oε(1). In Sec. III we will see that tak-
ing different limits for these physical parameters (such as
γ/Γ � 1) yields the same result as applying these limits
to the final result. Our choices of scalings are therefore
quite general and can be easily adapted to more detailed
systems.

Using non-dimensional variables (and dropping the .̃
for simplicity) we obtain from the backward equation
Eq. (5) a separation in orders of ε as

∂tf = Lf =

(
1

ε2
L0 +

1

ε
L1 + L2

)
f (6)

where

L0 =



−qon + Γ

γ (−l∂l + ∂ll) qon

qoff −qoff + Γ
Γ+γ (−l∂l + ∂ll)


 ,

L1 = diag

(
0,

Γ

Γ + γ
(l∂x − 2∂lx)

)
,

L2 = diag

(
∂xx,

Γ

Γ + γ
∂xx

)
.

3. Homogenization method.

We seek a solution to Eq. (6) of the form f = f0 +
εf1 + ε2f2 + .... We obtain a hierarchy of equations at
different orders in ε:

Oε

(
1
ε2

)
: L0f0 = 0, (7)

Oε

(
1
ε

)
: L0f1 = −L1f0, (8)

Oε (1) : L0f2 = ∂tf0 − L1f1 − L2f0, (9)

...
...

and we solve these iteratively for f at each order in ε. At
lowest order we obtain from Eq. (7) and the vanishing

flux at boundaries, f0 = a(x, t)




1

1


, where a(x, t) is an
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unknown function of the slow variable x, whose dynamics
we seek to determine. The associated equilibrium distri-
bution at lowest order, L?

0π0 = 0 is simply the full one
π0 = π.

At the next order, one can check that

f1 =




γqon

Γ + γqon


 l∂xa

Γ(1 + qoff) + γ(qon + qoff)

is a particular integral of Eq. (8), and is the unique so-
lution since we impose that f1 does not contain terms in
the nullspace of L0.

Finally Eq. (9) possesses a solution if and only if it
satisfies the Fredholm alternative [53]

〈(∂tf0 − L1f1 − L2f0), π0〉 = 0.

Standard algebra yields an effective long time diffusion
equation for a (in dimensional variables)

∂ta = Deff∂xxa, (10)

where

Deff =
kBT

Γeff
, (11)

with

1

Γeff
=

p0
Γ0

+
p1
Γ1

, with Γ0 = Γ, Γ1 = Γ + γeff

and γeff = γ + k

(
1

qoff
+

γ

k

qon
qoff

)
.

(12)

In the above expressions, p0 = qoff
qoff+qon

is the equilibrium

probability to have no bond, and p1 = 1−p0 the equilib-
rium probability to have one bond. Γ0 = Γ is the friction
in the unbound state and Γ1 is the effective friction con-
tributing to the bound state.

Eq. (10), which is the backward equation for the par-
ticle+leg over long times, is one of the main results of
this paper, in the case of a 1-legged caterpillar. It is the
backward equation for a particle that evolves as

dx

dt
=
√

2Deffηx(t). (13)

That is, the particle diffuses, with effective diffusion co-
efficient Deff and effective friction Γeff . The effective dif-
fusivity and friction have the usual interpretation. In
particular, if a potential U(x) were added to the particle
Eqns. (2) and (3), one would recover in Eq. (13), following
the same coarse-graining procedure, a term − 1

Γeff
∂xU .

In Fig. 3 we compare the analytical result obtained in
Eq. (12) (gray line) to numerical simulations of the full
stochastic Eqns. (1)-(3) (gray dots). We show the re-
sults for a number of system parameters and find perfect
agreement over several orders of magnitude of physical
parameters. We also predict order of magnitude changes
in the diffusion coefficient as the microscopic parameters
change.

C. Microscopic parameters determine long term
diffusion

How shall we interpret the expressions for the effective
diffusivity Eq. (11) and the effective friction Eq. (12)?
The effective diffusivity is a weighted sum of the diffusiv-
ity in each state, Deff = p0D0 + p1D1 where the weights
correspond to the probability to be in either state, and
Di = kBT/Γi. The effective friction, on the other hand,
is a harmonic weighted sum of the friction coefficients.
That the diffusivity averages arithmetically is to be ex-
pected, since the mean squared displacement is an ex-
tensive quantity in a system with multiple states. Over
a time t we can write

x2(t) = 2Defft = 2D0p0t + 2D1p1t

= 2D0t0 + 2D1t1 = x2(t)|0 + x2(t)|1,

where t0 and t1 refer to the time spent in either state.
The novelty here is that the diffusivity in the bound state,

D1 = kBT (Γ + γeff)−1 6= kBT (Γ + γ)−1,

is obtained not just from the friction in the bound state,
see Eq. (12), but is modified by spring resistance during
binding events by an additional term γeff − γ.

We can interpret this additional term by writing it as

γeff − γ = kτeff , where τeff = τb + τ relaxu

is the typical time over which the leg’s spring resistance
acts, with τb = 1/qoff representing the average bound
time, and τ relaxu = γ

k
qon
qoff

= γ
k
τb
τu

representing the bare re-

laxation time γ/k increased by the ratio of average bound
time to average unbound time. This is coherent as the leg
fluctuations may only relax in the unbound state. The
interpretation of τeff is comparable to that in Ref. 54
although the results of Ref. 54 were obtained from un-
derdamped dynamics.

longer legs stronger bondBA

FIG. 3. Effective diffusion Deff of a 1-legged particle.
Simulation and analytical result Eq. (12) for a 1D system
with 1 leg, with respect to (A) friction ratio γ/Γ and (B)
unbinding rate qoff . (A) and (B) share the same y-axis. The
other numerical parameters are qonΓ/k = 1.0, and for (A)
qoffΓ/k = 0.8 while for (B) γ/Γ = 0.1. Error bars represent
one standard deviation for 100 independent runs.

Fig. 3 shows how the effective diffusion coefficient de-
pends on microscopic parameters such as the leg friction



6

and binding rates. As the leg friction γ increases, the
effective diffusion of the particle decreases (Fig. 3-A).
When the leg friction γ is large compared to all other
contributions to friction, diffusion in the bound state is
frozen D1 = 0, and the effective diffusion corresponds
only to mobility in the unbound state Deff = p0D0

(p0 = 0.8/1.8 ' 0.44 in Fig. 3-A). As leg friction is
typically proportional to the size of the legs, it is thus
expected that the bigger the legs, the slower the particle.
As the unbinding rate qoff decreases, Deff decreases to
arbitrarily small values (Fig. 3-B). This slow down is due
to spring recoil forces acting over longer times, eventually
freezing the particle in a given location. Note that sim-
ilar qualitative dependencies of the diffusion coefficient
on the unbinding rate (Deff ∼ kBTqoff/k) were noted in
a numerical model of multivalent transport on discrete
sites [44], in a scaling law investigation of sticky repta-
tion in polymers [62], and experimentally in Influenza A
viruses [19].

As a test of modeling choice, the analytical expres-
sion may also be plotted against numerical simulations
of the non-dimensional equations with any value of ε.
We find perfect agreement up to ε . 10 (Supplemen-
tary Fig. S1), regardless of the choice of physical param-
eters. This highlights that the natural choice ε = L/Lx

for coarse-graining purposes, corresponding to bound leg
length scales versus unbound particle long range motion,
is especially well suited for these types of problems. In
the following ε is not incorporated in numerical simula-
tions.

D. Diffusion of N-legged caterpillar spans orders of
magnitude

We extend our framework to probe nanocaterpillar dy-
namics with an arbitrary number of legs N (see Fig. 4-A).
Eq. (1) is repeated for each unbound leg, and each leg
binds to the surface with rates qon, qoff independently.
Eq. (2) gives the particle dynamics when no legs are
bound. When n legs are bound, indexed by i = 1, . . . , n,
the dynamics of the particle and bound legs are con-
strained as (Supplementary 1.2)

dx

dt
= −dli

dt
=

k

Γ + nγ

n∑

i=1

(li − l0) +

√
2kBT

Γ + nγ
η. (14)

Note here that the projection step yields a friction co-
efficient scaling linearly with the number of bonds n,
and hence is not a perturbative effect [22]. The set of
stochastic equations is now fully determined and can be
simulated for any N , see Fig. 4-B.

Similarly as in Sec. I B, coarse-graining predicts a
long time effective diffusion with N legs as (Supplemen-
tary 1.2)

DN legs
eff =

kBT

ΓN legs
eff

= kBT
N∑

n=0

pn
Γn

(15)

x
N = 5

n(t) = Nbn = 2

A

B

FIG. 4. N-legged nanocaterpillar model. (A) The longi-
tudinal extension of N legs are monitored (here N = 5) with
binding and unbinding. The number of bonds n(t) changes in

time, here n(t) = 2. The average number of bonds n(t) = Nb

depends on the binding and unbinding rates. (B) Simulations
and analytical results of the effective diffusion coefficient for
N -legs according to the binding rate qonΓ/k. “Nb average”
corresponds to Eq. (16) and “full solution” to Eq. (15). The
other numerical parameters are γ/Γ = 0.1 and qoff = 0.8qon.

where pn =
(
N
n

) qN−n
off qnon

(qoff+qon)N
is the equilibrium probability

to have n bonds and Γn is the friction coefficient in a
state with n bonds. The frictions {Γn} solve a linear sys-
tem of equations that does not have a simple analytical
solution (see Eqns. (S1.20-22)), but can be solved using
numerical linear algebra for given parameters as reported
in Supplementary 1.2.

Eq. (15) is one of the main results of this paper. It pre-
dicts the long-term diffusion coefficient of a nanocaterpil-
lar, as a non-trivial function of the microscopic param-
eters of the legs. We compare the numerically solved
Eq. (15) (full lines) to numerical stochastic simulations
with N legs (dots) in Fig. 4-B and find excellent agree-
ment.

The coefficients Γn contributing to each bound state
can be further investigated to yield an analytical approx-

imation for ΓN legs
eff . When a large number of legs N is

involved in the process, the dominant term in the sum
of Eq. (15) corresponds to the average number of bonds

Nb =
∑N

n=0 npn = qon
qoff+qon

N . Furthermore, one expects

that the coefficients vary weakly around n = Nb, simpli-
fying the linear system for the {Γn}, yielding

1

ΓN legs
eff

'
N�1

1

ΓNb

=
1

Γ + Nbγeff
. (16)

The right hand side of Eq. (16) is valid regardless of pa-
rameter values (Fig. S3) and provides a good approxi-

mation for ΓN legs
eff for large values of N (Fig. S2). For

example, close agreement with Eq. (15) is obtained as
early as N = 20, while good qualitative agreement is ob-
tained for N = 5 (see Fig. 4-B, dotted line). Eq. (16)
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shows that the effective friction with N legs decays lin-
early with the average number of bonds Nb. For systems
with a large number of legs (and hence potentially a large
average number of bonds) [31, 38, 39], we therefore ex-
pect a strong diffusion decrease, covering potentially sev-
eral orders of magnitude, due to enhanced friction with
the surface.

II. DO NANOCATERPILLARS HOP OR SLIDE?

Our model and analytical formula Eq. (15) are use-
ful not only for quantitatively predicting the diffusion
coefficients of existing nanocaterpillar systems, but also
to obtain insight into the mechanism by which particles
diffuse. Different experiments with DNA-coated colloids
made puzzling and seemingly contradictory observations,
whereby similar systems appear to diffuse in different
ways. For example, some DNA-coated colloids appear to
diffuse through a succession of uncohesive moves, namely
hops above the surface [39], while others move cohesively
along the surface [31]. The difference between cohesive
and uncohesive modes of motion has been noted in a va-
riety of other systems, ranging from virus mobility on
surfaces [17, 19] to sticky polymer reptation [62]. Yet
the parameters that characterize and quantify these dif-
ferent modes of motion remain to be elucidated. Our
model gives insight into this question – do nanocaterpil-
lars prefer to diffuse by “sliding” along the surface, or by
“hopping” along it (see Fig. 5-A)?

A. What are hopping and sliding?

We start by quantifying the diffusion associated with
either hopping or sliding. The mean squared displace-
ment of a particle whose diffusion coefficient is deter-
mined from Eq. (15) can be split into two contributions,
as

〈x2〉 = 2Defft = 2p0
kBT

Γ0
t + 2

N∑

n=1

pn
kBT

Γn
t

≡ 2Dhopt + 2Dslidet.

We identify (a) a hopping mode (in accordance with
Refs. 34 and 39) where the particle detaches all bonds
with the surface and moves in free space (see Fig. 5-A),
until it forms another bond. In this hopping mode

Dhop = p0
kBT

Γ
=

(
qoff

qoff + qon

)N
kBT

Γ
. (17)

We also isolate (b) a sliding mode (see Fig. 5-A) where
the particle keeps at least one bond with the surface, a
form of walking with no preferred direction,

Dslide =
N∑

n=1

pn
Γn

' kBT

ΓNb

=
kBT

Γ + N qon
qoff+qon

γeff
. (18)

The total mean-squared displacement can be broken up
into the sum of the mean-squared displacement when
hopping, and the mean-squared displacement when slid-
ing, as 〈x2〉 = 2Dhopt + 2Dslidet = 〈x2〉hop + 〈x2〉slide.

B

Potentially Hopping

Sliding Only

A

Hopping

Sliding

Nc = 1

Nc � 10

FIG. 5. Nanocaterpillar diffusion modes with N legs.
(A) Typical modes of motion with N bonds: the nanocater-
pillar may either slide (at least one bond remains attached
to the surface) or hop (all bonds detach for the particle to
move). (B) Critical number of legs Nc required for sliding
to be more effective than hopping as a function of stickiness
qon/qoff and unbinding rate.

An important observation is that Dslide decays with the
number of legs roughly as 1/N , while Dhop decays expo-
nentially with N , i.e. much faster. As soon as a few legs
are involved, we may therefore expect that sliding domi-
nates hopping. This interpretation is natural, since when
a system has just a few legs (N ' 1−2), the odds that the
legs all detach at once are quite high, therefore favoring
hopping. In contrast, in a system with a large number
of legs, the odds that all legs simultaneously detach are
simply too small, and the system walks randomly, re-
maining close to the surface. In a sense, nanocaterpillars
truly are caterpillars walking with nanoscale legs. The
scaling quantifying both modes of motion is another es-
sential analytical result of our work.

In general, the critical number of legs
Nc(qon, qoff , k, γ,Γ) required to favor sliding (N ≥ Nc)
over hopping (N ≤ Nc) satisfies

〈x2〉hop
〈x2〉slide

=
Dhop

Dslide
=

(
qoff

qoff + qon

)Nc
(

1 + Nc
qon

qoff + qon

γeff
Γ

)
= 1.

(19)
The critical number of legs is controlled by the ratio
qon/qoff , termed henceforth stickiness, and by the magni-
tude of the effective friction in the bound states γeff , itself
dominated in most systems by the unbinding rate qoff .
We can therefore investigate Nc as a function of sticki-
ness qon/qoff and unbinding rate qoff (Fig. 5-B). Overall,
a system with say N = 10 legs is typically dominated by
sliding motion. Yet hopping may still occur e.g. with
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large unbinding rate qoff . In fact qoff increases the fric-
tion γeff in the bound states and reduces Dslide. The
number of legs is thus a critical parameter for nanocater-
pillar diffusion: controlling both the magnitude of the
diffusion decrease and the mode of motion.

B. Distinguishing the diversity of biophysical
nanocaterpillars

Whether a nanocaterpillar slides or hops, as predicted
by Eq. (19), depends on numerous system parameters.
Existing biological and biomimetic systems cover a broad
range of parameters that we now explore, to ask which
systems prefer to move by sliding and which by hopping,
within the framework of our model.

Our model relies on 6 physical parameters
k, γ, qoff , qon,Γ, N that can be estimated from the
literature for many systems : viruses, molecular motors,
white blood cells, protein cargos in the nuclear pore com-
plex, bacteria such as Escherichia coli, and DNA-coated
colloids (Supplementary 3). Typically, stickiness values
are similar across systems with qon/qoff ∼ 0.05 − 0.8 ≥ 1
– when the system is not thermally manipulated as
will be explored in Sec. II C. Therefore we consider
qon/qoff ' 0.1. Additionally, as legs are generally small
compared to particles, γ/Γ ' 10−3 − 10−1 and therefore
the dominant factor in γeff/Γ is usually controlled by
spring recoil force and unbinding times, as k/Γqoff . We
find k/Γqoff ' 10−2−108 in the range of systems studied,
confirming that this is a critical factor to discriminate
nanocaterpillars. Additionally, as systems have a varied
number of legs N , we define an effective relaxation rate

k(N)

Γ
=

k

Γ
N

qon
qoff + qon

[(
qoff + qon

qoff

)N

− 1

]−1

that will allow us to predict either sliding or hopping.
We sort systems in a so-to-speak Ashby chart, accord-

ing to the effective relaxation rate k(N)/Γ and unbind-
ing rate qoff (Fig. 6). This chart summarizes parameter
ranges for different systems, and predicts which systems
move by sliding and which move by hopping, within the
assumptions of our model. If k(N)/Γqoff ≤ 1, according
to Eq. (19), sliding (orange region) is favored over hop-
ping (blue region). While other modes of motion could
occur for such complex systems, our aim here is to ob-
serve these systems in the “projected” sub-space where
only sliding and hopping is considered. Interestingly, we
find that different groups of systems emerge according to
this classification, that we review below.

1. Sticky hoppers

We predict that viruses, white blood cells, and molec-
ular motors cannot slide. These systems show very long
bond lifetimes, with τoff = q−1

off ' 1 − 100 s. This is

Viruses
Molecular motor
White blood cells
Nuclear pore complex
DNA coated colloids
Escherichia Coli

Sars CoV 1
Sars CoV 2

Influenza A

P selectin L selectin

high 
coverage

low 
coverage

Hopping

Sliding

Stronger bond

Longer 
legs

nanoparticles

Viruses
Molecular motor
White blood cells

Nuclear pore complex
DNA coated colloids
Escherichia Coli

FIG. 6. Sorting biophysical systems. Expected regimes
of sliding or hopping according to the effective relaxation rate
k(N)/Γ and unbinding rate qoff . The gray line corresponds

to k(N)/Γ = qoff and separates the sliding and the hopping
regions. Circles represent the range of values found in the
literature for parameters of each system. Systems are color
coded according to their category in the legend. When multi-
ple systems belong to a category, details are indicated next to
the circles. Low and high coverage DNA-coated colloids refer
to 1 µm size colloids and nanoparticles to 15 nm size.

characteristic of strong bonds, for which the interaction
energy |∆G| � kBT . Since for the protein ligands in
these systems, k ' 10−4 N/m and Γ ' 10−9 N.s/m for
1µm particles, we expect k/Γ ' 105 � qoff and γeff � Γ.
Therefore such systems simply can not slide. Sliding is
even more disfavored for coronaviruses (Sars CoV 1 and
2), since the legs are made of very rigid proteins, with
k ' 0.5 N/m [63, 64]. Hopping is therefore a probable
mode of motion for these systems.

These predictions are qualitatively consistent with ex-
perimental measurements. The diffusion coefficient of an
influenza A virus on protein-coated surfaces was mea-
sured as D0/Deff ' 4 − 190 [17, 19]. Estimating the
typical number of available legs N ' 10 [65, 66] and
the bound probability qon/(qon + qoff) = 20% [66] yields

D0/Dhop = [qoff/(qon + qoff)]
N ' 10, in the range of mea-

sured values. Our model predicts that hopping is there-
fore more probable than sliding for influenza A, at least
when considering its translational motion under passive
binding and unbinding. This is consistent with Ref. 17,
which observed infrequent yet very long spatial steps,
termed gliding moves. We note that the influenza A
virus has also been observed to move via cohesive short
spatial steps, that have been attributed to rolling mo-
tion [5, 17, 19, 41], which may be due in this context to
active bond cleaving [17, 19, 41] that is beyond the scope
of passive binding as presented here.

Turning to DNA-coated colloids, while the binding ki-
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netics are roughly independent of colloid size, the ef-
fective relaxation rate can vary strongly. Nanometre-
sized DNA-coated colloids (yellow nanoparticles) have
fast relaxation rates as they are small (and therefore Γ
is smaller), and are thus sticky hoppers. In contrast, mi-
cronscale colloids have slower relaxation rates k(N)/Γ, all
the more as usually a great number of bonds N ' 100
are involved in the binding process, and thus are prone to
slide. We will turn in more detail to DNA-coated colloids
in Sec. II C.

2. Slippery sliders

Reciprocally, we predict that systems with weak ad-
hesion (equivalent to short bond lifetimes, i.e. large
qoff) may move by sliding. Such systems include proteins
translocating through the nuclear pore complex, or white
blood cells adhering through L-selectin linkers, which are
notably weaker than P-selectin [23]. Sliding may also be
accessible to systems with short effective relaxation rate,
for which the sticky friction mediated by k/Γ is low. This
corresponds to large particles with long legs, as is the case
for Escherichia Coli [57] (dark green). DNA-coated col-
loids with high DNA coverage are prone to slide due to
their large number of legs.

C. DNA-coated colloids hop and slide, with order
of magnitude decrease in their diffusion coefficient

We now turn to probe in more detail the predicted
modes of motion and strong decrease in diffusion of DNA-
coated colloids by comparing our model’s predictions
with experimental measurements of DNA-coated colloids.
DNA-coated colloids provide a well-controlled model sys-
tem for testing our analytical results, especially their de-
pendence on N , since the number of DNA legs involved
in the sticking process may be easily tuned by changing
the temperature [38]. Our aim here is not to build a de-
tailed model to describe all the possible modes of motion
of DNA-coated colloids. Rather, we seek potential key
parameters that control the magnitude of the diffusion
and the mode of motion. To do so, we test whether the
predicted strong decrease is coherent with experimental
observations over a range of temperatures and for three
different experimental designs.

1. Model parameters can be directly established from
experimental data.

We predict the diffusion coefficients Deff (and Dslide

and Dhop) for three different experimental systems, by
determining the parameters involved in Eq. (15) from
the literature or from independent measurements, with
no fitting parameters (apart from calibrating to the melt-
ing temperature, as discussed below). The diffusion coef-

ficients for DNA-coated colloids on flat DNA-coated sur-
faces have been measured in two different experimental
systems reported in the literature [31, 39]. These studies
report only very few data points around the melting tem-
perature where motion is diffusive, since in these experi-
mental systems diffusive motion is only observed in a nar-
row range of temperatures, so the studies focused mainly
on the low temperature regime where motion is subdiffu-
sive. We complemented the scarce existing data by per-
forming our own experiments, using recently-developed
fabrication [38] and acquisition techniques [31, 39], and
we observe diffusive motion over a wider range of tem-
peratures (Supplementary 2). For each of the three ex-
perimental datasets, we map reported experimental pa-
rameters to the parameters of the model, and detail our
process below.

Some parameters are easily estimated using standard
results, see Table A2. The friction coefficient Γ is taken
as the hindered lateral hydrodynamic friction near a
wall [67]; γ and k correspond to hydrodynamic friction
and spring resistance of the polymer linker (that links
the surface and the complementary DNA strand) and
are directly established from polymer dynamics [56]. The
binding rate qon depends on the exact – known – DNA
sequence used for the complementary stickers and the
density of coated DNA strands on surfaces [70].

Other parameters, such as N and Nb (or equivalently
N and the ratio qon/qoff) require more extensive model-
ing of the detailed leg-arm interactions to be evaluated.
Recently Refs. 38 and 59 have shown how to establish N
and Nb with no fitting parameters, taking as input pa-
rameters the DNA sequence used, the coating densities,
and the properties of the DNA linker (see Fig. S5), and
we employ the method we have developed in Ref. 38.

Finally, since measurements include colloid vertical
motion beyond the binding range[71], we further include
vertical motion and hence particle buoyancy through a
2×1D model. Such vertical motion is generally slow and
only affects the effective probabilities pn, not the friction
coefficients Γn. Motion in two lateral dimensions can be
straightforwardly extended from our 1D model (see Sup-
plementary 2 for more details).

All parameters are thus readily expressed from detailed
experimental system design. The diffusion coefficient
Deff is decreased by orders of magnitude at low tem-
peratures. It progressively increases to its “bare” value –
corresponding to non-sticky DNA – at high temperatures,
with a sharp transition. This sharp transition from the
bound to unbound state occurs at a melting temperature
Tm specific to each experimental design. The predicted
Tm is always close to the experimentally measured Tm

(less than 1◦C difference) with no fitting parameters.

Nonetheless, intrinsic variations remain in experimen-
tal parameters. In particular, different e.g. humidity
conditions can affect the coating process and exact coat-
ing density obtained, and hence the experimental Tm,
over about 2◦C. To investigate data over the relevant
short temperature range where diffusion can be mea-
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TABLE A1. Method used to calculate model parameters for the DNA-coated colloids studied experimentally in this work.
Parameter values are reported only at the melting temperature Tm. Their dependence on temperature is indicated in the
“Comments and References” column.

Parameter Formula used Value at Tm Comments and References

Γ Γ = 2× 6πη(T )R 1.6× 10−8 N.s/m hydrodynamic friction near a surface [67]; colloid radius R = 500 nm;
η(T ) water viscosity with temperature.

γ γ = 6πη(T )h 1.8×10−10 N.s/m with brush height h ' 22 nm, calculated with Milner-Witten-Cates
theory [68], and accounting for increased brush density due to Pluronic
F127 (see Ref. 38).

k k = 3kBT/2L` 0.16 mN/m spring constant for polymers [56]; extended brush length L ' 84 nm
(6500 g/mol PEO + 20 single stranded DNA (ssDNA) bases); persis-
tence length ` = 0.5 nm (average of PEO + ssDNA at 140 mM salt
concentration [69])

qon qon = konσ̄/hNA 4 kHz where kon = 1.6×106 M−1.s−1 from Ref. 70, using the exact sequence as
in our experiments; σ̄ =

√
σσg where σ = 1/(3.27 nm)2 is the particle

coating density and σg = 1/(10.8 nm)2 is the glass substrate coating
density; Avogadro’s number NA; Independent of T .

qoff qoff = qon
N(T )−Nb(T )

Nb(T )
18 kHz Nb average number of bound legs and N total number of legs available

for binding in the interaction region; Dependent on T .

sured, one option could be to fit e.g. the value of the
coating density on colloids, to obtain the exact experi-
mental Tm – effectively fitting the location of the sharp
transition. Instead, we choose to align all data (theo-
retical or experimental) with respect to its own melting
point Tm (predicted or measured). This has the advan-
tage of avoiding fitting and allowing us to easily compare
similar experimental systems with slightly different Tm

(Supplementary 2).

2. The coating density controls the mode of motion and the
magnitude of the diffusion coefficient decrease.

The number of legs implied in the sticking process N
changes significantly with temperature. At low temper-
atures N & 100; the colloids are strongly bound. With
increasing temperatures N decreases until the particles
are completely unbound and N = 0 (see Fig. S5), with a
sharp transition at the melting temperature Tm. Impor-
tantly, the number of legs is the parameter that changes
the most with temperature and controls therefore the
magnitude of the long time diffusion Deff .

The three experimental systems differ mainly in the
DNA coating density, which implicitly controls the num-
ber of legs N involved in the binding process. For densely
coated colloids (Fig. 7, A and B), we find excellent agree-
ment between our model calculation for Deff and exper-
imental data, predicting a fast diffusion decrease over 2
orders of magnitude in barely a few temperature degrees.
Further, we predict that sliding, or some form of cohe-
sive motion with the surface, is the dominant mode of
motion below the melting temperature Tm. In fact the

high number of available legs, N ' 100, due to high cov-
erage, prevents hopping below the melting temperature
and colloids primarily slide, consistent with the observed
cohesive motion [31]. Hopping emerges as a favorable
mode above the melting point, where the average num-
ber of available and bound legs significantly decreases
due to particle lift-off from the surface. This prediction
is consistent with our qualitative observations above the
melting point: particles perform long moves over short
time intervals, accompanied by more frequent and longer
excursions far from the surface. The transition between
motion modes occurs for about N = 40 legs in contact
(Fig. S5).

For DNA-coated colloids with low coverage densities,
as in Ref. 39 (Fig. 7 C), our model predicts a diffusion co-
efficient that is far too large. Yet, Dhop is in remarkable
agreement with experimental data. In fact, Deff contains
sliding motion yet the spacing between legs in Ref. 39 is
too large and geometrically prevents sliding. Hence only
hopping, or uncohesive motion with the surface, is pos-
sible. In fact, for such systems only hopping is observed,
resulting in a much stronger slow down of diffusion with
decreasing temperature [39]. The DNA coating density
therefore appears to be a significant factor in determin-
ing how DNA-coated colloids move, allowing it to vary
from sliding to hopping.

3. Other possible modes of motion.

There are other ways that DNA-coated colloids could
move in specific experimental regimes, that could be
probed with the analytical tools set forth here, yet
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A

B
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very high coating density

high coating density

low coating density

no fitting

no fitting

no fitting

FIG. 7. Diffusion coefficients of DNA-coated col-
loids. Comparison between experimentally measured diffu-
sion coefficients of DNA-coated colloids on DNA-coated sur-
faces and analytical predictions of Deff , Dslide, and Dhop

(Eqns. (15), (18) and (17)). The DNA-coated colloids have
(A) highly dense coatings (1 DNA per 10 nm2, Supplemen-
tary 2) (B) dense coatings (1 DNA per 27 nm2) from Ref. 31
and (C) sparse coatings (1 DNA per 144 nm2) from Ref. 39.
In (A) the gray region corresponds to uncertainties on the
coating density of the substrate, and the different symbols
correspond to repeated experiments repeated. The hydro-
dynamic diffusion D0 = kBT/12πηR corresponds to lateral
diffusion near a flat rigid wall, where R is the radius of the
colloid and η the solution viscosity. Horizontal error bars cor-
respond to uncertainties on imposed temperature and vertical
error bars correspond to uncertainties in determining the dif-
fusion coefficient from data (Supplementary 2).

that we have not yet explored. At lower temperatures,
particles don’t diffuse, they rather subdiffuse [31, 39],
potentially due to inhomogeneities in the coated sur-
faces [31, 39, 42]. Such spatial dependencies are not ac-
counted for in our model but could be studied through
spatially dependent attachment rates qon(x) or leg num-
ber N(x).

Particles may also move by rolling instead of by slid-
ing [31], a motion that could also be investigated with
homogenization techniques. Rolling may have a higher
mobility at some temperatures [33, 54], since the strands
closest to the contact point on the surface do not resist
rolling, for geometrical reasons. Yet when a large num-
ber of bonds are implied in the binding process, numerous
bonds are actually far from the contact point and hence

resist rolling. It is possible that rolling is thus favorable
only over a small range of temperatures.

Although our model lacks these more complex ingredi-
ents and geometries, it is in surprisingly good agreement
with our experimental measurements. This suggests we
have identified some critical parameters controlling the
observed effective diffusion, precisely the coating density
and working temperature as they set the number of legs
N . Even in a more complex model, containing e.g. inho-
mogeneous coating density, or rotational degrees of free-
dom, we therefore expect these parameters to play an
important role in mobility.

D. Design rules for sliding versus hopping

Herewith we can draw simple design rules for sliding
or hopping. Numerous, long wobbly legs with weak ad-
hesive bonds are well adapted for sliding. Short and stiff
legs with strong adhesive bonds facilitate hopping. DNA-
coated colloids offer various design features to control
their mobility: for example, larger particle size, higher
DNA coverage, and lower temperature all favor sliding.
Further control can be achieved by tuning the micro-
scopic features of the legs, such as their spring con-
stants k, for example by choosing the length of the lig-
and leg [38]. However, such control is especially hard
to achieve experimentally without changing other exper-
imental features at the same time. For example, current
coating processes generally result in less dense coatings
for longer legs [38].

Overall, these design rules allow one to tune artificial
systems to control their mobility. This could have con-
sequences in particular in the field of self-assembly of
artificial structures, where facilitated cohesive motion is
believed to be essential for long-range alignment [31–33].

III. COARSE-GRAINING UNDER DIFFERENT
MODELS AND ASSUMPTIONS

In the physical and biological systems we explored, the
range of physical parameters was quite broad, suggesting
that other scaling ansätze might be appropriate to study
long term dynamics. We review alternative approxima-
tions and modeling assumptions and compare them to
the predictions of the model presented in Section I. We
find that our model is the most general, encapsulating
perturbative results obtained with other approximations,
and that it is naturally modified to account for additional
features (such as arms as well as legs). To make the ar-
gument simpler, we mainly focus on a 1-legged caterpil-
lar; the comparisons should be similar for a multi-legged
caterpillar. Detailed coarse-graining steps are reported in
Supplementary 4. All results are summarized in Table A2
(displayed in the Appendix) and compared in Fig. 8.
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A. Dynamics with inertia

One may include particle inertia with a small yet finite
mass m 6= 0, by starting with the underdamped Langevin
equations for the particle (rather than the overdamped
as we have done) – see Ref. 54. To understand the scales
associated with mass, one can compare the correlation
time of the particle’s velocity when spring recoil forces

are at play, τv ' m(Lx/τ)
Lk , to the time scale of observation

τ [54]. Coarse-grained dynamics require τv
τ = mLx

Lkτ2 =
O(ε), which is apparently coherent with a small mass.

Coarse-graining steps (Supplementary 4.1) lead to an
effective friction

Γm
eff = p0Γ0 + p1Γ1. (20)

Notice that the effective friction is the arithmetic sum of
the frictions in each state – not the harmonic sum ob-
tained in Eq. (12) [72]. Eq. (20) is equivalent to Eq. (12)
in the limit where the friction correction is small, γeff � Γ
– see Fig. 8-B (yellow).

However, differences arise beyond this regime. For stiff
legs (γ/Γ � 1, k/qoffΓ � 1) one finds Γm

eff ∼ 0 while
Γeff ∼ Γ. This stark difference has an intuitive explana-
tion: the particle may not move when it is attached with
the stiff leg, but it can still move when it is unbound,
and therefore the effective friction should remain finite.
This is true unless the particle has significant inertia and
therefore does not have the time to accelerate within the
unbound periods. In fact, in the non-dimensionalization
we implicitely assumed that m/Γ = εLkτ2/ΓLx = Γ/kε2,
such that the inertial relaxation time was in fact assumed
to be large compared to the time scale of velocity fluctu-
ations.

This drives the general question of how to account for
inertia in such systems, and whether inertia plays a role
in the macroscopic diffusion of nanocaterpillars. We will
address this question thoroughly in another paper [73],
in which we reconcile Eq. (20) and Eq. (12).

B. Choice of time-scale hierarchy

There are other choices for the ordering of time scales.
We review these below: we describe their experimental
relevance, then briefly examine the effective friction un-
der these different approximations and compare it to our
main result Eq. (12).

1. Fast leg dynamics compared to particle dynamics

One common approximation is to assume rapid leg dy-
namics compared to particle dynamics, with ε = γ/Γ [51].
Such an approximation is consistent with numerous ex-
periments, as legs are typically short, hence fast because
of Stokes relation, compared to the large particles in-
vestigated (such as white blood cells [7] or DNA-coated
colloids [74]).

CB

qon qoff
Leg Arm

lbond

A

FIG. 8. Comparing with other coarse-grained mod-
els and assumptions. (A) Schematic for arm and leg
dynamics considered in this work. (B) Effective diffusion
with respect to friction ratio γ/Γ: calculated with Eq. (12)
(“This work”), Eq. (20) (“underdamped”), Eq. (21) (“scaling
ε = γ/Γ”) and Eq. (22) (“k/γ � qon, qoff”). (C) Effective dif-
fusion with respect to binding and unbinding rates (keeping
qon/qoff constant), for a particle with 1 leg facing M = 1− 50
arms: calculated with Eq. (25) (“This work”) and Eq. (22)
(“k/γ � qon, qoff”), taking p0 = 0 and p1 = 1 to match the
limits in M →∞. Ref. 51 corresponds both to k/γ � qon, qoff
and γ/Γ = ε and was plotted for consistency. For (A) and (B),
shared numerical parameters are qonΓ/k = 1.0, qoffΓ/k = 0.8
and γ/Γ = 0.1.

With this assumption one typically relaxes the restric-
tion on lengthscales, as L ∼ Lx. The observation time-
scale is τ = L2/D0 = Γ/k and binding and unbind-
ing are taken to be fast compared to this time scale,
qon ∼ qoff ∼ 1/τε. One obtains (Supplementary 4.2.1)

1

Γ
ε=γ/Γ
eff

=
p0
Γ

+
p1
Γ

(
1 − γeff

Γ

)
. (21)

Eq. (21) results in a small correction to the effective fric-
tion, of order ε. It is equivalent to Eq. (12) in the limit
where γeff � Γ is small. The assumption ε = γ/Γ ap-
pears thus quite restrictive as it implicitly also requires
to observe the system at long time scales compared to the
other time scales in the system. Furthermore, contrary
to Eq. (12) where the small parameter ε disappears, here

1/Γ
ε=γ/Γ
eff is a first order expansion in ε ∼ γeff/Γ. We

present Eq. (21) against Eq. (12) in Fig. 8-B (purple vs
black) and find that Eq. (21) is indeed only valid for small
values of γ/Γ. Our choice of scaling ε = L/Lx can thus
account for a broad range of bare friction values. Ad-
ditionally, such an approach can only account for small
perturbations to the background mobility, while we find
perturbations over several orders of magnitude.

2. Fast leg dynamics compared to binding dynamics

Another approximation assumes fast leg relaxation dy-
namics compared to binding dynamics, k/γ � qon, qoff
(and both are fast compared to particle dynamics). In
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this case leg lengths are sampled from their equilibrium
distribution when they bind, corresponding to a “pre-
averaging” approximation. Leg lengths are not tracked
when they are unbound, allowing to speed up simula-
tions [22, 33, 51, 75]. This limit is relevant to describe
stiff legs, e.g. rigid polymers such as double stranded
DNA – see Table S1.

Coarse-graining gives (Supplementary 4.2.2)

1

Γ
k/γ�q
eff

=
p0
Γ

+
p1

Γ + γ + k
qoff

. (22)

The pre-averaged result Eq. (22) is comparable to
Eq. (12), yet misses the relaxation term involving τ relaxu

in γeff . This confirms that τ relaxu originates from unbound
relaxation dynamics. This difference results in some dif-
ferences in Deff , depending on the microscopic parame-
ters (Fig. 8-B). Additionally, the pre-averaged limit may
be viewed as the limit regime for a nanocaterpillar with
a large number of legs, say N � 1, where on average 1
or 0 leg is bound to the surface, Nb . 1. This typically
requires qon � qoff � k/γ, and indeed Eq. (15) converges
to the pre-averaged result in that limit (Supplementary
Fig S4).

The validity of pre-averaging is limited to the domain
qon, qoff � k/γ. In systems such as DNA-coated col-
loids, binding rates qon and qoff may be manipulated
over orders of magnitude [76], by choosing the DNA
sequence or by adjusting temperature, potentially ac-
cessing qon � qoff � k/γ at low temperatures. In
this regime, Eq. (12) predicts that the nanocaterpillar
is frozen in the bound state, while pre-averaged dynam-
ics still predict a non zero mobility. In these situations
pre-averaged dynamics are therefore not suitable. We
show later however that introducing numerous arms –
more generally a lot of binding partners – can extend the
validity range of pre-averaging.

3. Fast binding dynamics compared to leg dynamics

Finally, one can consider fast binding dynamics com-
pared to leg dynamics, qon, qoff � k/γ. Although this
limit is not often considered in simulations, it is relevant
for dense arrangements of receptor sites [74]. In fact as
the binding rate qon scales linearly with the concentra-
tion of receptors, it can increase by orders of magnitude
for a leg potentially in contact with a dense array of arms
– see Table S1.

Coarse-graining yields (Supplementary 4.2.3)

1

Γq fast
eff

=
p0
Γ

+
p1

Γ + γ + k
(

γ
k

qon
qoff

) (23)

which is exactly what is expected in the limit qon, qoff �
k/γ in Eq. (12). Again, this highlights the physical mech-
anisms yielding the different contributions in γeff . Here
the average bound time of the leg is small, τb � γ/k,
and therefore does not contribute to γeff .

C. Arms and/or legs

The diversity of nanocaterpillars resides also in their
geometry: some particles have legs that attach to a sur-
face [77], some have no legs (or infinitesimally small legs),
with binding sites directly on the particle that attach
to outstretched receptors on the surface that we refer
to as arms [22, 51] (1 arm case in Table A2) and some
have both outstretched legs connecting to outstretched
arms [33] (arms and legs in Table A2).

1. Arms or legs

A particle with a leg or a bare particle attaching to an
arm (1-legged and 1-armed respectively, see Table A2)
have nearly equivalent effective dynamics. The only dif-
ference resides in the interpretation of Γ in the unbound
leg dynamics Eq. (2) – see Supplementary 4.3.1. For the
1-legged case, if the leg’s center of mass corresponds to
the point grafted to the particle, the unbound friction
coefficient is simply increased by the leg as Γ → Γ + γ,
where Γ is the bare particle friction coefficient and γ the
leg’s. If the leg’s center of mass is offset from the graft-
ing point on the surface, minor modifications have to be
made to Eq. (2) yet lead to very similar dynamics overall.
For the 1-armed case, we simply have the unbound fric-
tion coefficient Γ to be the bare friction coefficient of the
particle. This justifies our approach in Sec. I, where we
ignore the details of the leg or arm location and simply
treat them as mathematically equivalent.

2. Arm and leg

A 1-legged particle attaching to 1 arm has slightly more
interesting dynamics. To investigate this case, we sim-
plify the problem and consider that the leg can bind
to the arm regardless of their relative location, with a
rigid rod of length lbond that bridges the gap between
the sticky points (see Fig. 8-A). In the bound state the
constraint is thus x + lleg − larm = lbond. The relative
distance lbond is unimportant and can be assumed to be
zero, and therefore this model effectively creates an arm
with the correct length each time the leg binds.

Although the model is simplistic, it is realistic in the
presence of a dense periodic array of arms and allows us
to compare the mechanical properties of this geometry
compared to a single leg or arm. We find using similar
coarse-graining techniques (Supplementary 4.3.2)

1

Γleg+arm
eff

=
p0
Γ

+
p1

Γ + γeff,1(1, 1)
where γeff,1(1, 1) =

γeff
2

.

(24)
The added friction in the bound state is only half that
with a single leg or a single arm: friction is distributed
harmonically, like the effective spring constant of two
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springs in series [78]. Slightly improved mobility is there-
fore achieved with both an arm and a leg, while the qual-
itative behavior of the original model is preserved.

3. Leg facing numerous arms

We now consider a leg that can bind to multiple arms
at the same time. As in the previous section, the M
arms do not have particular locations but rather appear
with the correct lengths when needed. In that case, the
binding rate depends on the number of bound legs. For a
given leg, the effective binding rate is (M −n)qon, where
n is the current number of bound legs, such that M − n
corresponds to the number of available binding sites. The
effective unbinding rate of each leg remains qoff . Follow-
ing the formalism of arm and leg dynamics detailed above
(Supplementary 4.3.3) one finds that with M arms,

1

Γleg+M arms
eff

=
pM,0

Γ
+

pM,1

Γ + γeff,1(M, 1)
(25)

where pM,0 = qoff/(qoff +Mqon) and pM,1 = 1− pM,0 are
the probabilities to have 0 or 1 bond. The added friction
γeff,1 is a harmonic average when M is large

1

γeff,1(M, 1)
'

M�1

1

γeff,M,1
+

1

γeff,1,1
, (26)

with γeff,M,1 = k
(

1
qoff

+ γ
k
(M−1)qon+qoff

qoff

)
the effective

friction due to the leg γeff,1,1 = k
(

1
qoff

+ γ
k

)
due to arms.

We see that the factors implying the unbound relaxation
time τ relaxu are modified in each case. We give the follow-
ing interpretation: the average unbound time for the leg
is τu = 1/(M − 1)qon, due to M − 1 other available arms
to bind to. For the arms, τu = ∞ as there are no other
legs to bind to once the only leg is bound. The harmonic
average in Eq. (26) highlights again that the leg-arm con-
figuration is mathematically similar to the effective force
of springs in series.

In the limit of a large number of arms M , the leg is
always bound to the surface (p1 = 1) and the correction
to the bound state friction converges to

γeff,1(M, 1) −−−−→
M→∞

γeff,1(1, 1) = γ +
k

qoff
, (27)

which is the correction to the effective friction for the
pre-averaged result, Eq (22).

This limit is surprising. Sec I, Eq. (12) showed that for
a leg binding to a uniformly sticky surface, in the limit
where the leg is always bound (p1 = 1), the nanocater-
pillar is frozen and Deff = 0. When the leg is bound to a
great many arms this is no longer the case: we recover the
diffusion coefficient associated with pre-averaging. We
interpret this discrepancy as follows. With many arms
binding to a leg, the particle may still move, even in a
parameter regime where the leg is always bound. In fact,

the leg rapidly swaps between different arms, which have
different random lengths and hence apply different ran-
dom forces, causing the particle’s position to fluctuate.
Indeed, in Eq. (27) it is apparent that the remaining fric-
tion is due to arms and not to the leg. Swapping the
particle upside down, this is equivalent to a particle with
a large number M of legs binding to a uniformly sticky
surface, but where on average only 0 or 1 leg is bound
to the surface at a time. Therefore, this limit is equiva-
lent to the pre-averaged result: each time a new arm is
bound it is sampled from its equilibrium distribution –
as so many arms are within reach.

Simulations with M arms are presented in Fig. 8-C with
analytical solutions Eq. (25) (green colors). They indeed
converge to the pre-averaged result (pink). For consis-
tency, we also record the result of Ref. 51 (Eq. (2.48))
that corresponds to pre-averaging and assumes ε = γ/Γ.
It is plotted in Fig. 8-C (red) and agrees with our result
only over a limited range of parameters, corresponding
to the validity range of Ref. 51.

4. Numerous legs facing numerous arms

N legs binding to M arms induce a long time effec-
tive friction that encapsulates the previous result for
M arms and that for N legs in Sec. I D (Supplemen-
tary 4.3.4). Eq. (15) still holds with adapted bond prob-
abilities pn, and γeff in Eq. (16) is the harmonic average
between arm and leg contributions, (γeff,n(M,N))−1 =

γ−1
eff,M,n + γ−1

eff,N,n.

Overall, spanning different limits shows that our
methodology to investigate long time dynamics is ro-
bust, as it accounts for a broad range of physical param-
eters and a variety of geometries. It also justifies the use
of “pre-averaging” approximations (sampling leg lengths
from equilibrium distributions upon binding) to acceler-
ate simulations in specific situations. It also highlights
that taking limits of various parameters is subtle, and
care must be taken when doing so as the limits do not
commute in general.

CONCLUSION

When a particle is coated with ligands that bind and
unbind stochastically to receptors on a surface, the lig-
ands impart a random force to the particle each time
they bind, causing the particle to undergo a random
walk on long timescales. We constructed a model for
the coupled dynamics of such a nanocaterpillar and its
leg-like ligands, and derived an analytical expression for
the nanocaterpillar’s long-term effective diffusion coeffi-
cient as a function of the microscopic leg parameters. Our
simulations showed this expression is valid over a broad
range of parameters. Our expression predicts a dramatic
decrease in the diffusion coefficient, by several orders of
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magnitude, as temperature decreases by a few degrees,
a prediction that is borne out in our experimental mea-
surements.

Our model allows us to distinguish between two modes
of motion, sliding and hopping, and to identify parame-
ters that govern which mode of motion is preferred, across
a wide range of biophysical systems. Typically, systems
with a large number of legs will slide, since the mean-
squared displacement due to hopping decreases exponen-
tially with the number of bound legs. Hopping is favored
for systems with short, stiff legs, and/or strong bonds.
Regardless of the mode of motion, the fast binding and
relaxation dynamics at the microscale result in an over-
all slow diffusion of the nanocaterpillar, sometimes many
times smaller than the background hydrodynamic diffu-
sion.

We derived the effective diffusivity for a range of other
models and scaling assumptions, which allowed us to
tease out e.g. the effect of having arms (flexible recep-
tors) as well as legs, having significantly more arms than
legs or vice versa, having significant inertia, etc. In par-
ticular, we explored the validity range of specific approxi-
mations used to accelerate simulations, such as that upon
binding, leg lengths are sampled from their equilibrium
distributions [22, 33, 51]. We showed this approxima-
tion is valid for fast leg dynamics γ/k � qon, qoff in 1D,
or when binding to a great number of binding partners,
such as many arms, M � 1, yet its validity should be
reassessed in more complex geometries.

There are numerous ways to build upon our model to
address additional complexities within the same coarse-
graining framework. An important step would be to in-
corporate particle rotational degrees of freedom, and to
ask how rolling compares to hopping and sliding. Rolling
has been predicted to lead to a low effective friction in
systems with stiff legs, because it doesn’t require stretch-
ing legs at the contact point [33, 54]. While rolling has
been modeled in special situations, none of these account
for the full stochastic nature of the motion, nor do they
systematically derive a coarse-grained equation from mi-
croscopic parameters [41]. A systematic derivation of a
rolling diffusion coefficient would involve a few additional
mathematical subtleties beyond those that occur here,
such as including binding rates with spatial dependen-
cies to account for the variable separation between sur-
faces [79, 80], but we may nevertheless expect similar pa-
rameters (such as spring relaxation times and unbinding
rates) to discriminate between rolling and other modes
of motion.

Going further, other effects that could be studied in-
clude the details of binding kinetics, e.g. non-exponential
kinetics in DNA hybridization [81–83], which could also
impact the long time response [42]; mobility of the leg
roots, corresponding to fluidity of the bilayer [10, 84];
and out-of-equilibrium effects, such as white blood cells
streaming in blood flow [5, 80], active stepping of molec-
ular motors [49, 85, 86], or proteins that actively cleave
bonds on influenza A [17, 36]. Accounting for such ef-

fects would require adapting bond dynamics to include
increased bond rigidity or bond lifetime in flow [3, 87–91];
binding kinetics coupled to the number of bonds [47, 49];
or memory effects associated with dead zones created by
cleaved bonds [26, 36, 52]. Importantly, such improve-
ments require carefully adapting binding rates to preserve
detailed balance and physical constraints [32, 79].

Furthermore, detailed hydrodynamic effects may be
important to describe certain kinds of nanocaterpillar
dynamics. We have accounted for hydrodynamics via
the bare friction coefficients (Γ, γ), but these coefficients
themselves are coarse-grained, and in reality depend on
the distance of a nanocaterpillar to a surface [67] and
are coupled to the details of the polymer leg mesh. In-
deed, elasticity of the polymer mesh could modify the
particle’s mobility near the interface, as was predicted for
elastic membranes [92, 93]. A more detailed description
of the hydrodynamic flow near a nanocaterpillar could
help shed light on other systems where mobility through
fluid is mediated by slender legs, such as for the Vampire
amoeba [94].

Beyond its biophysical details, nanocaterpillar motion
resonates with other fields where mobility is determined
through adhesive contacts. For example, solid state
sliding friction is created by bonds breaking between
atoms. Close neighbor interactions between bonds, orig-
inating from mechanical interactions, can result in dra-
matic avalanches of bond breaking that change the slid-
ing motion [95, 96]. Similar correlations between nearby
bonds could be at play in some nanocaterpillars. For ex-
ample, in white blood cells, membrane tension mediates
bond-bond interactions [47, 48]. It is therefore interest-
ing to speculate whether avalanches of bond unbinding
could also occur for nanocaterpillar systems. Overall, the
mathematical framework of coarse-graining is well suited
to explore how microscopic features determine macro-
scopic modes of motion for nanocaterpillars and could
facilitate predictive capacity for materials design and bio-
physical systems.

AUTHOR CONTRIBUTIONS

S.M. derived the mathematical framework, and solved
it in all cases; acquired biological data for the Ashby
chart; designed and analyzed the numerical simulations;
found predictions for the diffusion of DNA-coated col-
loids. J.A.Z. synthesized DNA-coated colloids, con-
ducted the experiments, and analyzed the experimental
data to find diffusion coefficients. M.H.C. supervised the
project. S.M. and M.H.C. wrote the paper.

CONFLICTS OF INTEREST

There are no conflicts to declare.



16

ACKNOWLEDGEMENTS

The authors are grateful for fruitful discussions with
Fan Cui, Aleksandar Donev, Christopher E. Miles, and
David J. Pine. S.M. acknowledges funding from the
MolecularControl project, European Union’s Horizon
2020 research and innovation programme under the
Marie Sk lodowska-Curie grant award number 839225. All
authors were supported in part by the MRSEC Program
of the National Science Foundation under Award Num-
ber DMR-1420073. M.H.-C. was partially supported by
the US Department of Energy under Award No. DE-
SC0012296, and acknowledges support from the Alfred
P. Sloan Foundation.

APPENDIX

Appendix A: Projection of the dynamics in the
bound state

To project the stochastic dynamics Eqns. (1) and (2)
in the bound case we use a formalism (and notations)
similar to Ref. 32; see also [60, 97]. This projection con-
sists in using stiff springs to impose each constraint, and
considering the limit where the spring constants go to in-
finity. The resulting projected equations can be obtained
by directly pursuing the steps below (without redoing the
reasoning with stiff springs).

We start from stochastic equations in the (x, l) space
and seek to project them on the constraint manifold, de-
fined by the constraint q(x, l) = x + l − xr = 0. The
constraint matrix is therefore

C = (∇q)T =

(
1 1

)
. (28)

We obtain the projector

P = I − CT (CCT )−1C =
1

2




1 −1

−1 1


 . (29)

Initially the dynamics of X = (x, l)T may be written as

dX

dt
= −Γ̃−1∇U(X) +

√
2kBT Γ̃−1ηxl(t) (30)

where the potential U(X) = kl2/2, the noise ηxl =
(ηx, ηl)

T and the friction matrix is

Γ̃ =




Γ 0

0 γ


 . (31)

The projected friction and its Moore-Penrose pseudo-
inverse are

ΓP = P Γ̃P = Γ+γ
4




1 −1

−1 1


 , (32)

Γ†
P = 1

Γ+γ




1 −1

−1 1


 (33)

with a square root

σP =

√
Γ†
P =

1√
Γ + γ




1 0

−1 0


 . (34)

We obtain the projected dynamics

dX

dt
= − Γ†

P∇U(X) +
√

2kBTΓ†
P ηxl(t) (35)

where additional terms are needed if C is not constant
over the constraint manifold [60, 97]. One can check that
this exactly yields the bound dynamics Eq. (3), with η =
ηx (this decomposition of the noise is not unique but this
does not impact the dynamics in a weak sense).

Appendix B: Numerical simulations

Stochastic simulations of particle and leg dynamics are
conducted using a custom made Fortran 90 routine. Fast
random number generation is performed according to a
Mersenne twister algorithm. Normally distributed ran-
dom numbers are used for particle displacement while
uniformly distributed random numbers are used to de-
termine binding events. Equations are simulated in their
non-dimensional form. The step dt was chosen to be
much small than all other time scales of the system. Typ-

ically dt = 1
100 min

(
qonΓ
k , qonΓ

k , γ
Γ

)
. The system is sim-

ulated for NT = 108 time steps, and the simulation is
repeated over Nruns = 100 independent runs (with re-
newed random number seed).

To simulate binding and unbinding events, for each
leg, at each time step, we choose a random number R
uniformly distributed between 0 and 1 and then:

• if the leg is bound, and if R > qoffdt then the leg
becomes unbound. Otherwise it remains bound.

• if the leg is unbound, and if R > qondt then the leg
becomes bound. Otherwise it remains unbound.

This simulation routine approximates well the expo-
nential binding dynamics expected from the continuous
equations since dt � q−1

off , q
−1
on . To simulate all other

stochastic equations we use a standard Euler-Maruyama
discretization.
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TABLE A2. Summary of different models and their effective long time friction. The 1-leg case corresponds to a system where
the leg’s center of mass is fixed on the particle. Apart from the 1-leg case, we ignore differences between Γ and Γ̃ to simplify
notations.

Model Sketch Result

Main geometries

1-arm

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=
p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = Γ + γeff , γeff = k
(

1
qoff

+ γ
k

qon
qoff

)

1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=
p0
Γ0

+
p1
Γ1

, Γ0 = Γ̃, Γ1 = Γ̃ + γeff , Γ̃ = Γ + γ

N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

N∑

n=0

pn
Γn

, pn =
(
N
n

) qN−n
off

qnon
(qoff+qon)N

, Γn '
N�1

Γ + nγeff

Inertial dynamics

1-leg, inertia
m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

Γeff = p0Γ0 + p1Γ1 , Γ0 = Γ, Γ1 = Γ + γeff

Limit regimes

Small legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=
p0
Γ

+
p1
Γ

(
1− γeff

Γ

)

Fast legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q
1

Γeff
=
p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = γ + k
qoff

Fast binding

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=
p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = γ + k
(

γ
k

qon
qoff

)

Extended geometries

1-arm, 1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=
p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = Γ + 1
2
γeff

M-arms, N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q





1

Γeff
=

N∑

n=0

pn
Γn

,Γn = Γ + nγeff,n(M,N),

(γeff,n(M,N))−1 ' (γeff,M,n)−1 + (γeff,N,n)−1, γeff,P,n = γ + k
(

1
qoff

+ γ
k

(P−n)qon
qoff

)

The particle position x is saved every 104 time steps,
and the mean squared displacement < (x(t + t0) −
x(t0))2 >t0 (averaged over initial times t0) is computed
up to NT /100 = 106 time steps. The effective diffusion
coefficient for each run Deff,i is obtained from the analyt-

ical least square regression of < (x(t + t0) − x(t0))2 >t0

with time. The average value over the runs Deff =
1

Nruns

∑
i Deff,i is retained as the effective long time diffu-

sion coefficient. The standard deviation of Deff,i allows
to draw error bars in all simulation plots.
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1 N-legged, one dimensional, caterpillar model

Note that unless specifically mentioned, in the entire supplementary information l is used as a shortcut
notation for spring length relative to its rest length l − l0.

1.1 Agreement of simulation and analytical results regardless of the value of ε
for the 1-legged caterpillar

In Fig. S1 we present agreement between the effective diffusion evaluated using stochastic simulations and
evaluated with the analytical formula Eq. (12) of the main paper.

Figure S1: Simulation results for different values of the non-dimensionalizing parameter ε = L/Lx charac-
terizing the difference between the length scale of oscillations of legs L versus the length scale of particle
displacement Lx, for the case of a 1-legged caterpillar. Various values of the attachment rate qon are explored
(given in non-dimensional units k/Γε2). The other numerical parameters are γ/Γ = 0.1 and qoff = 0.8k/Γε2.
The lines correspond to the analytical formula Eq. (12) of the main paper.

1.2 N legs facing a uniformly sticky surface

1.2.1 Method on an example: 2 legs facing a sticky surface

To investigate dynamics of caterpillars with multiple legs, we start by illustrating the framework on a 2 leg
system.

Projection of the dynamics in the bound state The first step is to write the projected dynamics in
the bound state. If there are 2 legs, when only 1 of them is bound, then the dynamics of the unbound leg are
completely independent of the bound one and the projected bound equations are the same as those reported
in the main paper. When 2 legs are bound however we must project again the dynamics. We therefore have
2 constraints q1(x, l1, l2) = x + l1 + xr,1 = 0 and q2(x, l1, l2) = x + l2 + xr,2 = 0 where xr are reference
positions when either of the legs first form their bond. The constraint matrix is therefore

C = (∇q)T =


1 1 0

1 0 1


 . (S1.1)

We then get the projector

P = I − CT (CCT )−1C =
1

3




1 −1 −1

−1 1 1

−1 1 1


 (S1.2)

2



The friction matrix is in the unbound configuration

Γ̃ =




Γ 0 0

0 γ 0

0 0 γ


 (S1.3)

giving a projected friction and its Moore-Penrose pseudo-inverse as

ΓP = P Γ̃P = Γ+2γ
3 P, (S1.4)

Γ†P = 1
Γ+2γ 3P (S1.5)

with a square root

σP =

√
Γ†P =

1√
Γ + 2γ




1 0 0

−1 0 0

−1 0 0


 . (S1.6)

We obtain the projected dynamics

dx

dt
= −dl1

dt
= −dl2

dt
=
k(l1 + l2)

Γ + 2γ
+

√
2kBT

Γ + 2γ
η(t) (S1.7)

where η(t) is a white Gaussian noise. The friction in the bound state is therefore naturally the sum of the
frictions Γ + 2γ.

Generator for the dynamics For 2 legs we can write the full generator (in non-dimensional scales)

L(2) = 1
ε2L

(2)
0 + 1

εL
(2)
1 + L(2)

2 . The generator is now an operator acting on a space of 4 states ( #1 has no
bond, #2− 3 have 1 bond, where the leg 1 is bound in state #2 and reciprocally, and #4 has 2 bonds). The
lowest order generator is

L(2)
0 = Q+U0 =




−2qon qon qon 0

qoff −qoff − qon 0 qon

qoff 0 −qoff − qon qon

0 qoff qoff 2qoff




+diag




Γ
γ (Dl1 +Dl2)

Γ
Γ+γDl1 + Γ

γDl2

Γ
γDl1 + Γ

Γ+γDl2

Γ
Γ+2γ

(
−(l1 + l2)(∂l1 + ∂l2) + (∂l1 + ∂l2)2

)




(S1.8)
where Dli = −li∂li + ∂lili is an operator for the unbound tether i. The next orders are

L(2)
1 = diag




0

Γ
Γ+γ (l1∂x − 2∂xl1)

Γ
Γ+γ (l2∂x − 2∂xl2)

Γ
Γ+2γ ((l1 + l2)∂x − 2∂xl1 − 2∂xl2)




and L(2)
2 = diag




∂xx

Γ
Γ+γ ∂xx

Γ
Γ+γ ∂xx

Γ
Γ+2γ ∂xx



. (S1.9)

The equilibrium distribution is simply

π ∝




(qoff/qon)2

qoff/qon

qoff/qon

1



e−l

2
1/2e−l

2
2/2. (S1.10)

3



Long time solution We now seek a solution as an expansion in ε, f = f0 + εf1 + .... In a very similar way

as systematically observed in similar derivations we find f0 = a(x, t)
(

1 1 1 1
)T

at lowest order. The

associated equilibrium distribution is π0 = π. At the following order we need to solve L(2)
0 f1 = −L(2)

1 f0 and
we will seek a natural solution (that strongly reflects the symmetry of the problem) as

f1 =




u0l1 + u0l2

b1l1 + u1l2

u1l1 + b1l2

b2l1 + b2l2



∂xa (S1.11)

where un and bn are constants that solve a linear system of equations (with non zero determinant), and un
and bn refer respectively to unbound and bound contributions with n bonds in the system. We do not report
the equation system here but will come to it later on. At the next order, to find a solution for f2 we require

the Fredholm alternative, 〈∂tf0 − L(2)
2 f0 − L(2)

1 f1, π0〉 = 0, which gives
(
q2
off

q2
on

+
2qoff

qon
+ 1

)
∂ta =

q2
off

q2
on

∂xxa+ 2
qoff

qon

Γ

Γ + γ
(1− b1) ∂xxa+ (1− 2b2) ∂xxa (S1.12)

which can be rewritten as a weighted sum (in dimensional scales)

∂ta = kBT

(
p0

Γ
+

p1

Γ+γ
(1−b1)

+
p2

Γ+2γ
(1−2b2)

)
∂xxa (S1.13)

where pk is the probability to have k bonds (p0 = q2
off/Z, p1 = 2qoffqon/Z and p2 = q2

on/Z with p0 +p1 +p2 =
1). The above expression clearly shows that the effective inverse friction is a weighted sum of inverse friction
coefficients

1

Γ2 legs
eff

=
2∑

n=0

pn
Γn

=
2∑

n=0

pn
Γ+nγ

(1−nbn)

. (S1.14)

We will show this expression for all N below. The linear system of equations solved by the uk and bk can
now be given

−2qonu0 + qonb1 + qonu1 −
Γ

γ
u0 = 0, (unbound contributions in the 0 bond state)

qoffu0 − qoffu1 − qonu1 + qonb2 −
Γ

γ
u1 = 0, (unbound contributions in a 1 bond state)

qoffu0 − qoffb1 − qonb1 + qonb2 −
Γ

Γ + γ
b1 = − Γ

Γ + γ
, (bound contributions in a 1 bond state)

qoffb1 + qoffu1 − 2qoffb2 − 2
Γ

Γ + 2γ
b2 = − Γ

Γ + 2γ
, (bound contributions in the 2 bonds state).

(S1.15)

Solving the above linear system yields lengthy expressions for bk and uk. One can show however that the
effective contributions for the bound states can be expanded as

Γ1 = Γ + γeff

(
1−O(

γeff

Γ
)
)

Γ2 = Γ + 2γeff

(
1 +O(

γeff

Γ
)
)

(S1.16)

such that we find already some a linear scaling as Γn ∼ Γ + nγeff .

1.2.2 N legs

Projection of the dynamics with N legs. The projection formalism naturally extends to N legs. For
n bound legs we find that the friction is simply Γ + nγ, such that the projected dynamics are for the first n
bound legs

dx

dt
= −dl1

dt
= ... = −dln

dt
=
k
∑n
i=1(li)

Γ + nγ
+

√
2
kBT

Γ + nγ
η(t). (S1.17)
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System of equations for N legs The generator is now an operator acting on 2N states, and we order
these states according to their number of bonds (0 bonds, all 1 bond states, all 2 bonds states, ...). For N

legs we can write the full generator (in non-dimensional scales) L(N) = 1
ε2L

(N)
0 + 1

εL
(N)
1 + L(N)

2 , where all

L(N)
i terms are very similar to the ones introduced for N = 2 and can be naturally generalized. Similarly

the equilibrium distribution is naturally extended as

π = e−
∑N
i=1 l

2
i /2
(

(qoff/qon)N (qoff/qon)N−1 (qoff/qon)N−1 .... (qoff/qon)N−2 ... 1
)T

. (S1.18)

Long time solution with N legs We now seek a solution as an expansion in ε, f = f0 + εf1 + .... In

a very similar way as systematically observed in similar derivations we find f0 = a(x, t)
(

1 ... 1
)T

at

lowest order. The associated equilibrium distribution is π0 = π. At the following order we need to solve

L(N)
0 f1 = −L(N)

1 f0 and we will seek a natural solution (that strongly reflects the symmetry of the problem)
as

f1 =




u0l1 + u0l2 + ...+ u0lN

b1l1 + u1l2 + ...+ u1lN

u1l1 + b1l2 + ...+ u1lN

...

b2l1 + b2l2 + u2l3...+ u2lN

...

bN l1 + bN l2 + ...+ bN lN




∂xa (S1.19)

where un and bn refer respectively to unbound and bound contributions with n bonds in the system. We
now seek the general system of equations satisfied by un and bn. For a number of bonds n, consider that
a given focus tether is unbound, say i. This will therefore allow us to obtain an equation on the unbound
contributions of that tether (that in li) so primarily on un. The tether is relaxing yielding a contribution
−Γ
γ un. There are n possible bonds to undo leading to a contribution (−nqoffun). In any n − 1 bond

configurations starting from our initial configuration, the focus tether will still be unbound (un−1), such that
we get an (+nqoffun−1) contribution. There are N − n bonds to form (−(N − n)qonun). In forming bonds,
only 1 choice yields to bind the focus tether (qonbn+1) while the other forming bonds will not be the focus

tether ((N − n − 1)qonun+1). The right hand side terms (from L(N)
1 f0) corresponding to unbound tethers

are 0. This yields the first line of the system of equations Eq. (S1.20) below. If one considers a bound focus
tether, similarly one can derive contributions due to binding and unbinding. The bound relaxation terms

yield a contribution (− nΓ
Γ+nγ bn). Additionally, the right hand side terms (coming from L(N)

1 f0) corresponding

to the unbound tether is − Γ
Γ+nγ . We obtain





nqoffun−1 − nqoffun − (N − n)qonun + qonbn+1 + (N − n− 1)qonun+1 −
Γ

γ
un = 0

qoffun−1 + (n− 1)qoffbn−1 − nqoffbn − (N − n)qonbn + (N − n)qonbn+1 −
nΓ

Γ + nγ
bn = − Γ

Γ + nγ
.

(S1.20)
The system Eq. (S1.20) applies for all n = 0..N , taking as boundary equations uN = 0 and b0 = 0.
Unfortunately the system does not simplify further but its determinant is non zero, showing that a non
trivial solution exists. We will study it further later but for now conclude on the long time solution. At the

next order, to find a solution for f2 we require the Fredholm alternative, 〈∂tf0 − L(N)
2 f0 − L(N)

1 f1, π0〉 = 0,
which yields after some algebraic manipulations (back in dimensional scales)

∂ta = kBT

(
p0

Γ
+

p1

Γ+γ
(1−b1)

+
p2

Γ+2γ
(1−2b2)

+ ...+
pN

Γ+Nγ
(1−NbN )

)
∂xxa (S1.21)
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where pn =
(Nn)xn(1−x)N−n

Z with x = qon/qoff is the probability to have n bonds. Writing in full generality

Γn =
Γ + nγ

(1− nbn)
(S1.22)

we indeed recover Eq. (15) of the main manuscript. We also see that the coefficients Γn indeed correspond to
friction contributions in a state with n bonds as only n and bn, that corresponds to the bound contributions,
intervene.

Resolution when the system is dominated by the average number of bonds We can search for
a closed (simpler) system for Eq. (S1.20) where the dominant terms will originate from the average number

of bonds Nb =
∑N
n=0 npn = N qon

qon+qoff
. We assume that, around this average number, terms do not change

much (the derivatives are close to 0), meaning we can approximate uNb ' uNb−1 ' uNb+1 ≡ ū, and similarly
for bNb = b̄ leading to {

−qonū+ qonb̄− Γ
γ ū = 0

qoff ū− qoff b̄− NbΓ
Γ+Nbγ

b̄ = − Γ
Γ+Nbγ

(S1.23)

Solving the system for b̄ and ū yields then the value of the friction coefficient for the average number of
bonds (back in dimensional scales)

ΓNb =
Γ +Nbγ

1−Nbb̄
= Γ +Nb

(
γ +

k

qoff
+ γ

qon

qoff

)
(S1.24)

Eq. (S1.24) is reported as Eq. (16) in the main text. It shows excellent agreement with the exact (numerical)
solution to the full system of Eqs. S1.20 at large total number of legs N (see Fig. S2).
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Figure S2: Value of friction coefficient for the average number of bonds as evaluated using Eq. (S1.24) or
equivalently Eq. (15) of the main paper (“Asymptotic model”) and fully solving the system of equations
Eq. (S1.20) and presenting the value Γn for the index n closest to Nb (“Numerical solve”). Here the values
of other parameters (in dimensional scales) are all set to 1 = qonΓ

k = qoffΓ
k = γ

Γ .

Empirical solution for an arbitrary number of bonds An interesting question is then to investigate
Γn, the effective friction contributing to the state with n bonds, in the large N (total number of legs)
limit. This requires solving the full system Eq. (S1.20). This system is not easily amenable to analytical
calculations, and instead we use it as a benchmark to explore a phenomenological law for Γn.

First, it is natural to assume that the correction Γn−Γ typically contains a term nγ coming from added
friction of the n bonds (as is noted already in the projected dynamics). Then, recall forces are also exerting

6



100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n

γ
Γ = 10

γ
Γ = 0.1

qonΓ
k

= 10qoffΓ
k

= 10

qoffΓ
k

= 0.1qonΓ
k

= 0.1

qonΓ
k

= qoffΓ
k

= 0.1

qonΓ
k

= qoffΓ
k

= 10

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n Numerical Solve
Empirical model
Assymptotic n
Assymptotic N b

γ
Γ = qonΓ

k
= qoffΓ

k
= 1.0

100 101 102

Number of bound legs n

100

102

104

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

n Numerical Solve
Empirical model
Assymptotic n
Assymptotic N b

Figure S3: Value of friction coefficients Γn for all possible number of bonds (for a maximum of N = 500) as
evaluated using Eq. (S1.27) (“Empirical model”) and fully solving for the system of equations Eq. (S1.20) and
presenting the values Γn (“Numerical Solve”). Index Nb is highlighted in green in each plot, and calculated
from Eq. (16) . The “Asymptotic Γn” result corresponds to Eq. (S1.28). Here the values of other parameters
(in dimensional scales) are all set to 1 = qonΓ

k = qoffΓ
k = γ

Γ unless another indication is given.

friction. Typically n bonds are exerting friction due to recall forces. Yet for this final contribution to Γn,
the situation is not the same for n bonds as for Nb bonds. Around n = Nb, the probabilities to be in a state
with one more bond or one bond less are more or less the same, p(Nb − 1) ' p(Nb) ' p(Nb + 1). For n
bonds, we have in general (for example investigating the probability to undo a bond)

p(n)

p(n− 1)
=

(
N
n

)
pn0 (1− p0)N−n(

N
n−1

)
pn−1

0 (1− p0)N−n+1

=

(
N
n

)
pn0 (1− p0)N−np0(

N
n

)
n

N−n+1p
n
0 (1− p0)N−n(1− p0)

=
p0

(1− p0)

N − n+ 1

n
=

Nb
N −Nb

N − n+ 1

n

(S1.25)

We expect that the typical time over which the spring resistance acts τeff has to be modified by the propensity
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to unbind (coming from the state with n bonds) as τeff → τeff
p(n−1)
p(n) . We obtain, wrapping up all contributions

Γn = Γ + n

(
γ + kτeff

p(n− 1)

p(n)

)
= Γ + n

(
γ + k

p(n− 1)

p(n)

[
1

qoff
+
γ

k

qon

qoff

])
. (S1.26)

which explicitly writes as

Γn = Γ + n

(
γ + k

N −Nb
N − (n− 1)

n

Nb

[
1

qoff
+
γ

k

qon

qoff

])
(S1.27)

Eq. (S1.27) is compared to the full solution of the linear system in Fig. S3. We find excellent agreement over
a broad range of parameters. Notice that also around n ' Nb and for Nb � N we find the limit behavior

Γn = Γ + n

(
γ +

[
k

qoff
+ γ

qon

qoff

])
(S1.28)

which allows us to recover, as anticipated, the result for n = Nb of Eq. (16) .

2 Comparison to experimental data for diffusion of DNA-coated
colloids

2.1 Experimental data for the diffusion of DNA-coated colloids: I. Additional
data

2.1.1 Preparation of material

DNA coated polystyrene colloids We synthesize DNA-coated polystyrene (PS) spheres using the
swelling/deswelling method reported in Ref. [1]. Polystyrene-b-poly(ethylene oxide) copolymer PS(3800
g/mol)-b-PEO(6500 g/mol) is purchased from Polymer Source Inc, and is first functionalized with azide at the
end of the PEO chain [2]. PS-b-PEO-N3 are then attached to the PS particles using the swelling/deswelling
method. In the synthesis, 15 µL of 1µm particles (10 w/v, purchased from Thermo Scientific), 125 µL
Deionized (DI) water, 160 µL tetrahydrofuran (THF) and 100 µL of PS-b-PEO-N3 are mixed at room tem-
perature. The mixture is placed on a horizontal shaker (1000 rpm) for 1.5 hours to fully swell the PS particles
and absorb the PS block of the PS-b-PEO-N3 molecules. Then THF is slowly removed from the solution
via evaporation by adding DI water, leaving the hydrophobic PS blocks physically inserted into the particles
and the hydrophilic PEO chains extending out into the solution. The particles are washed with DI water
three times to remove excess polymers.

Single stranded DNA (ssDNA, 20 bases, purchased from Integrated DNA Technologies) with 5’ diben-
zocyclooctyne (DBCO) end modification, is clicked to the N3 (at the end of PS-b-PEO-N3) through strain
promoted alkyne-azide cycloaddition [1]. PS particles previously coated with the PS-b-PEO-N3 polymer
brush are dispersed in 200 µL of 500 mM PBS buffer, at pH 7.4. Then 10 µL of DBCO-DNA (0.1 mM)
are added to the suspension. The mixture is left to react for 48 hours on a horizontal shaker (1000 rpm).
The final product is washed in DI water three times and stored in 140 mM PBS buffer. The DNA coverage
density is measured using flow cytometry and we obtain σ = 1/(3.27 nm2). The DNA sequence used on the
colloids is 5’-/DBCO/-T14-ACCGCA-3’.

DNA coated glass substrate DNA coated substrates are prepared using the same swelling/deswelling
method. First, an ultra thin PS layer is spin-coated to a cleaned 22 mm x 22 mm glass coverslip (purchased
from Bioscience Tools). The substrate is then swelled in the same PS-b-PEO-N3 solution in THF for 4
hours. Then THF is slowly removed from the solution via evaporation. DNA clicking is performed in a
home made PDMS reaction chamber for 48 hours on a shaking stage, then washed 10 times in DI water to
remove extra DNA. The entire sample is sealed in the 140 mM PBS buffer (ph 7.4) with 0.3% w/v pluronic
F127 surfactants, using UV glue to avoid any external flow or evaporation of the buffer. The DNA sequence
used on the glass substrate is complementary to that on the particles, 5’-/DBCO/-T14-TGCGGT-3’.
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2.1.2 Tracking DNA coated colloids

Particle positions measurements To study the diffusion of DNA coated colloids, we track the motion
of about 500 particles as they bind and diffuse on the DNA coated substrate – see Fig. S4-A. The sample
is mounted on a homemade lab microscope (Nikon Eclipse Ti 60X, 72nm pixel size, depth of focus 560 nm)
thermal stage with a temperature controller. Tracer particles fixed on the substrate are used to substract
camera drift during the tracking. Displacement measurements are performed by tracking particles over the
temperature range 28-62 ◦C – see Fig. S4-B. At each temperature, particles are tracked over a time range
of 20 min at a frame rate of 5 images per second. For the highest temperature reported here, T = 59.1 ◦C,
particles diffuse faster and we only track them over 5 min, with 10 images per second. Images are then
analyzed using the TrackPy software to obtain individual particle positions with time. Particles that do not
move at all even at high temperatures are removed from the analysis. These particles are likely in a low
density area where steric repulsion is not sufficient to screen van der Waals attraction, and therefore are
“crashed” on the surface.

A

A
C
C
G
C
A

T
G
G
C
G
T

PEO-DNA

Optical
Microscope

Polystyrene 

Polystyrene 

Glass

~ 3 nm 500 nm

B

Figure S4: Experimental setup to measure diffusion of DNA-coated colloids on DNA-coated
surfaces. (A) Schematic of a DNA-coated colloid attaching to a DNA-coated substrate, with the specific
DNA sequence used in this study. Diffusion of the colloids is tracked from on-top. (B) Example of a colloid
trajectory over an 18 min time frame (in blue) overlaid on the bright-field microscope image corresponding
to the colloid’s initial position. Here 1 px corresponds to 0.108 µm.

Mean square displacement analysis We fit the ensemble mean-squared displacement to a power law
as < x2(t) >= 4Dtα, where x is the position of each particle on the surface plane, using a linear regression
in log space to get the diffusion coefficient D and the power on time α. Typically, α decreases from ∼ 1
at high temperatures to values < 1 at lower temperatures. Around the melting transition however, there
exists a window of a few degrees where the motion is diffusive and we obtained 1.02 > α > 0.94. On
this temperature window we then fix α = 1 and the effective diffusivity Deff is obtained by fitting the
ensemble-averaged mean-square displacement to the power law 〈x2(t)〉 = 4Defft.

Melting curve To compare different measurements with one another we define a kinetic melting temper-
ature. This temperature Tm corresponds to the temperature for which the measured diffusion coefficient is
half that of the high temperature diffusion coefficient (the latter corresponding to the hydrodynamic diffusion
coefficient).

Reproducibility and error bars The entire experimental process (synthesis and mean square displace-
ment measurements) are reproduced 3 times and the results are reported with different symbols in Fig. 7A
of the main manuscript. Note that the synthesis is performed with slight variations of the coating process
(shaking time), yet very similar behavior is obtained – for example the melting temperatures for each of
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the samples are within 3◦C of each other. Such disparity in melting temperature can occur due to density
differences originating while performing the same synthesis and hence we do not report further details here.

As the average for Deff is calculated over a great number of particles, the typical error on Deff , for example
due to the fitting procedure, is very small – typically smaller than the size of the points used to represent
data and also much smaller than intrinsic disparities from sample to sample due to density fluctuations on
the surface coverage during sample preparation. Therefore we do not report any vertical error bars. The
exact temperature measured can slightly fluctuate, due to potential drift of the temperature controller, thus
it is reasonable to assume a 0.2◦C error bar on each experimental data point.

2.2 Experimental data for the diffusion of DNA-coated colloids: II. Existing
data

Diffusion of DNA-coated colloids from existing data was obtained from 2 published references [3, 4].

High coating density diffusion coefficients from Ref. [4] Diffusion coefficients from Ref. [4] were
obtained by fitting a linear law through extracted mean square displacement data using WebPlotDigitizer [5]
– when the diffusion exponent α is greater than ∼ 0.8. Mean square displacement data in Ref. [4] represents
the projected mean square displacement 〈r2〉 covered on a half-sphere, when the displacement on the half-
sphere is observed from on-top. The actual surface covered 〈x2〉 is therefore larger than that measured on
the projected area, and we can write 〈x2〉 = A〈r2〉 where A is an area correction number. If the particle
covers the entire area typically A ' 2 since 2πR2 is the actual area of the half sphere of radius R, and πR2

is the projected area. This typically accounts for the fact that the particles does not spend the same amount
of time on the sides of the half-sphere and on the top, and that on the sides displacements can be fully
orthogonal to the observation projection plane. Additionally, since motion is constrained to the half-sphere,
in practice the random walk is constrained and folded back onto the sphere. If it were unconstrained on the
sphere we would typically have 4πR2 of area covered projected on πR2 so we take A = 4 as an upper bound
on A. A = 2 is our lower bound. These bounds allow us to define error bars for the diffusion data of Ref. [4].
Again, considering potential density fluctuations on either surfaces and other experimental uncertainties due
to calibration of the temperature controller, it is reasonable to assume a 0.2◦C error bar on each experimental
data point.

The detailed parameters of the DNA-coated colloids used in Ref. [4] are provided in that reference and we
use their specific values to perform analytical predictions for Deff , see details below. The melting temperature
in Ref. [4] is defined as the temperature for which the fraction of single particles is 50%, since the particles
can self-assemble in arrays. This is a typical thermodynamic quantity hence we use a the thermodynamic
definition of melting [6]

p
Ref. [4]
unbound = 1− 1

Z

∫ hc

0

e−φ(h)/kBT dh (S2.1)

where φ(h) is a particle-particle interaction potential, hc ' 20 nm is a typical interaction range and Z a
normalization constant. We find without any fitting that T theo

m = 25.3◦C which is not too far from the
experimental melting temperature Tm = 28.9◦C. The difference is likely due to the slightly different method
used to quantify Tm. We align experimental data relative to Tm and theoretical data relative to T theo

m .

Low coating density diffusion coefficients from Ref. [3] Ref. [3] provides the diffusion coefficients for
their DNA-coated particles above the melting temperature Tm = 44.7◦C as Deff(47◦ C) = 0.38 µm2/s, and
at the melting temperature Deff(44.7◦ C) = 1.4× 10−3 µm2/s. Additionally, for the data provided 0.27◦ C
below Tm, the exponent for diffusion is α ∼ 0.8 and we can estimate the diffusion coefficient from a linear

fit to the data. We obtain Deff(44.5◦ C) = 30 µm2

30000s×4 = 0.25× 10−3 µm2/s.
The detailed parameters of the DNA-coated colloids used in Ref. [3] are provided in that reference and

we use their respective values to perform analytical predictions for Deff , see details below. The melting
temperature in Ref. [3] is defined as the temperature for which the fraction of moving particles is 50%, where
“ Moving is defined as a displacement larger than 50 nm (1 pixel) between frames (frame rate = 1 Hz)”. We
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can relate to this moving quantity by defining the unbound probability as

p
Ref. [3]
unbound = 1− erf

(
∆xmax√

4Deff∆tmax

)
(S2.2)

measuring the probability that a step is larger than ∆xmax = 50 nm during a time interval ∆tmax = 1 s
where the diffusion coefficient of the particle is Deff . Here we use Deff as predicted by hopping motion only
since only hopping is occurring in this sample due to geometrical constraints. We find T theo

m = 44.2◦C close
to the experimental measurement of Tm = 44.7◦C. We align experimental data relative to Tm and theoretical
data relative to T theo

m . In line with previous analysis we also add 0.2◦C error bar on each experimental data
point.

2.3 Modeling tools for DNA-coated colloids

2.3.1 Number of legs and average number of bonds

To evaluate Deff from Eq. (15) , we must evaluate the parameters of the 1D nanocaterpillar model. As
mentioned in the main manuscript, some parameters, such as N and Nb (or equivalently N and the ratio
qon/qoff) require careful modeling of the detailed leg-arm interactions [6] to be estimated.

We thus calculate the detailed DNA-DNA brush interactions, accounting for leg density, leg length and
DNA sequence, by evaluating the interaction energy φ(h) of the DNA-coated colloid with another coated
surface at separation distance h. Following Ref. [6], φ(h) includes repulsive steric interactions [7] and
attractive binding interactions, with entropic terms due to loss of degrees of freedom upon binding and
competition for binding partners [8].

A

B

C

very high coating density

high coating density

low coating density

Figure S5: Number of legs N and average number of bonds Nb involved in the binding process
predicted from theory. N and Nb are evaluated from detailed microscopic interactions for each system
corresponding to detailed design parameters of DNA-coated colloids used (A) in this work (B) in Ref. [4]
and (C) in Ref. [3].
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All parameters are precisely known in the experimental system, but one: the coating density. We can
estimate it by looking at the thermodynamic unbound probability obtained from the Boltzmann distribution

as pu ∼
∫ hc

0
e−βφ(h)dh, and comparing it to the similar quantity calculated experimentally. The experimental

data shows that the unbound probability transitions around Tm = 55−58◦ C which corresponds to theoretical
curves obtained with a surface density ranging from 1 DNA per (9 nm)2 to (12 nm)2. We therefore use 1
DNA per (10.5 nm)2 as a center value and the extremal values to calculate a fidelity interval for Deff (gray
area in Fig. 6A). These obtained values are within the range of expected values [6].

The average number of bonds Nb (gold in Fig. S5) and the number of legs within reach N (dashed black)
with respect to temperature are then readily evaluated from the model leading to φ(h). The number of
bonds at the melting temperature is only Nb(Tm) ' 10 while the number of available legs can be quite high
N(Tm) ' 100. The number of bonds Nb increases strongly with decreasing temperature, from 0 to 40 over
the 4◦C window, thus potentially accounting for most of the decrease in diffusion.

2.3.2 3D geometry

In general the particle can explore positions not just in one dimension but in 3D. Here we discuss how to
take into account this full geometry.

Second lateral dimension The second lateral dimension is – to some extent – a trivial extension of the
1-lateral dimension model derived in the main manuscript. We consider the constitutive equations for the leg
and the particle in 2 lateral dimensions (x, y), simplifying here to `0 = 0, namely considering that the rest
state of the tether lies right above the surface and that deformations are still quadratic in the leg extension.
We have

dl
dt = − kγ |l| l|l| +

√
2kBTγ ηl

dx
dt = +

√
2kBTγ ηx.

The leg extension l is readily projected on both coordinates:

|l| l|l| = l = lxux + lyuy

and similarly for the noise operators. We obtain

dli
dt = − kγ li +

√
2kBTγ ηl,i

dxi
dt = +

√
2kBTγ ηx,i.

where i = (x, y) refers to both lateral dimensions. The equations are fully uncoupled and hence it is not
necessary to conduct further calculations to conclude that the effective long time motion should write as

dx

dt
= +

√
2Deffηx.

where Deff has the same expression as in the main manuscript.

Vertical dimension The particle may also venture far from the surface, where binding is not possible.
To account for this 3D geometry, we use an extension of our main model.

One option to account for such a 2D dependence is to add a vertical degree of freedom say z for the
particle, together with spatially dependent rates qon(z), qoff(z). This is not a trivial modification, especially
as there are different ways to set the spatial dependence z of qon(z), qoff(z) (see for example the variability
between Refs. [9, 10, 11]).

Instead we rely on a simplified geometrical approach, that has been shown to accurately reproduce a 2D
geometry in another context [12], where we describe the system with 2 × 1D lines. For a 1-legged particle,
we consider that the particle can switch between two regions where its dynamics are constrained to 1D:
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surface and bulk regions. The particle enters the surface region with rate Qon, and then can bind to the
surface with rate qon. If the particle is unbound in the surface region, it may lift off from the surface region
to the bulk region with rate Qoff . Qon

Qoff
corresponds to the ratio of positions where the receptors are within

and beyond reach. In DNA-coated colloid explorations, where particles are considered on top of a sticky
surface, the ratio can be small or large depending on the density mismatch between the particle material
and the surrounding fluid, that is otherwise described by the particle’s gravitational height [3]. For other
systems, such as white blood cells that are confined within blood vessels, particles are always close to the
wall [13] and hence the ratio is quite large. Approach and lift-off from the surface are slow processes that
scale like the diffusive dynamics of the particle and thus we may assume Qiτ ∼ Oε(1).

Performing similar coarse-graining steps (see following paragraph), we obtain an effective friction

1

Γ2×1D
eff

=
p2×1D

0

Γ0
+
p2×1D

1

Γ1
(S2.3)

where the probability to be in either states takes into account the added degree of freedom, p2×1D
1 = Qonqon/Z

and p2×1D
0 = qoff(Qon +Qoff)/Z with Z a normalization constant such that p2×1D

0 + p2×1D
1 = 1. The added

degree of freedom does not change the result of Eq. (12) , simply the mathematical interpretation of the
probability factors. Note that this framework has been verified against numerical simulations.

The values of Qon and Qoff can be evaluated from the detailed interaction potential φ(h) of a DNA-coated
colloid and the surface. In fact, the probability to be near the surface, in the absence of binding, is measured
by

Qon

Qon +Qoff
=

∫ hp

0

e−β(φ(h)−φbind(h))dh/Z (S2.4)

where φbind(h) measures the contributions to the interaction potential due to binding, hp ' 20 nm measures
the typical width of attractive interactions (region of space where binding could happen) and Z is a nor-
malizing factor. For our DNA-coated colloids we find Qon

Qon+Qoff
' 0.0015 and that the ratio does not depend

much on temperature. It also does not depend significantly on the exact value of hp for hp = 2− 40 nm.
For an N -legged caterpillar, the result generalizes to a change in the probability factors pn in Eq. (15)

for Deff . We have p2×1D
0 = qNoff(Qon + Qoff)/Z and p2×1D

n =
(
N
n

)
qN−noff qnonQon/Z such that Z = Qon(qon +

qoff)N +Qoffq
N
off .

2.3.3 2×1D, 1 legged nanocaterpillar model

In this section we derive the effective 1-legged long term caterpillar dynamics in an effective “2D” geometry
by using the 2×1D mapping. The steps are carefully detailed so as to serve as an additional pedagogical
explanation of the coarse-graining procedure introduced in the main text.

Constitutive equations of the 2×1D, 1-legged caterpillar model Let p(x, l, t) = (pV , pu, pb)
T be

the probability distribution function of finding the system at time t in state x, l far from the surface (V), or
close to the surface with a bound (b) or an unbound (u) leg. It obeys the Schmoluchowski equation

∂tp = L?p with L? = Q? + U? (S2.5)

where Q? is the matrix of rates to going from one state to another

Q? =




−Qon Qoff 0

Qon −Qoff − qon qoff

0 qon −qoff


 (S2.6)

and U? contains the dynamics in each state

U? = diag




∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

(∂l − ∂x)
(

k
Γ+γ (l − l0) + kBT

Γ+γ (∂l − ∂x)
)


 . (S2.7)
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Consistently, the equilibrium distribution π = e−βk(l−l0)2/2

Z

(
Qoff

Qon , 1, qon

qoff

)T
is indeed a stationary solution

of Eq. (S2.5). Note that here Qon and Qoff represent respectively the rates at which the particle approaches
and leaves the vicinity of the surface, namely the region of space where binding is possible.

Non-dimensionalization Using the non-dimensional notation introduced in the main text allows to sep-
arate the Schmoluchowski operator L? in fast and slow operators. In the following, it will be somewhat
easier to conduct the reasoning not on L? but on its adjoint L, the generator of the system, defined such
that for appropriate functions f , we have 〈f,L?p〉 = 〈Lf, p〉, where 〈f, g〉 =

∫∫
(fV gV + fugu + fbgb)dldx is

the inner product. We therefore seek a solution f of the dynamics

∂tf = Lf =

(
1

ε2
L0 +

1

ε
L1 + L2

)
(S2.8)

where

L0 =




Γ
γ (−l∂l + ∂ll) 0 0

0 −qon + Γ
γ (−l∂l + ∂ll) qon

0 qoff −qoff + Γ
Γ+γ (−l∂l + ∂ll)


 , (S2.9)

L1 = diag

(
0, 0,

Γ

Γ + γ
(l∂x − 2∂lx)

)
(S2.10)

and

L2 =




−Qon Qon 0

Qoff −Qoff 0

0 0 0


+ diag

(
1, 1,

Γ

Γ + γ

)
∂xx. (S2.11)

Additionally, f has to satisfy boundary conditions of no flux at infinity

∂lf(x, l, t)|l=±∞ = 0 (S2.12)

which correspond to the usual no flux in probability space (where the flux in probability space satisfies
(lp+ ∂lp) |l=±∞ = 0). This condition is physical as it imposes conservation of probability. Note that we
expect these boundary conditions to be satisfied only at lowest order in ε.

Homogenization We seek a solution to Eq. (S2.8) as an expansion in the small parameter ε, as f =
f0 + εf1 + εf2 + .... At lowest order we need to satisfy L0f0 = 0 which yields the general solution

f0 =




aV (x, t)

aS(x, t)

aS(x, t)


+

∫ l

0

ey
2/2dy




bV (x, t)

bS(x, t)

bS(x, t)


 (S2.13)

where aS , aV , bS and bV are all integration “constants” and S and V denote surface and volume terms. With
the boundary conditions on f we get bS(x, t) = bV (x, t) = 0. Note that such boundary conditions also allow
the cross product 〈f0, π〉 to remain finite which will be expected later to use the Fredholm alternative.

The associated equilibrium distribution at lowest order π0 spans a two dimensional space described by
(π0,V (x, t), π0,S(x, t)) such that

π0 =
1

Z




π0,V (x, t)

π0,S(x, t))

π0,S(x, t)) qon

qoff


 e−l

2/2. (S2.14)

We therefore expect that our long time dynamics will consist in a 2× 2 matrix describing the joint evolution
of surface variables (aS(x, t)) and volume variables (aV (x, t)).
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At the next order we need to satisfy L0f1 = −L1f0. f1 is the sum of a particular integral and a
complementary function (i.e. a function in the nullspace of L0). The complementary function can be taken
to be 0 otherwise f1 would contain terms that are redundant with f0. One can check that the particular
integral to this equation is simply

f1 =




0

γqon

Γ + γqon




l∂xa

Γ(1 + qoff) + γ(qon + qoff)
. (S2.15)

At the following order we need to find a solution to L0f2 = ∂tf0 − L2f0 − L1f1. This equation has a
solution if the right hand side terms of the equal sign satisfy the Fredholm alternative [14], namely

〈∂tf0 − L2f0 − L1f1, π0〉 = 0. (S2.16)

As π0 spans a 2D space described by (π0,V (x, t), π0,S(x, t)) we can evaluate the Fredholm alternative on an
orthogonal basis of this space; specifically here we will investigate the Fredholm alternative on (1, 0) then
(0, 1). On the volume space we have

∂taV = ∂xxaV −QonaV +QonaS . (S2.17)

On the surface space the terms are more lengthy and we split them for readability

〈∂tf0, π0〉 =

(
1 +

qon

qoff

)
∂taS , (S2.18)

〈L2f0, π0〉 = −QonaS +QonaV + ∂xxaS +
qon

qoff
∂xxa (S2.19)

and finally

〈L1f1, π0〉 = − qon

qoff

Γ + γqon

Γ(1 + qoff) + γ(qon + qoff)
∂xxaS . (S2.20)

Compiling all contributions on the surface we find

∂taS = −QoffaS +QoffaV

+
qoff

qoff + qon
∂xxaS +

qoff

qoff + qon

Γ

Γ + γ 1+qoff+qon

qoff

∂xxaS .
(S2.21)

Overall we have found effective long time dynamics described by the generator (in dimensional scales)

Leff =


−Qon + kBT

Γ ∂xx Qon

Qoff
qoff

qon+qoff
−Qoff

qoff

qon+qoff
+ kBT

Γeff
∂xx


 , such that ∂ta = Leffa. (S2.22)

Here Γ−1
eff = p0Γ−1

0 +p1Γ−1
1 with Γ0 = Γ, Γ1 = Γ+γ+k

(
1
qoff

+ k
γ
qon

qoff

)
, p0 = qoff/(qoff +qon) is the probability

to have no bond near the surface and p1 = 1 − p0 is the probability to have 1 bond near the surface. Note
that the expression of Γeff is exactly that when focusing only on surface dynamics and discarding effective 2D
dynamics (see Eq. (12) of the main paper). This shows that homogenization steps in the embedded 2×1D
geometry do not entangle with surface dynamics. To understand the meaning of this effective generator, we
go one step further.

Long (long) times We now wish to understand the long time dynamics of the generator Leff . We search
for long (long) time dynamics by using a non-dimensionalization that seeks even longer times as

t→ t̃
τ

ε
, x→ x̃Lx (S2.23)
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where τ = L2
y/D0 = L2

yΓ/kBT and Ly/Lx = 1/
√
ε corresponds to the far horizontal scales x is going to

explore (compared to the shorter vertical scales). Qon and Qoff are typically associated with the time scale
that the particle takes to diffuse vertically and therefore Qonτ ∼ 1 and likewise Qoffτ ∼ 1. We obtain the
non-dimensional generator

Leff =
1

ε


 −Qon Qon

Qoff
qoff

qon+qoff
−Qoff

qoff

qon+qoff


+


∂xx 0

0 Γ
Γeff

∂xx


 =

1

ε
L0 + L1 (S2.24)

and we search for a solution f of the equation ∂tf = Lefff expanded in ε as f = f0 + εf1 + ....

At lowest order we obtain from L0f0 = 0, f0 = a(x, t)


1

1


, with the associated equilibrium distribution

π0 =
1

Z


Qoff

qoff

qon+qoff

Qon


 . (S2.25)

At the next order we need to satisfy the Fredholm alternative, namely 〈∂tf0−L1f0, π0〉 = 0 leading to (back
in dimensional scales)

∂ta =
kBT

Γ2×1D
eff

∂xxa (S2.26)

where
1

Γ2×1D
eff

=
Qoffqoff

Qoffqoff +Qon (qon + qoff)

1

Γ
+

Qon (qon + qoff)

Qoffqoff +Qon (qon + qoff)

1

Γeff
. (S2.27)

Expanding terms with the expression of Γeff and rearranging we can summarize the result in the explicit
form, similarly as in Eq. (12) of the main paper,

1

Γ2×1D
eff

=
p2×1D

0

Γ0
+
p2×1D

1

Γ1
(S2.28)

where

p2×1D
0 =

(Qoff +Qon)qoff

Z
and p2×1D

1 =
Qonqon

Z
(S2.29)

are the probabilities to have respectively 0 and 1 bond, Z = (Qoff + Qon)qoff + Qonqon and Γ0 = Γ is the

friction in the unbound state and Γ1 = Γ + γ + k
(

1
qoff

+ k
γ
qon

qoff

)
is that contributing to the bound state. A

similar result for an N legged caterpillar, simply adapting the probabilities, is thus used to quantify diffusion
of DNA-coated colloids on surfaces.

To recover surface only dynamics, one simply has to take Qon/Qoff → ∞ in the above expression. In
that case one can easily obtain the surface only effective friction Eq. (12) of the main text.
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3 List of parameters for typical biological and artificial systems

Quantity Range of values Details

DNA coated colloids - low coverage large colloids

R 525 nm Low coverage streptavidin beads of [3]

η 0.0006Pa.s Viscosity of water at the melting temperature 44 ◦C

a 10− 15 nm estimated with for double stranded DNA, 60 nucleotides [15]

k 1× 10−4 N/m k ' 3 kBT
2Llp

where lp ' 3.4 nm is the typical persistence length corresponding to 10

base pairs in a helix and L ' 60(lp/10) ' 20 nm [3]

qon 2500 s−1 from qon ∼ konσ/aNA with kon = 2.2× 106M−1s−1 (44.7 ◦C) (value predicted
from Ref. [16] for the CCAAGTTATGA sequence used in [3], measurements on

sequences with a similar number of bases show slightly lower hybridization
rates [17])

qoff 25000 s−1 estimated unbinding rate around the melting temperature with a bound
probability of 10% (evaluated using full potential profile estimates following [6]).

Expected qoff ' qon at lower temperatures

σ 1/(12 nm−18 nm)2 coating density [3]

D 1.4× 10−3 µm2/s at the melting temperature [3]

D0 0.37 µm2/s calculated as D0 = kBT/12πηR with T = 44 ◦C (since close to the surface,
longitudinal friction is doubled due to hydrodynamic interactions)

D0/D 270 diffusion decrease factor, calculated with range of above values

N 40− 70 estimated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers, and density limited by the surface density, probably in the lower range

σ = 1/(16 nm)2

N(Tm) 40 number of involved legs at the melting point, using the methodology described in
Ref. [6]. Taking symmetric (particle and flat surface) density with σ = 1/(17 nm)2

and the exact DNA sequences and polymer types detailed in Ref. [3]

D0/Dhop 45− 800 calculated with Dhop = D0qNoff/(qoff + qon)N with values above.

DNA coated colloids - high coverage large colloids

R 500 nm High coverage beads of [6]

η 0.0005Pa.s Viscosity of water at melting temperatures 50-60 ◦C

a 13− 18 nm measured lengths of 6.5 k PEO strands tethered with 20 nucleotides of single
stranded DNA [6]

k 2× 10−4 N/m k ' 3 kBT
2L`p

expected spring constant with `p ' 0.5 nm and L = 80 nm (mixed

brush with PEO and DNA)

qon 1.3− 1.9× 104 s−1 from qon ∼ konσ/aNA with kon = 1.6× 106M−1s−1 (55 ◦C) (value predicted
from Ref. [16] for the ACCGCA sequence used in [6])

qoff 1.3− 1.9× 105 s−1 estimated unbinding rate at the melting temperature with a bound probability of
10% (evaluated using full potential profile estimates following [6]). Expected

qoff ' qon at lower temperatures

σ 1/(3.27 nm)2 measured coating density [6]

N 140− 190 estimated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers, and density limited by the surface density, probably in the lower range

σ = 1/(10 nm)2

Table S1: Parameter values for DNA coated colloids (large colloids)
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Quantity Range of values Details

DNA coated nanoparticles

R 7.5 nm Gold nanoparticles of Ref. [18]

η 0.0006Pa.s Viscosity of water at the melting temperature 44 ◦C

a 10 nm Estimated in Ref. [18]

k 2× 10−4 N/m k ' 3 kBT
2Llp

where lp ' 3.4 nm is the typical persistence length corresponding to 10

base pairs in a helix and L ' 30(lp/10) ' 10 nm [18]

qon 2× 104 s−1 from qon ∼ konσ/aNA with kon = 1.0× 106M−1s−1 (44 ◦C) (value predicted
from Ref. [16] for the CGCG sequence used in [18])

qoff 2× 105 s−1 estimated unbinding rate around the melting temperature with a bound
probability of 10% (evaluated using full potential profile estimates following [6]).

Expected qoff ' qon at lower temperatures

σ 1/(3 nm)2 from 80 strands/ 15 nm particle [19]

N 15− 20 estimated from N ' 2πReffhσeff taking h ' a/3 the typical penetration length of
the layers, effective radius of coated nanocolloid Reff = R+ h and density at the

outer layer σeff = σR2/R2
eff

Table S2: Parameter values for DNA coated nanoparticles

Quantity Range of values Details

Leukocyte adhesion mediated by P-selectin or L-selectin

R 4.15 µm typical cell size [20]

η 0.001Pa.s typical physiological conditions [21]

a 300 nm typical microvillus length [22]

k 4× 10−5 − 5×
10−3 N/m

typical spring constant of microvilli [22] up to spring constant of the bond itself
(excluding microvilli) [23]

Nb 1-2 typical number of contacts [24, 25]

σ 15− 30 µm−2 typical density of ligands [26, 25]

N 40− 80 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers. Coherent with Ref. [27].

P-selectin

qon 4− 300 s−1 from qon ∼ konσ/aNA with measured binding rates
kon = (4− 100)× 105 M−1s−1 [23, 28, 25]

qoff 0.02− 1.6 s−1 measured unbinding rate [23, 28, 21]

L-selectin

qon (0.4− 4)× 104 s−1 measured binding rates [24]

qoff 7− 250 s−1 measured unbinding rate [29, 26], shorter lifetime than P-selectin

Table S3: Parameter values for white blood cells
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Quantity Range of values Details

E. Coli motility mediated by adhesion between FimH adhesin at the tip of pili and glycoproteins on the surface

R 350 nm and
L = 3 µm

cylindrical features [30]

η 0.001Pa.s typical physiological conditions [21]

a 100 nm pili characteristic size to calculate hydrodynamic resistance, from
√

2Lc`, see
below [31]

k 0.6 µN/m typical spring constant as kBT/Lc` where Lc = 2 µm is the contour length and
` = 3.3 nm is the persistence length [31]

qon 5− 125 s−1 from qon ∼ konσ/aNA with measured binding rates
kon = 2− 50× 105 M−1s−1 [32, 33, 34]

qoff 1− 100 s−1 measured unbinding rate [32, 33, 34]

σ 15− 45 µm−2 Pili density, calculated from 100-300 pili over the cylinder surface [35]

N 2− 7 calculated from N ' 2rLσ taking r '
√

2aR/3 the typical half width of the
cylinder in contact.

Table S4: Parameter values for Escherichia Coli

Quantity Range of values Details

Cargo transport by molecular motors

R 1 µm typical cargo size [36]

η 0.001Pa.s typical physiological conditions [21]

a 25 nm microtubule diameter [37]

k 0.2− 0.5 mN/m typical spring constant [37, 38]

qon 0.4 s−1 measured individual binding rate [39]

qoff 4 s−1 measured unbinding rate [40]

Table S5: Parameter values for molecular motors

Quantity Range of values Details

Protein cargos in the nuclear pore complex

R 50 nm estimated from D = 4 µm2/s for karyopherin-β which is a major transporter in
the NPC [41, 42], R = kBT/6πηD, and using η as below

η 0.001Pa.s typical physiological conditions [21]

a 8− 10 nm estimated with worm like chain model in [43]

k 0.06-0.1 mN/m typical spring constant of the Nucleoporin Nup 153 [43]

qon 3×105−3×108 s−1 from qon ∼ konρ with kon = 107 − 109 M−1s−1 [42]

qoff 104 − 107 s−1 estimated unbinding rate [42]

ρ 30− 250mM concentration of Nup in pore [42, 44]

Table S6: Parameter values for nuclear pore transport
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Quantity Range of values Details

Influenza A

R 60 nm average measured diameter [45]

η 0.001Pa.s typical physiological conditions [21]

a 12− 15 nm typical height of Hemagglutinin [46, 45]

k 1− 2 mN/m typical spring constant [46, 47]

qon 0.07− 130 s−1 calculated from qon ∼ qoff/KDσ/aNA with KD = 2− 950 mM [48, 46]

qoff 0.1− 30 s−1 measured unbinding rate (focused on Hemagglutinin to Sialic Acid) [46, 49, 47, 50]

x = qon
qon+qoff

0.2 Bound fraction at equilibrium [46]

σ 6800 µm−2 average measured coverage of HA proteins on virus ( 85% of total (HA +
NA)) [45]

D 0.05− 0.5 µm2/s measured on typical lipid bilayers with sialic acid receptors [49], strongly
dependent on qoff in the same qualitative way as predicted in out theory

D 0.01 µm2/s also measured on typical surfaces [50]

D0 1.9 µm2/s calculated as D0 = kBT/12πηR with T = 37 ◦C (since close to the surface,
longitudinal friction is doubled due to hydrodynamic interactions)

D0/D 4− 190 diffusion decrease factor, calculated with range of above values

N 10− 13 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

D0/Dhop 9− 20 calculated with Dhop = D0qNoff/(qoff + qon)N with values above.

SARS CoV 2

R 50 nm typical virus size [51]

η 0.001Pa.s typical physiological conditions [21]

a 6− 23 nm ligand protein characteristic size [52, 51]

k 0.1− 0.4 N/m typical spring constant from simulation results [53] and [54]

qon 770− 1500 s−1 from qon ∼ konσ/aNA with kon = 0.7− 1.4× 105 M−1s−1 [52, 55]

qoff 0.05 s−1−0.01 s−1 measured unbinding rate of individual ligand-receptor pairs [53, 52]

N 1− 2 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

x 0.1-0.2 Bound fraction at equilibrium [52] in AFM experiments

σ 1000 µm−2 density of spike proteins on the surface [51]

SARS CoV 1

R 50 nm typical virus size [51]

η 0.001Pa.s typical physiological conditions [21]

a 6− 23 nm ligand protein characteristic size [52, 51]

k 0.6 N/m typical spring constant from simulation results [53]

qon 1200− 2500 s−1 from qon ∼ konσ/aNA with kon = 0.7− 1.4× 105 M−1s−1 [52, 55] (similar to
Sars CoV 2 [55])

qoff 0.6 s−1 measured unbinding rate of individual ligand-receptor pairs [53]

N 1− 4 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

x 0.1-0.2 Bound fraction at equilibrium is similar to Sars CoV 2 [52, 55]

σ 1600 µm−2 density of spike proteins on the surface [51]

Table S7: Parameter values for viruses
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4 Coarse-graining under different models and assumptions

4.1 Coarse-graining with particle inertia

While more details on inertial effects with multivalent receptor contacts will be written in a separate pa-
per [56], here we briefly recapitulate some results of this work to support claims made in the main manuscript.

4.1.1 Equations set up with particle inertia

We consider now that the particle has inertia, described by a mass m. To simplify derivations we can neglect
inertial effects from the legs, as in general the legs are much smaller than the particle itself, and hence have
much lower mass. Alternatively, in Ref. [56] we will show that one can start with inertia on all components,
and take the limit of small mass of the legs relative to particle mass on the final result, and obtain the same
result as if the limits were inverted.

We thus write the unbound equations for a particle with a single leg as





dl
dt = − kγ l +

√
2kBTγ ηl

dx
dt = v
dv
dt = 1

m

(
−Γv +

√
2kBTΓηx

)
(S4.1)

where m is the mass of the particle and v the velocity of the particle.
When the leg is bound to the surface, it is not necessary to project the dynamics. Writing Newton’s

second law on the system of the (particle+leg bound to surface) one finds the bound equations





dl
dt = v
dx
dt = v

dv
dt = 1

m

[
− Γv +

√
2kBTΓηx +

(
−γv − kl +

√
2kBTγηl

) ] . (S4.2)

4.1.2 Possible resolution with particle inertia following Ref. [57]

The generator for the system is

L =


−qon − k

γ l∂l + kBT
γ ∂ll + v∂x − Γ

mv∂v + kBTΓ
m2 ∂vv +qon

+qoff −qoff + v∂x + v∂l − k
m l∂v −

Γ+γ
m v∂v + kBT (Γ+γ)

m2 ∂vv




(S4.3)
with a natural stationary distribution (now including a Boltzmann factor corresponding to the kinetic energy
of the particle)

π =
1

Z


qoff/qon

1


 e−kl

2/2kBT e−mv
2/2kBT . (S4.4)

In addition to non-dimensionalizing space and time we need to non-dimensionalize the velocity. We then
take (on top of usual non-dimensional quantities in the paper, reported here for completeness)

x→ Lxx̃, l→ Ll̃, t→ τ t̃, v → ṽLx/τ = ṽ
L

ε

ε2k

Γ
. (S4.5)

Mass also needs to be non-dimensionalized. Here we write, following Ref. [57], m = m̃Lkτ2/Lx. The
dimensionless number mLx/(Lkτ)1/τ = τv/τ can be interpreted as the ratio of the correlation time of the
velocity τv to the time scale of observation τ . We require τ/τv = 1

m̃ε such that we may observe coarse grained
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dynamics. Dropping the ·̃ notation we find the non-dimensional generator

L =
1

ε2
L0 +

1

ε
L1 + L2 =

1

ε2


−qon − Γ

γ l∂l + Γ
γ ∂ll +qon

+qoff −qoff


+

1

ε


0 0

0 v∂l − 1
m l∂v




+


v∂x −

1
mv∂v + 1

m2 ∂vv 0

0 v∂x − Γ+γ
Γ

1
mv∂v + Γ+γ

Γ
1
m2 ∂vv




(S4.6)

We can then set up a similar step by step search of a solution at multiple orders seeking a solution f =
f0 + εf1 + εf2 + ...

At lowest order solving L0f0 = 0 yields simply f0 = a(x, t)


1

1


 and the associated equilibrium distri-

bution π0 = 1
Z′


qoff/qon

1


 e−l

2/2.

At the next order we need to solve L0f1 = l
m∂va


0

1


 that is easily shown to yield

f1 = − 1

1 + (γ+Γ)qoff

γqon+Γ

(
qoff

qon+Γ/γ

) l∂va
m

. (S4.7)

To find a solution at the following order, we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 −
L1f1, π0〉 = 0. Standard algebra yields an equation for the function a(x, v, t) as (back in dimensional scales)

∂ta = v∂xa−
Γmeff

m
v∂va+

kBTΓmeff

m2
∂vva (S4.8)

which corresponds to an inertial motion with friction

Γmeff =
qoff

qon + qoff
Γ +

qon

qon + qoff

(
Γ + γ + k

(
1

qoff
+
γ

k

qon

qoff

))
(S4.9)

which writes with the notations of the main paper

Γmeff = p0Γ0 + p1Γ1 (S4.10)

which is exactly Eq. (20) of the main paper.
As highlighted in the main paper, there is a notable difference between Γmeff = p0Γ0 + p1Γ1, with inertia,

and Γ−1
eff = p0Γ−1

0 + p1Γ−1
1 when inertia is neglected. In particular, the results are not equivalent when

unbinding rates are slow such as qoffΓ/k � 1. We will reconcile these results in a separate paper [56].

4.2 Choice of time-scale hierarchy

4.2.1 Averaging with a different choice of scaling ε = γ/Γ

It is common to assume a different choice of scalings assuming fast unbound tether dynamics. This choice
of assumptions can be formulated mathematically as γ/Γ = γrε

2, where γr is a non-dimensional number of
order 1. This typically corresponds to short legs on a large particle, as γ and Γ are expected to scale with
leg size and particle size via Stokes law. When doing such a reasoning, it is also common to lighten the
assumption on scale separation for x and l and take L = Lx [58]. We keep other non-dimensional scalings.
For simplicity we will write ε = ε2 as no terms in ε appear now. We then obtain the non-dimensional
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generator as an expansion L = 1
εL0 + L1 + εL2 + ε2L3 + ..., with the first terms as

L =
1

ε


−qon − 1

γr
l∂l + 1

γr
∂ll qon

qoff −qoff


+


∂xx 0

0 l(∂x − ∂l) + (∂x − ∂l)2


+ε


0 0

0 −γrl(∂x − ∂l)− γr(∂x − ∂l)2


+...

(S4.11)
Notice above that the non-dimensionalization for the binding rates qon, qoff is such that it assumes binding
and unbinding to be much faster than the long time dynamics searched for.

We look for a solution as f = f0 +εf1 +ε2f2 + ... At first order we find easily f0 = a(x, t)


1

1


 associated

with the equilibrium distribution π0 ∝


qoff/qon

1


 e−l

2/2.

At the following order, to find a solution f1, we require the Fredholm alternative, namely 〈∂tf0 −
L1f0, π0〉 = 0, yielding

∂ta− ∂xxa = 0. (S4.12)

We can now solve for L0f1 = −L1f0 + ∂tf0 making use of this first order equation on a. The equation to be

solved simplifies to L0f1 = −


1

0


 l∂xa. This gives

f1 =
l∂xa

qoff


 γrqon

1 + γrqon


 . (S4.13)

To solve for f2 we require the Fredholm alternative at the following order, namely 〈∂tf0 + ε∂tf1−L1f0−
εL1f1 − εL2f0, π0〉 = 0. We focus on specific terms

〈∂tf1, π0〉 = 0, (S4.14)

then

〈−L1f1, π0〉 = +∂xxa
γrqon + 1

qoff
, (S4.15)

and
〈−L2f0, π0〉 = +γr∂xxa (S4.16)

such that summing up all contributions and reverting to original dimensions we obtain

∂ta =
kBT

Γ
γ/Γ=ε
eff

∂xxa (S4.17)

with
1

Γ
γ/Γ=ε
eff

=

(
qoff

qon + qoff

)
1

Γ
+

(
qon

qon + qoff

)
1

Γ

(
1− γ

Γ

[
1 +

k

γ

(
1

qoff
+
γ

k

qon

qoff

)])
(S4.18)

with is exactly Eq. (21) of the main paper. We note that this is exactly the γ/Γ first order Taylor expansion
of the equation obtained without assuming γ/Γ� 1, namely of Eq. (12) of the main paper.

4.2.2 Averaging with pre-averaging of tether dynamics (fast tether relaxation dynamics com-
pared to all other dynamics)

Equation set up with pre-averaging and resolution A commonly used framework is to assume that
unbound leg dynamics are so fast that essentially when a new bond is created, the leg length may be sampled
from its (bare) equilibrium distribution. This may be formally obtained using homogenization as well by
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assuming unbound relaxation is very fast compared to binding dynamics, γ/k � 1/qon/off , though we do not
report the details here. It is a commonly used framework [58, 59].

The unbound state is described by the variables (x, t) while the bound state is described with (x, l, t).
We write the equations for the probability distributions in each state

∂tpu = −pu
∫
e−kl

2/2kBT qondl +

∫
qoffpb(x, l, t)dl +

kBT

Γ
∂xxpu (S4.19)

∂tpb = +pue
−kl2/2kBT qon + qoffpb(x, l, t) +

kBT

Γ + γ
∂xxpb + (...) (S4.20)

where the (...) denote the rest of the bound projected dynamics and Z is some normalization constant that
does not depend on l. Notice that here we kept the Γ + γ in the bound state to highlight that such a
term would have to be kept in the case of a great number of springs N , as this would become Γ + Nγ
and would therefore have to remain. The equilibrium distribution associated with these dynamics is simply

π = 1
Z




qoff

qon

e−βkl
2


 and satisfies detailed balance:

πu × qone
−βkl2/2 =

1

Z

qoff

qon
× qone

−βkl2/2 =
e−βkl

2/2

Z
× qoff = πb × qoff . (S4.21)

With this approach (compared to the main paper derivation), the only part of the generator that changes
is the lowest order term L0. In particular one should determine the non-dimensionalization. Importantly
here one should notice that qon and qoff do not have the same units. The ratio qoff/qon = O(L) has units
of a lengthscale. We can therefore keep the usual non-dimensionalization for qoff

Γ
kε2 = ˜qoff

ε2 but not for the

binding rate, which we take as qon
Γ

kLε2 = ˜qon

ε2 . We find (dropping the ·̃)

L0 =


−

∫
qone

−l2/2dl +
∫
qone

−l2/2dl

+qoff −qoff − l∂l + ∂ll.


 (S4.22)

Resolution for f0 does not change and we get f0 = a(x, t)


1

1


, with associated equilibrium distribution

π0 = π.

At the next order we get the solution f1 = l∂xa
1

1+qoff


0

1


.

Finally at second order we require the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0 yielding

∂ta =
kBT

Γ
k/γ�q
eff

∂xxa (S4.23)

with
1

Γ
k/γ�q
eff

=

(
qoff

qon + qoff

)
1

Γ
+

(
qon

qon + qoff

)
1

Γ + γ + k
qoff

. (S4.24)

This is nearly exactly the result obtained without pre-averaging but for the kτ relax
u = k

(
γ
k
qon

qoff

)
contribution

corresponding to the time the tether is allowed to relax between 2 binding periods. It is exactly the result
reported in Eq. (22) of the main manuscript.

Relation to Ref. [11] In this paragraph we relate our results to the results obtained in Ref. [11]. Eq.
(2.48) of Ref. [11] finds an effective long time diffusion, starting from similar equations as Eq. (S4.20),

D
Ref. [11]
eff = D0

(
1 + ε

ν − 2

β0(1 + β0)λ

)
(S4.25)
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where we will give the meaning of the new notations (ν, ε, β0, λ) by expressing them with respect to our
notations. Here, ν = k/ktether = 1 in our case because there is no change in recall spring force between the
bound (ktether) and unbound states (k). We also have β0 = qoff

qon
, here ε = D0

qonL2 and λ = kBT/kL
2 such that

the effective diffusion writes with our notations

D
Ref. [11]
eff = D0

(
1− k/qoff

Γ

qon

qon + qoff

)
. (S4.26)

Compared to the previous derivation, this result corresponds to an effective friction with pre-averaging of
tether dynamics (which is indeed what is done in Ref. [11]) and scales with k/qoff similarly as the derivation
assuming γ/Γ = ε. In Ref. [11], as the dynamics are already pre-averaged, they are expressed at 0th order in
γ/Γ. Therefore the key common point of these derivations (Ref. [11] and Sec. 2.2 here) is to assume similar
spatial scales, namely Lx = L. This highlights that the assumption L/Lx = ε allows one to ”safely” average
dynamics without specific assumptions on other physical parameters.

Relation to N legs facing a uniformly sticky membrane In Fig. S6 we show that the pre-averaged
result corresponds to the predictions for N legs facing a uniformly sticky surface when the average number
of bonds legs Nb . 1.
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Figure S6: Pre-averaged results correspond to N legs facing a uniformly sticky surface when the average
number of bonds legs Nb . 1. (A) Deff as calculated with a numerical resolution of Eq. (15) of the main
paper (“Full solution”) or with the pre-averaged result of Eq. (22) of the main paper (“Pre-averaging”) with
respect to the binding rate qon. Other parameters are γ

Γ = 1 and qoffΓ
k = 0.1; (B) Corresponding average

number of bonds Nb.

4.2.3 Averaging with fast binding dynamics compared to relaxation dynamics

To understand how fast binding dynamics affect this system, we use the same non-dimensionalization as in
the main text but for L = Lx (thereby allowing relaxation dynamics to be of similar order as the long time
mobility of the particle). We obtain the non-dimensional generator

L =
1

ε2


−qon qon

qoff −qoff


+




Γ
γ (−l∂l + ∂ll) + ∂xx 0

0 Γ
Γ+γ

(
l(∂x − ∂l) + (∂x − ∂l)2

)


 =

1

ε
L0 + L1 (S4.27)

where we used ε = ε2.
We then seek a solution as an expansion f = f0 + εf1 + ε2f2 + .... At lowest order we need to solve


−qon qon

qoff −qoff


 f0 = 0 (S4.28)
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which simply yields f0 = a(x, l, t)


1

1


 and the associated equilibrium distribution π0 =



qoff

qon

1


. Notice

how here the equilibrium distribution at lowest order does not correspond to the full equilibrium distribution
π0 6= π. At the following order to find a solution to the problem we require the Fredholm alternative
〈∂tf0 − L1f0, π0〉 = 0, which gives the equation

∂ta =p0
Γ

γ
(−l∂l + ∂ll) + p0∂xx

+ p1
Γ

Γ + γ

(
l(∂x − ∂l) + (∂x − ∂l)2

) (S4.29)

where p0 = qoff

qoff+qon
= 1 − p1 is the probability to be unbound and p1 to be bound. This new effective

equation can now be explored by means of time and length scale separation by setting a new small scale
parameter ε2 = L

Lx
. This small scale operator allows us to write

∂ta =
1

ε22
L0,2 +

1

ε2
L1,2 + L2,2 (S4.30)

where L0,2 =
(
p0

Γ
γ + p1

Γ
Γ+γ

)
(−l∂l + ∂ll), L1,2 = p1

Γ
Γ+γ (l∂x − 2∂xl) and L2,2 =

(
p0 + p1

Γ
Γ+γ

)
∂xx. We seek

a solution a = a0 + ε2a1 + ε22a2 + ....
At lowest order we need to solve L0,2a0 = 0 which implies a0 = a0(x, t) making use of vanishing flux

boundary conditions at infinity. The associated equilibrium distribution is now π0,2 = e−l
2/2/Z.

At the next order we need to solve L0,2a1 = −L1,2f0 = −p1
Γ

Γ+γ l∂xa such that a1 = − p1
Γ

Γ+γ

p0
Γ
γ+p1

Γ
Γ+γ

l∂xa =

− l∂xa
1+

p0
p1

γ
Γ+γ

. At the following order, to find a solution we require the Fredholm alternative, namely 〈∂ta0 −
L2,2a0 − L1,2a1, π0,2〉 = 0. After some standard algebra one finds

∂ta0 =
1

Γq fast
∂xxa (S4.31)

where
1

Γq fast
=
p0

Γ
+

p1

Γ + γ/p0
(S4.32)

which, reverting to dimensional scales, is exactly Eq. (23) of the main paper.

4.3 Arm and/or legs

4.3.1 Arm or leg

In this part we show precisely how having an arm (spring always attached to the surface) or a leg (spring
always attached to the particle) affects the dynamics. There are several ways one can consider to obtain the
dynamics of the leg or the arm (referred to henceforth as spring). Either assume (1) that the center of mass
of the spring is attached to the particle (or the surface), (2) either that the center of mass is located at the
free end of the spring (when it is attached to the particle or the surface). Both assumptions do not yield
exactly the same dynamics but the differences in the long time effective dynamics are minor.

(1) Arm or leg (spring) attached by their center of mass Consider in general a free spring, where
motion is confined to a line but none of the spring ends are attached. The length of the spring l (more
accurately here l represents the length imbalance compared to the rest length of the spring l− l0 but we take
l0 = 0 for simplicity) obeys the overdamped Langevin equation

dl

dt
= −kl

γ
+

√
2kBT

γ
ηl. (S4.33)
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The center of mass c of the spring similarly obeys an overdamped Langevin equation, with diffusion only

dc

dt
=

√
2kBT

γ
ηc (S4.34)

and we considered that the diffusion coefficient of the center of mass is similar to that of the spring length.
For simplicity we consider here that the center of mass of the spring is located at one of its ends, namely
the end that will be permanently attached to a surface in this paragraph.

In addition the particle also diffuses as

dx

dt
=

√
2kBT

Γ
ηx. (S4.35)

Arm configuration. If we consider the arm configuration, then the center of mass c is attached to the
surface and satisfies the constraint q(x, l, c) = c − xsurface = 0. The projected dynamics in that case are
trivial and sum up to the ones detailed in the main text and recalled here for consistency:





dx
dt =

√
2kBT

Γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl,

dc
dt = 0.

(S4.36)

Leg configuration. If we consider the leg configuration, then the center of mass c is attached to the particle
and satisfies the constraint q(x, l, c) = x− c = 0. This constraint is similar to the one for the bound spring
for which the projection formalism is described in Appendix A of the main text. The projected dynamics
are therefore 




dx
dt =

√
2kBT
Γ+γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl,

dc
dt = dx

dt .

(S4.37)

These dynamics are exactly equivalent to the arm configuration but for the change Γ→ Γ +γ, and therefore
yield the same resulting effective long time dynamics with a similar change Γ → Γ + γ. One can thus
simply consider that Γ is indeed the friction coefficient of the unbound particle, which potentially includes
corrections to friction due to legs being attached to the surface.

(2) Arm or leg (spring) with center of mass at the free end We now consider the situation where
the center of mass of the spring is located at its free end, and the other end is attached to the particle or
the surface.

Leg configuration. Consider in general a spring, attached to one end to the particle (in x) and to the
other end to the spring’s mass (in x+ l). Newton’s second law on each mass, and taking loosely overdamped
dynamics with masses going to 0, yields the system of equations

{
0 = −Γdx

dt + kl +
√

2kBTΓηx,

0 = −γ d(x+l)
dt − kl +

√
2kBTγηl.

(S4.38)

The system simplifies for each variable into



dx
dt = +kl

Γ +
√

2kBT
Γ ηx,

dl
dt = −kl

(
1
Γ + 1

γ

)
−
√

2kBT
Γ ηx +

√
2kBT
γ ηl.

(S4.39)

This system corresponds to a friction matrix and force field

Γ̃−1 =




1
Γ − 1

Γ

− 1
Γ

1
γ + 1

Γ


 and ∇U =


 0

kl


 . (S4.40)
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When the spring (here the leg) becomes temporarily bound to the surface, the bound equations then simply
read (provided appropriate projection, following Appendix A, is made)




dx
dt = +kl

Γ +
√

2kBT
Γ ηx,

dl
dt = −dxdt = −klΓ −

√
2kBT

Γ ηx.
(S4.41)

In non-dimensional scales, the hierarchy of generators now reads

L0 =


−qon + Γ+γ

Γ (−l∂l + ∂ll) qon

qoff qoff + (−l∂l + ∂ll)


 , (S4.42)

L1 =


(l∂x − 2∂lx) 0

0 (l∂x − 2∂lx)


 , and L2 =


∂xx 0

0 ∂xx


 . (S4.43)

Using a coarse-graining method as usual, we obtain simply the usual harmonic sum Γ−1
eff = p0Γ−1

0 +p1Γ−1
1

where the friction coefficients write




Γ0 = Γ + γ + k
(
γ
k

qon

qoff+k/Γ

)

Γ1 = Γ + γ + k
(

1
qoff

+ γ
k
qon+k/Γ
qoff

)
(model (2)).

(S4.44)

Compared to the coefficients obtained if the spring is attached to the particle by its center of mass (model
(1)), namely {

Γ0 = Γ + γ

Γ1 = Γ + γ + k
(

1
qoff

+ γ
k
qon+qoff

qoff

)
, (model (1)),

(S4.45)

the results are quite similar independent of the attaching model. Qualitatively, in the non-center of mass case
(model (2)), we obtain additional feedback friction terms due to the spring, as kτeff where τeff is a typical
time over which the spring relaxes, scaling naturally as γ/k multiplied by a ratio of characteristic times τ...

τ...
.

This ratio corresponds to the fact that the spring may only relax in the other state, and hence different ratios
appear according to the different modeling options and bound states. Be that as it may, such contributions
are generally minor. In fact, one can verify (not shown here) that the numerical values of Γeff/Γ according
to model (1) or (2) show very little difference over full R3 space described by the parameters.

We now explore potential differences when the number of legs is increased. For 2 legs, the dynamics in
the unbound state are 




dx
dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx,

dl1
dt = −dxdt − kl1

γ +
√

2kBT
γ η1

dl2
dt = −dxdt − kl2

γ +
√

2kBT
γ η2

(S4.46)

and when leg 1 is bound to the surface simply



dx
dt = −dl1dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx,

dl2
dt = −dxdt − kl2

γ +
√

2kBT
γ η2

(S4.47)

and when both legs are bound
{
dx
dt = −dl1dt = −dl2dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx. (S4.48)

Dynamics are then easily extended to N legs using the free spring end model applied to each leg. Coarse-
graining and asymptotics (around the average number of bonds) then easily lead to

Γeff ' ΓNb = Γ +Nγ +Nb

[
γ + k

(
1

qoff
+
γ

k

qon

qoff

)]
(model (2)). (S4.49)
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Eq. (S4.49) is exactly the result obtained by attaching legs by their center of mass (model (1)), provided the
suitable change Γ→ Γ +Nγ is done for N legs. There is thus no difference between the different models in
the leg configuration when a large number of legs are involved.

Arm configuration. The arm configuration with mass at the free end (model (2)) is trivially equivalent
to that attached by the center of mass as




dx
dt =

√
2kBT

Γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl.

(S4.50)

There is thus no difference between the different models in the arm configuration.

4.3.2 Arm and leg

Equations set up We consider random attachement and detachement of two springs to one another, in
the leg and arm geometry – see Fig. S7-A.

When the springs are unbound the dynamic equations are





dl1
dt = − kγ l1 +

√
2kBT
γ η1(t)

dl2
dt = − kγ l2 +

√
2kBT
γ η2(t)

dx
dt =

√
2kBT

Γ ηx(t)

(S4.51)

where l1 is the length of the top spring, l2 the length of the bottom spring, and for simplicity here we took
l0 = 0.

In the bound state we need to project the dynamics. When the springs bind, we consider that a rigid
bond is formed between the springs’ sticky ends that keeps the distance constant – see Fig. S7. The dynamic
constraint is then

q(x, l1, l2) = x+ l1 − l2 + lbond = 0 (S4.52)

where lbond is the length of the bond and remains constant until the springs detach and reattach to form
another bond length. If we imagine that the bottom spring is part of a periodic array of springs, such that
at any time, only one bottom spring is accessible to the top spring, lbond is typically of order L – see Fig. S7
– and thus a reasonable physical assumption.

The constraint matrix is then C = (1, 1,−1) and the projection matrix

P = 1− 1

3




1 1 −1

1 1 −1

−1 −1 1


 =

1

3




2 −1 1

−1 2 1

1 1 2


 (S4.53)

such that the Moore-Penrose pseudo inverse of the projected friction is

Γ†P =
1

γ + 2Γ




2 −1 1

−1 γ+Γ
γ

Γ
γ

1 Γ
γ

γ+Γ
γ


 (S4.54)

with a square root

σP =
1

γ + 2Γ




2
√

Γ
√
γ −√γ

√
Γ

√
γ/2 + γ+2Γ√

4γ
−√γ/2 + γ+2Γ√

4γ

−
√

Γ −√γ/2 + γ+2Γ√
4γ

√
γ/2 + γ+2Γ√

4γ


 . (S4.55)
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fixed point

x(t)

l1(t)
moving particle

fixed surface fixed point

rigid bond

arbitrary fixed origin

A

B

lbond

l2(t)

interaction radius 
of bottom spring

Rdistance between 2 spring 
fixed points

d = 2R
Figure S7: Geometry of binding with a particle having an arm and a leg. (A) The spring attached to the
moving particle may bind to the bottom spring by forming a rigid bond that “fills in the distance” between
the separated springs. Such a model is equivalent to (B) where the bond is formed with the “closest”
available bond. Here if springs on the surface are evenly spaced with a typical spacing d = 2R we consider
that the top spring’s sticky end binds to a surface spring whose fixed point is closest, and always closer
than R. Switching events between one spring and then another are long if the distance between two surface
springs is large and are ignored. The equivalence between A and B could be shown more systematically, but
is beyond the scope of this manuscript.

The dynamics in the bound state are therefore





dx
dt = − k

2Γ+γ (l1 − l2) +
√

8kBTΓ
(2Γ+γ)2 ηx +

√
2kBTγ

(2Γ+γ)2 (η1 − η2)

dl1
dt = 1

2
dx
dt − k

2γ (l1 + l2) +
√

2kBT
4γ (η1 + η2)

dl2
dt = − 1

2
dx
dt − k

2γ (l1 + l2) +
√

2kBT
4γ (η1 + η2)

(S4.56)

Generator The generator is then

L =


−qon qon

qoff −qoff


+


−

k
γ l1∂l1 + kBT

γ ∂l1l1 − k
γ l2∂l2 + kBT

γ ∂l2l2 + kBT
Γ ∂xx 0

0 0




+


0 0

0 − k
2Γ+γ (l1 − l2)(∂x − 1

2∂l2 + 1
2∂l1)− k

2γ (l1 + l2)(∂l2 + ∂l1)




+


0 0

0 + 2kBT
2Γ+γ (∂x − 1

2∂l2 + 1
2∂l1)2 + kBT

2γ (∂l2 + ∂l1)2




(S4.57)

With this generator one can check that L?π = 0 with the natural equilibrium distribution

π =
1

Z


qoff/qon

1


 e−kl

2
1/2kBT e−kl

2
2/2kBT (S4.58)

where Z is a normalization constant.
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Homogenization Taking the usual scalings we get the following non-dimensional, expanded generator

L =
1

ε2

[
−qon qon

qoff −qoff


+

Γ

γ


−l1∂l1 + ∂l1l1 − l2∂l2 + ∂l2l2 0

0 0




+


0 0

0 − Γ
2(2Γ+γ) (l1 − l2)(∂l1 − ∂l2)− Γ

2γ (l1 + l2)(∂l2 + ∂l1) + Γ
2(2Γ+γ) (∂l2 − ∂l1)2 + Γ

2γ (∂l2 + ∂l1)2



]

+
1

ε


0 0

0 − Γ
2Γ+γ (l1 − l2)∂x + ∂x(∂l1 − ∂l2) 2Γ

γ+2Γ




+ 1


∂xx 0

0 2Γ
γ+2Γ∂xx


 =

1

ε2
L0 +

1

ε
L1 + L2

(S4.59)

We now seek an expanded solution f of ∂tf = Lf as f = f0 + εf1 + ε2f2 + ...

At lowest order, L0f0 = 0 gives f0 = a(x, t)


1

1


, and the associated equilibrium distribution π0 = π.

At first order we need to solve

L0f1 = −L1f0 = +


0

1


 Γ

γ + 2Γ
(l1 − l2)∂xa (S4.60)

which has a unique solution

f1 = −




γqon

Γ+γqon

1


 (l1 − l2)∂xa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

. (S4.61)

At 2nd order we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0. We split up
the terms to highlight calculation steps (discarding Z terms to simplify notations, as they would cancel out
eventually)

〈L1f1, π0〉 =− 〈
(
−(l1 − l2)2 Γ

γ + 2Γ
+ 2

2Γ

γ + 2Γ

)
e−l

2
1/2e−l

2
2/2〉 ∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

=−
(
−2

Γ

γ + 2Γ
+ 2

2Γ

γ + 2Γ

)
∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

=− 2Γ

γ + 2Γ

∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

(S4.62)

and

〈L2f0, π0〉 =

(
qoff

qon
+

2Γ

γ + 2Γ

)
∂xxa. (S4.63)

Gathering terms as 〈∂tf0, π0〉 = 〈L2f0, π〉+ 〈L1f1, π0〉 we get

(
1 +

qoff

qon

)
∂ta =

(
qoff

qon
+

2Γ

γ + 2Γ

Γqoff

Γ+γqon

γ+2Γ
Γ

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

)
∂xxa. (S4.64)

Now shifting back to dimensional scales and reorganizing terms slightly we obtain

∂ta =


 qoff

qon + qoff

kBT

Γ
+

qon

qon + qoff

kBT

Γ + 1
2

(
k
qoff

+ qon

qoff
γ + γ

)


 ∂xxa. (S4.65)
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Using the notations of the main papaer p0 = qoff/(qon + qoff) the probability to be unbound, p1 = 1− p0 the
probability to have 1 bond and γeff = γ + k

qoff
+ γ qon

qoff
we obtain

1

Γleg+arm
eff

=
p0

Γ
+

p1

Γ + 1
2γeff

(S4.66)

that is exactly Eq. (24) in the main paper.

4.3.3 Several arms for 1 leg

Equations set up We consider random attachment and detachment of two springs to one another, in the
leg and arm geometry, but now when there are possibly M arms to attach to.

When the springs are unbound the dynamic equations are




dl
dt = − kγ l +

√
2kBT
γ η(t)

dli
dt = − kγ li +

√
2kBT
γ ηi(t) for i = 1 . . .M

dx
dt =

√
2kBT

Γ ηx(t)

(S4.67)

where l is the length of the top spring, li are the lengths of all the bottom springs, and for simplicity here
we took l0 = 0.

In the bound state we need to project the dynamics. The dynamic constraint with the bound bottom
spring indexed by b is then

q(x, l, lb) = x+ l − lb + lbond = 0 (S4.68)

where lbond is the length of the bond, similarly as in the previous section. The constraint process leaves the
unbound spring equations completely unaffected and we find after the projection step





dx
dt = − k

2Γ+γ (l1 − l2) +
√

8kBTΓ
(2Γ+γ)2 ηx +

√
2kBTγ

(2Γ+γ)2 (η − ηb)
dl
dt = 1

2
dx
dt − k

2γ (l + lb) +
√

2kBT
4γ (η + ηb)

dlb
dt = − 1

2
dx
dt − k

2γ (l + lb) +
√

2kBT
4γ (η + ηb)

dli
dt = − kγ li +

√
2kBT
γ ηi(t) for i = 1..M and i 6= b

(S4.69)

Generator The generator is similarly

L = Q+ U =




−Mqon qon qon .. qon

qoff −qoff 0 ... 0

qoff 0 −qoff ... 0

...

qoff 0 0 ... −qoff




+ U (S4.70)

and U is a diagonal matrix. The first term of U corresponds to fully unbound dynamics

U00 = −k
γ
l∂l +

kBT

γ
∂ll +

∑

i

(
−k
γ
li∂li +

kBT

γ
∂lili

)
+
kBT

Γ
∂xx (S4.71)

and further terms correspond each to a bond with the bth arm

Ubb =− k

2Γ + γ
(l − lb)(∂x −

1

2
∂lb +

1

2
∂l)−

k

2γ
(l + lb)(∂lb + ∂l)

+
2kBT

2Γ + γ
(∂x −

1

2
∂lb +

1

2
∂l)

2 +
kBT

2γ
(∂lb + ∂l)

2 +
∑

i6=b

(
−k
γ
li∂li +

kBT

γ
∂lili

) (S4.72)
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With this generator one can check that L?π = 0 with the natural equilibrium distribution

π =
1

Z




1

qon/qoff

qon/qoff

...



e−kl

2/2kBT e−
∑
i kl

2
i /2kBT (S4.73)

where Z is a normalization constant.

Homogenization Taking the usual scalings we get the non-dimensional generator L = 1
ε2L0 + 1

εL1 + L2,
where L0 = Q+ U0 where U0 is diagonal with

(U0)00 =
Γ

γ

(
−l∂l + ∂ll +

∑

i

(−li∂li + ∂lili)

)
(S4.74)

(U0)bb = − Γ

2(2Γ + γ)
(l − lb)(∂l − ∂lb)−

Γ

2γ
(l + lb)(∂lb + ∂l) +

Γ

2(2Γ + γ)
(∂lb − ∂l)2 +

Γ

2γ
(∂lb + ∂l)

2

Γ

γ

∑

i6=b
(−li∂li + ∂lili)

(S4.75)

and L1 is such that (L1)00 = 0 and

(L1)bb = − Γ

2Γ + γ
(l − lb)∂x + ∂x(∂l − ∂lb)

2Γ

γ + 2Γ
(S4.76)

and finally

L2 =




∂xx 0 0 ...

0 2Γ
γ+2Γ∂xx 0 ...

0 0 2Γ
γ+2Γ∂xx ...


 (S4.77)

We now seek an expanded solution f of ∂tf = Lf as f = f0 + εf1 + ε2f2 + ...

At lowest order the resolution gives f0 = a(x, t)




1

1

1

...




, and the associated equilibrium distribution π0 = π.

At first order we need to solve f1 and it is useful to seek a genuinely symmetric solution

L0f1 = +




0

(l − l1)

(l − l2)

...




Γ

γ + 2Γ
∂xa, seeking f1 =




u0l + u′0l1 + u′0l2 + ..

b1l + b′1l1 + u′1l2 + ...

b1l + u′1l1 + b′1l2 + ...

...



∂xa (S4.78)

where u0, u
′
0, b1, b

′
1 and u′1 are constants. Notice that here u and b refer respectively to unbound and

bound contributions, with x and x′ corresponding respectively to leg or arm contributions, and the indices
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correspond to the number of bonds of the state. The constants obey the system of equations

−Mqonu0 + qonMb1 − u0
Γ

γ
= 0

−Mqonu
′
0 + qonb

′
1 + (M − 1)qonu

′
1 − u′0

Γ

γ
= 0

qoffu0 − qoffb1 −
Γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2

Γ

γ
=

Γ

2Γ + γ

qoffu
′
0 − qoffb

′
1 +

Γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2

Γ

γ
= − Γ

2Γ + γ

−qoffu
′
1 + qoffu

′
0 − u′1

Γ

γ
= 0

(S4.79)

that has a unique solution. For now we do not report the coefficients here for simplicity.
At 2nd order we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0. We split up

the terms to highlight calculation steps (discarding Z terms to simplify notations, as they would cancel out
eventually)

〈L1f1, π0〉 =
∑

i

qon

qoff

Γ

γ + 2Γ
〈(−(l − li)(b1l − b′1li) + 2(b1 − b′1)) e−l

2/2e−l
2
i /2〉∂xxa

=M
2Γ

γ + 2Γ

(b1 − b′1)

2
∂xxa

(S4.80)

and

〈L2f0, π0〉 =

(
1 +

2Γ

γ + 2Γ

Mqon

qoff

)
∂xxa. (S4.81)

Gathering terms as 〈∂tf0, π0〉 = 〈L2f0, π〉+ 〈L1f1, π0〉 we get

(
1 +M

qon

qoff

)
∂ta =

(
1 +

Mqon

qoff

2Γ

γ + 2Γ
(1 +

(b1 − b′1)

2
)

)
∂xxa. (S4.82)

Reorganizing terms slightly we arrive at (in dimensional scales)

∂ta = kBT

(
p0,M

Γ
+
p1,M

Γ1,M

)
∂xxa. (S4.83)

with p0,M = qoff

qoff+Mqon
and p1,M = 1− p0,M and

Γ1,M =
Γ + γ/2

1− (b1 − b′1)/2
. (S4.84)

We can further expand Γ1,M by using the expressions for b1 and b′1. We find

Γ1,M = Γ +

(
γ + k

qoff

)(
γ + k

qoff
+ γMqon

qoff

)

(
γ + k

qoff

)
+
(
γ + k

qoff
+ γ (M−1)qon

qoff

) (S4.85)

that is exactly Eq. (25) in the main paper. Notice that, since arm and leg are interchangeable, a similar
effect would be observed for a particle with M legs allowed to bind to 1 arm.

Notice that when M is large, we obtain that the above expression simplifies to

Γ1,M = Γ + γeff,1,M with
1

γeff,1,M
=

1

γeff,M,1
+

1

γeff,1,1
, (S4.86)

with γeff,M,1 = k
(

1
qoff

+ γ
k

(M−1)qon+qoff

qoff

)
the effective friction due to the leg γeff,1,1 = k

(
1
qoff

+ γ
k

)
due to

arms.
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4.3.4 N legs facing M potential arms

2 legs facing 2 arms To understand the dynamics at play in the case of N legs facing M potential arms
we first investigate the more specialized 2 for 2 scenario. We number legs as 1 and 2 and arms as 3 and 4.
We write the generator for this system directly in the non-dimensional scales. It is a bit lengthy as there are
now 7 possible states. We arrange the states as state #1 is the unbound state, states #2− 5 correspond to
1 bond states, and states #6− 7 to 2 bond states. We write L = Q+ U . The transition rate matrix for the
generator is simply

Q =
1

ε2




−4qon qon qon qon qon . .

qoff −qoff − qon . . . qon .

qoff . −qoff − qon . . . .qon

qoff . . −qoff − qon . .qon .

qoff . . . −qoff − qon . .qon

. qoff . qoff . −2qoff .

. . qoff . qoff . −2qoff




(S4.87)

Then we write the diagonal (only non zero) components of U . For the unbound state we have

U11 =
1

ε2
Γ

γ

4∑

i=1

Dli + ∂xx (S4.88)

where Dli = −li∂li + ∂lili is the unbound relaxation operator. Then in the 2..5 states where just one tether
is bound we have (for example for the 2 state where tethers say 1 and 3 are bound)

U22 =
1

ε2

(
− Γ

2(2Γ + γ)
(l1 − l3)(∂l1 − ∂l3)− Γ

2γ
(l1 + l3)(∂l3 + ∂l1) +

Γ

2(2Γ + γ)
(∂l3 − ∂l1)2 +

Γ

2γ
(∂l3 + ∂l1)2

)

+
1

ε2
Γ

γ
(Dl2 +Dl4) +

1

ε

Γ

2Γ + γ
(−(l1 − l3)∂x + 2∂x(∂l1 − ∂l3)) + 1

(
2Γ

2Γ + γ
∂xx

)

(S4.89)

and similarly for the other 1 bond states. Finally for the 6 and 7 states, 2 bonds are formed. In these state
we have, for example for state #6 that contains the bonds 1− 3 and 2− 4

U66 =− Γ

2Γ + 2γ
(l1 − l3 + l2 − l4)(

1

ε
∂x −

1

ε2
1

2
∂l3 +

1

ε2
1

2
∂l1 −

1

ε2
1

2
∂l4 +

1

ε2
1

2
∂l2)

− 1

ε2
Γ

2γ
(l1 + l3)(∂l3 + ∂l1)− 1

ε2
Γ

2γ
(l2 + l4)(∂l4 + ∂l2)

+
Γ

2(2Γ + 2γ)

(
2∂x +

1

ε
(∂l1 + ∂l2 − ∂l3 − ∂l4)
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Γ

2γ

1

ε2
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(∂l1 + ∂l3)

2
+ (∂l2 + ∂l4)

2
]
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and reordering this last expression as a function of the scales in ε

U66 =
1

ε2

(
−Γ(l1 − l3 + l2 − l4)

2(2Γ + 2γ)
(∂l1 − ∂l3 + ∂l2 − ∂l4)− (l1 + l3)Γ

2γ
(∂l3 + ∂l1)− (l2 + l4)Γ

2γ
(∂l2 + ∂l4)

)

+
1

ε2

(
Γ

2(2Γ + 2γ)
(∂l1 + ∂l2 − ∂l3 − ∂l4)

2
+

Γ

2γ

[
(∂l1 + ∂l3)

2
+ (∂l2 + ∂l4)

2
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+
1

ε

(
2Γ

(2Γ + 2γ)
∂x (∂l1 + ∂l2 − ∂l3 − ∂l4)− Γ(l1 − l3 + l2 − l4)

2Γ + 2γ
∂x

)

+ 1

(
2Γ

2Γ + 2γ
∂xx

)
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Here the equilibrium distribution is

π =
1

√
2π
(

2 + 4 qoff

qon
+

q2
off

q2
on

)
(
q2
off/q

2
on, qoff/qon, qoff/qon, qoff/qon, qoff/qon, 1, 1

)T
. (S4.92)

We seek a solution to the expanded generator L = 1
ε2L0 + 1

εL1 + L2 as f = f0 + εf1 + ε2f2.... No steps
change in the resolution compared to previous calculations but for finding the solution at order 1. Here we
seek a solution

L0f1 = −L1f0 =




0

1
2Γ+γ (l1 − l3)

1
2Γ+γ (l1 − l4)

1
2Γ+γ (l2 − l4)

1
2Γ+γ (l2 − l3)

1
2Γ+2γ (l1 − l3 + l2 − l4)

1
2Γ+2γ (l1 − l4 + l2 − l3)




Γ∂xa (S4.93)

The solution is expected to preserve the symmetries of the problem and therefore we may seek

f1 =




u0l1 + u0l2 + u′0l3 + u′0l4

b1l1 + u1l2 + b′1l3 + u′1l4

...

b2l1 + b2l2 + b′2l3 + b′2l4

...




∂xa (S4.94)

where bn, b
′
n, un, u

′
n are constants that refer to bound and unbound configurations of the leg or the arms.

They solve a linear system of equations that possesses a single solution that we will report below.
The Fredholm alternative at the next order requires 〈∂tf0 − L2f0 − L1f1, π〉. We obtain, splitting the

relevant contributions

〈L1f1, π〉 = 0 +
(b1 − b′1)Γ

2Γ + γ
p1 +

2(b2 − b′2)Γ

2Γ + 2γ
p2 (S4.95)

and assembling all terms allows to get an effective long time diffusion equation ∂ta = Γ
Γ2,2

eff

∂xxa where

1

Γ2,2
eff

=
1

Γ
p0 +

1
Γ+γ/2(

1− b1−b
′
1

2

)
p1 +

1
Γ+2γ/2(

1−2
b2−b′2

2

)
p2 (S4.96)

which is similarly as in all cases a weighted harmonic sum of friction coefficients, with pn the probability to
have n bonds.
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The system of equations that the constants satisfy is

− 4qonu0 − u0 + 2qonb1 + 2qonu1 = 0

− 4qonu
′
0 − u′0 + 2qonb

′
1 + 2qonu

′
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2
=

γ
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1 + qonb

′
2 +

γ

2(2Γ + γ)
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2
= − γ

2Γ + γ
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′
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2
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γ

2Γ + 2γ
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1 − 2qoffb
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2 +

2γ

2(2Γ + 2γ)
(b2 − b′2)− b2 + b′2

2
= − γ

2Γ + 2γ
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Since the bottom and top tethers don’t exactly have the same positions it’s not possible to simplify further,
typically bn 6= −b′n. This really shows the structure of the equations.

N legs facing M arms The above system of equations allows to generalize the derivation for n bonds in
some N legs for M arms structure. For each possible number of bonds say n, the tethers are either unbound
(un, u

′
n) or bound (bn, b

′
n) and can exchange with their counterparts.

When there are n bonds, focusing on a connected pair, one can still bind more pairs, and there are
(M − n)(N − n) possible ways to do so. In any case the connected pair will remain connected during that
transformation. When there are n bonds, one can unbind n pairs. n− 1 possibilities lead to the given pair
still being bound.

For an unconnected leg (resp. arm), there are only M − n possibilities (resp. (N − n)) to form a bond
that will connect the unconnected one.

We obtain the general system of equations as

nqoffun−1 − (nqoff + (N − n)(M − n)qon)un + qon(M − n)bn+1 + qon(N − n− 1)(M − n)un+1 − un
Γ

γ
= 0
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Γ

γ
= 0
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− nΓ

2(2Γ + nγ)
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2

Γ

γ
= − Γ

2Γ + nγ
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+
nΓ

2(2Γ + nγ)
(bn − b′n)− bn + b′n

2

Γ

γ
=

Γ

2Γ + nγ

Γ + nγ/2

1− n(bn − b′n)/2
= Γn

(S4.98)

Looking for the average number of bonds contribution, we may assume similarly that for n = Nb we have
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un ' un−1 ' un = ū, and similarly for other quantities. We thus obtain the closed system of equations

−(M −Nb)qonū+ qon(M −Nb)b̄− ū
Γ

γ
= 0

−(N −Nb)qonū
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2
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2

Γ
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This finally yields

ΓNb = Γ +Nbγeff,N,M, with
1

γeff,N,M
=

1

γleg
eff

+
1

γarm
eff

, (S4.100)

with the effective friction due to legs as γleg
eff = γ + k

(
1
qoff

+ γ
k

(M−Nb)qon

qoff

)
and that due to arms γarm

eff =

γ + k
(

1
qoff

+ γ
k

(N−Nb)qon

qoff

)
. Here we see that the characteristic binding time (for example for the leg) is

τon = 1/(M −Nb)qon, due to the increased number of possibilities (M −Nb) due to multiple available arms.
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Figure S8: Effective diffusion for systems with an equal number of arms and legs all interacting with one
another (N = M) from stochastic simulations. We overlay the predictions using Eq. (S4.101) (Nb average)
and fully solving for the system of equations Eq. (S4.98) (Full solution). For reference we also show the
result of the full system in the case of N legs with M = 0 arms, from solving Eq. (S1.20). Here the values
of other parameters are qonΓ

k = 1.0 and qoffΓ
k = 0.8

Here we can explore limiting regimes. If there are as many legs as there are arms we have M = N , then
the effective friction simplifies to

ΓNb = Γ +
Nb
2

[
γ + k

(
1

qoff
+
γ

k

(N −Nb)qon

qoff

)]
, (S4.101)

where we see that the additional friction is divided by 2, as expected from the leg and arm case. One
notable difference is that here we see that the characteristic binding time τon = 1/(N −Nb)qon, due to the
increased number of possibilities due to multiple arms and legs. According to the large N limit investigated,
(N −Nb)qon does not necessarily diverge. In particular for very sticky systems (N −Nb) ' 0 and therefore
this part does not contribute significantly to the dynamics.
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If there are a large number of arms, say M � Nb, then we find γeff,M,N → γarm
eff is dominated by the arm

contributions to the effective friction.
These effective results capture well stochastic simulation results, as shown in Fig. S8.
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