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We present a method for constructing multiphase excitations in the generally nonintegrable sys-
tem of warm fluid equations describing plasma oscillations. It is based on autoresonant excitation
of nonlinear electron plasma waves by phase locking with small amplitude chirped-frequency pon-
deromotive drives. We demonstrate the excitation of these multiphase waves by performing fully
nonlinear numerical simulations of the fluid equations. We develop a simplified model based on a
weakly nonlinear analytical theory by applying Whitham’s averaged Lagrangian procedure. The
simplified model predictions are in good agreement with the results from the warm fluid simu-
lations. Such autoresonantly excited multiphase waves form coherent quasicrystalline structures,
which can potentially be used as plasma photonic or accelerating devices. Finally, we discuss the
laser parameters required for the autoresonant excitation of nonlinear waves in a plasma.

I. INTRODUCTION

The electron plasma wave is perhaps the most studied
collective oscillation in a plasma, yet the nonlinear be-
havior of the electron plasma wave, including fluid and
kinetic effects, remains an active topic of research [1–16]
even after decades of study. Nonlinear effects in elec-
tron plasma waves are important for many applications
of laser-plasma interactions, including ultra-high gradi-
ent accelerators [17], inertial confinement fusion (ICF)
[18], and photonics for extremely intense laser pulses [19].

In most applications, the electron plasma wave is con-
trolled by the ponderomotive force of one or more lasers.
For example, in plasma photonics, complex density struc-
tures are envisioned for transient plasma gratings [20],
holographic gratings [21], and polarizers [22–25]. Res-
onant plasma instabilities, and the concomitant density
modulations, lead to energy transfer between laser pulses.
In the Raman backscatter amplifier, energy in a long laser
pulse is transferred to a counterpropagating short pulse
[26]. Crossbeam energy transfer [27] makes use of a reso-
nance with an ion acoustic wave and is routinely utilized
to control asymmetries in target illumination at the Na-
tional Ignition Facility (NIF).

Autoresonance is a phenomenon of nonlinear science
that has ample applications in plasma, astro-, and atomic
physics [28, 29]. The basic idea of autoresonance lies
in the ability of a nonlinear system to remain in reso-
nance by phase locking (synchronization) with external
drives with adiabatically varying parameters. It has been
proposed as a method to create a large amplitude trav-
eling plasma wave using two copropagating lasers with
a chirped frequency mismatch [30] that passes through
the linear electron plasma wave frequency. In spatial
autoresonance, two constant frequency lasers propagate
parallel to a plasma density gradient [31] with the linear
resonance at a specific location in the plasma. In au-
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toresonance, the nonlinear oscillator maintains synchro-
nism with a chirped-frequency drive so long as a thresh-
old condition, which relates the chirp rate to the drive
amplitude, is satisfied. Autoresonance can be used as a
method to excite large amplitude traveling ion acoustic
waves [32, 33].

Autoresonant excitation of electron plasma and ion
acoustic waves is not limited to traveling waves. It was
shown in Ref. [34] that a large amplitude standing ion
acoustic wave can be formed using two counterpropa-
gating ponderomotive drives with a chirped frequency
difference. This standing wave comprises a particular
nonlinear two-phase ion acoustic wave structure, wherein
each locked phase corresponds to one of the counter-
propagating traveling drives. Large amplitude standing
electron plasma waves can be created with autoresonant
drives [35].

It has been shown, using both theory and numerical
simulations, that one can use autoresonance to construct
multiphase solutions for integrable systems, such as the
Korteweg–de Vries (KdV) equation [36], the Toda lattice
[37], the nonlinear Schrödinger equation [38], and the
sine-Gordon equation [39]. Multiphase nonlinear waves
are significantly more difficult to analyze theoretically
than traveling waves, which can be described by a sin-
gle phase. The theory for autoresonant wave excitation,
nevertheless, has been extended to two-phase nonlinear
waves. In a recent publication [40], we demonstrated how
autoresonance can be used to create two-phase solutions
in the generally nonintegrable system of equations de-
scribing ion acoustic waves. This extends the earlier work
where the autoresonant excitation was analyzed for non-
linear single-phase [32, 33] and standing [34] ion acoustic
waves. In Ref. [35], it was shown that autoresonance
can be used to excite large amplitude standing electron
plasma waves, which can be regarded as a particular case
of a more general two-phase solution. In this paper we
will show that the system describing plasma waves indeed
exhibits nonlinear two-phase solutions that are character-
istic of integrable partial differential equations. Similar
to the case of ion acoustic waves [40], space-time qua-
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FIG. 1. The colormap of the electron density ne (x, τ) as a
function of slow time τ =

√
α1t and coordinate x obtained

by solving the fully nonlinear equations (1)–(3). (a) Two-
phase autoresonant plasma wave excited by two driving coun-
terpropagating traveling waves with k1 = 1 and k2 = −2.
(b) Single-phase autoresonant plasma wave excited solely by
the first driving component with k1 = 1. (c) Single-phase au-
toresonant plasma wave excited solely by the second driving
component with k2 = −2.

sicrystalline structures formed by the autoresonantly ex-
cited multiphase nonlinear plasma waves can potentially
be used as plasma photonic or, perhaps, even, as special-
ized accelerating structures.

This paper is organized as follows. In Sec. II, we
present a warm fluid model of partial differential equa-
tions describing electron plasma waves, and we demon-
strate, through fully nonlinear numerical simulations,
that it supports a two-phase solution. In Sec. III, we ap-
ply Whitham’s averaged variational principle [41, 42] to
the Lagrangian formulation of the fluid equations and de-
velop an analytical weakly nonlinear theory in the form of
a system of coupled ordinary differential equations; this
system is shown to yield a good approximation of the
fully nonlinear model. In Sec. IV, we estimate the laser
pulse intensity and duration required for autoresonant
excitation of nonlinear plasma and ion acoustic waves.
Finally, a summary and concluding remarks are given in
Sec. V.
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FIG. 2. The colormap of the electron density ne (x, τ) as
a function of slow time τ =

√
α1t and coordinate x obtained

by solving the weakly nonlinear equations (32)–(35). (a) Two-
phase autoresonant plasma wave excited by two driving coun-
terpropagating traveling waves with k1 = 1 and k2 = −2.
(b) Single-phase autoresonant plasma wave excited solely by
the first driving component with k1 = 1. (c) Single-phase au-
toresonant plasma wave excited solely by the second driving
component with k2 = −2.

II. NUMERICAL STUDY OF THE EXCITATION
OF MULTIPHASE NONLINEAR PLASMA

WAVES

A warm fluid model of electron plasma waves is con-
stituted by a system of continuity, momentum, and Pois-
son’s equations:

σxt + [(1 + σx)ψx]x = 0, (1)

ψxt + ψxψxx = (φ+ φd)x −∆2 (1 + σx)σxx, (2)

φxx = κ2φ+ σx. (3)

Here we introduced potentials σ and ψ, which are de-
fined through ne = 1 + σx, v = ψx, where ne is the
electron density and v is the fluid velocity. Other vari-
ables are the electric potential φ and the driving poten-
tial φd. Parameter κ is the effective screening parame-
ter (see Refs. [12, 35]), while ∆2 = 3u2th, where uth is
the electron thermal velocity which is assumed constant.
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FIG. 3. The colormap of the electron fluid velocity v (x, τ) as
a function of slow time τ =

√
α1t and coordinate x obtained

by solving the fully nonlinear equations (1)–(3). (a) Two-
phase autoresonant plasma wave excited by two driving coun-
terpropagating traveling waves with k1 = 1 and k2 = −2.
(b) Single-phase autoresonant plasma wave excited solely by
the first driving component with k1 = 1. (c) Single-phase au-
toresonant plasma wave excited solely by the second driving
component with k2 = −2.

All variables are dimensionless; specifically, the time is
measured in terms of the inverse plasma frequency ω−1

p ,
the distance is normalized to k−1, where k is the typi-
cal wave vector, the plasma density is normalized to the
unperturbed plasma density, and the electric and driving
potentials are normalized to meω

2
p/ek

2.

We consider the driving term consisting of the two
small amplitude traveling wave ponderomotive drives:

φd = ε1 cos (θd,1) + ε2 cos (θd,2) , (4)

where θd,i = kix −
∫
ωd,i (t) dt (i = 1, 2) are driving

phases with wave vectors ki and slowly varying driving
frequencies ωd,i (t) = −dθd,i/dt.

To illustrate autoresonant excitation of single- and
multiphase plasma waves, let us consider a representa-
tive example of two driving counterpropagating traveling
waves with wave vectors k1 = 1 and k2 = −2. We choose
their chirped driving frequencies as
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FIG. 4. The colormap of the electron fluid velocity v (x, τ) as
a function of slow time τ =

√
α1t and coordinate x obtained

by solving the weakly nonlinear equations (32)–(35). (a) Two-
phase autoresonant plasma wave excited by two driving coun-
terpropagating traveling waves with k1 = 1 and k2 = −2.
(b) Single-phase autoresonant plasma wave excited solely by
the first driving component with k1 = 1. (c) Single-phase au-
toresonant plasma wave excited solely by the second driving
component with k2 = −2.

ωd,i =

{
ωp,i + αit, t ≤ 0,

ωp,i + αiTi arctan
(

t
Ti

)
, t > 0,

(5)

where Ti = 2∆ωi/παi (i = 1, 2), α1 = α2 = 2.5 × 10−5,
∆ω1 = ∆ω2 = 0.008 and ωp,i (i = 1, 2) are the frequen-
cies given by the linear plasma wave dispersion relation:

ωp,i (ki) =

√
1

1 + κ2

k2
i

+∆2k2i . (6)

We also gradually increase the driving amplitudes as
εi = ε̄i

[
0.5 + arctan

(
t
√
αi/10

)
/π

]
, ε̄i = 2 × 10−3 (i =

1, 2). We take the electron thermal velocity and the ef-
fective screening parameter to be uth = 0.1 and κ = 0.5,
respectively. We use the wave vector of the first drive k1
as the typical wave vector k (hence, k1 = 1).

The system of nonlinear partial differential equa-
tions (1)–(3) can be solved numerically. To do this we
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use a pseudospectral method [43] in space and the fourth-
order Runge–Kutta method for the time advancement,
similar to the procedure employed in Refs. [33–35, 40].
We run simulations from τ = −10 and stop the driving
at τ = 10, where τ =

√
α1t is a slow time variable. The

results of the fully nonlinear numerical simulations with
the parameters specified above are presented in Figs. 1,
3, and 5.

Figure 1 shows a colormap of the electron density
ne (x, τ) as a function of slow time τ and coordinate
x for τ between τ = 9.5 and τ = 10. Figure 1(a)
shows a two-phase nonlinear electron plasma wave ex-
cited by two small amplitude chirped-frequency travel-
ing waves with k1 = 1 and k2 = −2. Figure 1(b) shows
a single-phase plasma wave autoresonantly excited only
by the first chirped-frequency traveling wave drive with
k1 = 1, using the same parameters in the drive as in
Fig. 1(a) but with vanishing ε2, while Fig. 1(c) shows a
single-phase plasma wave autoresonantly excited by the
chirped-frequency traveling wave drive with k2 = −2, us-
ing the same parameters in the drive as in Fig. 1(a) but
with vanishing ε1.

Figure 3 is identical to Fig. 1 but shows a colormap
of the fluid velocity v (x, τ) as a function of slow time
τ and coordinate x instead. We can clearly see from
Figs. 1 and 3 that a highly nonlinear large amplitude
(δne/ne ∼ 1) two-phase, quasiperiodic in space and time,
structure is excited by the drives. We can also see that
the directions of the phase velocities of the single-phase
waves [see Figs. 1(b) and 1(c)] correspond to the char-
acteristic directions seen in the two-phase solution [see
Fig. 1(a)]. We also note that, as in the case of ion acous-
tic waves [40], the nonlinear structures persist even after
we turn off the small amplitude drives (not shown in the
figures).

Figure 5 shows the maximum value over x of the elec-
tron density ne (x, τ) [Fig. 5(a)] and of the fluid velocity
v (x, τ) [Fig. 5(b)] vs slow time τ =

√
α1t from the start

of the simulation at τ = −10 to τ = 10. We can see
that the system passes the linear plasma resonance at
τ = 0 and then the amplitudes of both waves rapidly in-
crease, reaching large values. This happens because, due
to nonlinear effects, the waves alter their amplitudes in
a way that lets them stay phase-locked with the external
drives, allowing the continuous transfer of energy from
the drives to the excitations.

To better understand the nature of the double au-
toresonance, and to have a tool to select the appropri-
ate parameters required to establish the autoresonance,
we need to develop a theory. To that end, in the next
section, we will formulate the problem in the Lagrangian
language and then use Whitham’s averaged variational
principle [41, 42] to obtain the simplified weakly nonlin-
ear equations describing the evolution of the system.

III. WEAKLY NONLINEAR THEORY AND
WHITHAM’S VARIATIONAL METHOD

The system of nonlinear equations (1)–(3) can be de-
scribed using the Lagrangian formalism. Indeed, one can
check that Eqs. (1)–(3) are, in fact, the Euler–Lagrange
equations of the form

∂L

∂σ
− ∂

∂t

∂L

∂σt
− ∂

∂x

∂L

∂σx
= 0, (7)

∂L

∂ψ
− ∂

∂t

∂L

∂ψt
− ∂

∂x

∂L

∂ψx
= 0, (8)

∂L

∂φ
− ∂

∂t

∂L

∂φt
− ∂

∂x

∂L

∂φx
= 0, (9)

which emerge from the following Lagrangian density:

L =
1

2
φ2
x +

1

2
κ2φ2 − 1

2
(ψtσx + ψxσt)−

1

2
ψ2
x (1 + σx)

− 1

2
∆2σ2

x

(
1 +

1

3
σx

)
+ σx (φ+ φd) . (10)

Since we use slowly varying driving frequencies, it is
appropriate to exploit a natural separation into slow and
fast dynamics. We now proceed to derive equations de-
scribing the slow evolution of the waves in space and time.
Whitham [41, 42] demonstrated how to obtain such equa-
tions on the basis of the Lagrangian formalism. In this
section, we will employ Whitham’s averaged Lagrangian
method to obtain weakly nonlinear equations describing
the evolution of the slow variables. We will closely fol-
low the procedure that we used to study multiphase ion
acoustic waves described in Ref. [40].

Let us first examine the linear stage of the evolution.
If we start from the equilibrium solution (ne = 1, v = 0,
φ = 0), then it is straightforward to show that during
the linear stage the solutions are given by

σ = Ã10 sin (θ1) + Ã01 sin (θ2) , (11)

ψ = B̃10 sin (θ1) + B̃01 sin (θ2) , (12)
φ = C10 cos (θ1) + C01 cos (θ2) , (13)

where the linear amplitudes satisfy

C10 =
ε1

(ω2
1 −∆2k21)

(
1 + κ2

k2
1

)
− 1

, (14)

C01 =
ε2

(ω2
2 −∆2k22)

(
1 + κ2

k2
2

)
− 1

, (15)

Ã10 = −k1
(
1 +

κ2

k21

)
C10, (16)

Ã01 = −k2
(
1 +

κ2

k22

)
C01, (17)
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B̃10 = −ω1

(
1 +

κ2

k21

)
C10, (18)

B̃01 = −ω2

(
1 +

κ2

k22

)
C01. (19)

The form of the driving potential together with the
linear stage solution suggest using the following weakly
nonlinear ansatz describing the two-phase solutions for
the potentials σ, ψ, and φ:

σ = Ã10 sin (θ1) + Ã01 sin (θ2)

+ Ã11 sin (θ1 + θ2) + Ã1,−1 sin (θ1 − θ2)

+ Ã20 sin (2θ1) + Ã02 sin (2θ2) , (20)

ψ = B̃10 sin (θ1) + B̃01 sin (θ2)

+ B̃11 sin (θ1 + θ2) + B̃1,−1 sin (θ1 − θ2)

+ B̃20 sin (2θ1) + B̃02 sin (2θ2) , (21)

φ = C10 cos (θ1) + C01 cos (θ2)

+ C11 cos (θ1 + θ2) + C1,−1 cos (θ1 − θ2)

+ C20 cos (2θ1) + C02 cos (2θ2) , (22)

where θi = kix −
∫
ωi (t) dt (i = 1, 2) are phases of the

solutions.
Note that the above solutions correspond not to the

superposition of two separate nonlinear waves as in
Ref. [44], but to a single two-phase nonlinear wave,
i.e., the solutions have the form f(θ1, θ2) as opposed to
f1(θ1) + f2(θ2).

To explicitly separate slow and fast phase variables we
introduce phase mismatches Φi = θi − θd,i (i = 1, 2) be-
tween phases of the solutions θi and the driving phases
θd,i, so that the driving term given by Eq. (4) becomes
φd = ε1 cos (θ1 − Φ1) + ε2 cos (θ2 − Φ2). It should be
understood then that the coefficients in our ansatz and
phase mismatches Φ1, Φ2 are slow functions of time,
while the phases θ1, θ2 are rapidly varying functions of
time.

According to Whitham’s variational principle, we need
to obtain the averaged Lagrangian density L̄ by integrat-
ing the full Lagrangian density (10) over the rapidly vary-
ing phases θ1, θ2:

L̄ = ⟨L⟩θ1,θ2 =

∫
L
dθ1
2π

dθ2
2π

. (23)

The resulting averaged Lagrangian density L̄ will be a
function of the slowly varying amplitudes and the phase

(a)

(b)

FIG. 5. The maximum over x of the electron density ne (x, τ)
(a) and the electron fluid velocity v (x, τ) (b) vs slow time
τ =

√
α1t for a two-phase autoresonant ion acoustic wave ex-

cited by two driving counterpropagating traveling waves with
k1 = 1 and k2 = −2. The solutions were obtained by solving
the fully nonlinear equations (1)–(3) (denoted as “fully nonlin-
ear”, blue line) and the weakly nonlinear equations (32)–(35)
(denoted as “weakly nonlinear”, pink line). The dashed black
line represents the absolute value of the phase velocity of the
second driving wave ωd,2 (τ) / |k2| vs τ .

mismatches only. This averaged Lagrangian is presented
in Appendix A.

After obtaining the averaged Lagrangian density L̄, we
can use the variational principle δ

(∫
L̄dxdt

)
= 0 to de-

rive the weakly nonlinear equations that describe the evo-
lution of slowly modulated parameters (amplitudes and
phase mismatches).

Following Ref. [40], we first take variations with respect
to the phases and, after keeping the lowest significant
order terms and using the linear relations (16)–(19), we
obtain
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d

dt

[
ω1

(
1 +

κ2

k21

)
C2

10

]
= −ε1C10 sin (Φ1) , (24)

d

dt

[
ω2

(
1 +

κ2

k22

)
C2

01

]
= −ε2C01 sin (Φ2) . (25)

Taking variations of the averaged Lagrangian density L̄
with respect to the first-order amplitudes and expanding
around the linear dispersion relation ωi = ωp,i + ∆ωi

(i = 1, 2), we obtain

∆ω1 = −2ω1k
2
1

(
1 +

κ2

k21

)2

a (k1, ω1)C
2
10

− 2ω2k
2
2

(
1 +

κ2

k22

)2

b (k1, ω1; k2, ω2)C
2
01

+
ε1

2ω1

(
1 + κ2

k2
1

)
C10

cos (Φ1) , (26)

∆ω2 = −2ω2k
2
2

(
1 +

κ2

k22

)2

c (k2, ω2)C
2
01

− 2ω1k
2
1

(
1 +

κ2

k21

)2

b (k1, ω1; k2, ω2)C
2
10

+
ε2

2ω2

(
1 + κ2

k2
2

)
C01

cos (Φ2) , (27)

where the functions a (k1, ω1), b (k1, ω1; k2, ω2), c (k2, ω2)
are defined in Appendix B.

Notice that for ε1 = ε2 = 0, C01 = 0, and κ = 0, we
obtain from Eqs. (26)–(27) the nonlinear frequency shift
for a single nonlinear wave in the absence of the drives:

∆ω1

ω1
= k41

6 + 9
∆2k2

1

ω2
1

+
(

∆2k2
1

ω2
1

)2

12
(
1− ∆2k2

1

ω2
1

) C2
10, (28)

which agrees with the nonlinear frequency shift for a sin-
gle nonlinear wave in the laboratory frame (see Ref. [13]
and references therein).

Finally, assuming a slow drive of the form ωd,i (t) =
ωp,i + fi (t) and defining the effective action variables
and rescaled amplitudes through

I1 = 2ω1k
2
1

(
1 +

κ2

k21

)2

C2
10, (29)

I2 = 2ω2k
2
2

(
1 +

κ2

k22

)2

C2
01, (30)

ϵ1 = −2 |k1| ε1, ϵ2 = −2 |k2| ε2, (31)
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FIG. 6. The effective actions I1, I2 (a) and the phase mis-
matches Φ1,Φ2 (b) as functions of slow time τ =

√
α1t ob-

tained by solving the weakly nonlinear equations (32)–(35).

we can rewrite Eqs. (24)–(27) and obtain the following
system of coupled weakly nonlinear evolution equations:

dI1
dt

= ϵ1

√
I1
2ω1

sin (Φ1) , (32)

dI2
dt

= ϵ2

√
I2
2ω2

sin (Φ2) , (33)

dΦ1

dt
= aI1 + bI2 + f1 (t) +

ϵ1

2
√
2ω1I1

cos (Φ1) , (34)

dΦ2

dt
= bI1 + cI2 + f2 (t) +

ϵ2

2
√
2ω2I2

cos (Φ2) . (35)

The coupled weakly nonlinear equations (32)–(35)
comprise a system of ordinary differential equations and
can be easily solved using any modern numerical li-



7

brary. Thus, the system of the weakly nonlinear equa-
tions (32)–(35) allows us to obtain straightforward nu-
merical solutions as well as to study the conditions for
double autoresonance. The possibility of exciting double
autoresonance and limitations on the parameter space in
the systems governed by Eqs. (32)–(35) were discussed in
detail in Ref. [40] (see also Ref. [45]), so we will not repeat
them here. These results can be easily reproduced for the
functional forms of a (k1, ω1), b (k1, ω1; k2, ω2), c (k2, ω2)
given in Appendix B.

The results of the numerical solution of the weakly non-
linear system (32)–(35) are presented in Figs. 2 and 4–6.
The parameters used in the simulations are identical to
the ones used in the fully nonlinear numerical simula-
tions of the previous section. Figure 2 shows a colormap
of the electron density ne (x, τ) vs slow time τ and co-
ordinate x (as in Fig. 1), while Fig. 4 shows a similar
colormap but for the fluid velocity v (x, τ) (as in Fig. 3).
After comparing Fig. 1 with Fig. 2 and Fig. 3 with Fig. 4,
we can conclude that the weakly nonlinear theory works
well in modeling the original system. This should be even
clearer from Fig. 5, which compares the maximum val-
ues over x of the electron densities ne (x, τ) [Fig. 5(a)]
and of the fluid velocities v (x, τ) [Fig. 5(b)] in the orig-
inal fully nonlinear simulations (blue color) and in the
weakly nonlinear model (pink color). Indeed, despite a
high degree of nonlinearity, the agreement is quite decent.
Figure 5(b) also shows the absolute value of the phase ve-
locity of the second driving wave with k2 = −2. We can
see that the fluid velocity is below the absolute values of
the phase velocities of the driving waves, which means
we are below the wave breaking limit for the parameters
chosen.

Figure 6 shows the effective actions I1, I2 [Fig. 6(a)]
and the phase mismatches Φ1,Φ2 [Fig. 6(b)] vs slow time
τ =

√
α1t. We can clearly see that the phase mismatches

oscillate around −π, signifying phase locking, while the
effective actions I1, I2 enter the resonance at τ = 0 and
then remain in the resonance and grow rapidly.

It is known that the autoresonant phenomenon occurs
only when the driving amplitudes exceed certain thresh-
old values; see Refs. [40, 45]. The threshold nature of the
autoresonance manifests itself for the system described in
this paper as well. As was discussed in Ref. [40], it is diffi-
cult to obtain the general analytical result for the double
autoresonance thresholds for the systems described by
Eqs. (32)–(35), and the thresholds are complicated func-
tions of α1, α2, a, b, c. However, the threshold condition
for a single-phase wave, i.e., when one of the driving am-
plitudes in Eqs. (32)–(35) vanishes, is well known [37]:

|ϵ1| > 1.644

√
ω1

2 |a (k1, ω1)|
α

3
4 , (36)

where we assumed the presence of the first drive only
(ϵ2 = 0) and the linear chirp rate α.

In the next section, we will use the threshold condi-
tion (36) to estimate the experimental parameters, such

as laser intensity and laser pulse length required for
the autoresonant excitation of plasma and ion acoustic
waves.

IV. ESTIMATES OF LASER PARAMETERS

In this section we estimate the required laser pulse in-
tensity and length necessary for autoresonant excitation
of large amplitude waves. We will make estimates of
the autoresonant excitation of both plasma waves dis-
cussed in this paper and of ion acoustic waves studied in
Ref. [40]. Since the threshold conditions for double au-
toresonance are difficult to obtain in generality, we will
consider autoresonant excitation of single-phase waves
here. Nevertheless, as indicated by numerical simula-
tions, the single-phase estimates should be good proxies
for multiphase waves as well.

A. Ion acoustic waves

First, let us consider the case of ion acoustic waves
discussed in Ref. [40]. In this subsection, all the variables
are as they are defined in Ref. [40].

The ponderomotive drive can be created by launching
two co- or counterpropagating laser pulses of similar in-
tensity and duration with varying (chirped) frequencies;
the associated beat wave will produce the ponderomotive
potential with the required properties.

From the single-phase threshold condition [Eq. (36)],
using definitions of the dimensionless quantities from
Ref. [40], we find the following approximate condition for
the autoresonance in the system of ion acoustic waves:

LHS (I, λ, ne/nc, Te) > RHS (k1, α) , (37)

where we introduced the functions

LHS (I, λ, ne/nc, Te) =
Up [eV]

Te [eV]
, (38)

RHS (k1, α) = 1.644

√
ω1

2 |a (k1, ω1)|
|k1|

2 (ω2
1 −∆2k21)

α
3
4 .

(39)

Here, Te is the initial electron temperature and Up is
the ponderomotive energy given by

Up [eV] = 9.33× 10−14I

[
W

cm2

]
λ2 [µm]

√
1− ne

nc
, (40)

where I is the laser intensity, λ is the laser wavelength,
and ne/nc is the ratio of the initial electron density to the
critical plasma density. Inside the function RHS (k1, α)
[Eq. (39)] we have the dimensionless wave vector k1 (mea-
sured in units of the inverse Debye length λ−1

D ) and the
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k1
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α = 10−5

α = 10−4
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FIG. 7. Approximate thresholds for autoresonant exci-
tation of single-phase ion acoustic waves. The figure
shows the LHS

(
I, λ = 1 µm, ne/nc = 10−2, Te = 30 eV

)
given

by Eq. (38) for different values of the laser intensity I [I =
1011 W/cm2 (solid black), I = 1012 W/cm2 (dashed black),
I = 1013 W/cm2 (dash-dotted black), and I = 1014 W/cm2

(dotted black)] and the RHS (k1, α) given by Eq. (39) for dif-
ferent values of chirp rate α [α = 10−5 (solid blue), α = 10−4

(dashed orange), and α = 10−3 (dash-dotted green)] as func-
tions of k1. For the autoresonance to occur, the RHS must
be below the horizontal line representing the LHS.

dimensionless frequency ω1 (measured in units of the ion
plasma frequency ωpi) given by the linear ion acoustic
wave dispersion relation (see Ref. [40]); the definitions of
a (k1, ω1), ω1, k1, ∆, and α are from Ref. [40].

Figure 7 shows the LHS given by Eq. (38) for differ-
ent values of the laser intensity I and the RHS given by
Eq. (39) for different values of chirp rate α as functions
of dimensionless k1 (measured in λ−1

D ) for λ = 1 µm,
ne/nc = 10−2, Te = 30 eV, and cold ions (∆ = 0). For
the autoresonance to occur, the RHS for given values of
α and k1 must be below the horizontal line representing
the LHS for a given value of I.

We note that one must take into account additional
physical restrictions on the accessible values of k1. For
example, to avoid strong Landau damping, k1 cannot be
too large. We now estimate the required laser intensity
for two realistic values of the dimensionless wave vector
k1 = 0.1 and k1 = 1. We see from Fig. 7 that for the cho-
sen parameters, if k1 = 0.1, autoresonance occurs when
the laser intensity exceeds I ≈ 1014W/cm2 for α = 10−3,
I ≈ 1013 W/cm2 for α = 10−4, and I ≈ 1012 W/cm2 for
α = 10−5, while if k1 = 1, the intensity should exceed
I ≈ 1013 W/cm2 for α = 10−3, I ≈ 1012 W/cm2 for
α = 10−4, and I ≈ 1011 W/cm2 for α = 10−5.

Now let us estimate the laser duration required to au-
toresonantly excite large amplitude waves. Since the elec-

10−5 10−4 10−3

α

100

101

102

103

ti
m

e
in

p
s

IAW, k1 = 1

IAW, k1 = 0.1

EPW, k1 = 1

FIG. 8. Estimate of the laser pulse length required for the
autoresonant excitation of nonlinear waves. The figure shows
tpulse given by Eq. (41) in picoseconds required for (δne/ne)1
to reach 0.25 in autoresonant excitation of ion acoustic waves
(IAW) for k1 = 0.1 (orange line with triangle markers) and
k1 = 1 (blue line with circle markers) as functions of chirp
rate α. In addition, the figure shows tpulse given by Eq. (44)
in picoseconds required for (δne/ne)1 to reach 0.25 in autores-
onant excitation of electron plasma waves (EPW) for k1 = 1
(green line with square markers) as a function of chirp rate α.

tron density in Ref. [40] can be approximated as eφ,
we can estimate in the leading linear order the rela-
tive density increase as (δne)1 ≈ (δφ)1 ≈ C10. Then,
using the asymptotic solution for the effective action
Ī1 ≈ [α/ |a (k1, ω1)|] t and its connection with C10 (see
definitions of Ref. [40]), we can estimate the dimension-
less laser pulse length (measured in units of ω−1

pi ) required
to reach (δne/ne)1 as

tpulse =

[(
δne

ne

)
1

]2
2ω1k

2
1

(ω2
1 −∆2k21)

2

|a (k1, ω1)|
α

, (41)

where the definitions of a (k1, ω1), ω1, k1, ∆, and α are
from Ref. [40].

Figure 8 plots the pulse length determined by Eq. (41)
in picoseconds as a function of chirp rate α for
(δne/ne)1 = 0.25 for k1 = 0.1 (orange line with trian-
gle markers) and k1 = 1 (blue line with circle markers).
Other parameters are the same as in Fig. 7, namely,
λ = 1 µm, ne/nc = 10−2, Te = 30 eV, ∆ = 0. We
can see that for α = 10−4 the laser pulse length of
tpulse ≈ 10–100 ps is required, while for α = 10−3 the
laser pulse length of tpulse ≈ 1–10 ps should be sufficient.

We note that the chosen linear increase in the relative
density (δne/ne)1 = 0.25 corresponds in practice to large
density fluctuations on the order of δne/ne ∼ 1. We also
note that even though for the two-phase case there are
additional restrictions on the values of ε1, ε2, α1, α2, k1,
and k2, the actual requirements for the laser intensity
and duration can be even lower than for the single-phase
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FIG. 9. Approximate thresholds for autoresonant excita-
tion of single-phase electron plasma waves. The figure
shows the LHS

(
I, λ = 1 µm, ne/nc = 10−3, Te = 30 eV

)
given

by Eq. (42) for different values of the laser intensity I [I =
108 W/cm2 (solid black), I = 109 W/cm2 (dashed black),
I = 1010 W/cm2 (dash-dotted black), and I = 1011 W/cm2

(dotted black)] and the RHS (k1, α) given by Eq. (43) for dif-
ferent values of chirp rate α [α = 10−5 (solid blue), α = 10−4

(dashed orange), and α = 10−3 (dash-dotted green)] as func-
tions of k1. For the autoresonance to occur, the RHS must
be below the horizontal line representing the LHS.

case, because the excited electron density in the “interfer-
ence” pattern of the two drives can be larger than for the
individual drives. Indeed, this can be seen by compar-
ing δne/ne ≈ 0.2 [Figs. 1(b) and 1(c)] for a single-phase
excitation with δne/ne ≈ 0.8 [Fig. 1(a)] for a two-phase
excitation.

Thus, we can expect that the laser intensities on the
order of I ≈ 1012–1014 W/cm2 and the laser duration
on the order of tpulse ≈ 1–1000 ps should be sufficient to
autoresonantly drive a single-phase ion acoustic wave.

B. Electron plasma waves

Now we can make similar estimates but for the case
of electron plasma waves discussed in this paper. In this
subsection, all the variables are as they are defined in the
current paper.

The single-phase threshold condition (36) can again
be presented in the form given by Eq. (37), but with the
following definitions for the functions LHS and RHS:

LHS (I, λ, ne/nc, Te) =
Up [eV]

meω2
p/k

2 [eV]
, (42)

RHS (k1, α) = 1.644

√
ω1

2 |a (k1, ω1)|
1

2 |k1|
α

3
4 . (43)

Here, Up is the ponderomotive energy given by

Eq. (40). Inside the function RHS (k1, α) [Eq. (43)] we
have the dimensionless wave vector k1 (measured in k)
and the dimensionless frequency ω1 (measured in units
of the electron plasma frequency ωp) given by the linear
plasma wave dispersion relation [Eq. (6)]; the definition
of the function a (k1, ω1) is from Appendix B, while ω1,
k1, κ, ∆, and α are as they are defined in this paper.

Figure 9 shows the LHS given by Eq. (42) for differ-
ent values of the laser intensity I and the RHS given
by Eq. (43) for different values of chirp rate α as func-
tions of the dimensionless k1 (measured in units of k) for
λ = 1 µm, ne/nc = 10−3, Te = 30 eV, κ = 0.1. Since
we consider in this estimate the threshold for one wave,
we measure k1 in the wave vector of the drive; thus, the
relevant value of k1 is k1 = 1. We see from Fig. 9 that
autoresonance should occur if the laser intensity exceeds
I ≈ 1010 W/cm2 for α = 10−3, I ≈ 109 W/cm2 for
α = 10−4, and I ≈ 108 W/cm2 for α = 10−5.

As in the case of ion acoustic waves, we can estimate
the required laser pulse duration for the autoresonant ex-
citation of electron plasma waves. In the leading linear
order, the relative density increase is (δne)1 ≈ k1Ã10.
Then, using the asymptotic solution for the effective ac-
tion Ī1 ≈ [α/ |a (k1, ω1)|] t and its connection with Ã10,
we can estimate the dimensionless laser pulse length
(measured in units of ω−1

p ) required to reach (δne/ne)1
as

tpulse =

[(
δne

ne

)
1

]2
2ω1 |a (k1, ω1)|

αk21
, (44)

where the definition of the function a (k1, ω1) is from Ap-
pendix B, while ω1, k1, κ, ∆, and α are as they are defined
in this paper.

Figure 8 plots the pulse length determined by Eq. (44)
in picoseconds as a function of chirp rate α for
(δne/ne)1 = 0.25 (green line with square markers).
Other parameters are the same as in Fig. 9, namely,
λ = 1 µm, ne/nc = 10−3, Te = 30 eV, κ = 0.1. We can
see from Fig. 8 that for α = 10−5 the laser pulse length of
tpulse ≈ 100 ps is required, for α = 10−4 the pulse length
is estimated as tpulse ≈ 10ps, and for α = 10−3 the pulse
length of tpulse ≈ 1 ps should be sufficient.

Thus, we can expect that the laser intensities on the
order of I ≈ 109–1011 W/cm2 and the laser duration
on the order of tpulse ≈ 1–100 ps should be sufficient to
autoresonantly drive a single-phase electron plasma wave.

V. CONCLUSIONS

We have shown how to use phase locking (autoreso-
nance) with small amplitude chirped-frequency pondero-
motive drives to create and control strongly nonlinear
two-phase plasma waves. The drives can be controlled
independently as long as the conditions for the double
autoresonance are met. We have illustrated these non-
linear two-phase waves through fully nonlinear numerical
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simulations. Using Whitham’s averaged Lagrangian pro-
cedure we analytically developed a reduced set of ordi-
nary differential equations for the amplitudes and phases
of the waves. This analytical weakly nonlinear theory is
necessary to understand how to choose the appropriate
parameters to drive and control such two-phase struc-
tures.

Similar to the case of ion acoustic waves [40], the au-
toresonantly excited multiphase waves form coherent spa-
tiotemporal quasicrystalline structures, whose properties
as accelerating structures and optical elements require
further investigation. These nonlinear two-phase struc-
tures, have not been seen, to our knowledge, in exper-
iments. The autoresonant excitation described here re-
quires a balance between the pulse amplitude and chirp
rate, as given by the threshold, and is also constrained
by physics not in our model.

We have made initial estimates for the required laser
intensities and pulse lengths. These estimates suggest
that the autoresonant method of creating large ampli-

tude coherent structures in plasmas is promising but re-
quires additional investigation. Should the autoresonant
method of exciting plasma structures prove to be effec-
tive, it would allow for large amplitude structures to be
excited with relatively low intensity and energy lasers.
First principles models such as particle-in-cell (PIC) sim-
ulations will be necessary to further establish the practi-
cal aspects of the experimental realization of the autores-
onant electron plasma or ion acoustic waves, to gauge the
influence of other possible effects (collisional and colli-
sionless damping, various instabilities, higher dimension-
ality effects, kinetic effects, such as trapping, etc.), and
to study their long-term stability.
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Appendix A: The averaged Lagrangian density

The averaged Lagrangian density L̄ is the sum of the following terms:〈
1

2
φ2
x

〉
θ1,θ2

=
1

4
k21C

2
10 +

1

4
k22C

2
01 +

1

4
(k1 + k2)

2
C2

11 +
1

4
(k1 − k2)

2
C2

1,−1 + k21C
2
20 + k22C

2
02, (A1)

〈
1

2
κ2φ2

〉
θ1,θ2

=
1

4
κ2C2

10 +
1

4
κ2C2

01 +
1

4
κ2C2

11 +
1

4
κ2C2

1,−1 +
1

4
κ2C2

20 +
1

4
κ2C2

02, (A2)

〈
−1

2
(ψtσx + ψxσt)

〉
θ1,θ2

=
1

2
ω1k1B̃10Ã10 +

1

2
ω2k2B̃01Ã01

+ 2ω1k1B̃20Ã20 + 2ω2k2B̃02Ã02

+
1

2
(ω1 − ω2) (k1 − k2) B̃1,−1Ã1,−1 +

1

2
(ω1 + ω2) (k1 + k2) B̃11Ã11, (A3)

〈
−1

2
ψ2
x (1 + σx)

〉
θ1,θ2

= −1

4
k21B̃

2
10 −

1

4
k22B̃

2
01 − k21B̃

2
20 − k22B̃

2
02 −

1

4
(k1 + k2)

2
B̃2

11 −
1

4
(k1 − k2)

2
B̃2

1,−1

− 1

2
k32

(
Ã01B̃01B̃02 +

1

2
Ã02B̃

2
01

)
− 1

2
k31

(
Ã10B̃10B̃20 +

1

2
Ã20B̃

2
10

)
− 1

4
k1k2 (k1 − k2)

(
Ã01B̃10B̃1,−1 + Ã1,−1B̃01B̃10 + Ã10B̃01B̃1,−1

)
− 1

4
k1k2 (k1 + k2)

(
Ã01B̃11B̃10 + Ã10B̃01B̃11 + Ã11B̃01B̃10

)
, (A4)

〈
−1

2
∆2σ2

x

(
1 +

1

3
σx

)〉
θ1,θ2

= −1

4
∆2k21Ã

2
10 −

1

4
∆2k31Ã

2
10Ã20 −∆2k21Ã

2
20 −

1

4
∆2k22Ã

2
01 −

1

4
∆2k32Ã

2
01Ã02 −∆2k22Ã

2
02

− 1

4
∆2k1k2 (k1 − k2) Ã01Ã10Ã1,−1 −

1

4
∆2k1k2 (k1 + k2) Ã01Ã10Ã11 −

1

4
∆2 (k1 − k2)

2
Ã2

1,−1 −
1

4
∆2 (k1 + k2)

2
Ã2

11,

(A5)
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⟨σxφ⟩θ1,θ2 =
1

2
k1Ã10C10 +

1

2
k2Ã01C01 +

1

2
(k1 + k2) Ã11C11 +

1

2
(k1 − k2) Ã1,−1C1,−1 + k1Ã20C20 + k2Ã02C02, (A6)

⟨σxφd⟩θ1,θ2 =
1

2
ε1k1Ã10 cos (Φ1) +

1

2
ε2k2Ã01 cos (Φ2) . (A7)

Appendix B: Functions a (k1, ω1), b (k1, ω1; k2, ω2), and c (k2, ω2)

The function a (k1, ω1) is defined via

C2
10a (k1, ω1) = − 1

2ω1

(
1 + κ2

k2
1

)2 B̃20 −
ω2
1 +∆2k21

4ω2
1k1

(
1 + κ2

k2
1

)2 Ã20, (B1)

The function c (k2, ω2) is defined via

C2
01c (k2, ω2) = − 1

2ω2

(
1 + κ2

k2
2

)2 B̃02 −
ω2
2 +∆2k22

4ω2
2k2

(
1 + κ2

k2
2

)2 Ã02, (B2)

where we note that, due to symmetry, the functions a (k1, ω1) and c (k2, ω2) should have an identical functional
dependence.

The function b (k1, ω1; k2, ω2) is defined via

C10C01b (k1, ω1; k2, ω2) = − ω1ω2 +∆2k1k2

8ω1ω2k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

) [
(k1 − k2) Ã1,−1 + (k1 + k2) Ã11

]
− ω1k2 + ω2k1

8ω1ω2k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

) [
(k1 − k2) B̃1,−1 + (k1 + k2) B̃11

]
. (B3)

Here, the amplitudes Ã20, Ã02, B̃20, B̃02, C20, C02, Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 should be expressed through
C10, C01, k1, k2, ω1, ω2, κ, ∆ using Eqs. (C1)–(C12) of Appendix C, so that a (k1, ω1), b (k1, ω1; k2, ω2), and c (k2, ω2)
are functions of k1, k2, ω1, ω2, κ, ∆ only. The dimensionless frequencies ω1 and ω2 are determined by the linear
plasma wave dispersion relation [Eq. (6)].

Appendix C: The second-order amplitudes

To express the second-order amplitudes through the first-order amplitudes C10 and C01, we calculate the variations
of the averaged Lagrangian density L̄ with respect to the second-order amplitudes and, after solving the resulting
system of equations and using the linear relations (16)–(19), we obtain the expressions for the second-order amplitudes.

From variations with respect to Ã20, Ã02, B̃20, B̃02, C20, C02 and the linear relations (16)–(19), we obtain

Ã20 = −k31
(
4 +

κ2

k21

)(
1 +

κ2

k21

)2
3ω2

1 +∆2k21

8
[
1− (ω2

1 −∆2k21)
(
4 + κ2

k2
1

)]C2
10, (C1)

Ã02 = −k32
(
4 +

κ2

k22

)(
1 +

κ2

k22

)2
3ω2

2 +∆2k22

8
[
1− (ω2

2 −∆2k22)
(
4 + κ2

k2
2

)]C2
01, (C2)

B̃20 = −ω1k
2
1

(
1 +

κ2

k21

)2 2 +
(
ω2
1 + 3∆2k21

) (
4 + κ2

k2
1

)
8
[
1− (ω2

1 −∆2k21)
(
4 + κ2

k2
1

)]C2
10, (C3)

B̃02 = −ω2k
2
2

(
1 +

κ2

k22

)2 2 +
(
ω2
2 + 3∆2k22

) (
4 + κ2

k2
2

)
8
[
1− (ω2

2 −∆2k22)
(
4 + κ2

k2
2

)]C2
01, (C4)
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C20 = k21

(
1 +

κ2

k21

)2
3ω2

1 +∆2k21

4
[
1− (ω2

1 −∆2k21)
(
4 + κ2

k2
1

)]C2
10, (C5)

C02 = k22

(
1 +

κ2

k22

)2
3ω2

2 +∆2k22

4
[
1− (ω2

2 −∆2k22)
(
4 + κ2

k2
2

)]C2
01. (C6)

From variations with respect to Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 and the linear relations (16)–(19), we obtain

Ã11 = k1k2

(
1 +

κ2

k21

)(
1 +

κ2

k22

) [
(k1 + k2)

2
+ κ2

] [
(k1 + k2)

(
ω1ω2 +∆2k1k2

)
+ (ω1 + ω2) (ω1k2 + ω2k1)

]
2
{[

(ω1 + ω2)
2 −∆2 (k1 + k2)

2
] [

(k1 + k2)
2
+ κ2

]
− (k1 + k2)

2
} C10C01,

(C7)

Ã1,−1 = k1k2

(
1 +

κ2

k21

)(
1 +

κ2

k22

) [
(k1 − k2)

2
+ κ2

] [
(k1 − k2)

(
ω1ω2 +∆2k1k2

)
+ (ω1 − ω2) (ω1k2 + ω2k1)

]
2
{[

(ω1 − ω2)
2 −∆2 (k1 − k2)

2
] [

(k1 − k2)
2
+ κ2

]
− (k1 − k2)

2
} C10C01,

(C8)

B̃11 = k1k2

(
1 +

κ2

k21

)(
1 +

κ2

k22

) (ω1 + ω2)
[
(k1 + k2)

2
+ κ2

] (
ω1ω2 +∆2k1k2

)
2
{[

(ω1 + ω2)
2 −∆2 (k1 + k2)

2
] [

(k1 + k2)
2
+ κ2

]
− (k1 + k2)

2
}C10C01

+ k1k2

(
1 +

κ2

k21

)(
1 +

κ2

k22

) (k1 + k2)
{
1 + ∆2

[
(k1 + k2)

2
+ κ2

]}
(ω1k2 + ω2k1)

2
{[

(ω1 + ω2)
2 −∆2 (k1 + k2)

2
] [

(k1 + k2)
2
+ κ2

]
− (k1 + k2)

2
}C10C01, (C9)

B̃1,−1 = k1k2

(
1 +

κ2

k21

)(
1 +

κ2

k22

) (ω1 − ω2)
[
(k1 − k2)

2
+ κ2

] (
ω1ω2 +∆2k1k2

)
2
{[

(ω1 − ω2)
2 −∆2 (k1 − k2)

2
] [

(k1 − k2)
2
+ κ2

]
− (k1 − k2)

2
}C10C01

+ k1k2

(
1 +

κ2

k22

)(
1 +

κ2

k21

) (k1 − k2)
{
1 + ∆2

[
(k1 − k2)

2
+ κ2

]}
(ω1k2 + ω2k1)

2
{[

(ω1 − ω2)
2 −∆2 (k1 − k2)

2
] [

(k1 − k2)
2
+ κ2

]
− (k1 − k2)

2
}C10C01, (C10)

C11 = −k1k2
(
1 +

κ2

k21

)(
1 +

κ2

k22

)
(k1 + k2)

[
(k1 + k2)

(
ω1ω2 +∆2k1k2

)
+ (ω1 + ω2) (ω1k2 + ω2k1)

]
2
{[

(ω1 + ω2)
2 −∆2 (k1 + k2)

2
] [

(k1 + k2)
2
+ κ2

]
− (k1 + k2)

2
} C10C01,

(C11)

C1,−1 = −k1k2
(
1 +

κ2

k21

)(
1 +

κ2

k22

)
(k1 − k2)

[
(k1 − k2)

(
ω1ω2 +∆2k1k2

)
+ (ω1 − ω2) (ω1k2 + ω2k1)

]
2
{[

(ω1 − ω2)
2 −∆2 (k1 − k2)

2
] [

(k1 − k2)
2
+ κ2

]
− (k1 − k2)

2
} C10C01.

(C12)
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