IEEE INTERNET OF THINGS JOURNAL. DOI: 10.1109/JI0T.2022.3163347

Transformer for Non-Intrusive Load Monitoring:
Complexity Reduction and Transferability

Lingxiao Wang, Shiwen Mao, Fellow, IEEE, and R. Mark Nelms, Fellow, IEEE

Abstract—Non-Intrusive Load Monitoring (NILM) is to obtain
individual appliance’s electricity consumption from aggregated
smart meter data. In this paper, we propose a Middle Window
Transformer model, termed Midformer, for NILM. Existing mod-
els are limited by high computational complexity, dependency on
data, and poor transferability. In Midformer, we first exploit
patch-wise embedding to shorten the input length, and then
reduce the size of queries in the attention layer by only using
global attention on a few selected input locations at the center
of the window to capture the global context. The cyclically
shifted window technique is used to preserve connection across
patches. We also follow the pre-training and fine-tuning paradigm
to relieve the dependency on data, reduce the computation in
modeling training, and enhance transferability of the model to
unknown tasks and domains. Our experimental study using two
real-world datasets demonstrates the superior performance and
transferability of Midformer over three baseline models.

Index Terms—Non-intrusive load monitoring (NILM), Trans-
former, Attention, Transferability, Smart home.

I. INTRODUCTION

The recent advances in the Internet of Things (IoT) allow the
deployment of uniquely identifiable objects that are organized
in an Internet-like structure to enable smart homes to monitor,
control, and manage house appliances [1]. The communi-
cation paths constructed by the IoT integrate smart meters,
home appliances, and renewable energy, in a Home Energy
Management System (HEMSs) [2], [3]. With more and more
IoT-enabled technologies being developed and deployed, the
HEMS system will become more sustainable, more resilient,
and more energy efficient [4].

One important application of the IoT in HEMSs is load
monitoring. The built-in sensors in appliances provide in-
dividual appliance’s energy consumption information to the
HEMS in realtime, which can be analyzed to optimize the
energy usage and achieve energy savings. However, there are
several practical issues that need to be addressed. First of all,
electrical appliances typically last up to decades. As a result,
a household typically include both old and new generations
of appliances. The legacy appliances may not be equipped
with smart sensors and their electricity consumption data is
usually hard to measure. Second, the cost of installing sensors
to legacy appliances could be high, including both the sensor
and installation cost, as well as the power usage cost. Third,
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consumers are more and more concerned about their privacy;
they may not be willing to share the information about their
appliances’ power consumption.

Non-Intrusive Load Monitoring (NILM), which is to iden-
tify individual appliance’s electricity consumption from the
given aggregated smart meter data, provides a useful solution
to the above problems [5]. Recently, deep neural networks
(DNNs), such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have been shown
effective to address the NILM problem. Since 2017, the
Transformer [6] and its variants have dominated the field of
natural language process (NLP), achieving superior perfor-
mance for tasks such as language translation, text analytics,
smart assistants, and so on. This is largely due to Transformer’s
capability of using the attention mechanism to capture the
long-range dependency in sequential data. For computer vision
(CV) tasks, the Vision Transformer (ViT) [7] has been shown
to outperform the popular CNN model. In our recent work [8],
a deep spatio-temporal attention approach was developed to
forecast the temperature of stored grain using meteorological
data. Such successes in NLP, CV, and other fields have
attracted researchers to investigate Transformer’s application
to the NILM problem.

Although some recent preliminary studies have demon-
strated the high potential of Transformer for NILM [9], [10],
there are still many challenges remain to be addressed. First
is the tradeoff between computational complexity and the
ability to track long range dependency in energy consumption
data, which usually contains rich daily, seasonal, and even
annual patterns. The self-attention mechanism is the core of
Transformer, which has a quadratic time complexity with
regard to the input sequence length [11]. Low complexity
models are thus desirable to allow longer input sequences.
Second is the dependency on data. Like most Deep Learning
(DL) models, Transformer requires a large amount of high
quality labeled data for training, specifically, each individual
appliance’s power consumption data. The cost of data col-
lection, e.g., submetering, could be high. In addition, many
users are unwilling to share their appliance’s information due
to concern of privacy breach. Third is the generalization or
transferability of the well trained Transformer model. The
existing Transformer-based NILM methods are trained and
tested on the same dataset, or assume the training and testing
sets share similar data distribution. The transferability of the
models have not been fully investigated, including testing
across different appliances and/or across different datasets.
NILM models with strong transferability are useful to achieve
accurate predictions for different, unseen houses, different
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models or brands of appliances, various aging degrees of
electronic circuits, and different residents daily habits and
usage behavior [2].

In this paper, we propose a Middle Window Transformer
model, termed Midformer, for NILM, which incorporates
several novel designs and follows the pre-training and fine-
tuning paradigm to address the above problems. To deal with
the computational complexity issue, Midformer is designed as
a more efficient Transformer variant tailored to the charac-
teristics of the NILM problem. Specifically, we utilize patch-
wise attention in Midformer, which reduces the input length
compared to point-wise attention used in existing models [9],
[10]. We further apply the cyclically shifted window technique
to increase the receptive filed. The drawback of patch-wise
attention is that it ignores the connection across patches. In
Midformer, we feed both cyclically shifted input and the orig-
inal input into the attention layer to preserve the connection
across patches. To reduce computation, we only calculate full
attention using the middle range of the input, instead of using
the entire input. This allows Midformer to focus on the middle
range of the input and achieve a linear time complexity with
respect to the input length (i.e., the window size).

To address the transferability issue and reduce the depen-
dency on data, we follow the pre-training and fine-tuning
paradigm. First, we pre-train multiple transformers (for dif-
ferent appliances) by using one dataset. Then we test the
performance of the trained models on unseen data in the same
dataset. Next, we examine the relationship among different ap-
pliances, i.e., could a model pre-trained using one appliance’s
data in a house be used to predict the power usage of another
appliance in another house? The authors in [12] used the
model learned from washing machine data to predict the power
consumption of other appliances. In this paper, we obtain the
pre-trained model (including CNN, RNN, Transformer, and
the proposed Midformer) for five appliances (including kettle,
dishwasher, fridge, washing machine, and microwave). We
then fine-tune and test the pre-trained model on a different
dataset including the same and different appliances’ data. With
this approach, models do not need to be retrained from scratch
for unknown houses and unseen appliances, and can quickly
adapt to new tasks with few-shot fine-tuning due to the well
initialized parameters in the pre-trained models. This way,
the computation in modeling training can be reduced and the
dependency on data can be relieved.

We evaluate the performance of the proposed Midformer
model using two real-world datasets and compare it with three
baseline models including CNN, RNN, and Transformer. Our
experimental study demonstrates the superior performance and
great transferability of the proposed Midformer model for
NILM problems over the state-of-the-art baseline models.

We organize the remainder of this paper as fellows. We in-
troduce related work in Section II. In Section III, we formulate
the NILM problem and introduces the preliminaries of Trans-
formers. In Section IV, we present the proposed transformer
method Midformer. We present the datasets and experiment
setup, and discuss the experimental study in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK
A. Non-intrusive Load Monitoring Models

In the literature, many prior studies have developed ap-
proaches for solving the NILM problem, which can be mainly
divided into two categories: (i) unsupervised learning, and (ii)
supervised learning methods. In this section, we will briefly
introduce the existing solutions for NILM; more detailed
reviews of the different approaches applied to solving NILM
can be found in [5], [13], [14].

1) Unsupervised Learning: Unsupervised learning has the
unique strength of not requiring labeled data. The additive
factorial hidden Markov model (AFHMM) is one of the most
widely used unsupervised learning approaches for NILM [15]-
[18], which converts time series data into Hidden-Markov
Models and Bayesian models to infer the possible states of
different appliances. Another method of unsupervised learning
approach is the Graph Signal Processing (GSP) based method,
which has also been shown to be quite effective for NILM [19],
[20]. The main drawbacks of these methods is that the prior
domain knowledge needs to be provided, and such schemes
may not perform well for solving problems that have a large
number of appliances [12].

2) Supervised Learning: Supervised learning aims to learn
a function, which maps an input to an output, from given input-
output examples, i.e., labeled data. In the literature, various
supervised learning methods have been applied to solving
the NILM problem, such as Support Vector Machine [21],
Decision Tress [22], K-Nearest Neighbours (k-NN) [23], and
so forth. Recent works in this area demonstrate the promise of
entirely deep learning approaches, such as Convolutional Neu-
ral Networks (CNNs) [24]-[27], Long Short-Term Memory
(LSTM) or its variant Gated Recurrent Units (GRUs) [28]—
[31], and denoising autoencoder [32], [33]. The main lim-
itation of supervised learning (machine learning) method is
that it requires large amounts of high quality training data.
Such approaches usually require high computational power
and storage capacity.

B. Transfer Learning for NILM

Most of the approaches applied to the NILM problem are
carried out on the same data domain, which means the model
is trained and tested using the same appliance’s data in the
same dataset. Very few previous studies have addressed the
study of generalizability of the NILM models, also referred to
as the transferability of the pre-trained models. For example,
in [34], Murray et al. trained two different networks based
on CNNs and RNNs, respectively, by using one of the three
datasets and verify the models’ transferability as well as gen-
eralization through the other datasets. However, the stability of
the trained models is unsatisfactory due to the different data
distributions in different databases, which lead to the poor
domain adaptation performance.

To address this problem, D’Incecco, Squartini, and Zhong
in [12] pre-trained their sequence-to-point (seq2point) learning
model using the washing machine data in one specific dataset,
and then tested their pre-trained model on data of different
appliances in different datasets. Fine-tuning, which is to train
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the pre-trained model using a small amount of examples from
the testing dataset [2], was applied to adapt the pre-trained
model to the difference between the different training and
testing domains. However, the distribution of data used in fine-
tuning was quite different from that of the tested house data,
which led to the negative transfer effect. The generative adver-
sarial networks (GANs) model has been applied to address the
domain adaptation problem in NILM as well [35], [36], which
was to train the feature generator and the domain discriminator
in the adversarial manner. The limitation of this method is that
training GANs requires finding a Nash equilibrium of a non-
convex game with continuous high-dimensional parameters,
which could fail to converge [37], [38]. Our previous work [2]
developed a meta-learning based approach and an ensemble
learning based approach that require fewer new data for adap-
tation, and can quickly adapt to new NILM tasks. However,
we only explored the transferability between different datasets
of same appliance in [2].

C. Transformer-based NILM Models

Motivated by the success of the Transformer architecture
in many domains, most importantly in Natural Language
Processing (NLP) [6], the self-attention' based Transformer
has recently been proposed for NILM. The recent works [9],
[10] both applied the attention mechanism to the feature
maps extracted by CNNs to solve NILM tasks. The main
drawback of these preliminary studies is that the computational
complexity of self-attention grows quadratically with window
(i.e., input) size, which could become a serious issue if
the fixed window size is large. Moreover, the generalization
performance of these models have not been verified through
different datasets or appliances.

III. PROBLEM STATEMENT
A. The NILM Problem

Consider a given collection of J time series {y1(t), ya(t),
o y_](t)}tT:1 that record the energy consumption of the J
appliances in a house over a period of time T {y;(¢)}/_;
represents the power consumption of the jth appliance in the
house. The aggregate power consumption x(t) of the house at
time ¢ is calculated as follows.

J
a(t) = Zyj(t) +e(t), (1)

where e(t) is the measurement noise at time ¢. The NILM
problem is to estimate the power consumption of an individual
appliance from the given aggregate power consumption of the
entire house. It is also called energy disaggregation since the
goal is to separate the energy consumption measured at the
aggregate level to that of individual appliances. It is non-
intrusive since only the aggregate measurement is needed; and
there is no need for submetering.

In NILM algorithms, to better handle the long time series
data, usually a sliding/rolling window setting is adopted over

1“An attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence [6].”

the time series with a fixed window size, denoted by W, where
the sliding/rolling step size is one. Rather than predicting a
full window size of outputs, the NILM models often target
at one single time instance (e.g., the middle point of the
window) to avoid redundant computation. This approach is
termed sequence-to-point (s2p) learning [24]. Therefore, given
input data of total power consumption measurements over
a window of size W, ie., x = {z(1),2(2),...,2(W)}, the
learning algorithm will compute output g;([W/2]), for all j.

B. Transformer and Multi-head Self-attention Mechanism

The Transformer model is based on the attention mechanism
to significantly enhance the performance of deep learning,
which computes the representation of a sequence by attending
to information at different positions from different representa-
tion subspaces [6], [39]. The main idea of this mechanism is
to learn an alignment between each element in the sequence
and others to decide which part of the sequence should be
paid attention to [40].

For a given input sequence I € RW*dmodaet  where d,,oqe1
is the dimension of each data sample (i.e., length of the encod-
ing vector), self-attention first transforms the input sequence
into three matrices with three learnable weights. These three
matrices are called queries, keys, and values, respectively, and
they have the same depth of dimension d. Next the scaled
dot-product is computed, which is given by:

. QK™
Attention(Q, K, V) = softmax <> V, )
Vd

where Q = IWe, K = ITWX, and V = TWYV, and
WEe ¢ Rd'rrLodele’ WE ¢ Rdntodele’ and WV & Rdmoderxd
are all trainable parameters that are used to map the input I into
the three matrices Q, K, and V. The attention function (2) is
similar to non-local means, which can be described as mapping
a query and a set of key-value pairs to an output [6]. The
weighted sum of the values is computed as the output of
attention, where the weight is determined by the softmax score
of the query with the corresponding key.

In the Transformer model, the attention processor is also
called attention head. Multi-head Self-attention computes the
self-attention score function describe in (2) on H different
linear projections of queries, keys, and values in parallel. Then
the results are concatenated as follows.

H
MultiHead(I) = Concat <Z Atterltion(QhKi,Vi)) ,
i=1
3)

where Q; = IWS, K; = IWK, and V; = IW,”. The
dimension of the learning parameters WlQ , WIK , and WiV is
dimodel X d;, where d; = d/H. By combining several similar
attention results, the attention will have stronger power of

discrimination.

IV. PROPOSED MIDDLE WINDOW TRANSFORMER
APPROACH

In this section, we introduce our proposed Transformer-
based approach for NILM problems, which is termed middle
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Fig. 1: Architecture of the proposed Transformer-based ap-
proach, Midformer, to NILM.

window transformer (Midformer). Fig. 1 illustrates the overall
architecture, which consists of four main parts, including (i)
patch splitting and initializing, (ii) cyclic shift window, (iii)
Transformer layers, and (iv) concatenation. Our intuition of
designing this approach is to utilize the Transformer’s attention
ability to model the long range dependency in the energy
consumption data, while reducing the computational cost.

The existing methods [9], [10] exploit the attention mech-
anism for NILM by combining CNNs with forms of self-
attention. They first extract the feature map from input data
by using convolutional layers. The extracted feature map is
then fed into the Transformer layers. They both adopt global
full self-attention in their models, which has a computational
complexity that is quadratic to the size of feature map. For
efficient modeling and computation, we leverage the technique
proposed in the Vision Transformer (ViT) for image classifica-
tion tasks [7], which reduces the context length by partitioning
images into small patches and using the patches as input to the
Transformer layers. A comparison of the existing approach and
that adopted in this paper is presented in Fig. 2. In particular,
Fig. 2(a) shows the original point-wise attention projection
method used in existing NILM works [9], [10], while Fig. 2(b)
illustrates the patch-wise attention projection method adopted
in this paper. As shown in Fig. 2(a), when creating the attention
matrix, the input will first be mapped into a space of depth
d, which will then be used by the attention mechanism to
calculate the attention matrix. The length and width of the
attention matrix are the same as the depth of the space. From
the comparison figure, we can visually see that the patch-
wise attention incurs significantly less computation than the
point-wise attention as the dimension of the attention matrix
becomes much smaller.

A. Patch Splitting and Initialization

In the proposed Midformer model, the input I € RW X dmodet
is first split into a sequence of non-overlapping patches of
fixed-size {I, I, ..., I}, where I; € RW/¥*d for 1 <i <k,
and k is the number of patches. Each patch contains W/k
samples, and is fed into a neuron network to be projected
into a d-dimension vector. Different from [9], [10], before the
input data is passed into the Transformer blocks, we do not
need the convolutional layers to extract the feature map and

d
/ié

Attention

Linear Projection

(a) The global full self-attention.

e

NN EEEEN)

Patch Linear Profection + Position Attention

Embedding
(b) Attention after splitting the input into small patches.

Fig. 2: Comparing the point-wise and the patch-wise attention
pattern.

increase the hidden size of the input sequence. This part of
essential operation is replaced by individual neuron networks
that project the patches. We also add position embedding to
the projection to maintain position information in the data.
The output of this projection is referred as patch embeddings.

B. Window Shifting

The patch-wise self-attention splits the input series of
samples into non-overlap patches. However, this approach
breaks the data correlation at patch boundaries and ignores
the connection across patches, which limit its modeling power.
In order to capture the connection across patches while still
maintaining the computational efficiency of non-overlapping
patches, we apply the shifted window technique to broaden
the receptive field, which is inspired by [41]. As illustrated
in Fig. 1, we cyclically shift the input I € R" Xdmodet to the
right for W/(2k) positions (i.e., half of the patch size); the
right-most half-patch of samples are moved to the left-most
part of the window. The patches obtained from the cyclically
shifted window of data are also fed into patch embeddings as
well, to create a patch-wise feature map as shown in Fig. 1.

C. Transformer Layers

The two feature maps created by patch embeddings are then
fed into the Transformer layers. We equally split the H heads
into two parallel groups, where each group has H/2 heads
(assume that H is an even number). One group accepts the
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Fig. 3: Comparison of Transformer and the proposed Mid-
former approach.

feature map created from the original input, and the other
group accepts the feature map created from the shifted input.

We follow the Transformer layer designed in [6], which con-
sists of a multi-head attention layer and multi-layer perception
(MLP) layer. A LayerNorm (LN) layer is applied after each
attention layer and the MLP layer. A residual connection is
used from the input to the first LN layer, and from the first LN
layer to the second LN layer. The architecture of the original
Transformer model is shown in the left plot in Fig. 3.

We further enhance the existing Transformer layer and pro-
pose the Middle Window Transformer (Midformer) layer, to
achieve reduced computation complexity. The idea is simple:
we only apply global attention on N (e.g., N = 3) input
patches in the middle range of the window as queries, which
is illustrated in the right plot in Fig. 3. The reason why we
reduce the the number of queries is that, most NILM models
(e.g., s2p [12]) only predict the appliance’s power usage at the
center position of the window. The middle range area of the
window is where we should focus on. By reducing the number
of queries, the complexity of the attention mechanism can be
greatly reduced. It is worth noting that only the number of
queries is reduced here, and the number of key-value pairs
remains unchanged, which is fundamentally different from
simply using a smaller window size W and then calculating
the full attention. This technique contributes to the class of
position-based sparse attention schemes, which reduce the
required computations by limiting the number of query-key
pairs that each query attends to [42].

D. Concatenation

Finally, an MLP (i.e., a fully connected layer) is utilized
to concatenate the outputs of the two groups of Transformer
blocks. The final MLP would restore the concatenated feature
maps to the desired output size, which is one for NILM
problems.

E. Computational Complexity Analysis

Supposing each input’s dimension is W X d,,04e1, the patch
size is W/k, the learnable parameter’s dimension is d,,ode; X d,
and the number of queries used in the Midformer layer is
N. The computational complexity of the global Multi-head

Self-attention module in each layer is O (W? - d). The high
cost of computing the global limits its ability to handle the
usually large window sizes in NILM problems. However, with
the proposed Midformer model, the computational complex-
ity of the Multi-head Self-attention module is reduced to
O(N/k-W -d). In the Midformer design, both N and k
are set proportional to the window size W (e.g., k = W/9
and N = k/3 = W/27 in our experiments). Therefore, the
computational complexity of Midformer is now linear to the
window size W.

V. EXPERIMENTAL STUDY

In this section, we introduce the datasets and the system
configuration used in our experiments to evaluate the perfor-
mance of the proposed Transformer model. We then present
our experimental study of the proposed model and compare it
with three baseline models.

A. Datasets

We use two real-world datasets, the REFIT dataset [43]
and the UKDALE dataset [44] to evaluate the performance of
the proposed energy disaggregation method. The REFIT and
UK-DALE datasets are both recorded in England. They both
provide house-level aggregate energy consumption as well as
individual appliances’ power consumption data. In particular,
the REFIT dataset consists of data from 20 households. Both
the aggregate and appliance levels’ data were recorded every
8 seconds from September 2013 to July 2015. The UKDALE
dataset includes data from five houses. Each house’s aggre-
gated energy consumption was recorded every 1 or 6 seconds,
and the appliance level data was measured every 6 seconds.
In order to be consistent with data in different datasets, the
aggregate level and appliance level data are down-sampled
to 8 seconds. Standard score normalization is applied in data
preprocessing; each sample x in the dataset is normalized as
& = (x — Z)/S, where T is the sample mean and S is the
sample standard deviation. We follow the approach in [12] to
set the sample mean and sample standard deviation values for
each appliance.

Following the approach in our recent work [2], for pre-
training, we use a large-scale NILM dataset: i.e., the REFIT
dataset. Specifically, we use the data from three houses as the
pre-training set and the data from two other houses as the
testing set for each appliance. The specific houses used and
the amount of data from REFIT used to pre-train the model
are summarized in Table I. We then use the UKDALE dataset
to evaluate the generalization of the models. We use only a
small part of the data in House 2 of the UKDALE dataset
to fine-tune the pre-trained model and the rest of the unseen
data of House 2 to test the performance of the fine-tuned pre-
trained model. There is no overlap between the testing data
and the fine-tuning data. The detailed information of the house
and data from the UKDALE dataset used in our experiment
is summarized in Table II.
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TABLE I: Appliances and Houses Used in the REFIT
Dataset [43]

Training and validation dataset

\
Appliances | House | Time period | Samples (M)
Kettle ‘ 5,7, 13 ‘ 2013-09-26 to 2015-07-08 ‘ 18.91
Dishwasher ‘ 4, 10, 12 ‘ 2014-03-07 to 2015-07-08 ‘ 19.36
Fridge ‘ 2,5,12 ‘ 2013-09-17 to 2015-07-08 ‘ 13.28
Washing
Machine 5,7, 18 2013-09-17 to 2015-07-08 19.80
Microwave ‘ 5,7, 18 ‘ 2013-09-26 to 2015-07-08 ‘ 19.80
| Testing dataset

Appliances | House | Time period | Samples (M)
Kettle 9 2013-12-17 to 2015-07-08 6.17

20 2014-03-20 to 2015-06-23 5.17
Dishwasher 9 2013-12-17 to 2015-07-08 6.17

16 2014-03-10 to 2015-07-08 5.72
Fridge 9 2013-12-17 to 2015-07-08 6.17

15 2013-12-17 to 2015-07-08 6.22
Washing 15 2013-12-17 to 2015-07-08 6.22
Machine 17 2014-03-06 to 2015-06-19 5.43
Microwave 17 2014-03-06 to 2015-06-19 5.43

19 2014-03-06 to 2015-06-20 5.62

TABLE II: Appliances and Houses Used in the UKDALE
Dataset [44]

| Fine-tuning dataset

Appliances | House | Time period | Samples (M)

Kettle, Dishwasher,
Fridge, Washing
Machine, Microwave

2013-5-20 to

2 2013-5-29 0.108

| Testing dataset

Appliances | House | Time period | Samples (M)
Kettle, Dishwasher,

Fridge, Washing 2013-5-30 to

Machine, Microwave 2 2013-10-10 1.592

B. Model and Experimental Setup

Next we introduce the experiment setup and the models used
to address the NILM problem. The following three baseline
models are evaluated for comparison purpose.

« Sequence-to-point (s2p [12]): this baseline model uses the
same structure of sequence-to-point method as in [12].

o Bidirectional Gated Recurrent Units (Bi-GRU) [30]: this
baseline model utilizes Bi-GRU, rather than LSTM, to re-
duce the amount of model parameters while maintaining
a similar performance as the RNN model.

o Transformer (Transformer) [6]: this is the traditional
Transformer model. It has the same hyper-parameters as
the Midformer model proposed in this paper, which are
summarized in Table III.

Note that comparisons between the s2p model and other tradi-
tional machine leaning methods have been presented in [12],
including AFHMM, RNN, sep2sep, GRU, etc., where the s2p

TABLE III: Hyper-parameter Setting of Midformer

Value

Window size 99 297 495 693
Batch size 100

Adam 0.001
Maximum pre-training epochs 50

Maximum fine-tuning epochs 10

Number of heads 8

Hyper-parameter

Number of layers 2to4
Number of patches 391199
Projected dimension 64

model achieves the best performance. Therefore we choose
s2p as a benchmark scheme in this paper.

All the models are implemented using TensorFlow 2.6.0 and
trained on NVIDIA RTX 2070 Mobile. We pre-trained all the
models using the ADAM optimization algorithm [45] with a
maximum of 50 gradient updates. We update the weights with
a learning rate of 0.001 and use a mini-batch size of 100.
Both Midformer and Transformer incorporate 2 to 4 attention
layers. The projected dimension of Midformer is d = 64, and
the number of heads is H = 8. The number of patches is fixed
at k= 3,9,11,99. Table III describes the detailed information
of the hyper-parameters.

We fine-tune the pre-trained model using the stochastic
gradient descent (SGD) method with a momentum of 0.9 and
a learning rate of 0.01.

C. Performance Metrics

We use two metrics to evaluate the performance of the
proposed Transformer model, which are the mean absolute
error (MAE) and the signal aggregate error (SAE). These two
metrics are defined as follows.

T
1
MAE = — > 1G5(t) = i (b)] (4)
t=1
SAE:%V]‘—T]“, (5)

J

where T is the duration of the period used to predict the
output; y,(t) is the ground truth of power consumption of
appliance j and §; is the predicted value by the NILM models;
7; and r; are the predicted total energy consumption and the
ground truth of appliance j over the period 7, respectively.

D. Experimental Results and Discussions

Three scenarios are designed and examined in our experi-
mental study, which are:

(i) The pre-trained model is evaluated on the same appliance
in the same dataset;
(i) The model is applied to a different dataset but on the
same appliance;
(iii)) The model learned using one appliance in one dataset is
evaluated on other appliances in a different dataset.

Multiple cases are examined, which belong to these three
scenarios and use the data from the two public datasets.
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TABLE IV: Model Performances on the REFIT Dataset

Kettle | Testing House 9 | Testing House 20 |  Average
Model | MAE  SAE | MAE  SAE | MAE SAE
s2p 10.882 0.054 5.162 0.058 8.022  0.056
Bi-GRU 11.072 0.076 6.958 0.074 9.015 0.075
Transformer 7.874 0.052 3.971 0.056 5923  0.054
Midformer 6.313 0.062 4.081 0.041 5197 0.052
Dishwasher | Testing House 9 | Testing House 16 |  Average
Model | MAE SAE | MAE  SAE | MAE SAE
s2p 14.683 0.463 14.622 0.292 14.653  0.378
Bi-GRU 15.408 0.294 24.665 1.290 20.037  0.792
Transformer 14.159 0.463 21.533 1.348 17.846  0.906
Midformer 12.973 0.154 10.991 0.289 11.982  0.222
Fridge | Testing House 9 | Testing House 15 |  Average
Model | MAE SAE | MAE SAE | MAE SAE
s2p 25.145 0.240 25.465 0.095 25305 0.168
Bi-GRU 23.672 0.107 27.150 0.230 25411  0.169
Transformer | 29.153 0.366 23.970 0.507 26.562  0.437
Midformer 23.853 0.261 24.900 0.418 24.377 0.340
Washing
Machine Testing House 15 | Testing House 17 Average
Model | MAE SAE | MAE SAE | MAE SAE
s2p 10.808 0.562 8.277 0.284 9.543 0.423
Bi-GRU 11.377 0.499 12.068 0.293 11.723  0.396
Transformer | 10.573 0.562 10.373 0.244 10.473  0.403
Midformer 9.236 0.281 6.694 0.229 7.965 0.255
Microwave | Testing House 17 | Testing House 19 |  Average
Model | MAE  SAE | MAE  SAE | MAE SAE
s2p 5.342 0.210 3.984 0.458 4.663 0.334
Bi-GRU 4.879 0.563 5.455 0.662 5.167 0.613
Transformer | 6.505 0.594 4.507 0.266 5.506  0.430
Midformer 4.395 0.190 4.058 0.250 4.227  0.220

1) The REFIT Dataset: The results in terms of the evalua-
tion metrics on the REFIT dataset are represented in Table IV,
which covers Scenario (i) described above. In this experiment,
models for each appliance is pre-trained using the REFIT
training set. Next, the data for the same appliance from two
unseen houses are used to evaluate the pre-trained model.
For example, for kettle, the labeled kettle data from Houses
5, 7, and 13 are used to pre-train the models, and then the
kettle data from Houses 9 and 20 are used to test the pre-
trained models, while all the houses belong to the same REFIT
dataset. Table IV shows that the proposed Midformer model
achieves both lower MAE and SAE in most cases (i.e., 6
cases out of 10 for MAE and 7 cases out of 10 for SAE).
The average MAE and SAE values are averaged over the
two houses. Our model achieved the best MAE results in all
the cases, as well as the best SAE results for all the cases
except for fridge. Compared to the baseline model s2p [12],
the MAE reductions for kettle, dishwasher, washing machine,
microwave, and fridge are 35.21%, 18.23%, 16.54%, 9.35%,
and 3.80%, respectively.

Fig. 4 presents the execution times of different models
for training per epoch under different window sizes. The
Transformer and Midformer models both have two attention
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Fig. 4: Execution times of s2p [12], Bi-GRU [30], Transformer
(full attention) [6], and Midformer on the training set.

layers. The training set includes 100K samples. From the
figure, we can see that the s2p model [12] uses the least
amount of time; our proposed model uses the second least
amount of time. The traditional Transformer model, which has
the same number of layers as Midformer, consumes the longest
time for training. The Bi-GRU model [30] uses less training
time than Transformer for most of the window sizes (except for
W = 100K). However, it is still more time-consuming thank
both s2p and Midformer. Considering the time and accuracy
factors together, our proposed Midformer model consumes
very little time for training and achieves the highest accuracy.

Next, we conduct an ablation study to further investigate
the effectiveness of the proposed model. For brevity, we only
present the results using the first week of the testing set. The
window size and the number of patches are important parame-
ters in our model structure. Fig. 5 presents a comparison of the
MAESs obtained by Midformer models with different window
sizes for the kettle in House 9 and the washing machine in
House 15. The figure shows that the best window size for
each appliance is different, which is 99 for kettle and 693 for
washing machine. An overly large window size might hurt the
disaggregation performance and increase the model’s training
time. Choosing a proper window size is vital for saving the
training cost. Note that the unique windows size for different
appliances limits the transferability of a trained model to
different appliances. Therefore, during the fine-tuning process
in the following part of the experiments, we adopt the same
window size of the pre-trained model for the fine-tuned model.
We will explore the problem of transfer learning with different
window sized models in our future work. Fig. 6 illustrates the
effect of the number of patches on the model performance.
We use washing machine as the subject of this study and the
window size is set to 693. The figure shows that the best
number of patches for washing machine is 11. We further test
the washing machine model with different window sizes and
different patch numbers. Table V shows the best number of
patches and the best patch size for each given window size
(i.e., 99, 297, and 693), as well as the best MAE result. We
find that a larger window size requires a larger patch size
accordingly to achieve the best performance.
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Fig. 5: MAEs obtained by Midformer models with different
window sizes by testing the kettle in House 9 and the washing
machine in House 15. The number of patches is set to 11.
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Fig. 6: MAEs achieved by Midformer models with different
numbers of patches for washing machine, when the window
size is set to 693.

TABLE V: The Best Number of Patches and the Best Patch
Size Under Different Window Sizes (Washing Machine)

Window size | 99 | 297 | 693
Best number of patches 33 9 11
Best patch size 3 33 63
Best result (MAE) 10.88 | 8.93 | 8.55

TABLE VI: Ablation Study: MAE Results

Washing Machine | Midformer | Midformer w/o Window Shifting
House 15 | 855 | 9.12

We next study the impact of window shifting on the
Midformer performance. The results are given in Table VI,
which is obtained for the washing machine in House 15 with
a window size of 693 and a patch size of 63. We replace the
cyclically shifted window with un-shifted Transformer blocks,
and find the performance drops by 6.67%.

2) The UKDALE Dataset: In this experiment, we verify
the transferability performance of the pre-trained model across
different domains (i.e., different datasets and appliances). We
first fine-tune the pre-trained model, which was originally

learned using one appliance in the REFIT dataset, with a
small portion of new data from the UKDALE dataset, and then
use the test set of UKDALE to verify the performance of the
model on the same or different appliance (see Table II). These
experiments cover Scenarios (ii) and (iii) described above.

The performance of the pre-trained models on the unseen
UKDALE dataset is presented in Tables VII and VIII. Ta-
ble VII are the results of the pre-trained models without fine-
tuning, while Table VIII are the results of the pre-trained
models after fine-tuning, on the same appliance or an unseen
appliance. The first column of the tables indicates the appli-
ance and dataset learned by the pre-trained model. The second
column indicates the unseen test dataset and corresponding
appliances (same or different). The remaining columns are the
MAESs and SAEs achieved by the four models.

From Table VII, we can see that the results of the pre-
trained models without fine-tuning have relatively large errors.
When the pre-trained model uses the same appliance as the
test appliance, the test results are better than that using a
different appliance. Except for the Bi-GRU [30] model, the
other three models achieve similar MAE and SAE values,
which are around 85 and 3, respectively.

From Table VIII, it is obvious that fine-tuning has been
very effective in reducing the error of all the models on
unseen dataset and appliances, since both the MAEs and
SAEs of all the models are greatly improved. For example,
the average MAE of Midformer is reduced from 84.566 to
7.121, and the average SAE is reduced from 2.586 to 0.056,
after fine-tuning (huge improvements). In the table, the bold
numbers in each row indicate the best result among the four
models obtained for the test set when using a pre-trained
model of a particular appliance. For example, for pre-trained
model using kettle in REFIT and the target appliance kettle in
UKDALE, the Midformer model achieves the smallest MAE
of 4.183 and the smallest SAE of 0.041. The number marked
by symbol “” indicates the best model for that target appliance
among all the pre-trained models. For example, for the target
appliance kettle, the pre-trained model of Midformer learned
from the source appliance dishwasher achieves the best MAE
of 3.837. To better present the results, we have summarized
such information in Table IX.

We can make the following observations from these re-
sults. (i) The proposed Midformer model outperforms all
other models on average and in most specific cases. (ii) Our
proposed model achieves superior transferability performance,
which means we can use the pre-trained Midformer model
using one appliance for all other target appliances, resulting
greatly reduced cost for model pre-training. (iii) In most cases,
the best result for a target appliance is obtained with the
model pre-trained using the same appliance. The best pre-
trained model for fridge, washing machine, and microwave
in the UKDALE dataset is the model learned from the same
appliance in the REFIT dataset, respectively. This is intuitive
since the pre-trained model will perform well if the test data
and training data share similar features. In Table IX, the
proposed Midformer model accounts for four of the five best
results of transfer learning.

The predicted power consumption values of House 2 in the
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TABLE VII: Results of the Pre-trained Model without Fine-tuning Tested on the UKDALE Dataset

Pre-trained Dataset | Testing Dataset | Bi-GRU | s2p |  Transformer | Midformer
REFIT | UKDALE | MAE  SAE | MAE  SAE | MAE  SAE | MAE  SAE
Kettle Kettle 16.579 0.163 22.642 0.442 16.204 0.268 15.099 0.234
Dishwasher 72.909 0.498 66.627 0.669 70.220 0.562 71.449 0.558
Fridge 47.079 0.783 44.102 0.786 46.458 0.798 46.625 0.795
Washing machine 26.613 0.331 21.459 0.122 25.377 0.242 25.929 0.259
Microwave 24.651 1.432 18.755 0.625 23.448 1.272 23.580 1.297
Dishwasher Kettle 81.610 0.325 60.178 0.372 44.579 0.766 15.099 0.234
Dishwasher 80.330 0.103 81.828 0.329 47.492 0.798 71.449 0.558
Fridge 40.446 0.954 39.396 0.995 40.993 0.946 46.625 0.795
Washing machine | 44.862  0.601 | 41.812 0939 | 44.541  0.632 | 45929  0.259
Microwave 44.487 0.294 44.362 0.362 42.864 0.263 43.580 1.297
Fridge Kettle 371.049 8.047 318.502 6.556 306.362 6.264 303.152 6.127
Dishwasher 379.803 3.338 305.632  4.484 308.999 4.471 313.630 4.569
Fridge 25.034 0.321 25.621 0.873 24.273 0.218 25.702 0.222
‘Washing machine 157.459 12.417 | 109.502  8.172 107.688  8.087 110956  8.388
Microwave 1224.569  28.545 | 169.378  20.964 | 168.284 20.870 | 172.590 21.404
Washing machine | Kettle 197.971 3.073 181.299 3.060 216.437 4.070 183.575 3.073
Dishwasher 171.177 2.266 162.226 1.938 149.851 2.800 135.068 1.949
Fridge 47.722 0.752 45.399 0.800 68.355 0.766 50.924 0.647
Washing machine 31.097 1.337 19.867 0.432 58.687 3.966 33.079 1.359
Microwave 79.898 8.825 66.123 7.040 99.997 11.766 65.980 7.091
Microwave Kettle 113.396 1.038 119.416 1.233 56.051 0.424 116.196 1.096
Dishwasher 121.416 0.515 129.421 0.670 62.974 0.624 129.026 0.627
Fridge 39.345 1.000 41.747 0.919 39.344 1.000 41.670 0.929
Washing machine 11.629 0.995 17.279 0.471 11.726 0.985 16.329 0.545
Microwave 9.974 0.657 6.429 0.167 9.271 0.718 7.698 0.202
average ‘ 98.444 3.144 ‘ 86.360 2.537 ‘ 83.619 2.943 ‘ 84.566 2.586
TABLE VIII: Results of Pre-trained Model with Fine-tuning Tested on the UKDALE Dataset
Pre-trained Dataset | Testing Dataset | Bi-GRU | s2p | Transformer |  Midformer
REFIT | UKDALE | MAE SAE | MAE SAE | MAE SAE | MAE  SAE
Kettle Kettle 10.064 0.116 | 9.854 0.106 | 10.585 0.318 4.183 0.041
Dishwasher 39.001 0.409 | 4463 0.017 | 14511 0.153 5.135 0.040
Fridge 34475 0.025 | 24296 0.015 | 36476 0.139 | 17.081  0.061
Washing machine | 9.540  0.715 | 12.604 0.194 | 19.102 0.126 | 6.979 0.185
Microwave 14.192 1.014 | 5.800 0.169 | 4.275 0.018 4.183 0.013
Dishwasher Kettle 55.162 0.241 4471 0.017 | 6.874 0.058 13.837 0.010
Dishwasher 29.180 0.389 | 4.820 0.009 | 7.970 0.086 6.974 0.012
Fridge 34949 0.030 | 28.004 0.196 | 36.237 0.113 15.312 0.162
Washing machine | 10.137 0.758 | 11.812 0.328 | 9.490  0.328 5.301 0.049
Microwave 18.649 0.516 | 3.762 0.187 | 5414 0.128 3177 0.065
Fridge Kettle 64.616 0.440 | 8.009 0.023 | 5.159 0.018 | 4.520 0.043
Dishwasher 36.583 0.173 | 5.639 0.031 | 6.094 0.014 | 5.251 0.006
Fridge 24.059 0.032 | 13.798 0.083 | 16.588 0.144 | 113.132  0.050
Washing machine | 13.342 0.503 | 8.553 0.523 | 7.008 0.277 5.110 0.045
Microwave 13.889 0.455 | 5402 0250 | 5497 0.175 3.126 0.171
Washing machine | Kettle 37.098 0435 | 5994 0.027 | 7482 0.014 | 5.213 0.003
Dishwasher 30.852  0.266 | 14.254 0.012 | 5.377  0.003 5.406 0.040
Fridge 35310 0.110 | 24393  0.285 | 34425 0.322 | 14992  0.032
Washing machine | 15.987 0.177 8.089 0390 | 9.523  0.055 14.887 0.114
Microwave 23553  1.177 | 4267 0.020 | 7.303 0.053 3.165 0.041
Microwave Kettle 8.424 0.078 | 8.268 0.068 | 7.443 0.064 | 6.114 0.020
Dishwasher 6.406 0.082 | 6.389 0.065 | 6.014 0.029 | 4.310 0.039
Fridge 27.256 0.120 | 17.572 0.012 | 17.428 0.036 | 22.551  0.022
Washing machine | 14.767 0.661 | 13.904 0.380 | 6.806 0.374 | 5.456 0.059
Microwave 5456  0.126 | 5289 0.090 | 4541 0.039 | 12.630 0.028
Average ‘ 24.518 0.358 ‘ 10.088  0.136 ‘ 12.145 0.123 ‘ 7.121 0.056
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TABLE IX: Best Pre-trained Model for the UKDALE Test Set

Test appliance Pre-trained appliance  Model MAE SAE
in UKDALE in REFIT

Kettle Dishwasher Midformer  3.837 0.010
Dishwasher ‘Washing machine s2p 4254  0.012
Fridge Fridge Midformer  13.132  0.050
Washing machine ~ Washing machine Midformer  4.887 0.114
Microwave Microwave Midformer  2.630  0.028

UKDALE dataset for the five appliances obtained by the four
pre-trained models on the REFIT dataset (i.e., s2p, Bi-GRU,
Transformer, and Midformer) for a specific time period are
plotted in Fig. 7, along with the corresponding ground truth
values. Note that the “Aggregate” values are the input to these
models to be disaggregated into individual appliance’s power
consumption. The figure shows that the proposed Midformer
model achieves the best performance compared to the three
baseline models, except for dishwasher (which is consistent
with the results in Table IX). The Bi-GRU model fails to
predict the washing machine’s power state at some time
instances, i.e., the washing machine’s state is on, but it is
predicted as off (see Fig. 7(d)).

VI. CONCLUSIONS

In this paper, we proposed the Midformer model to tackle
the NILM problem. We utilized patch-wise attention and
reduced the query size to reduce the quadratic time complexity
in traditional Transformer models to linear complexity. We
also focused on the transferability performance of the models,
which helped to reduce the model training cost and eased
the deployment of the model in various environments. Our
experimental study using two real-world datasets demonstrated
the superior performance and stronger transferability of the
proposed Midformer model over three baseline, state-of-the-
art models on addressing the NILM problem.
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