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Abstract—Non-Intrusive Load Monitoring (NILM) is to obtain
individual appliance’s electricity consumption from aggregated
smart meter data. In this paper, we propose a Middle Window
Transformer model, termed Midformer, for NILM. Existing mod-
els are limited by high computational complexity, dependency on
data, and poor transferability. In Midformer, we first exploit
patch-wise embedding to shorten the input length, and then
reduce the size of queries in the attention layer by only using
global attention on a few selected input locations at the center
of the window to capture the global context. The cyclically
shifted window technique is used to preserve connection across
patches. We also follow the pre-training and fine-tuning paradigm
to relieve the dependency on data, reduce the computation in
modeling training, and enhance transferability of the model to
unknown tasks and domains. Our experimental study using two
real-world datasets demonstrates the superior performance and
transferability of Midformer over three baseline models.

Index Terms—Non-intrusive load monitoring (NILM), Trans-
former, Attention, Transferability, Smart home.

I. INTRODUCTION

The recent advances in the Internet of Things (IoT) allow the

deployment of uniquely identifiable objects that are organized

in an Internet-like structure to enable smart homes to monitor,

control, and manage house appliances [1]. The communi-

cation paths constructed by the IoT integrate smart meters,

home appliances, and renewable energy, in a Home Energy

Management System (HEMSs) [2], [3]. With more and more

IoT-enabled technologies being developed and deployed, the

HEMS system will become more sustainable, more resilient,

and more energy efficient [4].

One important application of the IoT in HEMSs is load

monitoring. The built-in sensors in appliances provide in-

dividual appliance’s energy consumption information to the

HEMS in realtime, which can be analyzed to optimize the

energy usage and achieve energy savings. However, there are

several practical issues that need to be addressed. First of all,

electrical appliances typically last up to decades. As a result,

a household typically include both old and new generations

of appliances. The legacy appliances may not be equipped

with smart sensors and their electricity consumption data is

usually hard to measure. Second, the cost of installing sensors

to legacy appliances could be high, including both the sensor

and installation cost, as well as the power usage cost. Third,

This work is supported in part by the NSF under Grants DMS-1736470
and CNS-2107190, and by the Wireless Engineering Research and Education
Center at Auburn University, Auburn, AL, USA.

L. Wang, S. Mao, and R.M. Nelms are with the Department of Electrical and
Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA.
Email: lzw0039@auburn.edu, smao@ieee.org, nelmsrm@auburn.edu.

DOI: 10.1109/JIOT.2022.3163347

consumers are more and more concerned about their privacy;

they may not be willing to share the information about their

appliances’ power consumption.

Non-Intrusive Load Monitoring (NILM), which is to iden-

tify individual appliance’s electricity consumption from the

given aggregated smart meter data, provides a useful solution

to the above problems [5]. Recently, deep neural networks

(DNNs), such as Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs), have been shown

effective to address the NILM problem. Since 2017, the

Transformer [6] and its variants have dominated the field of

natural language process (NLP), achieving superior perfor-

mance for tasks such as language translation, text analytics,

smart assistants, and so on. This is largely due to Transformer’s

capability of using the attention mechanism to capture the

long-range dependency in sequential data. For computer vision

(CV) tasks, the Vision Transformer (ViT) [7] has been shown

to outperform the popular CNN model. In our recent work [8],

a deep spatio-temporal attention approach was developed to

forecast the temperature of stored grain using meteorological

data. Such successes in NLP, CV, and other fields have

attracted researchers to investigate Transformer’s application

to the NILM problem.

Although some recent preliminary studies have demon-

strated the high potential of Transformer for NILM [9], [10],

there are still many challenges remain to be addressed. First

is the tradeoff between computational complexity and the

ability to track long range dependency in energy consumption

data, which usually contains rich daily, seasonal, and even

annual patterns. The self-attention mechanism is the core of

Transformer, which has a quadratic time complexity with

regard to the input sequence length [11]. Low complexity

models are thus desirable to allow longer input sequences.

Second is the dependency on data. Like most Deep Learning

(DL) models, Transformer requires a large amount of high

quality labeled data for training, specifically, each individual

appliance’s power consumption data. The cost of data col-

lection, e.g., submetering, could be high. In addition, many

users are unwilling to share their appliance’s information due

to concern of privacy breach. Third is the generalization or

transferability of the well trained Transformer model. The

existing Transformer-based NILM methods are trained and

tested on the same dataset, or assume the training and testing

sets share similar data distribution. The transferability of the

models have not been fully investigated, including testing

across different appliances and/or across different datasets.

NILM models with strong transferability are useful to achieve

accurate predictions for different, unseen houses, different
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models or brands of appliances, various aging degrees of

electronic circuits, and different residents daily habits and

usage behavior [2].

In this paper, we propose a Middle Window Transformer

model, termed Midformer, for NILM, which incorporates

several novel designs and follows the pre-training and fine-

tuning paradigm to address the above problems. To deal with

the computational complexity issue, Midformer is designed as

a more efficient Transformer variant tailored to the charac-

teristics of the NILM problem. Specifically, we utilize patch-

wise attention in Midformer, which reduces the input length

compared to point-wise attention used in existing models [9],

[10]. We further apply the cyclically shifted window technique

to increase the receptive filed. The drawback of patch-wise

attention is that it ignores the connection across patches. In

Midformer, we feed both cyclically shifted input and the orig-

inal input into the attention layer to preserve the connection

across patches. To reduce computation, we only calculate full

attention using the middle range of the input, instead of using

the entire input. This allows Midformer to focus on the middle

range of the input and achieve a linear time complexity with

respect to the input length (i.e., the window size).

To address the transferability issue and reduce the depen-

dency on data, we follow the pre-training and fine-tuning

paradigm. First, we pre-train multiple transformers (for dif-

ferent appliances) by using one dataset. Then we test the

performance of the trained models on unseen data in the same

dataset. Next, we examine the relationship among different ap-

pliances, i.e., could a model pre-trained using one appliance’s

data in a house be used to predict the power usage of another

appliance in another house? The authors in [12] used the

model learned from washing machine data to predict the power

consumption of other appliances. In this paper, we obtain the

pre-trained model (including CNN, RNN, Transformer, and

the proposed Midformer) for five appliances (including kettle,

dishwasher, fridge, washing machine, and microwave). We

then fine-tune and test the pre-trained model on a different

dataset including the same and different appliances’ data. With

this approach, models do not need to be retrained from scratch

for unknown houses and unseen appliances, and can quickly

adapt to new tasks with few-shot fine-tuning due to the well

initialized parameters in the pre-trained models. This way,

the computation in modeling training can be reduced and the

dependency on data can be relieved.

We evaluate the performance of the proposed Midformer

model using two real-world datasets and compare it with three

baseline models including CNN, RNN, and Transformer. Our

experimental study demonstrates the superior performance and

great transferability of the proposed Midformer model for

NILM problems over the state-of-the-art baseline models.

We organize the remainder of this paper as fellows. We in-

troduce related work in Section II. In Section III, we formulate

the NILM problem and introduces the preliminaries of Trans-

formers. In Section IV, we present the proposed transformer

method Midformer. We present the datasets and experiment

setup, and discuss the experimental study in Section V. Finally,

Section VI concludes this paper.

II. RELATED WORK

A. Non-intrusive Load Monitoring Models

In the literature, many prior studies have developed ap-

proaches for solving the NILM problem, which can be mainly

divided into two categories: (i) unsupervised learning, and (ii)

supervised learning methods. In this section, we will briefly

introduce the existing solutions for NILM; more detailed

reviews of the different approaches applied to solving NILM

can be found in [5], [13], [14].

1) Unsupervised Learning: Unsupervised learning has the

unique strength of not requiring labeled data. The additive

factorial hidden Markov model (AFHMM) is one of the most

widely used unsupervised learning approaches for NILM [15]–

[18], which converts time series data into Hidden-Markov

Models and Bayesian models to infer the possible states of

different appliances. Another method of unsupervised learning

approach is the Graph Signal Processing (GSP) based method,

which has also been shown to be quite effective for NILM [19],

[20]. The main drawbacks of these methods is that the prior

domain knowledge needs to be provided, and such schemes

may not perform well for solving problems that have a large

number of appliances [12].

2) Supervised Learning: Supervised learning aims to learn

a function, which maps an input to an output, from given input-

output examples, i.e., labeled data. In the literature, various

supervised learning methods have been applied to solving

the NILM problem, such as Support Vector Machine [21],

Decision Tress [22], K-Nearest Neighbours (k-NN) [23], and

so forth. Recent works in this area demonstrate the promise of

entirely deep learning approaches, such as Convolutional Neu-

ral Networks (CNNs) [24]–[27], Long Short-Term Memory

(LSTM) or its variant Gated Recurrent Units (GRUs) [28]–

[31], and denoising autoencoder [32], [33]. The main lim-

itation of supervised learning (machine learning) method is

that it requires large amounts of high quality training data.

Such approaches usually require high computational power

and storage capacity.

B. Transfer Learning for NILM

Most of the approaches applied to the NILM problem are

carried out on the same data domain, which means the model

is trained and tested using the same appliance’s data in the

same dataset. Very few previous studies have addressed the

study of generalizability of the NILM models, also referred to

as the transferability of the pre-trained models. For example,

in [34], Murray et al. trained two different networks based

on CNNs and RNNs, respectively, by using one of the three

datasets and verify the models’ transferability as well as gen-

eralization through the other datasets. However, the stability of

the trained models is unsatisfactory due to the different data

distributions in different databases, which lead to the poor

domain adaptation performance.

To address this problem, D’Incecco, Squartini, and Zhong

in [12] pre-trained their sequence-to-point (seq2point) learning

model using the washing machine data in one specific dataset,

and then tested their pre-trained model on data of different

appliances in different datasets. Fine-tuning, which is to train
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the pre-trained model using a small amount of examples from

the testing dataset [2], was applied to adapt the pre-trained

model to the difference between the different training and

testing domains. However, the distribution of data used in fine-

tuning was quite different from that of the tested house data,

which led to the negative transfer effect. The generative adver-

sarial networks (GANs) model has been applied to address the

domain adaptation problem in NILM as well [35], [36], which

was to train the feature generator and the domain discriminator

in the adversarial manner. The limitation of this method is that

training GANs requires finding a Nash equilibrium of a non-

convex game with continuous high-dimensional parameters,

which could fail to converge [37], [38]. Our previous work [2]

developed a meta-learning based approach and an ensemble

learning based approach that require fewer new data for adap-

tation, and can quickly adapt to new NILM tasks. However,

we only explored the transferability between different datasets

of same appliance in [2].

C. Transformer-based NILM Models

Motivated by the success of the Transformer architecture

in many domains, most importantly in Natural Language

Processing (NLP) [6], the self-attention1 based Transformer

has recently been proposed for NILM. The recent works [9],

[10] both applied the attention mechanism to the feature

maps extracted by CNNs to solve NILM tasks. The main

drawback of these preliminary studies is that the computational

complexity of self-attention grows quadratically with window

(i.e., input) size, which could become a serious issue if

the fixed window size is large. Moreover, the generalization

performance of these models have not been verified through

different datasets or appliances.

III. PROBLEM STATEMENT

A. The NILM Problem

Consider a given collection of J time series {y1(t) , y2(t),
..., yJ(t)}Tt=1

that record the energy consumption of the J
appliances in a house over a period of time T ; {yj(t)}Tt=1

represents the power consumption of the jth appliance in the

house. The aggregate power consumption x(t) of the house at

time t is calculated as follows.

x(t) =

J
∑

j=1

yj(t) + e(t), (1)

where e(t) is the measurement noise at time t. The NILM

problem is to estimate the power consumption of an individual

appliance from the given aggregate power consumption of the

entire house. It is also called energy disaggregation since the

goal is to separate the energy consumption measured at the

aggregate level to that of individual appliances. It is non-

intrusive since only the aggregate measurement is needed; and

there is no need for submetering.

In NILM algorithms, to better handle the long time series

data, usually a sliding/rolling window setting is adopted over

1“An attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence [6].”

the time series with a fixed window size, denoted by W , where

the sliding/rolling step size is one. Rather than predicting a

full window size of outputs, the NILM models often target

at one single time instance (e.g., the middle point of the

window) to avoid redundant computation. This approach is

termed sequence-to-point (s2p) learning [24]. Therefore, given

input data of total power consumption measurements over

a window of size W , i.e., x̃ = {x(1), x(2), ..., x(W )}, the

learning algorithm will compute output ỹj(dW/2e), for all j.

B. Transformer and Multi-head Self-attention Mechanism

The Transformer model is based on the attention mechanism

to significantly enhance the performance of deep learning,

which computes the representation of a sequence by attending

to information at different positions from different representa-

tion subspaces [6], [39]. The main idea of this mechanism is

to learn an alignment between each element in the sequence

and others to decide which part of the sequence should be

paid attention to [40].

For a given input sequence I ∈ R
W×dmodel , where dmodel

is the dimension of each data sample (i.e., length of the encod-

ing vector), self-attention first transforms the input sequence

into three matrices with three learnable weights. These three

matrices are called queries, keys, and values, respectively, and

they have the same depth of dimension d. Next the scaled

dot-product is computed, which is given by:

Attention(Q,K,V) = softmax

(

QKT

√
d

)

V, (2)

where Q = IWQ , K = IWK , and V = IWV , and

WQ ∈ R
dmodel×d, WK ∈ R

dmodel×d, and WV ∈ R
dmodel×d

are all trainable parameters that are used to map the input I into

the three matrices Q, K, and V. The attention function (2) is

similar to non-local means, which can be described as mapping

a query and a set of key-value pairs to an output [6]. The

weighted sum of the values is computed as the output of

attention, where the weight is determined by the softmax score

of the query with the corresponding key.

In the Transformer model, the attention processor is also

called attention head. Multi-head Self-attention computes the

self-attention score function describe in (2) on H different

linear projections of queries, keys, and values in parallel. Then

the results are concatenated as follows.

MultiHead(I) = Concat

(

H
∑

i=1

Attention(Qi,Ki,Vi)

)

,

(3)

where Qi = IW
Q
i

, Ki = IWK
i

, and Vi = IWV
i

. The

dimension of the learning parameters W
Q
i

, WK
i

, and WV
i

is

dmodel × di, where di = d/H . By combining several similar

attention results, the attention will have stronger power of

discrimination.

IV. PROPOSED MIDDLE WINDOW TRANSFORMER

APPROACH

In this section, we introduce our proposed Transformer-

based approach for NILM problems, which is termed middle
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Fig. 1: Architecture of the proposed Transformer-based ap-

proach, Midformer, to NILM.

window transformer (Midformer). Fig. 1 illustrates the overall

architecture, which consists of four main parts, including (i)

patch splitting and initializing, (ii) cyclic shift window, (iii)

Transformer layers, and (iv) concatenation. Our intuition of

designing this approach is to utilize the Transformer’s attention

ability to model the long range dependency in the energy

consumption data, while reducing the computational cost.

The existing methods [9], [10] exploit the attention mech-

anism for NILM by combining CNNs with forms of self-

attention. They first extract the feature map from input data

by using convolutional layers. The extracted feature map is

then fed into the Transformer layers. They both adopt global

full self-attention in their models, which has a computational

complexity that is quadratic to the size of feature map. For

efficient modeling and computation, we leverage the technique

proposed in the Vision Transformer (ViT) for image classifica-

tion tasks [7], which reduces the context length by partitioning

images into small patches and using the patches as input to the

Transformer layers. A comparison of the existing approach and

that adopted in this paper is presented in Fig. 2. In particular,

Fig. 2(a) shows the original point-wise attention projection

method used in existing NILM works [9], [10], while Fig. 2(b)

illustrates the patch-wise attention projection method adopted

in this paper. As shown in Fig. 2(a), when creating the attention

matrix, the input will first be mapped into a space of depth

d, which will then be used by the attention mechanism to

calculate the attention matrix. The length and width of the

attention matrix are the same as the depth of the space. From

the comparison figure, we can visually see that the patch-

wise attention incurs significantly less computation than the

point-wise attention as the dimension of the attention matrix

becomes much smaller.

A. Patch Splitting and Initialization

In the proposed Midformer model, the input I ∈ R
W×dmodel

is first split into a sequence of non-overlapping patches of

fixed-size {I1, I2, ..., Ik}, where Ii ∈ R
W/k×d, for 1 ≤ i ≤ k,

and k is the number of patches. Each patch contains W/k
samples, and is fed into a neuron network to be projected

into a d-dimension vector. Different from [9], [10], before the

input data is passed into the Transformer blocks, we do not

need the convolutional layers to extract the feature map and

Linear Projection Attention

d

(a) The global full self-attention.

Patch AttentionLinear Projection  + Position 
Embedding

d

(b) Attention after splitting the input into small patches.

Fig. 2: Comparing the point-wise and the patch-wise attention

pattern.

increase the hidden size of the input sequence. This part of

essential operation is replaced by individual neuron networks

that project the patches. We also add position embedding to

the projection to maintain position information in the data.

The output of this projection is referred as patch embeddings.

B. Window Shifting

The patch-wise self-attention splits the input series of

samples into non-overlap patches. However, this approach

breaks the data correlation at patch boundaries and ignores

the connection across patches, which limit its modeling power.

In order to capture the connection across patches while still

maintaining the computational efficiency of non-overlapping

patches, we apply the shifted window technique to broaden

the receptive field, which is inspired by [41]. As illustrated

in Fig. 1, we cyclically shift the input I ∈ R
W×dmodel to the

right for W/(2k) positions (i.e., half of the patch size); the

right-most half-patch of samples are moved to the left-most

part of the window. The patches obtained from the cyclically

shifted window of data are also fed into patch embeddings as

well, to create a patch-wise feature map as shown in Fig. 1.

C. Transformer Layers

The two feature maps created by patch embeddings are then

fed into the Transformer layers. We equally split the H heads

into two parallel groups, where each group has H/2 heads

(assume that H is an even number). One group accepts the
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Fig. 3: Comparison of Transformer and the proposed Mid-

former approach.

feature map created from the original input, and the other

group accepts the feature map created from the shifted input.

We follow the Transformer layer designed in [6], which con-

sists of a multi-head attention layer and multi-layer perception

(MLP) layer. A LayerNorm (LN) layer is applied after each

attention layer and the MLP layer. A residual connection is

used from the input to the first LN layer, and from the first LN

layer to the second LN layer. The architecture of the original

Transformer model is shown in the left plot in Fig. 3.

We further enhance the existing Transformer layer and pro-

pose the Middle Window Transformer (Midformer) layer, to

achieve reduced computation complexity. The idea is simple:

we only apply global attention on N (e.g., N = 3) input

patches in the middle range of the window as queries, which

is illustrated in the right plot in Fig. 3. The reason why we

reduce the the number of queries is that, most NILM models

(e.g., s2p [12]) only predict the appliance’s power usage at the

center position of the window. The middle range area of the

window is where we should focus on. By reducing the number

of queries, the complexity of the attention mechanism can be

greatly reduced. It is worth noting that only the number of

queries is reduced here, and the number of key-value pairs

remains unchanged, which is fundamentally different from

simply using a smaller window size W and then calculating

the full attention. This technique contributes to the class of

position-based sparse attention schemes, which reduce the

required computations by limiting the number of query-key

pairs that each query attends to [42].

D. Concatenation

Finally, an MLP (i.e., a fully connected layer) is utilized

to concatenate the outputs of the two groups of Transformer

blocks. The final MLP would restore the concatenated feature

maps to the desired output size, which is one for NILM

problems.

E. Computational Complexity Analysis

Supposing each input’s dimension is W ×dmodel, the patch

size is W/k, the learnable parameter’s dimension is dmodel×d,

and the number of queries used in the Midformer layer is

N . The computational complexity of the global Multi-head

Self-attention module in each layer is O
(

W 2 · d
)

. The high

cost of computing the global limits its ability to handle the

usually large window sizes in NILM problems. However, with

the proposed Midformer model, the computational complex-

ity of the Multi-head Self-attention module is reduced to

O (N/k ·W · d). In the Midformer design, both N and k
are set proportional to the window size W (e.g., k = W/9
and N = k/3 = W/27 in our experiments). Therefore, the

computational complexity of Midformer is now linear to the

window size W .

V. EXPERIMENTAL STUDY

In this section, we introduce the datasets and the system

configuration used in our experiments to evaluate the perfor-

mance of the proposed Transformer model. We then present

our experimental study of the proposed model and compare it

with three baseline models.

A. Datasets

We use two real-world datasets, the REFIT dataset [43]

and the UKDALE dataset [44] to evaluate the performance of

the proposed energy disaggregation method. The REFIT and

UK-DALE datasets are both recorded in England. They both

provide house-level aggregate energy consumption as well as

individual appliances’ power consumption data. In particular,

the REFIT dataset consists of data from 20 households. Both

the aggregate and appliance levels’ data were recorded every

8 seconds from September 2013 to July 2015. The UKDALE

dataset includes data from five houses. Each house’s aggre-

gated energy consumption was recorded every 1 or 6 seconds,

and the appliance level data was measured every 6 seconds.

In order to be consistent with data in different datasets, the

aggregate level and appliance level data are down-sampled

to 8 seconds. Standard score normalization is applied in data

preprocessing; each sample x in the dataset is normalized as

x̂ = (x − x̄)/S, where x̄ is the sample mean and S is the

sample standard deviation. We follow the approach in [12] to

set the sample mean and sample standard deviation values for

each appliance.

Following the approach in our recent work [2], for pre-

training, we use a large-scale NILM dataset: i.e., the REFIT

dataset. Specifically, we use the data from three houses as the

pre-training set and the data from two other houses as the

testing set for each appliance. The specific houses used and

the amount of data from REFIT used to pre-train the model

are summarized in Table I. We then use the UKDALE dataset

to evaluate the generalization of the models. We use only a

small part of the data in House 2 of the UKDALE dataset

to fine-tune the pre-trained model and the rest of the unseen

data of House 2 to test the performance of the fine-tuned pre-

trained model. There is no overlap between the testing data

and the fine-tuning data. The detailed information of the house

and data from the UKDALE dataset used in our experiment

is summarized in Table II.
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TABLE I: Appliances and Houses Used in the REFIT

Dataset [43]

Training and validation dataset

Appliances House Time period Samples (M)

Kettle 5, 7, 13 2013-09-26 to 2015-07-08 18.91

Dishwasher 4, 10, 12 2014-03-07 to 2015-07-08 19.36

Fridge 2, 5, 12 2013-09-17 to 2015-07-08 13.28

Washing
Machine 5, 7, 18 2013-09-17 to 2015-07-08 19.80

Microwave 5, 7, 18 2013-09-26 to 2015-07-08 19.80

Testing dataset

Appliances House Time period Samples (M)

Kettle 9 2013-12-17 to 2015-07-08 6.17
20 2014-03-20 to 2015-06-23 5.17

Dishwasher 9 2013-12-17 to 2015-07-08 6.17
16 2014-03-10 to 2015-07-08 5.72

Fridge 9 2013-12-17 to 2015-07-08 6.17
15 2013-12-17 to 2015-07-08 6.22

Washing 15 2013-12-17 to 2015-07-08 6.22
Machine 17 2014-03-06 to 2015-06-19 5.43

Microwave 17 2014-03-06 to 2015-06-19 5.43
19 2014-03-06 to 2015-06-20 5.62

TABLE II: Appliances and Houses Used in the UKDALE

Dataset [44]

Fine-tuning dataset

Appliances House Time period Samples (M)

Kettle, Dishwasher,
Fridge, Washing 2013-5-20 to
Machine, Microwave 2 2013-5-29 0.108

Testing dataset

Appliances House Time period Samples (M)

Kettle, Dishwasher,
Fridge, Washing 2013-5-30 to
Machine, Microwave 2 2013-10-10 1.592

B. Model and Experimental Setup

Next we introduce the experiment setup and the models used

to address the NILM problem. The following three baseline

models are evaluated for comparison purpose.

• Sequence-to-point (s2p [12]): this baseline model uses the

same structure of sequence-to-point method as in [12].

• Bidirectional Gated Recurrent Units (Bi-GRU) [30]: this

baseline model utilizes Bi-GRU, rather than LSTM, to re-

duce the amount of model parameters while maintaining

a similar performance as the RNN model.

• Transformer (Transformer) [6]: this is the traditional

Transformer model. It has the same hyper-parameters as

the Midformer model proposed in this paper, which are

summarized in Table III.

Note that comparisons between the s2p model and other tradi-

tional machine leaning methods have been presented in [12],

including AFHMM, RNN, sep2sep, GRU, etc., where the s2p

TABLE III: Hyper-parameter Setting of Midformer

Hyper-parameter Value

Window size 99 297 495 693
Batch size 100
Adam 0.001
Maximum pre-training epochs 50
Maximum fine-tuning epochs 10
Number of heads 8
Number of layers 2 to 4
Number of patches 3 9 11 99
Projected dimension 64

model achieves the best performance. Therefore we choose

s2p as a benchmark scheme in this paper.

All the models are implemented using TensorFlow 2.6.0 and

trained on NVIDIA RTX 2070 Mobile. We pre-trained all the

models using the ADAM optimization algorithm [45] with a

maximum of 50 gradient updates. We update the weights with

a learning rate of 0.001 and use a mini-batch size of 100.

Both Midformer and Transformer incorporate 2 to 4 attention

layers. The projected dimension of Midformer is d = 64, and

the number of heads is H = 8. The number of patches is fixed

at k = 3, 9, 11, 99. Table III describes the detailed information

of the hyper-parameters.

We fine-tune the pre-trained model using the stochastic

gradient descent (SGD) method with a momentum of 0.9 and

a learning rate of 0.01.

C. Performance Metrics

We use two metrics to evaluate the performance of the

proposed Transformer model, which are the mean absolute

error (MAE) and the signal aggregate error (SAE). These two

metrics are defined as follows.

MAE =
1

T

T
∑

t=1

|ŷj(t)− yj(t)| (4)

SAE =
1

rj
|r̂j − rj | , (5)

where T is the duration of the period used to predict the

output; yj(t) is the ground truth of power consumption of

appliance j and ŷj is the predicted value by the NILM models;

r̂j and rj are the predicted total energy consumption and the

ground truth of appliance j over the period T , respectively.

D. Experimental Results and Discussions

Three scenarios are designed and examined in our experi-

mental study, which are:

(i) The pre-trained model is evaluated on the same appliance

in the same dataset;

(ii) The model is applied to a different dataset but on the

same appliance;

(iii) The model learned using one appliance in one dataset is

evaluated on other appliances in a different dataset.

Multiple cases are examined, which belong to these three

scenarios and use the data from the two public datasets.
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TABLE VII: Results of the Pre-trained Model without Fine-tuning Tested on the UKDALE Dataset

Pre-trained Dataset Testing Dataset Bi-GRU s2p Transformer Midformer

REFIT UKDALE MAE SAE MAE SAE MAE SAE MAE SAE

Kettle Kettle 16.579 0.163 22.642 0.442 16.204 0.268 15.099 0.234
Dishwasher 72.909 0.498 66.627 0.669 70.220 0.562 71.449 0.558
Fridge 47.079 0.783 44.102 0.786 46.458 0.798 46.625 0.795
Washing machine 26.613 0.331 21.459 0.122 25.377 0.242 25.929 0.259
Microwave 24.651 1.432 18.755 0.625 23.448 1.272 23.580 1.297

Dishwasher Kettle 81.610 0.325 60.178 0.372 44.579 0.766 15.099 0.234

Dishwasher 80.330 0.103 81.828 0.329 47.492 0.798 71.449 0.558
Fridge 40.446 0.954 39.396 0.995 40.993 0.946 46.625 0.795
Washing machine 44.862 0.601 41.812 0.939 44.541 0.632 45.929 0.259

Microwave 44.487 0.294 44.362 0.362 42.864 0.263 43.580 1.297

Fridge Kettle 371.049 8.047 318.502 6.556 306.362 6.264 303.152 6.127

Dishwasher 379.803 3.338 305.632 4.484 308.999 4.471 313.630 4.569
Fridge 25.034 0.321 25.621 0.873 24.273 0.218 25.702 0.222
Washing machine 157.459 12.417 109.502 8.172 107.688 8.087 110.956 8.388
Microwave 1224.569 28.545 169.378 20.964 168.284 20.870 172.590 21.404

Washing machine Kettle 197.971 3.073 181.299 3.060 216.437 4.070 183.575 3.073
Dishwasher 171.177 2.266 162.226 1.938 149.851 2.800 135.068 1.949
Fridge 47.722 0.752 45.399 0.800 68.355 0.766 50.924 0.647

Washing machine 31.097 1.337 19.867 0.432 58.687 3.966 33.079 1.359
Microwave 79.898 8.825 66.123 7.040 99.997 11.766 65.980 7.091

Microwave Kettle 113.396 1.038 119.416 1.233 56.051 0.424 116.196 1.096
Dishwasher 121.416 0.515 129.421 0.670 62.974 0.624 129.026 0.627
Fridge 39.345 1.000 41.747 0.919 39.344 1.000 41.670 0.929
Washing machine 11.629 0.995 17.279 0.471 11.726 0.985 16.329 0.545
Microwave 9.974 0.657 6.429 0.167 9.271 0.718 7.698 0.202

average 98.444 3.144 86.360 2.537 83.619 2.943 84.566 2.586

TABLE VIII: Results of Pre-trained Model with Fine-tuning Tested on the UKDALE Dataset

Pre-trained Dataset Testing Dataset Bi-GRU s2p Transformer Midformer

REFIT UKDALE MAE SAE MAE SAE MAE SAE MAE SAE

Kettle Kettle 10.064 0.116 9.854 0.106 10.585 0.318 4.183 0.041
Dishwasher 39.001 0.409 4.463 0.017 14.511 0.153 5.135 0.040
Fridge 34.475 0.025 24.296 0.015 36.476 0.139 17.081 0.061
Washing machine 9.540 0.715 12.604 0.194 19.102 0.126 6.979 0.185
Microwave 14.192 1.014 5.800 0.169 4.275 0.018 4.183 0.013

Dishwasher Kettle 55.162 0.241 4.471 0.017 6.874 0.058 †3.837 0.010
Dishwasher 29.180 0.389 4.820 0.009 7.970 0.086 6.974 0.012
Fridge 34.949 0.030 28.004 0.196 36.237 0.113 15.312 0.162
Washing machine 10.137 0.758 11.812 0.328 9.490 0.328 5.301 0.049
Microwave 18.649 0.516 3.762 0.187 5.414 0.128 3.177 0.065

Fridge Kettle 64.616 0.440 8.009 0.023 5.159 0.018 4.520 0.043
Dishwasher 36.583 0.173 5.639 0.031 6.094 0.014 5.251 0.006
Fridge 24.059 0.032 13.798 0.083 16.588 0.144 †13.132 0.050
Washing machine 13.342 0.503 8.553 0.523 7.008 0.277 5.110 0.045
Microwave 13.889 0.455 5.402 0.250 5.497 0.175 3.126 0.171

Washing machine Kettle 37.098 0.435 5.994 0.027 7.482 0.014 5.213 0.003
Dishwasher 30.852 0.266 †4.254 0.012 5.377 0.003 5.406 0.040
Fridge 35.310 0.110 24.393 0.285 34.425 0.322 14.992 0.032
Washing machine 15.987 0.177 8.089 0.390 9.523 0.055 †4.887 0.114
Microwave 23.553 1.177 4.267 0.020 7.303 0.053 3.165 0.041

Microwave Kettle 8.424 0.078 8.268 0.068 7.443 0.064 6.114 0.020
Dishwasher 6.406 0.082 6.389 0.065 6.014 0.029 4.310 0.039
Fridge 27.256 0.120 17.572 0.012 17.428 0.036 22.551 0.022
Washing machine 14.767 0.661 13.904 0.380 6.806 0.374 5.456 0.059
Microwave 5.456 0.126 5.289 0.090 4.541 0.039 †2.630 0.028

Average 24.518 0.358 10.088 0.136 12.145 0.123 7.121 0.056
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