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The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of
pharmaceutical interventions, the population behavioral response, including situational awareness and adher-
ence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-
theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease
contagion, and social networks are critical platforms on which behavior imitation between social contacts, even
dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored,
which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer
network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that
mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from
these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the
social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform
to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral
change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on
coordinated policy design to enhance the preparedness for future pandemics.

1. Introduction

In the absence of pharmaceutical interventions, situational aware-
ness and collective adoption of protective behaviors are pivotal to
combat spreadout of infectious diseases, as demonstrated by the ongoing
COVID-19 pandemic and the flare-up or resurgent outbreaks around the
world. The integration of awareness into mathematical models, mainly
through variants of susceptible-infectious-recovered (SIR) models, has
been widely investigated since the onset of COVID-19 [1]. Most of these
models merely capture oversimplified behaviors (e.g., social distancing
or not) and fail to capture the sophisticated mechanisms underlying
behavioral responses, including the individual perception of infection

risk and bounded rationality, government mandate, socioeconomic cost
and fatigue on adherence to containment policies, as well as social in-
fluence [2-5]. The interplay between the collective behavioral response
of the population and the contagion dynamics has a significant bearing
on the epidemic evolution.

Game-theoretic models explicitly account for behavioral adaptation
and the connection with epidemic spreading [6], mostly with a sepa-
ration of time scales between the spreading dynamics and behavioral
response [7-10]. For instance, behavioral changes only occur at the
beginning of each time period or happen at a much lower frequency.
Such a time-scale separation does not capture the realism of behavioral
responses. Inspired by [11], we study the coevolution of the spreading
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dynamics and behavioral adaptation under the same time scale and
investigate the decision-making process under the influence of risk
perception, behavioral change costs, compliance fatigue, social influ-
ence, as well as bounded rationality [12]. As behavior dynamics has
been recognized as one driving force behind resurgent outbreaks of
COVID-19, there is a pressing demand for a paradigm shift from purely
rational and reactive behavior modeling to a more comprehensive
response computational framework that can predict the epidemic evo-
lution and provide guidance on intervention policy design.

Network models have been widely deployed to describe agent in-
teractions. For instance, a single-layer network was suggested in [13] to
incorporate agent behavior to extend the conventional susceptible-
exposed-infectious-recovered (SEIR) model. The decision of each agent
to take a certain behavioral response is modeled via an evolutionary
game model, considering the underlying cost. Ye et al. [11] instead
suggested a two-layer network to study the interplay between agent
behavior from a social layer and the spreading dynamics on a physical
layer. Particularly, as we have observed during the COVID-19 pandemic,
social media play a vital role in reshaping our perception towards the
risk of infection and in transforming behavioral responses. Nonetheless,
most existing works only study the interplay between epidemic dy-
namics and behavior responses for the population that resides in the
same physical community. It has been reported that contact patterns of
residents in one region could be substantially affected by the policies
and behavioral responses in other distant regions [14]. Or in other
words, we imitate behavioral responses of our social contacts even if we
are located in distant communities. Such a “spillover” effect could crimp
the effectiveness of intervention policies, and it has not been systemat-
ically investigated. On the other hand, numerous behavioral models [6],
[15,16] have been proposed to quantify how human behaviors adapt
and affect the transmission of contagious diseases assuming pairwise
interactions between agents. It is noted, however, that this pairwise
interaction assumption may fail to represent more realistic behavioral
responses [17]. Instead, a higher-order interaction among the popula-
tion has been suggested for behavioral adaptation on social networks.
Recent studies also underscore that the presence of higher-order in-
teractions substantially sways the dynamics of networked systems, from
diffusion and synchronization to social and evolutionary processes,
possibly leading to the emergence of sophisticated collective phenom-
ena [17-19].

To account for such phenomena, we propose a three-layer network
platform to study the interplay between behavioral response and
contagion process in two distant communities. These two communities
interact via a common social network. A simplicial complex is adopted
to model the high-order interactions on the social layer, and a game-
theoretic model is then utilized to elucidate the behavioral change of
agents. This theoretic model could help harvest policy-relevant insights
into the course of contagion spreading dynamics.

It is noteworthy to highlight that our model is not intended to
replicate real curves because we are more interested in specific system
reactions, such as behavioral responses and changes. Generally, most
results caused by diverse behaviors are inadequate data to characterize
behaviors. If we fully focus on the result and ignore the mechanisms
underlying these behaviors, the result will no longer be precise when the
behavioral responses are changed. Currently, most COVID-19 pre-
dictions are inaccuracy and their prediction curve are too smooth to be
true because the practical curves are oscillations. Thus, we do not target
reproducing real results or curves but focus on analytical insights.

2. Background

Modeling and simulation of epidemics abound in the literature. Such
models provide critical insight into the spreading dynamics and are
imperative in the optimal design of knowledge-informed intervention
policies. Compartment models and their variants (e.g., SIR [20]) are the
most popular approaches in epidemic modeling. They divide the
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population into different compartments and use ordinary differential
equations to capture the dynamic evolution of population flow across
the different compartments. The SEIR variant includes an exposed
compartment between the susceptible and infectious to account for the
incubation period of the disease, and it has been used to predict COVID-
19 infection and hospital resource shortage at the state-level in the U.S.
[21] and other countries. However, a classical compartmental model
typically relies on a key assumption of population homogeneity in a
certain region or community of interest, and each compartment repre-
sents an aggregate of indistinguishable individuals. This is not realistic
to unveil the critical distinctions pertaining to epidemic dynamics.
Admittedly, recent studies have set forth strong evidence of spatial
heterogeneity and disparities in COVID-19 transmissions [22,23]. So-
cioeconomic, cultural, and environmental factors, which differ across
geographic communities, could substantially affect human behavior,
and consequently, the spread of COVID-19. Thus, accurate modeling
requires a more refined approach to address the heterogeneity of pop-
ulations. Prem et al. [24] proposed an age-structured SEIR model and
divided the whole population into 16 age groups to assess the effec-
tiveness of physical distancing measures in containing COVID-19 in
Wuhan, China. Kucharski et al. [25] investigated a stochastic SEIR
model with random contact rates to forecast the case count of COVID-19
in Wuhan and other cities. In the metapopulation SEIR model, a certain
geographic area is divided into multiple distinct communities, each with
unique geographic and demographic features. A local SEIR model is then
imposed for each region, and those local SEIR models are coupled
together to quantify the daily transmission within and between the re-
gions. Tran-Thi et al. [26] proposed a stochastic SEIR metapopulation
model that included both population migration and environmental
transmission (seasonal average contact rate) for the spread of infectious
diseases. Similarly, Venkatramanan et al. [27] integrated short- and
long-range mobility patterns in a SEIR metapopulation model to study
the contagion of seasonal influenza. Brockmann and Helbing [28]
replaced the conventional geographic distance with effective distance
derived from the mobility network and built a simplified and homoge-
neous metapopulation SIR model to predict arrival times of infection
peaks. Acknowledging that epidemiological parameters are often hard
to calibrate and typically associated with huge uncertainty, which may
render the model useless, this simplified and homogenous modeling
approach [28] relies on only a small fraction of transport connections
with fewer parameters to fit.

Yet, the resurgent outbreaks and flare-up of case counts around the
world suggest that population behavior plays a critical role in shaping
the spreading dynamics. For example, Radulescu et al. [29] incorpo-
rated different population behaviors (social distancing, mobility re-
strictions, and lockdowns) into a conventional SEIR model to simulate
the epidemic dynamics. The results indicated that whereas social
distancing is effective in flattening the contagion curve, it cannot
completely rule out resurgent outbreaks. Weitz et al. [30] combined a
SEIR model with fatality-driven awareness and reported that the situa-
tional awareness leads to asymmetric epidemic curves with lagged os-
cillations. Lockdown fatigue was also considered to examine the impact
from premature relaxation of mobility reductions on the resurgence of
outbreaks [30]. In a similar vein, Johnston and Pell [31] proposed a
behavior-perception SEIR model that incorporates fear of infection and
frustration of social distancing to study the second-wave of COVID-19.

We also note that the heterogeneity of individual behavioral re-
sponses to the government mandate has complicated the effort to
contain the spread. Scabin et al. developed a multi-layer network to
consider social activities in different scenarios, including home, work-
place, transportation, and school, and the impact on a seven-state
compartment model [32]. Chinazzi et al. [33] combined the SEIR
model and metapopulation network with real-world airline trans-
portation data to predict the infection rates in major cities in China.
Similarly, Wu et al. [34] applied a SEIR model to a transportation
network that connects spatially disjoint regions to predict the spread of
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COVID-19 in China. Cui et al. [35] applied a SEIR model on different
Barabasi-Albert (BA) [36] networks to simulate transmission of COVID-
19 with different physical contacts, subject to the testing procedure set
by the government. Considering the inflows and outflows of interstate
travel, a mobility network-based SEIR model was developed to project
state-wise COVID-19 infection in the U.S. and to assess the impact of
non-pharmaceutical intervention policies at the state level [21]. In [37],
a metapopulation SEIR model was overlaid on a mobility network,
which governs how populations from different social groups interact as
they visit points of interest. Similarly, Meloni et al. [38] implemented a
metapopulation model into a mobility network but considered various
self-initiated behavioral responses for individual’s mobility pattern. The
authors analyzed the behavioral responses in both synthetic and data-
driven scenarios and indicated that behavioral responses with the goal
of limiting and decreasing the pandemic may have the exact opposite
impact.

Social networks play an increasingly important role in shaping our
daily behaviors [15], including our attitude and response to the preva-
lence of infections. Alvarez-Zuzek et al. [39] developed a two-layer
network to evaluate the influence of social opinion in vaccination on
epidemic spreading. Similar studies [40-43] also implied that agent
interaction on the social layer has a tremendous influence on the inci-
dence of infection and the outbreak of epidemics on the physical layer.
In [44], the authors claimed that diffusion of negative or positive
opinion towards the infection can lead to risk-taking or risk-averse be-
haviors, respectively, which further elevate or suppress the prevalence
rate. Other factors and their influence on the behavioral response have
also been studied, including risk perception (awareness) [7,43],
compliance cost [45], bounded rationality [12], and non-
pharmaceutical intervention policy (contaiment measure) [46-48].

In these modeling studies, the population resides in the same phys-
ical and virtual communities. Their perception of infection risk and
opinion formed from their social interactions reshape their behavioral
response in the physical community. In reality, we also interact with
social contacts in disjoint communities and may imitate their response to
the infection. This cannot be elucidated via the above-mentioned
network modeling approaches. In particular, pair-wise interactions be-
tween agents on the social network are widely used, which are often-
times not sufficient to account for the rich collective dynamics
underneath a variety of social imitation phenomena, including opinion
formation and behavioral adaptation. Indeed, pairwise links do not
operate alone on the social layer. Rather, they are usually reinforced by
group pressure. It has been suggested that complex mechanisms of
higher-order influence and reinforcement are at play and responsible for
a variety of emergent collective behaviors [19]. In this investigation, we
describe such higher-order interactions on the social network with
simplicial complexes and study the social influence on infection dy-
namics in two distant physical communities.

3. Model

We present a multilayer network platform to elucidate how the
collective behavior of individual agents affects the contagion dynamics
on disjoint physical communities. This platform comprises two physical
layers that represent two isolated communities A and B, on top of which
a networked SEIR model is implemented to capture the disease
spreading dynamics. Here, for simplicity, we construct the communities
A and B as Barabasi-Albert (BA) networks, since many realistic networks
follow the preferential attachment principle [36]. The physical networks
of communities A and B have N, and N, nodes or agents, respectively. In
essence, starting with an initial network Gy of Ny connected nodes, new
nodes are attached to m < Nj original ones to form new edges according
to the preferential attachment principle, i.e., with a probability pro-
portional to the degree of existing nodes.

Agents from both communities A and B collectively define a social
community C that accommodates social interactions, thus the size N, =
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Ny + N, (see Fig. 1). These two physical layers have time-varying un-
directed links, which symbolize the physical contacts or the avenue for
disease transmission [49]. Each agent adjusts their risk-taking or risk-
averse behaviors as they parse information regarding the global preva-
lence of the contagion and the response of their neighbors on the social
layer. Therefore, the two distant communities could still affect each
other regarding the spreading dynamics indirectly via the social
network, even without human mobility in between. This mimics how we
perceive information from social media and adapt our behaviors
accordingly.

We define two utility functions 7}, and 7 to characterize the payoff
for risk-averse and risk-taking behaviors of agent i, which hinges on the
effective intervention policy §(t), imitation of social influence wj(t),
compliance cost ¢;(t) (e.g., economic cost, mental stress, and physical
fatigue), and the community’s risk perception 5(t) [11].

m, () = (1) +1(r) — &) (1a)
m (1) = = 8(1) — (1) (1b)

With a large 7%, agent i has a strong sense of situational awareness and
tends to be risk-averse, disregarding the effective intervention policy 5.
It is further assumed that conservative agents are sensitive to risk
perception #7(t) and compliance cost &;(t), as displayed in Eq. (1a).
Conversely, a large 7. indicates that agent i is risk-prone. The risk-taking
agents generally ignore the risk perception #5(t) and compliance cost
€i(t). They instead subject their behaviors to government regulations.
w;(t) prescribes the social influence on agent i resulting from imitating
the behaviors of social contacts. Positive w;(t) indicates imitation of
protective behaviors from neighbors, thus boosting 7 (t); negative w;(t)
implies imitation of risk-taking responses, elevating #.(t). Following
this, we construct a Markov model to characterize the time-dependent
behavioral adaption via behavior quotient (BQ) x;(t + 1) of agent i at
time stamp t + 1 with bounded rationality assumption:

o, (1) o, (1)

e
eom () 4 gom (1)’

—e

x(t+1) = 2)
where ¢ > 0 is a rational scale in the decision-making process. A finite
constant ¢ is assumed for all agents with bounded rationality. As a side
note, the two extreme cases of 6—ooand ¢ = 0 indicate fully rational and
fully irrational behaviors, respectively. The BQ x;(t) € (—1,1) is a
continuous variable capturing the effective behavioral response of agent
i: if x;(t) > 0, agent i avoids risk and takes protective behavior; for
xi(t) = 0, agent i is risk-neutral; if x;(t) < 0, risky behavior is in favor,
which could potentially boost the probability of infection. It is note-
worthy that the formulation of BQ x;(t) is a significant departure from
the model proposed in [11], in that each agent mimics both risk-averse
and risk-taking behaviors. The public weighs the trade-off to adjust their
behavioral response, considering the behavior of their social contacts,
risk perception, government intervention policy, and compliance cost.

3.1. Imitation of social behavior

On the social influence layer, we define an imitation function w;(t) to
characterize how agent i imitates the behaviors of their social contacts.
The simplicial complex has been extensively used to reveal such higher-
order interactions: the behavioral imitation occurs with nonlinear
reinforcement characterized by the simplex dimension, rather than
bilinearly depending on the number of connecting nodes and their be-
haviors. Formally, a simplex of dimension d or d-simplex is a collection
of d + 1 vertices 64 = [jo,j1, ..-,ja], and any subset 6 (d < d) of o4 is its
sub-simplex or d -face [17]. That said, 64 subsumes all subset simplices of
dimension d— 1, and so on recursively. The vertices are called
0-simplices, the edges the 1-simplices and the full triangles the 2-
simplices. The collection of simplices and all the sub-simplices or faces



J. Wan et al.

Physical contact

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112735

network

—

Community A

Social Influence
Network

Physical contact
network

—

Community B

t——t+1

Fig. 1. Illustration of the 3-layer network platform as time evolves: the upper layer and lower layer represent the two physical contact networks or communities A

and B; the middle layer represents the social influence network.

defines a simplicial complex. As illustrated in Fig. 2(b), the agent i (the
orange node) interacts with a set of social contacts jj, j; and j3 via a
simplicial 2-simplex, which contains a 1-simplex (e.g., pairwise link of
[i, j1Dand a 2-simplex (the full triangle [i, jo, j3]). Conversely, Fig. 2(a)
illustrates a simplicial 1-complex with only the pairwise interactions.
The imitation of social behavior, indexed by w;, is induced on the
simplicial complex. For computational easiness, we only consider the
simplicial complex up to dimension 3 in this study.

The enhancement effect for collective interaction of a d -simplex is
givenas 6y = (1+py Y , where pg is the proportion of number counts

of d -simplices in the simplicial 3-complex. 1; = (‘{Tﬂ) underscores the

influence of high-order interactions. 3y = 0 ford < 2, 4, = (%) =1,

and A3 = (%) = 4. In the illustrative example depicted in Fig. 2 (c), a

simplicial 3-complex contains three 1-simplices, four 2-simplices, and
three 3-simplices, thus p; = p3 = %, pPo = %. Correspondingly, the
enhancement coefficient for pairwise interaction is fixed as §; = 1 with
A1 = 0. Therefore, the imitation of social behavior function for agent i at

time t can be represented as:

Js Js

)2

Ji

nj N3 3
0, Z‘;‘ci +6,> 460, %
a),-(t) — 5 v=1 v=1 v=1 , (3)

n;

where ¢ is the imitation factor that scales the influence of imitation
behavior in utility functions 7}, and !, n;; is the number of 1-faces, n;, is
the number of 2-faces, and n;; is the number of 3-faces associated with
agent i. Variables X}, X2, and X- represent the average BQ of the vface
with orders 1, 2, and 3 respectively. The 1-face is included not only in
the 1-simplex but also in the 2-simplex and 3-simplex. Each 1-face
contains one neighboring agent for agent i with the average BQ X. ().
Here X, (t) = x;,(t), v=1,...,ny = 20 as shown in Fig. 2(c). Similarly,
the 2-face is included not only in the 2-simplex but also in the 3-simplex,
and 2-face contains two neighboring agents with average BQ X2(t).
There are thirteen 2-faces for agent iin Fig. 2(c), which are if(t) =
00, () =20, B =Ll ) 050 ()

Xijg (t);xjg (t)’ )—(g(t)
X(t) = 200 52 ¢

_ 9‘1‘11“)‘;‘112@)’ Y?(t) _ xin(t);rles(‘), )_('g(t) _ lez(t);xiw(t)’

— ij(t);rxjw(t)’ J_('%l(t) — xf15<t);r’918(t>’ J_(%Z(t) —
w, and X,(t) = M Lastly, the 3-face is only included in
the 3-simplex, and there are three 3-faces in the illustrative example in
Fig. 2(c). The average BQ X(t) = w, X(t) =

)

J>

Ji

J20 Jis

Fig. 2. Illustration of different interactions in the network for agent i: (a) only pairwise interactions; (b) simplical 2-complex, including the pairwise and full-triangle
interactions; (c) a simplicial 3-complex with three 3-simplices, four 2-simplices, and three 1-simplices.
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Xy (6) 115 (6) 15,5 (€
3

) —3 Xjy g (£) X5, (£) 45,4 (£)
x and X3(t) — e “(73 J18 .

3.2. Risk perception

The risk perception reflects how the public perceives the disease
prevalence z, the fraction of the population that is infected (exposed and
infectious) [50]. A power function for risk perception, z(t) € [0,1], has
been suggested in [11]:

n(t) = ke(1)", “

where k > 0 is the scaling factor and the risk index u > 0 captures the
population attitude towards the prevalence or the risk. Since z € (0, 1),
u > 1 indicates that the population discounts the infection risk, and u <
1 implies that the public tends to overrate the underlying risk.

3.3. Government intervention policies

To contain the spreading of infection, the government enacts non-
pharmaceutical interventions, such as social distancing, face mask
requirement, and lockdowns. p(t) > 0 quantifies the strength of such
policies at time t, and the policy is adjusted periodically (e.g., every 10
time steps) for each community according to the average prevalence

Z(t") of the previous time interval T € [t — 10,t" — 1], where t" = 10 x

[i5] and | e | is a floor function. Remarkably, public compliance with
social restrictions diminishes as fatigue sets in. To account for the

“lockdown fatigue”, a fatigue function y(t) =e <#> is introduced to
portray the diminishing public compliance to the intervention policy as
time elapses, regulated by the complying factor . Thus, the effective
intervention policy & is given as:

(1) =w(@O)p(r), (52)
0.8, Z(1"))0.1

o) = 0.5, 0.05< th ) <0.1 ’ 5b)
0.3, 0.03 <z()(0.1
0.0, Z(¢")(0.03

Here, the values of p(t) are set arbitrarily, and we do not seek to find
the optimal intervention policy. Different evolution trajectory of the
infection of the two different communities causes different intervention
policies p(t), as shown in Eq. (5b). We name this as an adjustable policy,
in comparison to the rigid policy to be discussed in Section 4.

3.4. Compliance cost

Studies on historical contagion indicates that adherence to govern-
ment mandate is crucial to slowing the spread of the pandemic [14]. The
compliance cost ¢;(t) symbolizes the cost of abiding by government
policies, and it hinders the agent from taking protective behaviors (e.g.,
shelter-at-home and wearing face masks). The compliance cost &(t)
comprises two components: the immediate cost ¢ > 0, e.g., basic sani-
tization cost and psychological frustration, and cumulative protective
cost.

&) =c+ Zu”’(fp[xi(f) -02]%) (6)

a € [0,1] is the cumulative factor representing how the past protective
behaviors affect the current compliance cost. As agents respond to the
infection in a different way, the cumulative cost hinges on each BQ x(t).
a =0 implies a memoryless protective cost structure, such that the
protective action course in the history does not affect the current
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compliance cost. Cost scaling ¢ indicates the cost associated with the
protective behaviors. [x;(7) — 0.2]" = max(0,x;(r) — 0.2) represents
that the BQ <0.2 will not incur a cost at time 7.

3.5. Transition probability

On the two physical contact layers (communities A and B), each
agent i is in one of 4 possible states h;(t) = {S,E,I,R} at any time t. The
infectious (I) spreads the disease to their susceptible (S) neighbors, who
then become exposed (E) with a probability P(h;(t + 1) = E |h;(t) =S ):

1 —x(1)

P(h(t+1) = Elhi(1) = §) = —

x(1-(1-p""), @
where g is the infection rate when the susceptible agent i contacts in-
fectious neighbors. Nj(t) is the number of infectious neighbors for agent i
at time ¢, and it is time-varying because of the change of agents’ states.
The expression 1%“) € (0,1) symbolizes the effective disease trans-
mission, citing variation of BQ x;(t). When x;(t) = 1, agent i refrains
from taking any risk, and x;(t) = —1 implies that agent i completely
ignores the infection risk. The exposed (E) transitions to the infectious
(I) with a probability P(h;(t) = I |hi(ts) = E):

P(hi(t) =1 |hi(tg) = E) = 1 — ¢ ot718), (8)

where tg is the time at which agent i becomes exposed (E). This transi-
tion occurs at an exponential rate a, or equivalently with an average
latent period of 1/0(' In a similar vein, the infectious (I) recovers with a

probability P(h;i(t) =R |hi(t;) =1I):
P(hi(t) = R|hi(t;) =1) = 1 — 77170, (C)]

where t; is the time at which agent i becomes infectious (I). The recovery
process occurs at an exponential rate y, or equivalently with an average
recovery period of 1/},.

4. Numerical results

We utilize the Facebook social network dataset from Network Re-
pository (NR) [51] for the social influence layer, which includes 10,004
individual Facebook users or nodes. We construct a simplicial 3-complex
for each agent at each time t by randomly selecting a different number of
neighbors (from 1 to 3) to formulate different order simplices. We
generate an Erdos-Rényi (ER) random network as the initial network Go
with size Ny = 1000 and the probability of node connection Cy = 0.1 to
construct two BA networks to represent the communities A (the first
physical contact layer in our multilayer network) and B (the second
physical contact layer) of equal size N, = N, = 5002 but with disparate
density of links. The densely connected network symbolizes the urban
area, denoted as community A: each of the new coming nodes will
connect to m, = 250 nodes to extend the initial network. The sparsely
connected network is analogous to the rural area, denoted as community
B: each new coming node will be connected to only m, = 50 existing
nodes. The connectivity of these two BA networks represents the
maximal physical contacts for each agent throughout the epidemic
process. As time evolves, a random set of edges from this connectivity
will be chosen for each agent to form the time-varying network. This
does not preclude other temporal formation mechanisms [11]. We stress
that whereas some epidemic models can reproduce key features of the
spreading dynamics, the abundance of mutually incompatible models
suggest that there is still substantial uncertainty in data collection and
model parameterization, as well as a lack of fundamental understanding
of the observed spatiotemporal dynamics [28]. Thus, we do not aim to
replicate the infection curve in any particular regions. Rather, we
parameterize the model to reveal the general impact of the social
interplay on the infection dynamics.
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We implement the SEIR compartment model previously described on
the two physical layers (the communities A and B), which possess the
same key parameters for the COVID-19 pandemic, including the trans-
mission probability per contact j, the incubation rate «, and the recovery
rate y. According to recent studies of COVID-19 [52,53], we set f =
0.06, « =1/7 and y =1/21. That said, we set the incubation period to 7
days and the recovery time to 21 days. To start with, we randomly assign
a 1 % of the population for communities A and B to the infectious
compartment, and initialize the BQ x(0) = 0 and the effective inter-
vention policy §(0) = 0 for all agents. Disregarding the social influence
and behavioral response, the contagion dynamics for the densely-
connected urban community A and the sparsely-connected rural com-
munity B regulated by the conventional SEIR are showcased in Fig. 3:
community A reaches a higher peak infection rate with an earlier arrival
time. Nonetheless, there is a far cry between the reality and those curves
in Fig. 3: ebbs and flows of COVID-19 case count have been reported
globally, and multiple resurgent outbreaks are also observed in the U.S.

4.1. Spreading dynamics under different risk perceptions

We set the model parameters on the social layer so as to have im-
mediate cost ¢ = 0.1, accumulative factor a = 0.4, cost scaling ¢ = 0.7,
imitation factor £ = 0.2, rational rate 6 = 10, and complying factor y =
50. We initialize the BQ x(0) = O for all agents on the social layer, i.e.,
they are all risk neutral at the onset of infection. We also assume a
scaling factor k = 2 and risk index u = 0.5 for a high level of situational
awareness of the infection. In this scenario, the public tends to take risk-
averse behaviors in line with the prevalence rate, and the compartment
flow dynamics are shown in Fig. 4(a) and (b) for communities A and B,
respectively. Compared to the conventional SEIR model, the infectious
compartment exhibits oscillatory patterns, and a much lower peak in-
fectious fraction is observed. Conversely, k = 0.5 and u = 4 are used for
a low level of risk awareness. Hence, the public tends to take risky be-
haviors, resulting in marked increase of the infectious population, as
shown in Fig. 4(c) and (d). Numerically, such risky behaviors lead to BQ
x— —1or 1%‘“)—& for most agents at the earlier stage of the contagion.
According to Eq. (7), our model is approximately equivalent to the
conventional SEIR model in this condition, particularly the first 10 time
steps before triggering the intervention policy. Next, the non-
pharmaceutical intervention is enacted to suppress the spread of
contagion. For community A with high population density, the adjust-
able intervention is not sufficiently intense to contain the disease spread
when the public is averse to safeguard measures, which is distinguish-
able from the infection curves in Figs. 3(a) and 4(c). For community B,
the susceptible levels off rapidly after the policy is enacted, which rep-
resents a significant departure from the curve in Fig. 3(b).

At the onset of the pandemic, the prevalence z(t) edges up rapidly.
When the public possesses high risk aversion (with k = 2 and u = 0.5),
the risk perception 7 increases at a faster pace than the compliance cost
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¢&;, promoting risk-averse behaviors (see Eq. (1a)). The imitation of social
behaviors further elevates the population BQ, eventually bending the
infection curve. The counterbalance between the constituent compo-
nents of the utility functions is manifested as the spikes on the preva-
lence curves in Fig. 5(a) and (b). When the public generally ignores the
infection risk with k = 0.5 and u = 4, the compliance cost ¢; dominates
the utility function. The behavior imitation further enhances such risk-
prone behaviors. Overall, at this extreme risk ignorance, all agents
behave without considering the infection, thus the prevalence is fairly
similar to the conventional SEIR model without behavioral response (see
Fig. 5(c) and (d)). We also note that with high-order interactions be-
tween agents, the imitation of social behaviors captures the reinforce-
ment effect. As displayed in Fig. 5(a) and (b), when the population is on
high alert, the prevalence rate curves exhibit a lower peak for both
communities A and B under the simplicial complex framework
compared to the pairwise interaction. At the low risk perception level,
the reinforcement of risky responses leads to elevated peaks for com-
munities A and B, though the difference is not substantial as illustrated
in Fig. 5(c) and (d).

4.2. The influence of control policy

We conduct another set of simulations to investigate how the control
policy in one community affects the other indirectly via the social layer,
with 2 levels of intensity, namely, weak §(t) = 0.1 and strict 5(t) = 1.0
for all time t, instead of the adjustable control policies given in Egs. (5a)
and (5b). Here, we only consider the risk averse scenario. First, we apply
a strict control policy to community A and maintain the adjustable
policy in line with the prevalence rate for community B. As shown in
Fig. 6(a), the bold action against the infection significantly suppresses
the prevalence rate for community A, compared to the adjustable policy
in Fig. 5(b). Such a strict policy substantially subdues the utility for risky
behaviors, thus promoting conservative responses. Simultaneously,
agents in community B imitates the behavior of their social contacts,
resulting in fluctuation of the prevalence. As time evolves, with the strict
government mandate in place, more and more agents adopt the risk-
averse responses, and the prevalence in community B also settles at a
low level. Next, we impose a strict control policy on community B and
maintain the adjustable policy for community A. As shown in Fig. 6(b),
the strict policy suppresses the prevalence for community B and agents
in community A imitate the protective behaviors in community B to also
diminish their prevalence as compared to the scenario of adjustable
policies for both communities in Fig. 5(b).

Subsequently, a weak control policy is enacted for one community
and an adjustable policy is maintained for another one. As illustrated in
Fig. 6(c) and (d), overall, as the population is risk averse, the weak
control policy has only a modest impact on agent behaviors and the
prevalence of both communities. Compared to Fig. 5(b), the prevalence
in community A with weak control policy (see Fig. 6(c)) is slightly
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Fig. 3. Population fraction of each compartment under the conventional network SEIR model for (a) communities A and (b) community B, respectively.
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influence layer under risk-averse behavioral response, and with (c) pairwise and (d) high-order interactions on the social influence layer under risk-taking response.

decreased in the first 10 time steps, because the adjustable policy is
inactive. Likewise, a weak control policy is also imposed on community
B leading to a slightly smaller prevalence in community B. It is further
noted that the strength of the weak control policy (6(t) = 0.1) is lower

than the active adjustable policy (5(t) > 0.3) in community A but higher
than the inactive adjustable policy (§(t) = 0.0) in community B, as given
by the average disease prevalence in both Fig. 6(c) and (d). Therefore,
the overall prevalence in community A with a weak control policy is
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1.0 for community A; (b) strict control policy §(t) = 1.0 for community B; (c) weak control policy §(t) = 0.1 for community A; (d) weak control policy 5(t) = 0.1 for

community B.

higher than the adjustable policy but the overall prevalence rate in
community B with a weak control policy is lower than the adjustable
policy.

Based on the results of Fig. 6, we conclude that the control policy for
one community can have a significant influence on another community
due to the imitation of social behavior w. Thus, it appears that to reduce
the prevalence of the pandemic fast, the best way is to impose a strict
control policy on the denser population. Conversely, imposing a strict
control policy on a lowly dense population community cannot halt the
pandemic fast.

5. Conclusions and discussion

In this study, we build a 3-layer network to inspect the interplay
between two isolated physical communities via a common social-
influence layer, and articulate the coevolution of behavioral changes
of the agents and spreading dynamics of epidemics. A game-theoretic
model is developed to capture the coupled behavior-disease dynamics,
subject to measures that mimic the impact of government intervention
policy, risk perception, compliance cost, and imitation of social con-
tact’s behaviors. To avoid a simplistic pairwise interaction formulation,
we employ a framework that allows for high-order social interactions in
the form of simplicial complexes. Results suggest that the simplicial
complex setting for the interaction among the agents enhances the risk-
averse or risk-taking behaviors, depending on the contact’s response to
the social influence (see Fig. 5). Moreover, the conventional SEIR model
generally miscalculates the infection case count, since the public may
possess different perception on the infection risk and adherence to the
government mandate.

Furthermore, as social networks are becoming key avenues for in-
formation and opinion formation, particularly during periods of low
physical interactions, behavioral adaptation due to social influence has
become one critical component to account for in modeling epidemics.
This also suggests that policymakers should carefully deal with

misinformation and disinformation in a timely manner. Notably, the
flareup or resurgent outbreaks of COVID-19 around the world imply that
the patchwork intervention policy does not work as anticipated,
partially owing to lack of compliance and behavior imitation from social
contacts who may reside in a remote community. Thus, coordinated
intervention is anticipated to improve the effectiveness of control and
mitigation policies. In this sense, our multi-layer network model pro-
vides a more sophisticated framework to study this phenomenon, and
the insight gleaned therefrom can be adopted to guide policy design for
future pandemics, once the model is properly parameterized - which was
not an objective of this study. For simplicity, we did not consider human
mobility between different physical communities in the current work. As
human mobility is regarded as the driving force behind the spatiotem-
poral dynamics of contagions, we plan to include it in our future in-
vestigations. Another mechanistic limitation of this work is that we only
adjust the non-pharmaceutical intervention policy in a passive way. In
our ongoing work, we will investigate the optimal policy design to
prevent contagion resurgence. Such an exercise is needed given that
even if extreme government mandates (e.g., complete lockdown) can
effectively reduce human contacts and eradicate the infection, they
inevitably inflict huge economic and societal costs. Thus, very restricted
and static interventions are meant to be implemented only on extreme
cases and not for a long duration. An optimal policy design that subdues
the future infection load and simultaneously maintains a certain level of
social functionalities or human mobility is thus desired.
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