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Abstract—We generalize the information bottleneck (IB) and
privacy funnel (PF) problems by introducing the notion of a
sensitive attribute, which arises in a growing number of applica-
tions. In this generalization, we seek to construct representations
of observations that are maximally (or minimally) informative
about a target variable, while also satisfying constraints with
respect to a variable corresponding to the sensitive attribute. In
the Gaussian and discrete settings, we show that by suitably
approximating the Kullback-Liebler (KL) divergence defining
traditional Shannon mutual information, the generalized IB and
PF problems can be formulated as semi-definite programs (SDPs),
and thus efficiently solved, which is important in applications
of high-dimensional inference. We validate our algorithms on
synthetic data and demonstrate their use in imposing fairness in
machine learning on real data as an illustrative application.

I. INTRODUCTION

The Information Bottleneck (IB) problem introduced in [1]
seeks to construct a representation U from observation X
that is maximally informative about a target Y but minimally
informative about X; specifically,

max
PU|X

I(Y ;U) s.t. I(X;U) ≤ ε. (1)

A dual to the IB problem is the privacy funnel (PF) problem
introduced in [2], which takes the form

min
PU|X

I(Y ;U) s.t. I(X;U) ≥ R. (2)

In this work, we generalize the IB and PF problems by
introducing a sensitive attribute E, such that we are optimizing
PU |X in the undirected graphical model depicted in Fig. 1
rather than in the (simpler) Markov chain Y ↔ X ↔ U .

Such generalizations capture a wide variety of privacy
and fairness constraints that arise in exising and emerging
machine learning applications [3]. For example, in the criminal
justice system, predictions about the chance of recidivism of
a convicted criminal (Y ) given information such as the nature
of the crimes and the number of prior arrests (X) may be
overly correlated with race (E), which may violate privacy and
fairness criteria [4], [5]. To avoid such issues, we could first
construct a representation U from X that satisfies information-
theoretic privacy/fairness constraints. Any inferences based on
U would then automatically satisfy those constraints.

This work was supported, in part, by NSF under Grant CCF-1717610 and
by the MIT-IBM Watson AI Lab.

Fig. 1. Graphical model for the generalized IB and PF problems.

The generalized IB problem also arises naturally when seek-
ing to generate domain-invariant features in transfer learning
[6] and domain generalization [7]. In these settings, the goal
is to construct new features U from the observation X that
are informative about the label Y while being invariant across
different domains E. As shown in [8], by imposing suitable
independence constraints between U and E, inferences based
on U will generalize well across the different domains.

Despite their practical importance, such IB/PF problems are
inherently non-convex in general, making solutions difficult
to obtain in general. Indeed, as shown in [1], [9], a closed-
form solution to the original IB problem is only available
in the binary or Gaussian case. For general distributions,
variational methods based on Lagrangian functions of the
IB problem have also been developed in [10], [11]. For the
original PF problem, the greedy algorithm proposed by [2]
and the submodularity-based clustering algorithm in [12] can
only construct a deterministic transition PU |X by merging the
alphabet of X .

In this paper, we use reparameterization techniques de-
veloped in [13] to show that by suitably approximating the
Kullback-Liebler (KL) divergence defining mutual informa-
tion, the generalized IB and PF problems can be formulated
as semi-definite programs (SDPs). In both the Gaussian and
discrete settings, we provide efficient SDP-based algorithms
for solving the generalized IB and PF problems. We validate
our algorithms on synthetic data and show how they can be
used to address machine learning fairness issues involving real
data.

A. Notation

Bold capital letters represent matrices (e.g. A), and bold
lower case letters represent vectors (e.g. a). Capital calli-
graphic letters denote sets, and |X | denotes the cardinality
of the set X . If PX is a discrete probability mass function,
PX ∈ R|X | is its column vector representation. Likewise
PX,Y ∈ R|X |×|Y| is the matrix representation of PX,Y .

49978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

77
14

Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2022 at 21:03:58 UTC from IEEE Xplore.  Restrictions apply. 



Finally, ‖ · ‖F denotes the Frobenius norm and ‖ · ‖s denotes
the spectral norm.

II. THE GENERALIZED IB AND PF PROBLEMS

Let the observation X , target variable Y , and sensitive
attribute E be random variables defined on alphabets X , Y and
E , respectively, with a known joint distribution PX,Y,E . We
want to construct a stochastic mapping PU |X(u|x) : X → U
from the observation X to a representation U satisfying certain
requirements.

We first consider the generalized IB problem, where the goal
is to construct U so that it is maximally informative about Y
under (one of) the following constraints

max
PU|X

I(Y ;U) s.t.

(IB-1). I(X;U) ≤ ε;
(IB-2). I(E;U) ≤ ε;
(IB-3). I(E;U |Y ) ≤ ε.

Among these constraints, (IB-1) corresponds to the original IB
problem, (IB-2) constrains how informative U can be about
the sensitive attribute E, and (IB-3) promotes conditional
independence between U and E given Y .

With respect to the existing literature, we note that [14]
considers an inherently different generalized IB problem in
which the standard IB problem is replaced with one using f -
divergences instead of KL divergence. In fact, our generalized
IB problem is more closely related to existing work on “state
masking” ([15], [16]), where the goal is also to minimize the
information leak about the channel state (E). However the
model in state-masking formulation is much simpler than that
of Fig. 1, as the transmitted symbols Y are independent of E
in the former.

The PF counterparts of the generalized IB problem are as
follows. In this case, the goal is to construct U so that it is
minimally informative about Y under (one of) the following
constraints

min
PU|X

I(Y ;U) s.t.
(PF-1). I(X;U) ≥ R;

(PF-2). I(E;U) ≥ R.

Note that I(Y ;U) is convex with respect to PU |Y , and
PU |Y is linear in PU |X . This means the objective I(Y ;U)
is convex in PU |X . Thus, the IB problem is not convex, since
it maximizes a convex function. Likewise, the PF problem is
not convex due to the non-convex constraint I(X;U) ≥ R.

While the generalized IB and PF problems are nonconvex,
we show that there exist closely related problems that are
convex. Specifically, in the Gaussian and discrete settings, we
show that by approximating the standard KL divergence via
suitable second-order Taylor series’, the generalized IB and
PF problems can be formulated as SDPs which can be solved
efficiently.

III. GAUSSIAN CASE

In this section, we assume the observation X ∈ RdX , target
Y ∈ RdY , and sensitive attribute E ∈ RdE are jointly Gaussian
random variables. We first introduce a new divergence measure
D̄ from [13], along with its corresponding Ī-information

measure. We show that under Ī-information, the IB and PF
problem can be solved efficiently via SDPs.

A. Local Gaussian information geometry

The following D̄ divergence was introduced in [13] as a
second-order approximation for the KL divergence between
two Gaussian distributions.

Definition 1. The D̄-divergence between Gaussian distribu-
tions P = N (µP ,ΣP ) and Q = N (µQ,ΣQ) is

D̄(P‖Q) , (µP − µQ)>Σ−1Q (µP − µQ)

+
1

2

∥∥∥Σ−1/2Q (ΣP −ΣQ)Σ
−1/2
Q

∥∥∥2
F
. (3)

In turn, for jointly Gaussian random variables X , Y , their
Ī-information is Ī(X;Y ) , D̄(PX,Y ‖PXPY ). Similarly, for
jointly Gaussian X,Y, Z, the conditional Ī-information is
Ī(X;Y |Z) , EPZ

[
D̄(PX,Y |Z‖PX|ZPY |Z)

]
.

For simplicity of exposition, we restrict our attention to
zero-mean Gaussian random variables, since the means of
Gaussian distributions affects neither their mutual information
nor Ī-information. So in particular X,Y,E are assumed to
have zero mean.

B. Canonical correlation matrices

When analyzing Ī-information, it is convenient to their
equivalent representation via canonical correlation matrices
(CCMs) instead of covariance matrices. We begin with the
definition.

Definition 2. The canonical correlation matrix (CCM)
B̃X,Y ∈ RdX×dY between jointly Gaussian variables X and
Y is given by

B̃X,Y , Σ
−1/2
X ΣXY Σ

−1/2
Y , (4)

where ΣX and ΣY are the covariance matrices of X and Y ,
and ΣXY = E[XY T ].

The value of CCMs in representing Ī-information is ex-
pressed via the following lemma from [13].

Lemma 1. [13, Lemma 68] For jointly Gaussian random
variables X and Y ,

Ī(X;Y ) =
∥∥B̃X,Y

∥∥2
F
. (5)

In addition, CCMs also satisfy a simple chain rule:

Lemma 2. [13, Fact 79] Suppose X ↔ Y ↔ Z is a Markov
chain of jointly Gaussian variables, then

B̃X,Z = B̃X,Y B̃Y,Z . (6)

Finally the correspondence between joint Gaussian distribu-
tions and CCMs is given by the following lemma:

Lemma 3. [13, Fact 60] Let ΣX ∈ RdX×dX and ΣY ∈
RdY ×dY be two positive-definite matrices, and let M ∈
RdX×dY . There exist jointly Gaussian random variables X
and Y with covariances ΣX ,ΣY and canonical correlation
matrix B̃X,Y = M if and only if ‖M‖s ≤ 1.
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C. CCM-parameterizations of the IB and PF problems

From Fig. 1, we see that Y ↔ X ↔ U is a Markov chain.
By Lemma 1 and Lemma 2, this means

Ī(Y ;U) =
∥∥B̃Y,XB̃X,U

∥∥2
F
. (7)

Thus, the Ī-information IB and PF problems can be written
as optimization problems with respect to B̃X,U as

max
B̃X,U

‖B̃Y,XB̃X,U‖2F, (8)

s.t. (IB-1). ‖B̃X,U‖2F ≤ ε;
(IB-2). ‖B̃E,XB̃X,U‖2F ≤ ε,

and

min
B̃X,U

‖B̃Y,XB̃X,U‖2F, (9)

s.t. (PF-1). ‖B̃X,U‖2F ≥ R;

(PF-2). ‖B̃E,XB̃X,U‖2F ≥ R.

The (IB-3) constraint is more challenging to accommodate,
as it cannot in general be written in terms of B̃X,U in a way
that is amenable to SDP. However, in certain weak-dependence
regimes, there exist SDP-friendly inequalities that accurately
approximate the (IB-3) constraint. We develop this approach
below.

Lemma 4. [13, Corollary 73] Let X and Y be δ-dependent
Gaussian random variables, i.e., Ī(X;Y ) ≤ δ, then

I(X;Y ) =
1

2
Ī(X;Y ) + o(δ2). (10)

Suppose that Ī(X;U) ≤ δ. Then Ī(E, Y ;U) ≤ δ due to
the data processing inequality, which means

I(E;U |Y ) = I(E, Y ;U)− I(Y ;U)

≈ 1

2
Ī(E, Y ;U)− 1

2
Ī(Y ;U)

=
1

2
‖B̃EY,XB̃X,U‖2F −

1

2
‖B̃Y,XB̃X,U‖2F, (11)

where the first equality follows by the chain rule of mutual
information, and B̃EY,X ∈ R(dE+dY )×dX denotes the CCM
between [EY ] and X .

Thus, when X and U are weakly dependent, the Ī-
information IB problem with an (IB-3) constraint can be
approximated via

max
B̃X,U

‖B̃Y,XB̃X,U‖2F, (12)

s.t. (IB-3).

{
‖B̃X,U‖2F ≤ δ,
‖B̃EY,XB̃X,U‖2F − ‖B̃Y,XB̃X,U‖2F ≤ ε.

D. SDPs for the Gaussian IB and PF problems

We are now ready to solve the CCM-parameterized opti-
mization problems given in the previous section using semi-
definite programming. The optimization problems in (8), (9)
and (12) are all equivalent to SDPs. Due to space constraints,
we show this only for (IB-2), as a representative example.

Theorem 1. The optimization problem in (8) with the (IB-2)
constraint is equivalent to the following SDP:

max
A∈ SdX

tr
(
B̃>Y,XB̃Y,XA

)
s.t.

tr
(
B̃>E,XB̃E,XA

)
≤ ε,

0 � A � I,
(13)

where SdX is the space of dX × dX symmetric matrices.

Proof: First, via standard SDP theory ([17]), the problem
in (13) can be easily verified to be a valid SDP. It remains to
show that (13) is equivalent to (8) with the (IB-2) constraint.
The key idea is to let A = B̃X,U B̃>X,U . Then

tr(B̃>Y,XB̃Y,XA) = ‖B̃Y,XB̃X,U‖2F, (14)

so we are maximizing the same objective as in (8). Sim-
ilarly, we can show the (IB-2) constraint is equivalent to
tr(B̃>E,XB̃E,XA) ≤ ε.

By Lemma 3, B̃Y,X is a valid CCM precisely when
‖B̃Y,X‖s ≤ 1. So A is the Gramian matrix of a CCM when
0 � A � I , which means a solution to (13) will correspond
to the Gramian matrix of a solution to (8) with the (IB-2)
constraint.

Once we obtain an optimal solution A∗ to (13), we convert
A∗ to an optimal CCM B̃∗X,U via the following procedure:

1) Compute an eigen-decomposition A∗ =
∑dU
i=1 λiviv

>
i ,

where λi are eigenvalues, vi are eigenvectors, and dU
denotes the number of nonzero eigenvalues.

2) Construct an optimal CCM as B̃∗X,U =
∑dU
i=1

√
λiviu

>
i ,

where the ui are any orthonormal basis of RdU .

Note that we can also easily convert an optimal CCM to
an optimal covariance matrix if desired. Via Lemma 3, the
covariance matrix ΣU can be set arbitrarily, so we let ΣU = I

and get Σ∗X,U = Σ
1/2
X B̃∗X,U .

The proof of Theorem 1 can easily be extended to show that
all our Ī-information IB and PF problems are special cases of
the general SDP

min
A∈ SdX

tr(C0A) s.t.
tr(C1A) ≤ ε,
0 � A � I,

where C0 = −B̃>Y,XB̃Y,X for IB problems, C0 = B̃>Y,XB̃Y,X

for PF problems, and

(IB-1). C1 = I,

(IB-2). C1 = B̃>E,XB̃E,X ,

(IB-3). C1 = B̃>EY,XB̃EY,X − B̃>E,XB̃E,X ,

(PF-1). C1 = I,

(PF-2). C1 = B̃>E,XB̃E,X .

For (IB-3), since the approximation is only valid in weakly-
dependent regime, the constraint tr(A) ≤ δ is also needed.
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IV. DISCRETE CASE

In this section, we assume the observation X , target variable
Y , and sensitive attribute E are discrete random variables
defined on alphabets X , Y and E respectively. Without loss
of generality, we assume the marginals PX , PY and PE are
strictly positive, since otherwise symbols with zero probability
mass may be removed from their respective alphabets.

Similar to the Gaussian case, we show that when χ2-
information is used to approximate mutual information, the
IB and PF problems have efficient SDP-based solutions. The
SDP-based solutions are constructed from convenient matrix
representations of discrete distributions.

A. χ2-Information

Analogous to the way Ī-information is a second-order
approximation to mutual information in the Gaussian case,
χ2-information is a second-order approximation to mutual
information in the discrete case.

Definition 3. The χ2-divergence between two discrete distri-
butions PX and QX is given by

Dχ2(PX‖QX) ,
∑
x∈X

(QX(x)− PX(x))2

QX(x)
. (15)

We can define the χ2-information between X and Y as

Iχ2(X;Y ) , Dχ2(PX,Y ‖PXPY ), (16)

and conditional and the conditional χ2-information as,

Iχ2(X;Y |Z) , EPZ
[Dχ2(PX,Y |Z‖PX|ZPY |Z)]. (17)

B. Divergence transfer and canonical dependence matrices

Analogous to the way the CCMs are convenient repre-
sentations when analyzing Ī-information, divergence transfer
matrices (DTMs) and canonical dependence matrices (CDMs)
are convenient parameterizations for working χ2-information.
We describe these matrices below.

Definition 4. The divergence transfer matrix (DTM) BX,Y ∈
R|X |×|Y| associated with joint distribution PX,Y is given by

BX,Y (x, y) ,
PX,Y (x, y)√
PX(x)

√
PY (y)

. (18)

While DTMs will prove to be very useful, when working
with χ2-information the more fundamental object is the canon-
ical dependence matrix.

Definition 5. The canonical dependence matrix (CDM)
B̃X,Y ∈ R|X |×|Y| associated with joint distribution PX,Y is
given by

B̃X,Y (x, y) = BX,Y (x, y)−
√
PX(x)

√
PY (x). (19)

The CDM captures the joint distribution between two dis-
crete random variables while ignoring their marginals. It serves
for discrete random variables the role that the CCM serves for
Gaussian random variables. Similar to Lemma 1, the following
lemma shows that the χ2-information can be fully determined
by the CDM.

Lemma 5. For discrete random variables X and Y ,

Iχ2(X;Y ) =
∥∥B̃X,Y

∥∥2
F
. (20)

The correspondence between CDMs and joint distributions
is characterized by the following lemma derived from [13].

Lemma 6. [13, Proposition 97] Let PX and PY be strictly
positive marginals, and let M ∈ R|X |×|Y|. There exists a
strictly positive joint distribution PX,Y with marginals PX , PY
and CDM B̃X,Y = M if and only if

‖M‖s ≤ 1,
√

PX

>
M = 0, M

√
PY = 0, (21)

and M(x, y) +
√
PX(x)

√
PY (y) > 0. (22)

Above,
√

PX and
√

PY are the coordinate-wise square roots
of PX and PY . This association between strictly positive joint
distribution and CDMs is bijective and continuous.

Finally, we show that the following chain rule holds for
DTMs and CDMs analogous to Lemma 2.

Lemma 7. Let X ↔ Y ↔ Z be a Markov chain of discrete
random variables, then

B̃X,Z = BX,Y B̃Y,Z = B̃X,Y BY,Z . (23)

C. SDP formulation

In the discrete case, the χ2-information IB and PF prob-
lems can be written as optimization problems with respect
to B̃X,U by Lemma 5 and Lemma 7. If we further denote
A = B̃X,U B̃>X,U , we can also reformulate these optimization
problems as a SDP of the form

min
A

tr(C0A) s.t.

tr(C1A) ≤ ε,

tr
(√

PX

√
PX

>
A
)

= 0,

0 � A � I,

(24)

where C0 = −B>Y,XBY,X for IB problems, C0 = B>Y,XBY,X

for PF problems, and

(IB-1). C1 = I,

(IB-2). C1 = B>E,XBE,X ,

(IB-3). C1 = B>E⊗Y,XBE⊗Y,X −B>E,XBE,X , (25)

(PF-1). C1 = I,

(PF-2). C1 = B>E,XBE,X .

In (25), E ⊗ Y is the Cartesian product of E and Y . Addi-
tionally, like the Gaussian case, (25) is just an approximation
of the original (IB-3) constraint and only holds when U is
weakly-dependent on X . Thus we also need the constraint
tr(A) ≤ δ for (25).

Now strictly speaking, the SDP formulation in (24) is a
relaxation of the χ2-information IB and PF problems. This is
because the solution of (24) does not meet all the conditions
of Lemma 6. In particular, while the conditions in (21) are
captured by the last two constraints of (24), the positive matrix
constraint in (22) is not enforced.
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Fig. 2. The top plot (Gaussian setting) shows Ī(U ;Y ) plotted against
Ī(U ;E) with dX = 3 and dY = dE = 1. The bottom plot (discrete
setting) shows Iχ2 (U ;Y ) plotted against Iχ2 (U ;E) with |X | = 18 and
|Y| = |E| = 3.

The effect of this relaxation is that converting from A to
PU |X may result in a conditional distribution with negative
entries. However, we show in Section V that clipping negative
entries to zero does not have a large impact on solution quality.

Another way to resolve the negative issue is to limit the
norm of B̃X,U enough so that (21) is always satisfied. This is
equivalent to adding a constraint of the form tr(A) ≤ δ.

Once we obtain an optimal solution A∗ to the SDP in (24),
we can convert A∗ to P ∗U |X via the following procedure:

1) Compute an eigen-decomposition A∗ =
∑k−1
i=1 λiviv

>
i ,

where λi are non-zero eigenvalues, vi are eigenvectors,
and k denotes the number of non-zero eigenvalues.

2) The alphabet and marginal distribution of U can be
set semi-arbitrarily, and here we let |U| = k and let
PU (u) = 1/k be uniform.

3) Construct the CDM B̃∗X,U =
∑k−1
i=1

√
λiviu

>
i , where

{
√

PU ,u1, . . . ,uk−1} form a orthonormal basis of Rk.
4) Construct the DTM B∗X,U = B̃∗X,U +

√
PX

√
PU
>

.
5) Construct the conditional distribution

P ∗U |X(u|x) = PX(x)
−1/2 ·B∗X,U (x, u) · PU (u)

1/2
.

V. NUMERICAL RESULTS

A. Synthetic data

We test our SDP formulations of (IB-2) and (PF-2) in both
the Gaussian and discrete cases with a randomly generated
joint distribution PX,Y,E . We use the default SDP solver in
CVX [18], [19]. By changing the value of ε and R in the
constraints, we can obtain the maximum and minimum of
Ī(U ;Y ) and Iχ2(U ;Y ) for a given Ī(U ;E) and Iχ2(U ;E).

Fig. 3. Results of COMPAS with AUC plotted against DEO. Error bars are
estimated from 200 Monte Carlo trials.

We plot our results in Fig. 2. The top right corner
of each plot can be achieved by letting U = X , and
Ī(U ;E) ≤ Ī(X;E), Ī(U ;Y ) ≤ Ī(X;Y ) due to data pro-
cessing inequality. We also note that the achievable region
of (Ī(U ;E), Ī(U ;Y )) is a convex set. This is a consequence
of our SDP formulation, and this convexity can be proved
formally.

B. COMPAS data
We also apply our SDP formulation in (24) for (IB-3) to

a fairness task. We use ProPublica’s COMPAS recidivism
dataset [4], which contains categorical features and has been
used in prior works [5], [20]. The goal of this dataset is to
predict whether an individual recidivated (re-offended) (Y )
using the severity of charge, number of prior crimes, and age
category as the observation variables (X). As discussed in
[21], COMPAS scores are biased against African-Americans,
so race is set to be the sensitive attribute (E) and filtered to
contain only Caucasian and African-American individuals.

We randomly generate a 80-20 train/test split, and estimate
the DTMs B̂E,X and B̂Y,X using the empirical distributions
of the training set. We then run our SDP algorithm to construct
P̂U |X . Given a test observation x, we sample u from P̂U |X(·|x)
and predict ŷ using the maximum a posteriori (MAP) rule:
ŷ = arg maxy∈Y P̂Y |U (y|u).

We compare the performance of the proposed (IB-3) al-
gorithm with other two baselines: naı̈ve logistic regression,
and the adversarial debiasing method in [22] (implementation
given in [23]). In Fig. 3, we plot the area under ROC
curve (AUC) of Ŷ generated different algorithms against the
difference in equalized opportunities (DEO)

DEO = P(Ŷ=1|E=1, Y=1)−P(Ŷ=1|E=0, Y=1),

which is a standard fairness measure used commonly in the
literature [3]. A small DEO is equivalent to the conditional
independence constraint Iχ2(E;U |Y ) ≤ ε in (IB-3). Although
it might appear from Fig. 3 that adversarial debiasing is a
superior approach, this is due to the fact that adversarial
debiasing uses all available decision variables, while our
algorithm only uses the decision variables that are discrete.
In addition, our algorithm provides a smooth trade-off curve
between performance and DEO, so that a desired level of
fairness can be achieved by setting ε in practice.
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