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Abstract—Object classification is a key element that enables
effective decision-making in many autonomous systems. A more
sophisticated system may also utilize the probability distribution
over the classes instead of basing its decision only on the most
likely class. This paper introduces new performance metrics:
the absolute class error (ACE), expectation of absolute class
error (EACE) and variance of absolute class error (VACE) for
evaluating the accuracy of such probabilities. We test this metric
using different neural network architectures and datasets.
Furthermore, we present a new task-based neural network for
object classification and compare its performance with a typical
probabilistic classification model to show the improvement with
threshold-based probabilistic decision-making.

I. INTRODUCTION

Perception and control are two main components of au-
tonomous systems, as shown in figure 1. The perception com-
ponent extracts the relevant features from the environment
and performs the classification task. The control component
takes this perceived environment as input and makes the
corresponding decision for the system to react to the real-
world environment.
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Fig. 1. A typical architecture of autonomous systems.

Object classifiers are typically evaluated based on clas-
sification accuracy, i.e., the ratio of correct classifications
[1]. Recently, deep learning models, especially convolutional
neural networks (CNN), have been widely deployed in the
perception component of many autonomous systems [2, 3].
These models take samples that are drawn from the whole
population to perform the statistical inference in the training
process. For example, a model for handwritten digits recog-
nition can be constructed from the MNIST dataset [4], which
contains samples drawn from the handwritten digits data.
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A model is, therefore, only an estimator obtained from the
samples. As a result, it is impracticable for a deep learning
model to make a correct prediction on all of the new data
[5]. In particular, most existing models cannot achieve 100%
accuracy in real-world classification tasks [6, 4, 7].

Specifically, there are two cases in which a model would
make incorrect classifications [5]. The first case is where the
input data follows the i.i.d. assumption [8], but the trained
model cannot capture the correct conditional distribution
since we only have limited data (samples). To fix this
problem, we can collect more data to train the model. The
second case is where the input data does not follow the
i.i.d. assumption (non-i.i.d) or comes from out-of-distribution
(OOD). The OOD issue happens when the new observed data
comes from a different distribution or a shifted distribution
compared to the data used to train the model [5]. In this
case, it is very likely that the trained model would fail to
make statistical inference on such OOD data as the OOD
data is from a different population from the data used to train
the model. On the other hand, the non-i.i.d issue happens
when the data is collected from different distributions [9]. If
the model is trained under the i.i.d assumption with non-
ii.d data, it would make inference based on the wrong
assumption, potentially leading to a poor performance.

Incorrect object classifications potentially lead to unsafe
behaviors of autonomous systems. Let us take an autonomous
car as an example. Suppose the car detects an object next
to a crosswalk. The control component will stop the car if
and only if the perception component identifies that the most
likely class of the object is a pedestrian. In this case, the car
will make a correct decision only if the object classification
is perfect, which is not realistic in most systems.

With imperfect classifications, the controller may utilize
the probability distribution over the object classes to make
better decisions. For example, suppose the object near the
crosswalk is, in fact, a pedestrian and the perception com-
ponent reports that the object belongs to the non-pedestrian
class and the pedestrian class with probability 0.51 and
0.49, respectively. In this case, the classification result based
on the most likely class will be incorrect. However, the
controller may take the high probability of the object being



a pedestrian into account and decide to stop the car. As a
result, the probability distribution over the classes can play
an essential role in decision making. Thus, it is important
to estimate the accuracy of such probability estimates as a
model may achieve a high classification accuracy based on
the most likely class even if the probability estimates are
not accurate. In fact, in Section V-A, we give an example
of two networks that achieve a similar accuracy but with a
significant difference in the uncertainty of each class.

Uncertainty quantification and reduction is an important
topic in the machine learning area. Epistemic uncertainty and
aleatoric uncertainty are two major types of uncertainty that
can be modeled [10]. Epistemic uncertainty accounts for the
uncertainty in the model. Recently, many methods, including
Bayesian and non-Bayesian approaches, focus on quantifying
and reducing the epistemic uncertainty. Dropout-based varia-
tional inference [11] and stochastic gradient MCMC [12] are
two popular Bayesian approaches for epistemic uncertainty.
On the other hand, the non-Bayesian methods consist of train-
ing multiple probabilistic neural networks with bootstrap [12]
or ensembling [13]. As epistemic uncertainty can be reduced
through the collection of additional data, data augmentation
[14] is another way to reduce epistemic uncertainty. Aleatoric
uncertainty comes from the noise within the observations and
can be captured by MAP inference [10].

In this paper, we quantify the uncertainty of the probability
estimates to measure their accuracy. For the rest of the paper,
we will use the term “uncertainty” to refer to the uncertainty
of these probability estimates. Such uncertainty quantifies the
confidence interval of the probabilities.

With this quantified uncertainty, the controller can make
more rational decisions based on the quantified confidence
values. Recent work focuses on two directions relating to the
uncertainty of the model: quantifying the uncertainty to make
the model selection and calibrating the model to obtain lower
uncertainty [5]. Section II will discuss these two directions
in more details.

The main contributions of this paper are two-fold. Firstly,
we present a new evaluation metric to measure the accuracy
of the probability distribution over the classes. Secondly, we
propose a task-based classifier for the case where the con-
troller makes a decision based on whether the probability that
an object belongs to a certain class is above a given threshold.
The experimental results show the improved system-level
performance compared to ordinary probabilistic classifiers.

II. RELATED WORK

Consider the data D = {(z;,y;)}, where j € {1,2,...,n},
n as the size of the data. Here, =; € R? is a given d-
dimensional input and y; € K = {1,2,..., K} is its true
label. The output of a probabilistic model p(y|z;,0) is the
predicted probability of the specific class y € K and 6 is
the model’s parameters. Several metrics are widely used to
quantify the uncertainty for evaluating probabilistic models.

1) Brier Score (BS) [15] is defined as

BS =23 S (plylas, 0) — 1y = u))*

Jj=1yeK

This score measures the the difference between the
predicted probability and the true probability. It is also
a proper scoring rule [16] since it would be minimized
under fully correct prediction results,

2) Expected Calibration Error (ECE) [17] uses the binning
methods to compute the gap between the predicted
probability and the true probability and is defined as

S
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where By, = {j € (1,2,..,n) p(y;lz;,0) €
(ps, ps+1]} and g; is the predicted results of n-th test
data. The purpose of ECE is to average the difference
between the predicted probability and the true proba-
bility by different buckets. Thus, it computes the gap
of the data in different confident groups. By assigning
different weights based on the number of data points in
the group, the weighted results would be reported by
ECE.
3) Negative Log-Likelihood (NLL) [18] is defined as

n
NLL = = "log(p(y;|z;,0)).
j=1
This metric is a direct measurement of the output prob-
ability, since it is a monotonically increasing function
with respect to the output probability.

All the above metrics can give us the quantified uncertainty
of the model and can be used as a performance metric [5].
However, they have some limitations. First, the Brier score is
not sensitive to the predicted probability related to frequent
events. Additionally, ECE is not the proper scoring rule,
i.e., it is not monotonically increasing when the predicted
probability is close to the true label. A model with good
prediction results could show up with a higher ECE score.
For the Negative Log-Likelihood, it can over-emphasize tail
probability [5, 19].

Another major concern with the above metrics is that
they only measure the overall uncertainty of the model.
For autonomous systems, different object classes may not
be equally important. For example, some classes such as
pedestrians or vehicles cannot afford misclassification due to
safety consideration. Thus, it requires the model to have low
uncertainty on some of the classes under different tasks when
making the prediction. Only providing the overall uncertainty
of the model is not enough to help choose the most suitable
model.

Classification deep learning models usually use a softmax
layer before the output layer. Strictly speaking, the output
of the softmax layer cannot be treated as the probability of



each class [20, 21, 22]. Additionally, many have observed
that this approach may do a poor job of predicting probabil-
ity [22]. Nevertheless, many training techniques, including
Bayesian Binning into Quantiles (BBQ) [17], Temp Scaling
[23], Dropout [11], Ensemble [24], explain the output of
the softmax layer as the probability distribution over the
classes and calibrate the model to reduce its uncertainty.
Moreover, BS, ECE, and NLL are commonly used to show
the real improvement of calibration. In this paper, we also
treat the output of the softmax layer as the probability
distribution over the classes. To test the real performance of
the calibration methods, we design a new metric to capture
more information about the model uncertainty. As opposed to
BS, ECE and NLL, our metric can measure the uncertainty
on the classification results of each class.

By treating the output of the softmax function as the
probabilities of the object belonging to the associated classes,
the controller may treat an object as belonging to the class
with the maximum probability from resultant softmax vector.
Another widely-used decision-making framework that uti-
lizes the probability estimates is based on the probability
thresholds. In this case, a threshold t. is introduced for
each object class c. The controller then treats an object as
belonging to class c if its probability is at least ¢.. Note
that in this threshold-based probabilistic decision-making
approach, an object may belong to multiple classes. Thus, the
classification results could be ambiguous and the controller
may treat the object as belonging to the class that would lead
to the most conservative action. In this paper, we present a
new task-based network structure to be utilized by such a
controller. Instead of explicitly computing the probability, our
network directly determines whether the probability is above
or below a given threshold. More details will be discussed
in Section I'V-B.

III. PROBLEM SETUP

The classification task is to predict the label (i.e., the class)
for any given input data. Specifically, let K be the set of all
the object classes. A deep learning model first takes a subset
of the data Dy,.4i,, C D to train the model. The trained model
can be treated as a function f : R? — K. Given any input
data z € R?, it will predict the label y € K. The rest of
the data Diest = D \ Diyrain Will be used to compare the
predicted label § = f(x), where (x,y) € Diest, With the real
label y to get the training accuracy for each class.

Most deep learning models use the softmax layer before
the output layer. The softmax function outputs a value p. €
[0, 1] for each class ¢ € K. The label ¢ with the largest p.
among all the classes will be outputted as the classification
result, i.e.,

J = max p.
Y na Pe

The output value p. is often treated as the probability of
class c. Our first problem is to quantify the uncertainty of
D to evaluate the performance of the model. Our second

problem is to design neural networks to improve the perfor-
mance of the system for the case where the controller makes
a decision based on whether the probability that an object
belongs to a certain class is above a given threshold.

IV. METHODS

This section discusses the proposed evaluation metric and
task-based neural network. Section IV-A introduces the def-
inition of our evaluation metric. Section IV-B demonstrates
the proposed task-based neural network.

A. Evaluation of Model Uncertainty

Let #c denote the number of samples from class c,
where ¢ € K, for any dataset D. The softmax layer of
a deep learning model returns a probability vector P, =
(pj1, -, Pjxc) € [0,1]% for any z; € RY. Based on the output
probability Py, the expected number of samples belonging
to each class c can be defined as:

E(#c) = ijc.
j=1

The basic idea is that the model with lower uncertainty
should have E(#c) close to #c [8]. Moreover, this implies
that if the model is uncertain about its output, F(#c) would
be far from #c. A suitable model should have E(#c) closer
to the actual #c. So the error of the model can be defined as
the difference between the expected number and the actual
number, i.e., error = |E(#c) — #c|. This error can be used
as a metric to evaluate the deep learning model. However,
this single metric cannot provide enough information to
evaluate the model. From the statistical perspective, as we
have a large number of test data, we can generate multiple
sampled subsets @test C Dyest of the test data and compute
the corresponding error for each subset. The uncertainty
of the model can then be obtained from these errors. For
example, we can compute the mean and variance of the errors
associated with these sampled subsets.

In summary, we propose the following steps to evaluate
the model.

(a) Sample multiple subsets of the test data by a given ratio
p € (0,1) to get sub-test data {D},.,,D%,,..., D, }
from the original test data Dies;. For any ¢ €
{1, 2, veny m}, Diest C Dtesta |D17§est| = p|Dtest|7 and the

data of Dj,,, is randomly drawn from Dig.

(b) For each Di,,, compute the prediction error of each class
c based on errort = |E(#c) — #c|.

(c) Compute the mean and variance of the error of each class

m
E.(errort) = Z errort /m,
i=1

Vare(error) = Z(ewori — E(errort))?/m.

=1



Based on the computed information errori, E.(errort)
and Var.(errori), which we denote as the absolute class
error (ACE), expectation of absolute class error (EACE) and
variance of absolute class error (VACE), respectively, we can
plot all these statistic evaluations to compare the performance
of each model.

B. Task-based Networks

The threshold-based probabilistic decision-making ap-
proach described in Section II requires comparing a prob-
ability estimate against the corresponding threshold [13]. As
a result, the performance of the system depends largely on the
setting of the thresholds. The closer the predicted probability
is to the threshold, the lower the uncertainty is required
for the system to make a correct decision. For example, if
the threshold is 0.6, the probability estimate of 0.5999 and
0.6001 could lead to a different decision. Expecting such ac-
curate values of probability estimates may not be realistically
possible. On the other hand, if the probability estimate is 0.1,
the system can tolerate much higher uncertainty.

Our task-based network is based on the observation that
many decisions in autonomous systems are often discrete in
nature, e.g., stopping, keeping constant speed, or accelerating
for longitudinal control. In fact, the task-based technique is
already deployed in some autonomous systems [25]. Thus, it
should not require explicit computation of the probabilities.
Instead, the actual problem it needs to solve is whether
the probability is above a given threshold. As a result, we
propose a tasked-based neural network that directly outputs
such decisions, instead of having to explicitly compute the
probability distribution over the classes. Specifically, a task-
based model is defined as a function M : R¢ — {0, 1}, i.e.,
it is a binary model that only outputs ‘Yes’ (i.e., 1) or ‘No’
(i.e., 0) for the task.

For example, consider an autonomous driving problem,
where the car needs to (a) stop if the probability that the
object near the crosswalk is a pedestrian is at least ppeq,
(b) keep constant speed if the probability that the object
may move is at least p,,o, and the the probability it is a
pedestrian is less than pp.q, and (c) accelerate otherwise.
In this case, we construct 2 task-based neural networks M,
and M, that identify 2 distinct classes, namely a pedestrian
class and a moving-object class. Specifically, model M, is
trained to determine whether the probability that the object
is a pedestrian is at least pp.q, while model M, is trained to
determine whether the probability that the object may move
is at least p,,0,. Note that both networks only output ‘Yes’
or ‘No’, without actually computing the probabilities. We
first feed an input X; to M,. If M,(z;) =1, the car would
stop. Otherwise, z; will be fed into M. If M (x;) =1, the
car would keep the current speed. Otherwise, the car would
accelerate.

V. EXPERIMENTAL RESULTS

This section provides experimental results both for the
evaluation metric (Section V-A and V-B) and for the task-
based classifier (Section V-C). All the code used in these
experiments is publicly available [26].

A. Evaluation Metric on the MNIST Dataset

In this experiment, we train the CNN [4] and Resnet [7]
models on the MNIST dataset [4]. Table I shows the BS,
ECE and accuracy results.

TABLE I
RESULTS ON MNIST DATASET
Model BS ECE Accuracy
CNN | 0.0284 | 0.0142 0.9811
Resnet | 0.0198 | 0.0104 0.9873

From the results of Table I, we can see that the CNN and
the Resnet models have very similar accuracy. However, from
the BS and ECE metrics, the Resnet model has noticeably
better performance than the CNN model on the model
uncertainty. Using the evaluation metrics proposed in Section
IV-A, figure 2(a) shows the errors associated with randomly
sampled subsets of the test data, while figure 2(b) shows the
variance of the errors. Both BS and ECE can only tell us
the overall uncertainty of the model performance. However,
autonomous system needs to pay more attention to some
specific classes such as pedestrians. From the results of figure
2, it is now clear to see which model performs better on
each class. For example, the mean and variance of the errors
associated with class 5 of CNN are both lower than those
of Resnet. Even though the two networks show the same
accuracy on the predicted results of class 5 (CNN 882/892,
Resnet 883/892), we can see that CNN actually has lower
uncertainty than Resnet on the predicted results of class 5
based on the mean and variance of the errors.

B. Evaluation Metric on the CIFARIO Dataset

Section V-A provides an example of the case where
two models have a similar performance based on accuracy.
However, their uncertainties are significantly different. To
further verify the performance of our metric, we perform
a similar experiment on the CIFAR10 dataset [27]. The BS,
ECE and accuracy results are summarized in table II.

TABLE II
RESULTS ON MNIST DATASET
Model BS ECE Acc
CNN 0.3733 | 0.0477 | 0.7703
Resnet | 0.2049 | 0.0463 | 0.8646

Table II shows that Resnet performs better than CNN since
it achieves higher accuracy. BS is also consistent with the
accuracy. This indicates that the output of Resnet has lower
uncertainty than that of CNN. Using the proposed evaluation
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Fig. 3. Experimental results on CIFAR10 dataset

metrics on CNN and Resnet, figure 3(a) shows the error and
mean of random sampling sub-datasets, figure 3(b) shows
the variance of error among all sub-datasets. It can be seen
that the Resnet classification results of most categories are
better than CNN from figure 3(a). Figure 3(b) shows the same
pattern. However, CNN has lower uncertainty than Resnet on
the classification results of class 3. Even though the correct
classified result of class 3 is 649/1000 for CNN and 835/1000
for Resnet from prediction, CNN has lower uncertainty about
this specific class from the mean and variance. Based on the
experiment results from this section, we can see even a model
has lower accuracy than the other model, it is still possible
the model are more confident about the output probability
than the other model on some specific classes. Based on this
analysis, our evaluation metric can be utilized to select a
neural network model with more attention to specific classes.

C. Task-Based VS Probabilistic Classification Networks

In this section, we use the KITTI dataset [28] to compare
the performance of the proposed task-based network and
a typical probabilistic classification network that explicitly
computes the probability distribution over the object classes.

The data used to train the network is the cropped images from
the KITTI dataset and contains two classes, pedestrian and
non-pedestrian. The label of each image corresponds to the
probability that the image belongs to the pedestrian class.
For the original images that are cropped from the KITTI
dataset, we set the label as 1 if it belongs to the pedestrian
class and O otherwise. In practice, the data may be labeled
by different annotators, who may not always agree on the
label, especially when the object is far away or the image is
blurry. The probability of each class can then be calculated
from the proportion of annotators who label the image with
each class. To imitate this process, we use different sizes
of Gaussian blur kernel to filter the image. Then, we assign
the probability accordingly. Figure 4 shows an example of
the different level blurred images with the probability. After
having the data with its corresponding probability, we can
train the network on the data.

Both the task-based network and probabilistic classifica-
tion networks use the CNN structure and Adam loss function
[29]. Before training the task-based network, the label of the
images are assigned based on a specific threshold ¢. For each
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Fig. 5. Experimental results of task-based and probabilistic classification networks on the stop decision.

image z;, if p; > t then y; = 1, otherwise y; = 0. After the
labels are set up, the task-based network will use 85% of the
data to train the network and reserve 15%, randomly selected
for the collected data, for evaluation. On the other hand, the
probabilistic classification network feeds the training image
x; with its probability p; into the network to train the model.
To avoid the data augmentation, we trained both network with
blurred images as well as original images.

Figure 5 show the true negative rate and false positive rate
of both networks on the stop decision. From the results of
figure 5, we can see that both the true-negative and false-
positive rates of the task-based network do not vary much
with changing thresholds. On the other hand, the results
of the probabilistic classification network highly depend on
the threshold. For example, with threshold ¢ = 0.9, the
true negative rate is very high. This observation implies that
the predicted probability is not reliable. Moreover, the true
negative rates are very high under all thresholds. This implies
that even though we feed the network with probability and
train it, the output probability can still be unreliable. This
can be particularly problematic in safety-critical applications
such as autonomous vehicles.

D. Summary

The results of sections V-A and V-B show that our pro-
posed evaluation metric can capture the uncertainty of the
probability estimate of each class. Such detailed uncertainty
information can be utilized by the controller to improve
its decision, especially for autonomous systems that are
required to pay special attention to specific classes, e.g.,
pedestrian, cyclist, etc., to reduce the safety risks. We also
test our evaluation metric on small-size test sub-dataset. The
computed ACE, EACE and VACE can vary with different test
sub-datasets, but it still can distinguish the uncertainty of each
class of given model. In section V-C, the experimental results
show that the proposed task-based neural network achieves
better performance compared to an ordinary neural network.

VI. CONCLUSION

We propose a new evaluation metric to measure the
uncertainty of probabilistic neural networks. As opposed to
existing metrics, it provides the uncertainty information for
each class on the classification task, which is important for
applications in the autonomous system domain. Furthermore,
we present a task-based neural network for threshold-based
probabilistic decision-making and show the improved per-
formance compared to a typical probabilistic classification
network.
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