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An evaluation of prospective COVID-19 modelling studies in
the USA: from data to science translation

Kristen Nixon, Sonia Jindal, Felix Parker, Nicholas G Reich, Kimia Ghobadi, Elizabeth C Lee, Shaun Truelove, Lauren Gardner

Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy
makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and
human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we
provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling
studies of COVID-19 in the USA. We analysed 136 papers, and focused on the aspects of models that are essential for
decision makers. We have documented the forecasting window, methodology, prediction target, datasets used, and
geographical resolution for each study. We also found that a large fraction of papers did not evaluate performance (25%),
express uncertainty (50%), or state limitations (36%). To remedy some of these identified gaps, we recommend the
adoption of the EPIFORGE 2020 model reporting guidelines and creating an information-sharing system that is

suitable for fast-paced infectious disease outbreak science.

Introduction

The COVID-19 pandemic has become an unprecedented
public health crisis in its prolonged impact on health and
its disruption to economic and social life, with more than
6-5 million reported deaths globally as of Sept 7, 2022."
To aid planning and response efforts during a pandemic,
mathematical modelling of current and future trends of
infectious disease outbreaks has historically served as a
valuable tool. Nowcasting and forecasting models can
improve situational awareness of the current and near
future states of disease spread, whereas long-term
projections and scenario modelling can shed light on
outcomes that might result from a set of assumptions.
Insights from modelling can educate individuals on how
to mitigate their own risks, while also providing support
for decision making for policy makers seeking to
minimise harm to an entire population.

These insights are historically provided though peer-
reviewed published literature, which can serve as an
invaluable tool for communicating state of the art
science. During the COVID-19 pandemic, an extremely
large volume of research articles have been published:
about 125000 within 10 months of the first confirmed
case, approximately 30000 of which are preprints.” In
this noisy publication landscape, journals prioritised the
quick sharing of COVID-19 information, but there is a
trade-off between speeding up peer review and ensuring
high-quality research.’ Preprints also had an important
role in disseminating COVID-19 research. Preprints
were often covered in the media, had large audiences on
social media platforms such as Twitter, and in some
cases were misunderstood in consequential ways.? For
COVID-19 modelling specifically, the use of models for
informing response efforts was criticised largely because
of a few particularly erroneous projections at the start of
the outbreak and poor communication on what insight
models can and cannot provide.**
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Literature reviews that attempt to synthesise COVID-19
modelling studies, published up until the time of this
Series paper, form an incomplete, fragmental
understanding of modelling work, largely due to the
rapid pace of publication on preprint servers and in peer-
reviewed journals. To the best of our knowledge, most
existing reviews are either systematic but only cover a
short time span (eg, up until July, 2020),° or use a
narrative approach and do not develop a method to
examine a representative set of papers.”” The only
exceptions we found are one systematic review covering
242 papers up until November, 2020,” and one narrative
review that covered 50 of the most cited papers.* Only
one review included preprints,” and all are limited to
papers published before August, 2020,”™ or in 2020.*"
Many of these reviews are focused on model objectives
and methodology**” and neglect other aspects of
modelling that are crucial for science translation to
decision makers and the public.

In this Series paper, to build on previous work, we
provide a narrative review with a systematic approach,
which handles the challenges presented in synthesising
an enormous body of work with objective criteria to
obtain the most representative and informative sample
of papers possible. Our review covers publications up
until Aug 20, 2021, which captures 8 months of 2021
that have not been covered by other reviews. We focus
on factors of modelling that have been neglected in the
existing literature, namely input data, uncertainty,
performance evaluation, and stated limitations, which
are crucial for science translation and enable models to
provide insight for decision makers and the public. We
provide a quantitative evaluation of each of these
elements, which enables strong and justified con-
clusions about trends and areas in need of improvement,
with respect to modelling COVID-19 and future
pandemics.
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Figure 1: Study selection

Methods
Search strategy and selection criteria
There are three main types of COVID-19 disease-spread
modelling: retrospective modelling, nowcasting, and
prospective modelling. Retrospective modelling, or
backward-looking analysis, has been applied throughout
the outbreak to explore a variety of key questions such as
inferring basic epidemiological characteristics (eg, the
basic reproductive rate [R,], incubation period, and
fatality rate), revealing factors driving transmission, and
assessing the effectiveness of different interventions."”
Nowcasting focuses on understanding the current
situation, like inferring the true number of cases in light
of under-reporting.” Prospective modelling is forward-
looking, and includes forecasts, projections, and future
scenario analysis. Forecasting aims to predict near-term
epidemiological dynamics, often relying on data-driven
methods and assuming that there will be minimal
changes during the forecast period, whereas projections
span over a much longer future time window, and thus
have to make assumptions about how the factors driving
COVID-19 will change in the future. Future scenario
analyses produce multiple projections that explore the
effects of different sets of assumptions that vary factors
such as transmission rates and interventions.

Due to the magnitude of the COVID-19 modelling
literature, we had to impose substantial constraints on the
scope of this Series paper to enable us to do a systematic,

quantitative, and timely assessment of the relevant
literature. Therefore, this Series paper comprises a
narrative review with a systematic approach. Specifically,
these four inclusion criteria defined our review scope.
(1) Prospective modelling work on population-level
dynamics of COVID-19: we included papers that provided
future predictions for a specific location, including
forecasting, projections, and future scenario analysis. We
excluded retrospective modelling studies and nowcasting.
Papers that only fit a model without providing out-of-
sample predictions were not included. (2) Data-driven: we
broadly defined this as papers that incorporated COVID-19
data into the setup or fitting of the model. Papers that only
used parameters from the literature or only used data
from other viruses were excluded. (3) Geographical
restriction: we only included papers published in English
that implemented forecasting or projections (including
future scenario analyses) for US counties, states, or at the
national level, which restricted our analysis to papers
working with the same data issues and in a similar
context. (4) Journal restriction: we only included papers
from peer-reviewed journals, as defined by Scopus’ context
curation standards,” or preprints from modellers that
contribute to the US COVID-19 Forecast Hub.

For papers published in peer-reviewed journals, we
restricted papers to those from journals ranked in the top
10% in their respective field on the basis of the Scopus
CiteScore. Although we recognise this restriction will
exclude important work, this criterion was the best
option available to apply a systematic approach to
reducing the set of papers to a manageable number while
still obtaining the most representative sample of papers
possible. For our final sample of peer-reviewed papers,
the number of papers from each journal, and each
journal’s top category and rank percentile according to
Scopus CiteScore, is shown in the appendix (pp 1-2). We
developed a Scopus query on the basis of these criteria
(appendix p 2). To minimise the chance of our search
missing relevant papers, we searched PubMed with the
equivalent query (figure 1).

We searched Scopus and PubMed on Aug 20, 2021, and
our final selection of papers was distributed from
March 23, 2020, to Aug 16, 2021 (figure 2). Notably, the
top 10% criteria only reduced the number of papers to
37% of the original size, from 2401 to 894 papers. Papers
were screened individually by KN, SJ, and FP, and could
be confirmed by another screener if a paper’s eligibility
for inclusion was unclear. For the data collection,
categorisations were done individually by the same
authors, and confirmed on a second pass, with one
individual covering all papers for a particular category to
ensure consistent categorisation. 119 peer-reviewed
papers were included (figure 1).

We additionally considered preprints from authors
known to be engaged in real-time modelling work. We
included preprints from modellers participating in the
US COVID-19 Forecast Hub, which focuses on 1-week to
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4-week predictions.” We also attempted to include the
Scenario Modelling Hub,”* but no preprints met our
criteria for the time window considered. Although these
papers do not have the validation that comes with peer-
review, these models were used in real-time by the
Centers for Disease Control and Prevention (CDC),
which we believe justifies their inclusion in this analysis.
We found 17 preprints in the metadata provided by the
modelling teams contributing to the Forecast Hub. Thus,
136 papers in total are included in our analysis. Despite
our efforts, we acknowledge that we will miss a
substantial portion of real-time COVID-19 modelling
work that exists on preprint servers and on the websites
of modelling groups.

We have designed our process to obtain the most
objective and representative sample possible, given the
challenges of synthesising an enormous body of work in
a useful, timely manner. Despite the limitations of our
scoping process, we are confident that our analysis can
provide valuable insight on the state of published
COVID-19 work and highlight areas for improvement.

Categorisation analysis

To conduct a quantitative analysis on the substance and
quality of these studies, for each paper we classified eight
features: model objective and prediction horizon,
methodology, target variables, data categories, geo-
graphical resolution, uncertainty, performance eval-
uation, and model limitations (appendix pp 3-6). We
acknowledge that some of these categorisations are
subjective or difficult to consistently extract from papers,
especially the performance evaluation and stated
limitations categories. Thus, we narrowly defined our
categories and transparently discuss these definitions in
the Results.

Since many of the existing COVID-19 review papers go
into more detail on methodology,**” we opted not to
cover this aspect of modelling beyond classification into
three broad categories: compartmental models (eg,
susceptible, infectious, and recovered [known as SIR]
and variations), statistical models (eg, machine learning,
deep learning, and ARIMA), and hybrid (a combination
of compartmental and statistical models).

To capture meaningful data on performance evaluation,
we made an a priori decision to report on the performance
evaluation only for the subset of papers implementing
short-term prediction models, which can be fairly
evaluated against truth data. By contrast, the purpose of
long-term projections is to compare multiple plausible
scenarios of the future, not to predict what will happen.
Therefore, a fair performance evaluation with standard
error metrics is not possible since these models make
assumptions about the future that do not match reality.

To understand the multidisciplinary nature of the
COVID-19 literature, we provide the most common journal
subject areas, as defined by Scopus, in our set of papers.
Additionally, we provide a breakdown of how the COVID-19
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Figure 2: Histogram of the number of papers in our analysis by month of
publication

Forecast Hub papers compare with the entire set of papers
on expressing uncertainty, conducting a thorough
performance evaluation, and discussing limitations.

Results and discussion

We visualised the relative size of each category and the
most common connections between categories (figure 3).
Each line through the figure represents the categor-
isations of a single paper. The width of the lines is
weighted such that in cases of a paper being in more
than one category, such as with both cases and deaths
data, a line with half of the normal width is assigned to
each category.

Model objective and prediction horizon

Forecasts are unconditional in the sense that they attempt
to predict what will happen in the near future, whereas
projections and scenarios are conditioned on the model’s
assumptions about the future to extend the prediction
horizon. We were unable to reliably categorise models
into forecasts or projections due to inconsistent use of
these terms and a scarcity of clear communication on
which approach was used in the papers. Since papers did
not consistently state the precise objective of their model
(unconditional forecast or assumption-based projection),
we report a proxy for model objective: short-term
predictions (ie, forecasts), or long-term predictions
(ie, projections). To remain consistent with the COVID-19
Forecast Hub and COVID-19 Scenario Hub, which
represent best practice for prospective COVID-19
modelling, we categorised studies that made predictions
for 4 weeks or less as short-term (46%, n=63), and studies
making predictions with a horizon that extended beyond
4 weeks as long-term (60%, n=82). There were a few
papers that produced both long-term predictions and
short-term predictions.?* Because papers often fall into
multiple categories, percentages in this analysis do not
always add up to 100%. Within the category of papers
conducting long-term projections, we also tagged papers
with multiple scenarios, which provided multiple
predictions based on different sets of assumptions. For

For more on the CDC see https://

www.cdc.gov/

For more on the the COVID-19

Scenario Hub see https://

covid19scenariomodelinghub.

org/
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Figure 3: Sankey diagram of the connections between categorisations of our analysis
This diagram shows the relative co-occurrence of categories within papers in our analysis. Thicker lines between categories indicate that those categories are more

likely to occur in the same paper. R =effective reproductive number.

example, modelling scenarios could explore the impact
of different reopening speeds, non-pharmaceutical
interventions, and vaccination rates. Of the 82 papers in
the long-term projections category, 54 papers (66%)
considered multiple scenarios.

Methodology

Since most compartmental models in our sample used
statistical methods to fit parameters, to retain informative
categories we adopted a stringent definition of a hybrid
model, requiring both compartmental and statistical
layers of the model that go beyond the use of statistical
approaches to fit parameters. For example, one paper
classified as hybrid used deep learning to infer a time-
dependent reproduction number, which was then fed into
a compartmental model.” A model that only uses
statistical methods to fit parameters for a compartmental
model was classified as compartmental. We found that
47% of papers (n=64) used a compartmental model, 43%
(n=59) used a statistical model, and 13% (n=17) used a
hybrid model. A few papers developed and showed both a
compartmental model and a statistical model.** We also
noted when models used agent-based methods (9%, n=12;
figure 3; appendix pp 3-6).

Target variables
The most common target prediction variables were cases
(89%, n=121), deaths (52%, n=71), hospitalisations (10%,

n=14), and effective reproductive number (R; 9%, n=12).
Some of the lesser used target variables included growth
rate, peak cases, and intensive care unit admissions. 38%
(n=52) of papers had only one target variable, 43% (n=59)
of papers had two target variables, and 18% (n=25) had
more than two (appendix pp 3-6).

The target prediction variables were dominated by
absolute numbers of cases and deaths, which aligns
with the goals of the US COVID-19 Forecast Hub.
Despite the continued desire for these targets from
across the field of public health, government, industry,
and the public, accurate prediction of them remains
challenging.”

Data categories

Next, we quantified the categories of input data used to
inform models. We defined the data categories (table 1),
including an in-depth look at the datasets used by papers
in our analysis that attempt to capture COVID-19
behaviours.

The most frequently used data categories were cases,
deaths, mobility, demographics, and hospital admissions
(table 2). 20% (n=27) of papers used only one category of
data, 39% (n=53) of papers used two categories,
16% (n=22) used three categories, and 25% (n=34) used
four or more categories.

The data sources that informed predictions in our
analysis were dominated by case and death data

www.thelancet.com/digital-health Vol 4 October 2022
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Examples

pertaining to a specific location; time series or static data

Demographics Demographic or sociodemographic information about the

population of a specific location

the context of COVID-19

Mobility Data that quantifies the movement of a population

population

Policy Data pertaining to COVID-19 policies

Description
Cases or deaths Epidemiological data on the number of cases or deaths and
corresponding metrics
Hospital Data related to hospitalisation of patients with COVID-19
admissions
Testing Data pertaining to COVID-19 testing in a population or location
Climate Data describing the climate or any meteorological variables

Hospital resources  Data on the amount of certain resources available in hospitals

Health risk factors  Data that quantifies the health risk factors of the population in

Human behaviour  Data that quantifies the behaviour or beliefs of a population in
the context of COVID-19, excluding data on the mobility of a

Daily cases or deaths , cumulative cases or deaths, reproduction number, and growth rate

Daily hospitalisations, active hospitalisations, and intensive care unit occupancy

Daily tests and test positivity rate

Daily precipitation, daily temperature, and average temperature
Population, age, race, income, and rural to urban ratio

Number of beds and intensive care unit beds

Prevalence of comorbidities and use of preventative services (eg, doctor visits)

Google Mobility Trends (residential, grocery and pharmacy stores, parks, retail and recreation,
workplaces, and transit stations),” Unacast social distancing scoreboard (average mobility, non-essential
visits, and encounters density),* SafeGraph (trip counts at a census block group resolution),* Apple
Mobility Trends (trends in Apple Maps routing requests),”” Facebook Movement Range Maps (change in
movement compared with baseline percentage of population who stays home),” and flight data

Google search trends,** mask use per capita,” Facebook’s COVID-19 Trends and Impact Survey (time series of

self-reported mask use and other social distancing behaviours),** New York Times Mask-Wearing Survey data

(static),” and sentiment index constructed from COVID-19 news*®

Oxford COVID-19 Government Response Tracker (ordinal scale on stringency of many types of COVID-19

policies, including containment and closure policies, economic policies, health system policies, and
vaccination policies),*® state-level social distancing policies (dates and details of policies including
emergency declarations, gathering restrictions, closures, stay-at-home orders, travel restrictions, isolation

orders, and mask mandates)*

Table 1: Data categories

(figure 3). Data used in two or less papers include
vaccinations, R,, wastewater surveillance, and economic
data. 51% (n=70) of modelling studies only used epidem-
iological data sources (ie, cases, deaths, and hospital
admissions). The most frequently used non-
epidemiological sources were mobility and demographic
data. The models that did use other data sources tended
to incorporate a large number and variety of input
data.®* Some factors that have been shown to be
associated with COVID-19 dynamics, such as
demographics, health risk factors, and climate, rarely
appeared in our sample, although little research has
been done to rigorously test for whether these factors
can improve predictive performance. Despite the
increasing effect of new variants on epidemiological
dynamics, none of the papers in our sample used variant
prevalence data. In the USA, these data have a low
sample size, sampling bias, and are difficult to use as a
signal for predictive modelling.

Geographical resolution

We noted the geographical scale at which predictions
were made, categorising papers as national, state, or
county level and smaller. 54% of 136 papers included a
national-level prediction, 36% (n=49) at the state level,
and 34% (n=46) at the county level or smaller scale
(table 3). Half of the models in our analysis were at the
national level. This resolution tends to be the easiest to
predict and the least useful for decision making, which
must often occur at the local level.
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Uncertainty

We established which papers included a quantitative
expression of uncertainty of their predictions, excluding
those that only did so for model parameters. We found
that half of the papers (50%, n=68; table 3) did not express
quantitative uncertainty around the predictions, despite
the highly uncertain and consequential nature of
COVID-19 dynamics. 49% of papers (n=67) included
some form of confidence or prediction intervals. A
sensitivity analysis was performed in 13% of papers
(n=18; appendix pp 3-6).

The use of forecasts for decision makers is dependent
on clear communication of uncertainty,” especially since
point estimate predictions will rarely match ground-truth
data. Well calibrated expressions of uncertainty help
stakeholders assess future risk and decide how to
respond. For example, the difference between a
1% chance of exceeding hospital capacity versus a
25% chance could establish whether or not certain
preparatory actions are taken. Additionally, expressing
uncertainty is especially important to prevent harmful,
incorrect interpretations of COVID-19 models. Clearly
communicating uncertainty around predictions weakens
the ability of actors to use a study in a misleading way to
support their pre-existing agenda.

Performance evaluation

We categorised the type of performance evaluation used
for each short-term model, which can be fairly evaluated
on ground truth data. When defining our performance
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Occurrences, n (%; n=136)
Cases 126 (93%)
Deaths 79 (58%)
Mobility 34 (25%)
Demographics 30 (22%)
Hospital admissions 15 (11%)
Policy 13 (10%)
Testing 11 (8%)
Hospital resources 10 (7%)
Climate 8 (6%)
Human behaviour 8 (6%)
Health risk factors 4(3%)
Numbers exceed 136 as categories overlap between papers.
Table 2: Papers in the top data categories

evaluation categories, we considered that for timeseries
forecasts, the setup of training and testing data should be
representative of real-time forecasting conditions. Since
the use of a model is based on its ability to predict future
dynamics, randomly excluded out-of-sample evaluation
methods do not adequately describe performance. Instead,
models should be trained with data up until a certain
cutoff date and evaluated with data after that date. This
future-blind approach preserves the fundamental
challenge of forecasting: not knowing future data or
trends. Within the subset of short-term studies considered
(N=63),75% (n=47) of papers used performance evaluation
metrics to compare future-blind, out-of-sample predictions
to ground truth data. Ground truth data are usually
reported cases or deaths, and sources used in our sample
include the Center for Systems Science and Engineering
at Johns Hopkins University (Baltimore, MD, USA),' the
COVID Tracking Project, and WHO Dashboard. The most
common metrics to compare predictions to ground truth
were mean absolute error, root mean square error, mean
absolute percentage error, coefficient of determination,
mean square error, and coverage rate of prediction
intervals. Of the papers that did a metric-based evaluation,
only 13% (n=6) evaluated the accuracy of confidence
intervals (table 3). Within the group of 47 papers that
conducted a future-blind performance evaluation,
34% (n=16) evaluated only one model, 55% (n=26) compared
performance metrics across multiple internal models, and
19% (n=9) compared the performance metrics of their
model against those of other models in the COVID-19
Forecast Hub. 15% (n=7) of evaluated models used a
baseline model for comparison (appendix pp 3-6).
Although most of the 63 modelling studies (75%, n=58)
quantified the performance of their model relative to
ground truth data, 78% (n=49) did not evaluate their
model on predictions made across a timespan that
included varying epidemiological dynamics. To quantify
the frequency of these practices, we counted the number
of dates from which papers showed predictions. For

All papers Forecast Hub papers

(n=136) and preprints (n=20)
Prediction horizon
Short-term predictions 63 (46%) 14 (70%)
Long-term predictions 82 (60%) 8 (40%)
Methodology
Compartmental 64 (47%) 7 (35%)
Statistical 59 (43%) 9 (45%)
Hybrid 17 (13%) 4(20%)
Agent-based 12 (9%) 1(5%)
Geographical level
National 74 (54%) 5(25%)
State 49 (36%) 13 (65%)
County or smaller 46 (34%) 11 (55%)
Uncertainty
Expressed quantitative 68 (50%) 11 (55%)
uncertainty
Sensitivity analysis 18 (13%) 1(5%)

Performance evaluation (out of short-term models only)
Comparison to ground truth 47/63 (75%)  12/14 (86%)
Number of predictions (out of short-term models only)

Only made predictions fromone  39/63 (62%)  1/14 (7%)
date

Made multiple predictionsovera  10/63 (16%)  6/14 (43%)
timespan less than 2 months

Made multiple predictions overa  14/63 (22%) 7/14 (50%)
timespan greater than 2 months

Limitations
Authors discussed limitations 87 (64%) 13 (65%)

Table 3: Comparison of category occurrences in all papers and Forecast
Hub papers and preprints

example, if a paper presents a model prediction with data
up until Sept 1 and predicts future case counts on Sept 8,
15, 22, and 29, this prediction would be made from a
single date. If this paper adds another prediction made
from Oct 1 (with data up until this date) and predicts
weekly values for the next 4 weeks, this paper would be
showing predictions made from two dates, which cover a
month-long timespan (Sept 1 to Oct 1). We defined the
category this way to ensure we could reliably extract these
data from each paper. Our analysis found that among
short-term models, more than half (62%, n=39) only
showed a prediction made from a single date, 16% (n=10)
of papers showed predictions made from multiple dates
over a timespan that was less than 2 months long, and
22% (n=14) covered a timespan longer than 2 months.
From the COVID-19 Forecast Hub, we know that
predictive accuracy of models varies widely over time,
especially with respect to epidemiological trends.”
Therefore, not evaluating a model across a variety of
epidemiological ~ dynamics  severely limits the
generalisability of the performance evaluation and the
ability to make fair comparisons between models. In
addition, a third of papers (34%, n=16) that completed a
quantitative performance evaluation did not compare
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their model to a baseline or any other models, so whether
the model provides any improvement over a naive model
is unclear. The COVID-19 Forecast Hub uses a baseline
model that assumes no change in incidence over the next
4 weeks. According to historical error metrics calculated
by the Forecast Hub and Carnegie Mellon University
(CMU; Pittsburgh, PA, USA) Delphi, on Sept 8, 2021,
only 25% of models outperformed the baseline model for
cases, whereas 75% outperformed the baseline for deaths
by relative mean absolute error and weighted interval
score.* Thus, comparison with a baseline model provides
context and thereby important information about the
usefulness of a model.

Many papers did not cover the specific methodology of
their performance evaluation, which limited our ability
to provide more specific analyses in this Series paper.
Authors should clearly state the dates of the training
period, the dates predictions were made from, how error
metrics were computed and aggregated, and whether
metrics are computed in-sample or out-of-sample. In
addition, models that aim to contribute to real-time
forecasting efforts should use input data as they were
available at the date predicitons are made from; these
data are available from the CMU Delphi's COVIDcast
Epidata.”* Without thorough performance evaluation,
the broader scientific community will be unable to
identify which approaches are working and build
knowledge on best practices.

Model limitations

Authors of the papers stated six main categories of
limitations: disregarded factors (39%), data quality (28%),
unknowable factors (26%), limitations specific to the
methods used (22%), data availability (16%), and poor
generalisability (8%). We define unknowable factors as
those that cannot be known at the time predictions were
made, such as future implementation of non-pharma-
ceutical interventions, or the emergence of new variants
during the prediction horizon. By contrast, disregarded
factors have some relevant data or information available
at the time of the analysis, but the authors of the papers
chose to disregard it, like the demographic breakdown of
populations or health-care capacity of different regions.
A third of the papers in our analysis (36%) did not list
any limitations in an accessible section of the paper,
which we considered to be in the discussion, conclusion,
or in a separate section called limitations. In most cases,
all these types of limitations are relevant to COVID-19
models. Unfortunately, our categorisation does not give
information about how thoroughly these limitation
categories were discussed.

Multidisciplinary nature of the COVID-19 literature

The highly consequential nature of the COVID-19
pandemic has attracted modelling experts from a variety
of different fields. The top five journal subject areas
represented in our final set of papers, in order from most
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Figure 4: Top 10 journals in the final set

to least frequent, are applied mathematics (30%, n=41),
multidisciplinary (22%, n=30), general physics and
astronomy (21%, n=29), general mathematics (18%,
n=24), and statistical and non-linear physics (16%, n=22).
Note that the assignment of journals to subject areas was
done by Scopus. Public health did not appear in the top
five subject areas. Our final set of papers represented
52 journals. The most common journals were Chaos,
Solitons & Fractals; PLoS One; and Scientific Reports
(figure 4). We were unable to conduct a thorough analysis
on the contributions to COVID-19 modelling from
different fields due to the difficulty of classifying papers
into distinct disciplines solely on the basis of the journal
they were published in and the inherent interdisciplinarity
of this work. However, we completed a subanalysis on the
group of papers from COVID-19 Forecast Hub modellers.

The set of papers written by authors that contributed to
the COVID-19 Forecast Hub includes 17 preprints®*-
and three papers published in peer-reviewed journals.*
70% of these papers made short-term predictions and
40% of these papers made long-term predictions.
Although these papers were cited by teams in the
metadata of their submissions to the COVID-19 Forecast
Hub, these preprints are not necessarily on the exact
model and application that was submitted to the
COVID-19 Forecast Hub. Despite being mostly preprints
with many serving to provide a brief explanation of a
model being used in real-time, these papers were more
likely to express uncertainty, have forecasts for state and
county levels, and conduct performance evaluation than
the full set of papers (table 3). In addition, COVID-19
Forecast Hub papers were substantially more likely to
show and evaluate predictions made from several dates
over a timespan greater than 2 months (50% vs 22% for
all papers). A great advantage of the COVID-19 Forecast
Hub approach is that it encourages good practices in
terms of uncertainty, evaluation, and high geographical
resolution. Additionally, the real-time sharing of forecasts
ensures that predictions were truly future-blind.

Concluding remarks

Our analysis found substantial gaps in COVID-19 model
transparency in the literature, especially on reporting
aspects of models that are crucial for science translation.
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Papers did not consistently state the precise objective of
their model (unconditional forecast or assumption-based
projection), detail their methodology, express uncertainty,
evaluate performance across a long, varied timespan, and
clearly list their limitations. Without this information,
studies are more vulnerable to misinterpretation, which
can have serious consequences during a global health
crisis in which decision makers and the public rely on
scientific papers for critical guidance.®* In addition, poor
reporting limits the ability of literature reviews to
synthesise insights from the research to establish best
practices. In response to these kind of concerns, the
EPIFORGE 2020 model reporting guidelines® were
developed, primarily for epidemic forecasting studies, but
but the concepts apply to other types of modeling as well.
These guidelines recommend consistent terminology, a
clear definition of study purpose and model targets,
identification of prospective versus retrospective work,
comparison with a baseline model, a non-technical
summary of results, and full documentation of: data
sources, data availability, data processing, methods,
assumptions, code, model validation, forecast accuracy
evaluation, uncertainty, limitations, interpretation, and
generalisability.™ Consistent sharing of this information
for epidemiological predictions would improve the
consistency, reproducibility, comparability, and quality of
epidemic forecasting and modelling papers, in addition
to minimising the potential for the public to
misunderstand or misuse the research.

Another obstacle to maximising the knowledge gained
from epidemic modelling is the suitability of the
information-sharing system. Since it is not standard
practice for modelling papers to report on translational
work, this Series paper can only comment on the
translation potential of papers on the basis of their
reporting practices, not on how models were actually
used during the COVID-19 pandemic. In addition, the
volume and variable quality of the literature forced us to
adopt stringent and limiting scoping criteria to obtain a
manageable sample of literature to analyse. Other
reviews adopted their own narrow scope, creating a
body of COVID-19 modelling literature reviews that
amount to a fragmented, incomplete understanding of
the efforts of researchers.

The obstacles to completing this literature review
illustrate the difficulty of building knowledge from the
COVID-19 literature through the traditional information-
sharing system: peer-reviewed literature synthesised by
systematic literature reviews. Thus, a new information-
sharing system that is better suited to the needs of
outbreaks is urgently needed, which can handle the pace
of publications and strike a balance between the speed
and quality of disseminating research findings.

Limitations
For COVID-19 applications, clearly stating model
limitations is crucial to help the public understand the

appropriate interpretation of results. The main limitations
of this Series paper are the result of the difficult nature of
synthesising the COVID-19 literature. We had to adopt
stringent scoping criteria, which included limiting our
analysis to studies that made prospective, data-driven
predictions for the USA, and to papers published in the
top 10% of journals based on Scopus’ CiteScore.” The
CiteScore is an imperfect metric that relies on the number
of citations per study in a journal. However, the CiteScore
was the best option we knew of to select for a higher
quality sample of papers, since we did not want to
introduce a time bias by using each paper’s number of
citations. Another limitation is that we can only comment
on the state of the peer-reviewed literature (and a specially
selected sample of the preprint literature) within this
analysis, not the state of all real-time work, some of which
is not and might never be represented in the literature. In
addition, some of the categorisations we made were
subjective and difficult to extract consistently, so we
implemented quality control mechanisms as discussed in
the Methods, and we are confident in our overall
conclusions. Despite these limitations, we believe we
have studied the most representative sample of papers
possible and obtained findings that are informative for
improving epidemic modelling in the future.

Conclusions

To conclude, this Series paper examined a subset of the
COVID-19 modelling literature, focused on data-driven,
prospective  modelling, and identified several
opportunities to improve the use of outbreak modelling,
which are especially relevant to inform the work of the
new CDC Center for Forecasting and Outbreak Analytics,
for which planning began in August, 2021. In response
to considerable scoping challenges, we selected a sample
that should represent the best modelling papers and still
found them to be inadequate in some of the areas that
are most crucial for translating models into useful
insight for decision makers and the general public.

The main takeaways of this Series paper are adopting
epidemic forecasting standards and creating a suitable
information-sharing system. Adopting the EPIFORGE
2020 model reporting guidelines addresses many of the
issues identified in this Series paper, including the need
to Dbe transparent about the methods, express
uncertainty, thoroughly evaluate performance, state
limitations, and discuss appropriate interpretations.
Additionally, the creation of an information-sharing
system suited to the needs of an epidemic would allow
the hard work of COVID-19 modellers to be more
efficiently synthesised into best practices.
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