
Towards Reusable Surrogate Models:
Graph-Based Transfer Learning on Trusses

Eamon Whalen∗
Graduate Research Assistant

Computational Science and Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: ewhalen@mit.edu

Caitlin Mueller
Associate Professor

Civil and Environmental Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: caitlinm@mit.edu

Surrogate models have several uses in engineering design,
including speeding up design optimization, noise reduction,
test measurement interpolation, gradient estimation, porta-
bility, and protection of intellectual property. Traditionally,
surrogate models require that all training data conform to
the same parametrization (e.g. design variables), limiting
design freedom and prohibiting the reuse of historical data.
In response, this paper proposes Graph-based Surrogate
Models (GSMs) for trusses. The GSM can accurately
predict displacement fields from static loads given the struc-
ture’s geometry as input, enabling training across multiple
parametrizations. GSMs build upon recent advancements
in geometric deep learning which have led to the ability
to learn on undirected graphs: a natural representation
for trusses. To further promote flexible surrogate models,
the paper explores transfer learning within the context of
engineering design, and demonstrates positive knowledge
transfer across data sets of different topologies, complexi-
ties, loads and applications, resulting in more flexible and
data-efficient surrogate models for trusses.

Keywords: graph neural network; geometric deep learning;
transfer learning; surrogate model; metamodel; structural
design;

Nomenclature
DM Design Model
GNN Graph Neural Network
GSM Graph-based Surrogate Model
MAE Mean Absolute Error

∗Address all correspondence to this author.

1 Introduction
Surrogate models, also known as metamodels, response

surfaces, reduced order models, approximation models, or
emulators, are used extensively in engineering to approxi-
mate complex systems. In a typical workflow, training data
is produced by running a design of experiment (DOE) of
physics-based simulations, after which a surrogate model is
trained in a supervised manner to predict one or more of
the simulated quantities. The trained surrogate model might
then be used to speed up design optimization, estimate gra-
dients (if the surrogate is differentiable), or share the system
(e.g. to a lightweight/web platform or collaborator) easily
and without divulging intellectual property. Generally, these
surrogate modeling methods require that each design be rep-
resented as a fixed-length vector of design parameters (e.g.
design variables). This requirement restricts the surrogate
model to a single design space, requiring the user to train a
new surrogate model every time the parametrization changes.

Ideally, surrogate models would operate on more or-
ganic representations of geometry, enabling learning across
design data from multiple sources. Many design processes
are incremental in nature. The result is often several small,
disjoint design studies which differ slightly in geometry,
topology, or loading conditions. A more flexible surrogate
model could be trained across design iterations, perhaps sup-
plemented with historical designs from previous projects,
and could be continuously updated as new data becomes
available. The ability to learn across related projects would
not only save computational resources but might also yield
powerful insights that could not have been inferred from a
single design space. Such models would also grant engi-
neers greater design freedom since design changes would not

1 Copyright © by ASME

be restricted to the parametrization used to generate training
data.

One challenge in developing such a model is choosing a
geometry representation. An ideal representation would ac-
commodate arbitrary changes to the geometry or topology,
and encode loads and supports to enable learning across load
cases. A second challenge is quantifying the extent to which
such a surrogate generalizes to new designs. Unlike with tra-
ditional parametrization, the notions of interpolation and ex-
trapolation are not well-defined for representations that span
the set of all possible shapes. How might one determine
which inputs are “safe” and which are not likely to yield
quality predictions?

This work explores the use of graph neural networks
as surrogate models for trusses. The proposed Graph-based
Surrogate Model (GSM) learns to predict a displacement
field given only the geometry, supports, and loads as inputs.
It is shown that the GSM can be trained on data from multiple
design models simultaneously, often outperforming GSMs
trained on a single source. Transfer learning is then explored
as an effective method to repurpose previously trained GSMs
to new tasks. Both the generalizability and data efficiency
of the GSM are improved with transfer learning, with posi-
tive transfer being observed across varying topologies, loads,
complexities, and even different applications.

The key contributions of this work are as follows:

1. Graph-based Surrogate Models (GSMs), which operate
directly on the geometry and do not require parametric
design features, are proposed for the modeling of trusses

2. Transfer learning is shown to improve the GSMs data
efficiency and generalizability, leveraging historical data
to reduce the required number of simulations by one or
two orders of magnitude

3. Various source/target pairs that arise naturally in a de-
sign context, including design data of varying topolo-
gies, loads, complexities and applications, are used to
demonstrate the utility of transfer learned GSMs in a real
world setting

The remainder of this paper is organized as follows: sec-
tion 2 reviews related work, section 3 introduces the method-
ology of the GSM and a few naive alternatives used for
comparison, section 4 outlines data generation methods and
presents experimental results, section 5 introduces transfer
learning and presents further results, and section 6 contains
conclusions and ideas for future work.

The following terminology is used throughout the pa-
per: Let design refer to a specific design concept of a struc-
ture (i.e. something that could be built), design model (DM)
refer to a hand-parametrized design space which can be sam-
pled to generate designs, and surrogate model refer to a data-
driven predictive model that learns to predict a structure’s
engineering performance.

2 Related work
Engineering surrogate modeling is a thoroughly ex-

plored topic with applications dating back to the 1980s. Con-

versely, transfer learning and geometric deep learning are
relatively young research areas with hundreds of papers pub-
lished in the last few years alone. The following is a brief
review of what are considered to be the most relevant works
to this one, but is by no means comprehensive.

2.1 Surrogate modeling with parametric design fea-
tures

Surrogate models have been used in engineering design
for several decades (see [1–3] for a review). Some of the
most common surrogate modeling algorithms include poly-
nomial regression [4], kriging (also known as Gaussian pro-
cesses) [5], radial basis functions [6], random forest [7] and
neural networks [8]. [9] compared several of these algo-
rithms for civil engineering problems. Dimensionality re-
duction techniques have been used to derive more suitable
parametrizations [10, 11] and quantities of interest [12]. All
of the aforementioned methods require that a design be rep-
resented as a fixed-length vector of parametric design fea-
tures, restricting the feasible designs to some pre-determined
space. This work proposes a surrogate model that operates
on the geometry directly and is thus not limited to a particu-
lar parametrization.

2.2 Surrogate modeling without parametric design fea-
tures

Recently, a few surrogate models have been proposed
that do not rely on handcrafted design parameters. [13] pro-
posed using ”knowledge-based” characteristics, which are
independent of design variables, as features. While this may
enable the combination of training data from multiple de-
sign spaces, it still relies heavily on the user to craft useful
characteristics. Other approaches, have sought to learn on
the geometry itself. The pursuit of deep learning methods
for shape data has led to the ability to learn on several ge-
ometry representations, including shape descriptors, images,
voxels, polycubes, signed distance functions, point clouds,
and graphs (see [14, 15] for a review). Surrogate models
have been trained on images [16–21], voxels [22, 23] and
polycubes [24,25]. Images and voxels suffer from resolution
problems and data loss due to rasterization. Polycubes solve
this problem by mapping the geometry to a regular grid but
are limited to fixed-topology data sets.

The advent of geometric deep learning techniques has
enabled learning on non-Euclidian domains which are gen-
erally more natural representations of geometry. [26] trained
a surrogate model to predict lift and drag coefficients from
3D point clouds. While potentially useful for solid bodies,
point clouds are not an adequate representation of trusses be-
cause they lack topological information. Other works have
represented designs as graphs. [25] used a graph-based con-
volutional model to learn fluid dynamics on meshed sur-
faces, [27] used a similar approach to learn the structural
behavior of a thin shell, and [28] learned material properties
from graph-based microstructures. The closest existing work
to this one is probably [29], in which graph representations
of trusses were used to optimize cross section sizes for struc-

2 Copyright © by ASME

tural loads. The structures in [29] had constant loads and
geometry (apart from the cross sections), whereas this study
explores the flexibility of graph-based networks to generalize
across various geometries, topologies and loads.

Other notable engineering applications of graph-based
learning include feature recognition on 3D CAD [30], shape
correspondence for additive manufacturing [31], and gener-
ation of design decision sequences [32]; however, these do
not directly address surrogate modeling.

2.3 Geometric deep learning: learning on graphs
Graph-based learning, both for shape analysis as well as

other tasks, has recently received a lot of attention. [33] in-
troduced the term geometric deep learning to mean learning
from non-Euclidian data structures such as graphs and point
clouds. See [34,35] for a general survey on graph neural net-
works (GNNs). MoNet [36] was the first framework to apply
a GNN to meshed surfaces by leveraging convolutions over
local geodesic patches. ACNN [37] defined similar patches
based on anisotropic heat kernels, while GCNN [38] gen-
eralized these patches to user-defined pseudo coordinates.
FeaStNet [39] introduced an attention mechanism to perform
”feature steering” which acts as dynamic filtering over neigh-
bors. Other notable extensions of GNNs to shapes include
MeshCNN [40] which introduced learnable edge pooling and
StructureNet [41] which introduced a graph-based encoder
for hierarchical part representations. The aforementioned
frameworks were applied to geometry processing tasks in-
cluding shape correspondence, classification, and segmenta-
tion, whereas this work focuses on structural surrogate mod-
eling.

2.4 Transfer learning: Recycling data
Transfer learning, where predictive models previously

trained on source data are re-trained on target data from a
different domain, task, or distribution, is a widely applied
concept in machine learning [42]. Deep learning models in
particular often benefit from transfer learning due to their
data-intensive nature [43]. [44] addressed some of the partic-
ular challenges of transfer learning in graph neural networks.
A few works have explored transfer learning in the context
of engineering design. [18] trained a convolutional autoen-
coder on 2D wheel designs before retraining the encoder as
a surrogate model, reducing the required number of simula-
tions. [19] first trained a model to predict the original para-
metric design features of an artery before retraining it to pre-
dict the location of maximum stress. [45] used a clustering
algorithm to identify which designs would make for useful
source data when applying transfer learning to microproces-
sor performance prediction. [25] trained a surrogate model to
predict the drag coefficient of 2,000 primitive shapes before
tuning the model on 54 car designs. This paper differs from
previous works in that it seeks to systematically quantify the
effects of transfer learning on data efficiency and generaliz-
ability across several common source/target pairs in struc-
tural design.

+

batch norm linear FeaStNet

...

neighbor feature vectors

...

...
new feature vector

weight matrices

FeaStNet Convolution

Graph-based Surrogate Model (GSM)

Fig. 1. The graph-based surrogate model (GSM) learns to predict
nodal displacements given only geometry, supports and loads as in-
puts. Structures are represented as undirected graphs, where each
vertex is assigned a feature vector consisting of a joint’s spatial co-
ordinates and binary variables indicating the presence of supports or
loads. Graph convolutional layers utilize the FeaStNet operator [39].

3 Methodology: Surrogate modeling with graphs
The following section presents a new graph-based surro-

gate model (GSM) for predicting the displacement of trusses
under static load.

3.1 Data representation: Trusses as graphs
This paper proposes a graph-based representation of

trusses, where a set of vertices V = {v1, ...,vn} represent the
joints and a set of edges E ∈ V ×V represent the bars. The
set of vertices that share an edge with vi is referred to as its
neighborhood, and is understood to include vi itself. Each
vertex vi is assigned a feature vector xi of length r (xi ∈ Rr).
The geometry of the truss is encoded by using the joints’
spatial coordinates ci ∈ R2 as vertex features. Additional bi-
nary features indicate the presence of a support si ∈ {0,1}2

or load li ∈ {0,1}2 for each degree of freedom. The ge-
ometry, supports and loads are thus encoded by the graph
G0 = (V0,E). The deformed structure is represented by a
topologically identical graph GH = (VH ,E), where now the
vertex features encode the displacements di ∈ R2 of each
joint under static load. The proposed graph representation
has three main advantages:

1. it encodes the exact spatial coordinates of the geometry
2. it facilitates arbitrary topologies
3. it does not rely on handcrafted design parameters

In contrast with Euclidian representations like images, 1. im-
plies that there is no information loss when converting the
geometry to or from the deep learning representation. 2. and
3. enable learning across multiple design spaces.

3.2 Convolutions on graphs
The GSM’s primary mechanism is a graph-based convo-

lutional layer. The FeaStNet [39] convolution was selected
because it extends to arbitrary graph topologies, does not re-
quire the selection and pre-computation of pseudo coordi-
nates, and can be made transformation invariant in feature

3 Copyright © by ASME

space. The latter implies that raw spatial coordinates can be
used directly as input features without having to learn spa-
tial invariance or transform all designs to a common pose.
Geometric deep learning is an active field; it is likely that
other graph-based learning methods are also suitable for this
context and should be considered as future research.

3.3 The graph-based surrogate model (GSM)
The proposed surrogate model learns to predict joint dis-

placements given the geometry, supports and loads as inputs.
It does so by learning a map from an input graph G0 =(V0,E)
to a topologically identical output graph GH = (VH ,E). The
surrogate model is implemented as a graph-based convolu-
tional neural network built from a single sequence of H lin-
ear and FeaStNet convolutional layers (Fig. 1). All layers
except the final one are followed by a rectified linear (ReLu)
activation function. It is observed that batch normalization
applied to the input and after each convolutional operation
significantly improves prediction accuracy. The network ar-
chitecture, layer dimensions, and number of attention heads
per FeaStNet layer dictate the total number of learnable pa-
rameters.

3.4 A naive alternative: The pointwise surrogate
A second, simpler type of surrogate model was used to

compare against the proposed graph-based method. This
pointwise surrogate consists of several simple regression
models, which each take the spatial coordinates of the struc-
ture’s joints (flattened into a vector) as inputs and predict a
single scalar quantity. For a 2D truss with 15 nodes, this
corresponds to training 30 regression models (for the x and
y displacement of each node). The random forest algorithm
was selected for this study, but any regression technique (e.g.
kriging, polynomials, radial basis functions) could be used.
Note that the pointwise surrogate relies on a fixed ordering
of joints and thus cannot be extended to multi-topology data
sets. Also, note that in the case where all designs are identi-
cally loaded, there is no benefit to including support or load
information in the input, since the designs are represented by
a single vector. The pointwise surrogate was implemented
using the scikit-learn [46] random forest class using default
settings.

3.5 A baseline: Predicting the mean
As an additional reference point, consider an even sim-

pler predictive model that simply predicts the mean displace-
ment across each joint in the training set. Throughout the
paper, the performance of this naive model is referred to as
the baseline. Models that fail to beat the baseline effectively
have no predictive value.

4 Characterizing the GSM
The following section presents a series of trials designed

to characterize the prediction accuracy and generalizability
of the proposed graph-based surrogate model.

Fig. 2. A parametric design model of a truss. Data sets are created
by perturbing design variables p1-p5. Each design is loaded with
a uniformly distributed vertical load across the top and simply sup-
ported on the bottom. This particular design model is referred to as
DM7.

4.1 Data generation and filtering
Surrogate modeling is most advantageous for

computationally-intensive simulations; however, this
work focuses on relatively simple designs because they
more effectively depict the specific design scenarios used to
evaluate the GSM (more on this in section 5). A set of truss
designs was generated as follows. First, a parametric design
model of a simple two-dimensional truss was built using
a combination of commercial [47] and open source [48]
software. The truss is made of steel (E = 30.5 Msi) and
consists of beams with constant cross section (A = 0.29
m2, I = 2.3×10−3 m4). A vertical static load of 11.1 kN
is applied to all joints on the top of the truss, and simple
supports are applied to two of the bottom joints (Fig. 2).
The truss was parametrized using five handcrafted design
variables p1-p5, each perturbing the truss geometry in a
particular way. Next, the design model was sampled 1,000
times using a Latin Hypercube and the resulting designs
were simulated with bar elements using linear elastic Finite
Element Analysis (FEA). Finally, the 10% of trusses with the
largest maximum displacement (i.e. the worst-performing
designs) were discarded. For the remainder of the paper, this
design model will be referred to a design model 7 (DM7).

4.2 Training and tuning
A GSM was trained to predict joint displacements

given a truss design as input. The truss designs were
randomly partitioned such that 68% were used for train-
ing, 12% were used for validation, and 20% were re-
served for testing. The GSM was implemented with Py-
torch Geometric [49] and trained for 100 epochs on a Tesla
K80 GPU using the ADAM optimizer [50] and a mean
squared error (MSE) loss function. Through a series of
grid searches, the optimal architecture was found to be
L16/C32/C64/C128/C256/C512/C256/C128/L64/L2, where
L denotes a linear layer, C denotes a FeaStNet convolutional
layer, and the numbers represent the length of the vertex fea-

4 Copyright © by ASME

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Mean Absolute Error (cm)

0

10

20

D
e
n

s
it

y

Fig. 3. The GSM and pointwise surrogate achieve comparable pre-
dictive performance on the test designs. Both error distributions are
left-skewed, with 85% of designs producing a mean average error of
less than 0.1 cm on either model.

ture vectors after passing through a given layer. Similarly,
the optimal learning rate was found to be 1×10−3 and the
optimal number of FeaStNet heads was found to be 8 (see
appendix Table 2 for details). The resulting model has 2.7
million training parameters. Throughout all trials, batch nor-
malization was applied to the input and after each convolu-
tional layer, the ADAM weight decay was set to 1×10−3,
and the batch size was set to 256.

Four data transformation strategies were studied: stan-
dardization, log transformation, standardization followed by
log transformation, and no transform. It was found that stan-
dardization alone yields the lowest testing MSE (appendix
Table 3). To study the effects of including support and load
information in the feature vectors, the model was trained
once using spatial coordinates alone as features and com-
pared to when spatial coordinates are used in addition to bi-
nary support or load features. It was found that including
both the support and load features in the feature vector im-
proves prediction accuracy, despite the fact that all trusses
were loaded identically (appendix Table 4). This is under-
standable, since the convolution can be thought of as acting
on one vertex at a time.

4.3 Comparing the GSM to the pointwise surrogate
Both the GSM and pointwise surrogate successfully

learn to predict a wide range of structural behaviors. Figure
3 shows the distribution of prediction errors for both models
evaluated on the test set. The predictive performance of the
two models is roughly comparable: the mean absolute error
(MAE) over the entire test set is 0.049 cm for the GSM and
0.053 cm for the pointwise surrogate (30% and 33% of the
baseline respectively). As the average maximum displace-
ment of the trusses is 0.56 cm, these prediction errors are
acceptable for most applications. The error distributions for
both models are skewed left, implying that the models per-
form well on most of the designs but poorly on a few. In-
terestingly, it is observed that many of the designs for which
prediction accuracies are low tend to also exhibit poor struc-
tural performance (i.e. large displacements).

...

...

...

...

...

...

...

...

D
M

 5
D

M
 6

D
M

 7
D

M
 8

D
M

 9
E

nd
 lo

ad
s

To
w

er
B

rid
ge

Fig. 4. Each row shows a few designs generated from one of the
eight design models used in this paper. Loads and supports are
omitted on all but the first column for clarity. The design models were
selected to test specific scenarios that commonly arise in engineering
design.

4.4 Studying generalizability
Effective surrogate models should generalize well to un-

seen designs. For surrogate models that rely on bounded,
handcrafted design parameters, one might assess generaliz-
ability simply by sampling the design space with sufficient
density. In contrast, graph representations span the set of all
conceivable trusses and thus a bounded design space does
not exist. Developing practical intuition regarding the extent
to which graph-based surrogate models generalize to new de-
signs is an open challenge.

Towards this end, a series of data sets and trials were
designed to test the generalizability of the GSM under a va-
riety of conditions. The truss design model from section 4.1
(DM7) was modified to create four new design models. The
new design models, named DM5, DM6, DM8, DM9 for the
number of bars along the top, have identical outer profiles as
DM7 but differing topologies (Fig. 4).

The following trials were designed to test the general-
izability of the GSM. The reader is referred to Figure 5 for
an overview of the trials used throughout the rest of the pa-
per. Let the term target refer to the design model of interest
to the user, that is, the design model from which the test set
was generated. In Trial A, a GSM was trained and tested on
designs generated from the target design model. Note that
there is no overlap between the training and testing sets. In
Trial B, training data from all of the design models was com-
bined to train the GSM. The GSM was then tested on designs
from the target design model as in Trial A. Trial B thus quan-
tifies the GSM’s ability to learn on multiple design models
simultaneously. Note that this would be impossible with the
pointwise surrogate which is limited to fixed-topology data.
In Trial C, designs originating from the target design model
were removed from the training set, thus testing the GSM’s
ability to generalize to unseen design models. Trials A-C
were repeated with each of the five design models (DMs 5-
7) as the target, the results of which can be seen in Figure

5 Copyright © by ASME

--

--

--

Trial

A. Learning on a single

 design model

B. Learning on multiple

 design models

C. Generalization to unseen

 design models

D. Transfer learning

 across design models

E. Transfer learning across

 load conditions

F. Transfer learning across

 domains - tower

G. Transfer learning across

 complexities - bridge

Train on Re-train on
(transfer learning)

Test on

*small dataset used for re-training - target design model

DM 5 DM 6 DM 7 DM 8 DM 9

DM 9

DM 5 DM 6 DM 7 DM 8

DM 5 DM 6 DM 7 DM 8

DM 7

DM 7

DM 7

DM 9*

Tower*

Bridge*

DM 9

Tower

Bridge

DM 9

DM 9

DM 9

End Loads* End Loads

re
p
e
a
te

d
 fo

r D
M

s
 5

-8

Fig. 5. An overview of the trials used to assess the GSM’s generalizability across seven specific scenarios. The first three trials involve a
single training, while the remainder of the trials leverage transfer learning to repurpose a previously trained GSM for new tasks. Note that
trials Trials B-G) would not be possible with a traditional surrogate model because the data does not conform to the same parametrization.

Fig. 6. The GSM can learn on data from multiple design models
at once (Trial B), and doing so is sometimes advantageous even
for cases when only a single design model is of interest. The GSM
does not seem to generalize well to unseen design models (Trial
C); however, transfer learning is an effective remedy (Trial D) and
requires a fraction of the data required to train a GSM from scratch.

6.
In Trial A, the GSM archives a MAE of less than 0.1

cm for all design models, confirming the previous conclusion
that the GSM effectively approximates single design model
data. Trial B also produced MAEs less than 0.1 cm across
each design model, indicating that the GSM can learn on data
from multiple design models simultaneously. Interestingly,
for three of the design models (DMs 6-8), the inclusion of
data from other design models actually improved predictions
on the target. These results indicate that it is sometimes ben-
eficial to add designs to the training data even if they are not
from the design model of interest. Note that this did not hold
true for DMs 5 or 9 which might be considered the most dif-
ferent from the rest of the design models in that they have
the fewest and most bars, respectively. The degree to which
including off-target designs in the training data benefits train-
ing may therefore depend on how similar those designs are
to the target.

Since the GSM is able to learn on multiple design mod-
els simultaneously, one might hope that the model general-

izes well to previously unseen design models; however, this
was not the case. The MAEs produced in Trial C were on av-
erage 76% higher than those in Trial B. While the mid-range
topologies (DMs 6-8) showed better generalization than the
extremes (DMs 5,9), the general trend was that removing
all target designs from the training data significantly reduces
predictive performance. In other words, the GSM does not
seem to generalize well to unseen design models. It is pos-
sible that greater topological variation in the training set is
required in order to learn such generalization.

5 Transfer learning: repurposing the GSM
In light of the GSM’s poor generalization to unseen de-

sign models, one might conclude that a separate GSM must
be trained for each potential target; luckily this is not the
case. This paper proposes transfer learning as a means of
repurposing previously trained GSMs to new targets, using
a fraction of the training data required to train a GSM from
scratch. Transfer learned GSMs thus reduce the number of
required simulations and training epochs, and enable learn-
ing across design models, load conditions, and even sepa-
rate applications. This section demonstrates the benefits of
applying transfer learning to GSMs through four trials that
emulate common design scenarios. Namely, learning across
small data sets which vary in topology, loads, application, or
complexity.

5.1 Effects on generalizability
Consider a GSM that has been trained to predict the per-

formance of one or more design models as described in sec-
tions 3 and 4. Let these design models now be referred to
as the source. The subsequent trials demonstrate the perfor-
mance of this GSM when re-trained on a small training set
from a new target design model (Fig. 7). Multiple strate-
gies exist for applying transfer learning to neural networks.
This study employs what is perhaps the most basic: simply

6 Copyright © by ASME

Fig. 7. Left: A previously trained Graph-based Surrogate Model (GSM) can be re-trained on a new data set with differing geometry, loads or
topology. Right: Pre-training significantly increases the data efficiency of the GSM. In these results from Trial F, a pre-trained GSM trained
on 20 designs (N=20) outperforms a fresh GSM trained on 500.

GSM

GSM with pre-training

Undeformed Deformed Prediction

25th percentile 50th 75th 100th

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Absolute Error (cm)

0

10

20

D
e
n

s
it

y

Fig. 8. A comparison of prediction error distributions between a pre-
trained GSM and a GSM trained from scratch (Trial D, DM7). Both
GSMs were trained on N=200 target designs. Visualizations of pre-
dictions representing each error quartile are also shown. Transfer
learning reduces both the mean and standard deviation of prediction
errors across the test designs.

retraining all learnable parameters on the target data set for
an additional 100 epochs. The further exploration of transfer
learning strategies, for example those that freeze parameters
or add new ones, for engineering design encouraged as future
work.

In Trial D, the GSMs that were previously trained (pre-
trained) on all design models but the target (Trial C) are re-
trained on a small dataset (N=200) from the target model.
The results can be seen in the final series of Figure 6. The re-
trained GSMs produce significantly better predictions than
those in Trial C. In fact, the re-trained GSMs on average pro-
duce 5.5% lower errors than those in Trial B and use less than
a third of the training data. To further analyze the effects of
transfer learning on prediction accuracy, the error distribu-
tion from the pre-trained GSM in Trial D was directly com-
pared to that of a GSM trained only on the 200 design train-
ing set (without pre-training). The distributions can be seen
in Figure 8. Pre-training on related source models reduces
the average MAE across the test set by 70% and the standard
deviation by 54%, resulting in a more accurate and robust
surrogate.

5.2 Studying data efficiency
Effective surrogate models should achieve a useful level

of prediction accuracy with a minimum amount of training
data. The amount of acceptable prediction error and avail-
able data are both application dependent. Data efficiency is
particularly important in engineering design, where quality
design data is often scarce or prohibitively expensive to gen-
erate. On the other hand, deep learning methods, with their
large number of trainable parameters, are notorious for re-
quiring large data sets. This section explores the effects of
transfer learning on the GSM’s data efficiency.

Trial D was repeated for a variety of target data set sizes.
Each data set was generated as in section 4.1, and the full
1,000-design set was reserved for testing. To ensure that all
data sets were similarly distributed, any designs with maxi-
mum displacements exceeding the 90th percentile from the
test set were discarded. A different random seed was used
in sampling the 1,000-design training set to ensure that train-
ing and testing sets did not overlap. In addition to the pre-
trained GSM from Trial D, a second (not pre-trained) GSM
and a pointwise surrogate were trained on the target sets for
comparison.

The mean absolute prediction errors as a function of
training set size (N) can be seen in the top row of Figure
9. For all models, prediction error correlates negatively with
training size, which is expected. In nearly all cases, the pre-
trained GSM achieves the lowest prediction errors, followed
by the pointwise surrogate and finally by the GSM trained
from scratch. Transfer learning improves prediction MAEs
by 48.6%, 40.0% and 34.1% for DMs 5, 7, and 9 respec-
tively. The implication is that the amount of training data re-
quired to achieve a given predictive performance is reduced
by roughly one or two orders of magnitude. For DM 5, a
pre-trained GSM requires only 200 designs to achieve an
MAE that is within 10% of the MAE produced by training
on 1,000 designs. For DM7, just 100 designs were sufficient
to achieve a similar result.

Interestingly, transfer learning was most beneficial for
the medium-sized training sets. It is presumed that the small-
est training sets do not sufficiently represent the differences
between source and target distributions, while the largest

7 Copyright © by ASME

1 10 100 1,000

N

0.0

0.1

0.2

0.3

M
A

E
 (

c
m

)
baseline

Fig. 9. Transfer learning consistently improved the GSMs data efficiency, reducing the amount of training data required to achieve a given
prediction accuracy. The baseline refers to a naive model which always predicts the mean displacement from the 1,000 design training set.

0 20 40 60 80 100

Epoch

0.0

1.0

L
o
s
s

N = 10

0 20 40 60 80 100

Epoch

0.0

2.0

4.0

6.0

L
o
s
s

N = 200

0 20 40 60 80 100

Epoch

0.0

2.0

4.0

L
o
s
s

N = 50

0 20 40 60 80 100

Epoch

0.0

5.0

L
o
s
s

N = 1,000

no prtn (validation) no ptrn (training)Prtn (training)Prtn (validation)

Fig. 10. Pre-trained (prtn) GSMs converge faster and to a lower loss
value than those trained from scratch, particularly when the training
size (N) is small. All curves taken from Trial D, design model 7
(DM7).

training sets are sufficiently large to train a GSM to its pre-
dictive limit from scratch. Positive transfer was observed
across all design models and training sizes, with the excep-
tion of the largest training set for DM9 in which transfer
learning increased MAE by 13.7%. This was the only ob-
served case of negative transfer throughout all trials.

The loss histories of both GSMs reveal further insights
about the effects of transfer learning. Figure 10 shows the
evolution of training and validation losses for both GSMs,
plotted for four training set sizes. Note that the validation
losses for the transfer learned GSM at epoch zero are initially
high and comparable to an untrained model. At this point,
the conditions are quite similar to those in Trial C: the model
is attempting to generalize to an unseen topology. However
as training progresses, the transfer learned validation losses
converge faster and to a lower value than those of the models
trained from scratch. Roughly 30 epochs are sufficient to
re-train a model, compared to 100 epochs without transfer
learning, representing further computational savings.

Encouraged by the positive transfer observed in Trial
D, one might ask “for which source and target data sets is
transfer learning useful?” The design models DM5-9 dif-
fer in topology but have the same outer profile, supports

and loads. The following trials were designed to test other
source/target differences that might occur in a design pro-
cess. In Trial E, a GSM is pre-trained on 1,000 designs from
DM 7 and re-trained on identical geometry but with different
loads (point-loads at the ends as opposed to a uniform load
across the top). Thus Trial E, tests the ability to transfer-learn
across load cases. The remaining two trials test the ability to
transfer-learn across domains. In Trial F, a GSM is again
pre-trained on DM 7 and retrained on a set of trussed towers.
The towers were generated by sampling three handcrafted
design parameters. Each is pinned at the bottom and loaded
horizontally on the remaining joints. The spanning trusses
(DM5-9) and towers differ in topology and outer profile, but
have a similar number of bars (27 and 26, respectively). In
Trial G, the GSM is pre-trained on DM 7 and re-trained on
a set of densely trussed bridges. The bridges each consist of
404 bars, making them significantly more complex than the
trusses. The bridges are uniformly loaded across the top and
simply supported at the bottom. The hyperparameters de-
scribed in section 4.2 were used for all trials with the excep-
tion of Trial G, which used a batch size of 128 and learning
rate of 5×10−4.

The results from Trials E, F and G are shown in the bot-
tom row of Figure 9. In Trial E, pre-training on the same ge-
ometry but different load cases improved MAE by an average
of 25.5% across all training sizes. In Trial F, pre-training on
trusses improved MAE predictions on towers by an average
of 54.1%, and in Trial G, the same process improved MAE
predictions on bridges by 19.8%. The result is a significant
reduction in the amount of required training data. For exam-
ple, in Trial E, a GSM pre-trained on trusses achieves better
prediction accuracy when re-trained on 20 tower designs as
a GSM which was trained on 500 towers from scratch. Table
1 summarizes the findings from Trials D-G. Positive transfer
was observed across all trials and training sizes, although to
varying degrees. As before, the medium-sized training sets
generally showed largest benefit and the smallest and largest
data sets showed the least. These results further motivate the
use of transfer learning to repurpose design data and surro-
gate models for new tasks.

8 Copyright © by ASME

Table 1. The difference in mean absolute error (∆ MAE) between
the pre-trained GSM and a GSM trained from scratch, averaged
across all training sizes. Transfer learning improved prediction ac-
curacy by 19-48%.

Trial Target ∆ MAE (cm) ∆ MAE %
D DM5 -0.087 -48.6%
D DM7 -0.0586 -40.0%
D DM9 -0.106 -34.1%
E End Loads -0.148 -25.5%
F Tower -0.0219 -54.1%
G Bridge -0.0157 -19.8%

6 Conclusions and future work
The proposed Graph-based Surrogate models (GSMs)

learn to predict displacement fields given a structure’s geom-
etry, supports and loads as inputs. Since the GSM does not
rely on handcrafted design parameters, it can be trained on
data from multiple design spaces simultaneously, and often
benefits from doing so. Transfer learning was presented as an
effective method for repurpose GSMs to new tasks by lever-
aging historical data. GSMs that are pre-trained on a related
data set achieve 19-48% lower prediction errors than those
trained from scratch. The result is a more flexible, general
and data-efficient surrogate model for trusses.

Future work could consider the increasingly wide array
of graph-based learning methods and assess their suitability
for trusses. A similar analysis could be performed for surface
and volumetric meshes. Though both are easily represented
as graphs, meshes differ from trusses in that the topology
is not physically meaningful. In terms of transfer learning,
further work is required to be able to predict the most ef-
fective sources for a given target. One might also explore
alternative transfer learning strategies in which learnable pa-
rameters are added or frozen during re-training. The ability
to learn across designs of varying complexity (Trial G) might
support hierarchical learning strategies in which models are
progressively trained on higher complexity designs. Finally,
future work could explore ways of making GSMs general-
ize to unseen topologies, perhaps by leveraging alternative
sources of training data like design competitions for more
geometrically diverse data sets.

Acknowledgements
This research was supported by the Engineering Data

Science group at Altair Engineering Inc. and is based upon
work supported by the National Science Foundation under
Grant No. 1854833. Also a special thanks to Renaud Dan-
haive and Yijiang Huang for their mentorship.

References
[1] Wang, G. G., and Shan, S., 2007. “Review of Meta-

modeling Techniques in Support of Engineering Design
Optimization”. Journal of Mechanical Design, 129(4),
Apr., pp. 370–380.

[2] Forrester, A. I. J., Sóbester, A., and Keane, A. J., 2008.
Engineering design via surrogate modelling: a practi-
cal guide. J. Wiley, Chichester, West Sussex, England ;
Hoboken, NJ.

[3] Queipo, N. V., Haftka, R. T., Shyy, W., Goel,
T., Vaidyanathan, R., and Kevin Tucker, P., 2005.
“Surrogate-based analysis and optimization”. Progress
in Aerospace Sciences, 41(1), Jan., pp. 1–28.

[4] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn,
H. P., 1989. “Design and Analysis of Computer Exper-
iments”. Statistical Science, 4(4), Nov., pp. 409–423.

[5] Cressie, N., 1988. “Spatial prediction and ordinary
kriging”. Mathematical Geology, 20(4), May, pp. 405–
421.

[6] Dyn, N., Levin, D., and Rippa, S., 1986. “Numeri-
cal Procedures for Surface Fitting of Scattered Data by
Radial Functions”. SIAM Journal on Scientific and Sta-
tistical Computing, 7(2), Apr., pp. 639–659.

[7] Tin Kam Ho, 1995. “Random decision forests”. In Pro-
ceedings of 3rd International Conference on Document
Analysis and Recognition, Vol. 1, IEEE Comput. Soc.
Press, pp. 278–282.

[8] Papadrakakis, M., Lagaros, N. D., and Tsompanakis,
Y., 1998. “Structural optimization using evolution
strategies and neural networks”. Computer Methods
in Applied Mechanics and Engineering, 156(1-4), Apr.,
pp. 309–333.

[9] Tseranidis, S., Brown, N. C., and Mueller, C. T., 2016.
“Data-driven approximation algorithms for rapid per-
formance evaluation and optimization of civil struc-
tures”. Automation in Construction, 72, pp. 279–293.
Publisher: Elsevier.

[10] Brown, N. C., and Mueller, C. T., 2019. “De-
sign variable analysis and generation for performance-
based parametric modeling in architecture”. Interna-
tional Journal of Architectural Computing, 17(1), Mar.,
pp. 36–52.

[11] Danhaive, R., and Mueller, C., 2021. “Design sub-
space learning: Structural design space exploration
using performance-conditioned generative modeling”.
Automation in Construction (in press).

[12] Xu, J., and Duraisamy, K., 2020. “Multi-level convolu-
tional autoencoder networks for parametric prediction
of spatio-temporal dynamics”. Computer Methods in
Applied Mechanics and Engineering, 372, p. 113379.
Publisher: Elsevier.

[13] Xuereb Conti, Z., and Kaijima, S., 2018. “A flexi-
ble simulation metamodel for exploring multiple design
spaces”. In Proceedings of IASS Annual Symposia,
Vol. 2018, International Association for Shell and Spa-
tial Structures (IASS), pp. 1–8. Issue: 2.

[14] Ruizhongtai Qi, C., 2020. “Deep Learning on 3D
Data”. In 3D Imaging, Analysis and Applications,
Y. Liu, N. Pears, P. L. Rosin, and P. Huber, eds.
Springer International Publishing, Cham, pp. 513–566.

[15] Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova,
K., Das, R., Gusev, G., Aouada, D., and Ottersten, B.,
2019. “A survey on Deep Learning Advances on Differ-

9 Copyright © by ASME

ent 3D Data Representations”. arXiv:1808.01462 [cs],
Apr. arXiv: 1808.01462.

[16] Jiang, H., Nie, Z., Yeo, R., Farimani, A. B., and Kara,
L. B., 2020. “StressGAN: A Generative Deep Learn-
ing Model for 2D Stress Distribution Prediction”. In
ASME 2020 International Design Engineering Techni-
cal Conferences and Computers and Information in En-
gineering Conference, American Society of Mechani-
cal Engineers Digital Collection.

[17] Messner, M. C., 2020. “Convolutional Neural Net-
work Surrogate Models for the Mechanical Properties
of Periodic Structures”. Journal of Mechanical Design,
142(2), Feb., p. 024503.

[18] Yoo, S., Lee, S., Kim, S., Hwang, K. H., Park, J. H.,
and Kang, N., 2021. “Integrating Deep Learning into
CAD/CAE System: Generative Design and Evaluation
of 3D Conceptual Wheel”. arXiv:2006.02138 [cs],
Feb. arXiv: 2006.02138.

[19] Madani, A., Bakhaty, A., Kim, J., Mubarak, Y., and
Mofrad, M. R. K., 2019. “Bridging Finite Element and
Machine Learning Modeling: Stress Prediction of Ar-
terial Walls in Atherosclerosis”. Journal of Biomechan-
ical Engineering, 141(8), Aug., p. 084502.

[20] Garland, A. P., White, B. C., Jensen, S. C., and
Boyce, B. L., 2021. “Pragmatic generative optimization
of novel structural lattice metamaterials with machine
learning”. Materials & Design, Mar., p. 109632.

[21] Guo, X., Li, W., and Iorio, F., 2016. “Convolutional
Neural Networks for Steady Flow Approximation”. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ACM, pp. 481–490.

[22] Zhang, Z., Jaiswal, P., and Rai, R., 2018. “FeatureNet:
Machining feature recognition based on 3D Convolu-
tion Neural Network”. Computer-Aided Design, 101,
Aug., pp. 12–22.

[23] Williams, G., Meisel, N. A., Simpson, T. W., and Mc-
Comb, C., 2019. “Design Repository Effectiveness
for 3D Convolutional Neural Networks: Application to
Additive Manufacturing”. Journal of Mechanical De-
sign, 141(11), Nov., p. 111701.

[24] Umetani, N., 2017. “Exploring generative 3D shapes
using autoencoder networks”. In SIGGRAPH Asia
2017 Technical Briefs on - SA ’17, ACM Press, pp. 1–
4.

[25] Baque, P., Remelli, E., Fleuret, F., and Fua, P., 2018.
“Geodesic Convolutional Shape Optimization”. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, J. Dy and A. Krause, eds., Vol. 80 of
Proceedings of Machine Learning Research, PMLR,
pp. 472–481.

[26] Cunningham, J. D., Simpson, T. W., and Tucker, C. S.,
2019. “An Investigation of Surrogate Models for
Efficient Performance-Based Decoding of 3D Point
Clouds”. Journal of Mechanical Design, 141(12), Dec.,
p. 121401.

[27] Danhaive, R., 2020. “Structural Design Synthesis Us-
ing Machine Learning”. PhD thesis, Massachusetts In-

stitute of Technology, Sept.
[28] Vlassis, N., Ma, R., and Sun, W., 2020. “Geomet-

ric deep learning for computational mechanics Part
I: Anisotropic Hyperelasticity”. Computer Methods
in Applied Mechanics and Engineering, 371, Nov.,
p. 113299. arXiv: 2001.04292.

[29] Chang, K.-H., and Cheng, C.-Y., 2020. “Learning
to simulate and design for structural engineering”.
arXiv:2003.09103 [cs, stat], Aug. arXiv: 2003.09103.

[30] Cao, W., Robinson, T., Hua, Y., Boussuge, F., Colligan,
A. R., and Pan, W., 2020. “Graph Representation of
3D CAD Models for Machining Feature Recognition
With Deep Learning”. In Volume 11A: 46th Design
Automation Conference (DAC), American Society of
Mechanical Engineers, p. V11AT11A003.

[31] Huang, J., Sun, H., Kwok, T.-H., Zhou, C., and Xu, W.,
2020. “Geometric Deep Learning for Shape Correspon-
dence in Mass Customization by Three-Dimensional
Printing”. Journal of Manufacturing Science and Engi-
neering, 142(6), June, p. 061003.

[32] Raina, A., McComb, C., and Cagan, J., 2019. “Learn-
ing to Design From Humans: Imitating Human Design-
ers Through Deep Learning”. In Volume 2A: 45th De-
sign Automation Conference, American Society of Me-
chanical Engineers.

[33] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P., 2017. “Geometric deep learning:
going beyond Euclidean data”. IEEE Signal Processing
Magazine, 34(4), July, pp. 18–42. arXiv: 1611.08097.

[34] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu,
P. S., 2020. “A Comprehensive Survey on Graph Neu-
ral Networks”. IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–21. arXiv: 1901.00596.

[35] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z.,
Wang, L., Li, C., and Sun, M., 2019. “Graph Neural
Networks: A Review of Methods and Applications”.
arXiv:1812.08434 [cs, stat], July. arXiv: 1812.08434.

[36] Masci, J., Boscaini, D., Bronstein, M. M., and
Vandergheynst, P., 2018. “Geodesic convolu-
tional neural networks on Riemannian manifolds”.
arXiv:1501.06297 [cs], June. arXiv: 1501.06297.

[37] Boscaini, D., Masci, J., Rodoià, E., and Bronstein,
M., 2016. “Learning Shape Correspondence with
Anisotropic Convolutional Neural Networks”. In Pro-
ceedings of the 30th International Conference on Neu-
ral Information Processing Systems, NIPS’16, Cur-
ran Associates Inc., pp. 3197–3205. event-place:
Barcelona, Spain.

[38] Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svo-
boda, J., and Bronstein, M. M., 2016. “Geometric
deep learning on graphs and manifolds using mixture
model CNNs”. arXiv:1611.08402 [cs], Dec. arXiv:
1611.08402.

[39] Verma, N., Boyer, E., and Verbeek, J., 2018. “FeaSt-
Net: Feature-Steered Graph Convolutions for 3D Shape
Analysis”. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, IEEE, pp. 2598–
2606.

10 Copyright © by ASME

[40] Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleish-
man, S., and Cohen-Or, D., 2019. “MeshCNN: A Net-
work with an Edge”. ACM Transactions on Graphics,
38(4), July, pp. 1–12. arXiv: 1809.05910.

[41] Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mi-
tra, N., and Guibas, L. J., 2019. “StructureNet: Hi-
erarchical Graph Networks for 3D Shape Generation”.
arXiv:1908.00575 [cs], Aug. arXiv: 1908.00575.

[42] Pan, S. J., and Yang, Q., 2010. “A Survey on Transfer
Learning”. IEEE Transactions on Knowledge And Data
Engineering, 22(10), p. 15.

[43] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and
Liu, C., 2018. “A Survey on Deep Transfer Learning”.
arXiv:1808.01974 [cs, stat], Aug. arXiv: 1808.01974.

[44] Lee, J., Kim, H., Lee, J., and Yoon, S. “Transfer Learn-
ing for Deep Learning on Graph-Structured Data”. p. 7.

[45] Li, D., Wang, S., Yao, S., Liu, Y.-H., Cheng, Y., and
Sun, X.-H. “Efficient Design Space Exploration by
Knowledge Transfer”. p. 10.

[46] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E., 2011. “Scikit-learn: Machine Learning in
Python”. Journal of Machine Learning Research, 12,
pp. 2825–2830.

[47] Rutten, D. Grasshopper 3D. v6. Robert McNeel & As-
sociates.

[48] Huang, Y., 2020. pyconmech -
https://pypi.org/project/pyconmech/.

[49] Fey, M., and Lenssen, J. E., 2019. “Fast Graph Repre-
sentation Learning with PyTorch Geometric”. In ICLR
Workshop on Representation Learning on Graphs and
Manifolds.

[50] Kingma, D. P., and Ba, J., 2017. “Adam: A Method for
Stochastic Optimization”. arXiv:1412.6980 [cs], Jan.
arXiv: 1412.6980.

11 Copyright © by ASME

Appendix: GSM tuning results
Table 2. Grid search results used to tune the GSMs architecture, learning rate, and number of attention heads. A9 corresponds to
L16/C32/C64/C128/C256/C256/C128/L64/L2, A10 corresponds to L16/C32/C64/C128/C256/C512/C256/C128/L64/L2 and A11 corre-
sponds to L16/C32/C64/C128/C256/C512/C512/C256/C128/L64/L2. The selected configuration (bold) produced the second-lowest mean
squared error (MSE) and had twice as many learnable parameters (and hence more expressivity) as the configuration with the lowest (un-
derlined). The training and testing data were the same as in section 4.2. Each configuration was averaged over three trials on a single Tesla
K80 GPU.

Architecture Learning Rate # of Heads Parameters Train Time (s) Train MSE (cm2) Test MSE (cm2)
A9 1×10−4 4 581406 1.11×102 7.44×10−3 1.59×10−2

A9 1×10−4 8 1151734 1.19×102 6.75×10−3 1.30×10−2

A9 1×10−4 12 1722062 1.30×102 8.70×10−3 1.52×10−2

A9 1×10−3 4 581406 1.07×102 5.51×10−3 9.13×10−3

A9 1×10−3 8 1151734 1.15×102 5.37×10−3 9.25×10−3

A9 1×10−3 12 1722062 1.26×102 5.88×10−3 9.23×10−3

A9 1×10−2 4 581406 1.04×102 1.02×10−2 1.26×10−2

A9 1×10−2 8 1151734 1.15×102 1.03×10−2 1.25×10−2

A9 1×10−2 12 1722062 1.26×102 1.36×10−2 1.75×10−2

A10 1×10−4 4 1371426 1.31×102 5.04×10−3 1.32×10−2

A10 1×10−4 8 2730238 1.54×102 4.83×10−3 1.30×10−2

A10 1×10−4 12 4089050 1.76×102 4.90×10−3 1.35×10−2

A10 1×10−3 4 1371426 1.30×102 4.69×10−3 8.79×10−3

A10 1×10−3 8 2730238 1.54×102 5.01×10−3 8.83×10−3

A10 1×10−3 12 4089050 1.76×102 6.45×10−3 1.02×10−2

A10 1×10−2 4 1371426 1.31×102 9.54×10−3 1.13×10−2

A10 1×10−2 8 2730238 1.53×102 1.04×10−2 1.28×10−2

A10 1×10−2 12 4089050 1.75×102 1.56×10−2 1.81×10−2

A11 1×10−4 4 2423590 1.61×102 5.01×10−3 1.66×10−2

A11 1×10−4 8 4833030 1.99×102 4.49×10−3 1.42×10−2

A11 1×10−4 12 7242470 2.38×102 5.13×10−3 1.37×10−2

A11 1×10−3 4 2423590 1.59×102 5.40×10−3 9.95×10−3

A11 1×10−3 8 4833030 1.99×102 5.44×10−3 9.51×10−3

A11 1×10−3 12 7242470 2.36×102 6.72×10−3 1.04×10−2

A11 1×10−2 4 2423590 1.59×102 1.30×10−2 1.53×10−2

A11 1×10−2 8 4833030 1.97×102 1.54×10−2 2.00×10−2

A11 1×10−2 12 7242470 2.35×102 1.99×10−2 2.29×10−2

Table 3. Grid search results used to assess various data transformations applied to the displacements before learning. The training and
testing data were the same as in section 4.2. Each configuration was averaged over three trials. The standard scaler resulted in the smallest
test MSE.

Standard scaler Log transform Train MSE (cm2) Test MSE (cm2)
False False 5.17×10−2 5.66×10−2

False True 2.48×10−2 2.97×10−2

True False 3.02×10−3 6.71×10−3

True True 7.50×10−3 1.30×10−2

Table 4. Grid search results used to assess whether it is advantageous to include binary features indicating supports or loads. The training
and testing data were the same as in section 4.2. Each configuration was averaged over three trials. Note that including support and load
information is beneficial despite the fact that all designs are loaded identically.

Include supports Include loads Train MSE (cm2) Test MSE (cm2)
False False 4.40×10−3 1.08×10−2

False True 5.49×10−3 1.12×10−2

True False 6.04×10−3 1.02×10−2

True True 4.65×10−3 9.38×10−3

12 Copyright © by ASME

