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Abstract. Using the concepts of mixed volumes and quermassintegrals of con-
vex geometry, we derive an exact formula for the exclusion volume vex(K) for a
general convex bodyK that applies in any space dimension. While our main inter-
ests concern the rotationally-averaged exclusion volume of a convex body with
respect to another convex body, we also describe some results for the exclusion
volumes for convex bodies with the same orientation. We show that the sphere
minimizes the dimensionless exclusion volume vex(K)/v(K) among all convex bod-
ies, whether randomly oriented or uniformly oriented, for any d, where v(K) is
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the volume of K. When the bodies have the same orientation, the simplex max-
imizes the dimensionless exclusion volume for any d with a large-d asymptotic
scaling behavior of 22d/d3/2, which is to be contrasted with the corresponding
scaling of 2d for the sphere. We present explicit formulas for quermassinte-
grals W0(K), . . . ,Wd(K) for many different nonspherical convex bodies, including
cubes, parallelepipeds, regular simplices, cross-polytopes, cylinders, spherocylin-
ders, ellipsoids as well as lower-dimensional bodies, such as hyperplates and line
segments. These results are utilized to determine the rotationally-averaged exclu-
sion volume vex(K) for these convex-body shapes for dimensions 2 through 12.
While the sphere is the shape possessing the minimal dimensionless exclusion
volume, we show that, among the convex bodies considered that are sufficiently
compact, the simplex possesses the maximal vex(K)/v(K) with a scaling behavior
of 21.6618...d. Subsequently, we apply these results to determine the correspond-
ing second virial coefficient B2(K) of the aforementioned hard hyperparticles.
Our results are also applied to compute estimates of the continuum percolation
threshold ηc derived previously by the authors for systems of identical overlap-
ping convex bodies. We conjecture that overlapping spheres possess the maximal
value of ηc among all identical nonzero-volume convex overlapping bodies for
d � 2, randomly or uniformly oriented, and that, among all identical, oriented
nonzero-volume convex bodies, overlapping simplices have the minimal value of
ηc for d � 2.

Keywords: percolation problems, random/ordered microstructures, series
expansions
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1. Introduction

The exclusion volume of an arbitrary d-dimensional convex body (hyperparticle) K in
d-dimensional Euclidean space R

d is a fundamental quantity that arises in the virial
expansion of the pressure of a hard-hyperparticle fluid [1–4], estimates of continuum
percolation thresholds [5–9] and a variety of problems involving the distance of closest
approach of two nonoverlapping bodies [10–15]. The exclusion volume is the region of
space that is excluded to one hyperparticle due the presence of another one with a
specific relative orientation. Whereas in the case of hyperspheres or oriented centrally-
symmetric hyperparticles (e.g. cubes or cross-polytopes), the exclusion volume relative
to the volume of the convex body K, v(K), is simply equal to 2d, its determination for
general convex bodies with arbitrary relative orientations is nontrivial. The generalized
exclusion volume vex(K) of a convex body K can be expressed as
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Figure 1. Illustration of the exclusion volume of two-dimensional convex bodies
with a fixed orientation with respect to one another. In each of the two examples,
the exclusion volume is the region interior to the boundary delineated by the dashed
lines. (Left) Centrally symmetric spherocylinder. (Right) Non-centrally symmetric
equilateral triangle (two-dimensional regular simplex).

vex(K) =

∫
Rd

f(r,ω ;K)p(ω ;K)dr dω, (1)

where f(r,ω ; K) is the exclusion-region indicator function [7, 9], r and ω is the cen-
troid position and orientation of one body, respectively, with respect to a coordinate
system at the centroid of the other body with some fixed orientation, and p(ω ; K) is
the orientational probability density function. Figure 1 depicts two-dimensional exam-
ples of exclusion volumes for a centrally symmetric body and noncentrally symmetric
body.

In this paper, we derive exact general expressions for the exclusion volume vex(K)
of a convex body K for any dimension in terms of the concepts of quermassintegrals
and mixed volumes of convex geometry [16–19]. While we mainly treat the rotationally-
averaged exclusion volume of a convex body with respect to another convex body, we also
describe some results for the exclusion volumes for convex bodies with the same orien-
tation. We then provide explicit formulas for quermassintegrals for specific nonspherical
convex bodies, including cubes, cylinders, spherocylinders, parallelepipeds, regular sim-
plices, cross-polytopes, ellipsoids as well as lower-dimensional bodies, such as hyperplates
and line segments. These results are employed to determine the rotationally-averaged
exclusion volume for these specific convex-body shapes for dimensions 2 through 12.
Note that the three regular polytopes considered here (cube, regular simplex and
cross-polytope) are the only regular polytopes possible for d � 5 [20].

Subsequently, we apply these results to determine the corresponding second virial
coefficient B2(K) that arises in the virial expansion of the pressure P of hard-particle
fluids composed of such shapes through second order in the density [3], namely,

P

kBT
= ρ+ ρ2B2(K) +O(ρ3), (2)

where ρ is the number density, i.e. the number of convex bodies per unit volume in the
thermodynamic limit, kB is the Boltzmann constant, T is absolute temperature, and

B2(K) =
1

2
vex(K). (3)
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It is noteworthy that third- and higher-order terms in the viral expansion (2) of a
hard-particle fluid become negligibly small in the high-d asymptotic limit [21]. The
exclusion volume arises at the second virial level due to the nonoverlap constraint of
two convex bodies when they come in contact with one another. While B2(K) has long
been known for a variety of nonspherical hard particles in two and three dimensions [1],
no such results appear to have been obtained for d � 4 until the present work. We shall
also apply our results to compute estimates of the continuum percolation threshold ηc
derived by Torquato and Jiao [9] for systems of identical overlapping convex bodies with
arbitrary orientational distributions in d-dimensional Euclidean space R

d that depend
on the exclusion volume vex(K), which arises here because it defines the region when
two hyperparticles overlap [9]. In particular, they derived the following lower bound on
the percolation threshold ηc that is applicable for any d:

ηc �
v(K)

vex(K)
, (4)

where η = ρv(K) is a dimensionless (reduced) density. The inequality (4) applies in all
dimensions, becomes sharper as dimension increases, and exact in the limit d→∞ [9].
Torquato and Jiao [9] conjectured the following sharper scaling relation to estimate ηc:

ηc ≈
(ηc)S

(v/vex)S

(
v(K)

v ex(K)

)
= 2d

(
v(K)

v ex(K)

)
(ηc)S, (5)

where (ηc)S and (vex/v)S = 2d are the percolation threshold and dimensionless exclusion
volume, respectively, for a reference system of overlapping hyperspheres in dimension
d. (See [8] for accurate estimates of (ηc)S, see [22] for d = 2, see [23, 24] for d = 3 and
see [8] for d = 4–11.) It is noteworthy that the scaling relation (5) becomes exact in the
high-d limit [9]. The aforementioned counter-intuitive relationship between equilibrium
hard-hyperparticle fluids and the continuum percolation model of the same overlapping
hyperparticles is a consequence of a duality relation identified in [7], the fundamental
and practical consequences of which are discussed in section 7.

The bound (4) applies for a convex body with nonzero volume (v(K) > 0). However,
it can be generalized to apply to an overlapping systems of zero-volume convex (d− 1)-
dimensional ‘hyperplates’ KH in R

d at number density ρ by replacing v(K) with an
appropriate ‘effective volume’ veff(KH) in order to define a reduced density η = ρveff(KH)
for hyperplates, namely, that of a d-dimensional sphere of radius r, i.e.

veff(KH) =
πd/2

Γ(d/2 + 1)
rd, (6)

where Γ(x) is the Euler-gamma function and r is a characteristic length scale of the
hyperplate. Specifically, we choose r to be the radius of a spherical hyperplate that
possesses the same volume of a general hyperplate KH. The scaling relation for the
threshold of a hyperplate corresponding to (5) was proposed to be [9]

ηc ≈
(
vex
veff

)
SHP

(
veff(KH)

vex(KH)

)
(ηc)SHP, (7)
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where (vex/veff)SHP and (ηc)SHP are, respectively, the dimensionless exclusion volume and
percolation threshold of a reference system of overlapping spherical hyperplates, and
veff(KH) is given by (6).

We begin by providing basic definitions of the exclusion volume of a convex body in
any dimension and the closely related concepts of mixed volumes and quermassintegrals
(section 2). Using these tools from convex geometry, we then obtain a general formula
for the exclusion volume of a convex body K that relates vex(K) to the corresponding
quermassintegrals (section 3). In section 4, we obtain explicit formulas for quermass-
integrals for the variety of specific hyperparticles described above. Then, we describe
results for the exclusion volume for oriented hyperparticles that generally do not possess
central symmetry and their corresponding extremal values (section 5). Section 6 reports
results for the dimensionless exclusion volume vex(K)/v(K) for the aforementioned spe-
cific convex-body shapes for dimensions 2 through 12. These findings are then applied
to compute the corresponding second virial coefficients and estimates of the continuum
percolation thresholds. In section 7, we close with concluding remarks, including the
fundamental and practical implications of our results.

2. Basic definitions and background

We begin by defining the exclusion zones and then exclusion volume for the case of
convex bodies in R

d over all orientations. Then, we define the key related concepts of
mixed volumes and quermassintegrals.

2.1. Exclusion zones

Let K,L ⊂ R
d be convex bodies (compact nonempty convex sets). The sets K and L

can be added via the operation of Minkowski addition:

K + L := {x+ y :x ∈ K, y ∈ L} (8)

and a set K can be multiplied by the scalar λ ∈ R, so that

λK := {λx :x ∈ K}. (9)

For example, if L = Bd, where Bd is the unit ball or sphere in R
d, then for ε � 0, K+ εBd

is the ε-neighborhood of K; see figure 2 for an illustration of this concept.
With this notion of addition, we define the exclusion zone of K with respect to L,

denoted by Z(K,L), as the set of points x in R
d such that if the centroid of L were

positioned at x, then K and L would intersect:

Z(K,L) := {x ∈ R
d :K ∩ (L+ x) 	= ∅}. (10)

A useful alternate expression for Z(K,L), which will be more useful in calculations, is
the following:

Z(K,L) = K − L = {x− y :x ∈ K, y ∈ L}. (11)

https://doi.org/10.1088/1742-5468/ac8c8b 6
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Figure 2. Two-dimensional illustration of the parallel body at a distance ε associ-
ated with an equilateral triangle (two-dimensional simplex) of side length c, which
is the union of the blue (or dark gray) and yellow (or light gray) regions.

To show this, suppose x ∈ Z(K,L). Then K ∩ (L+ x) is nonempty, so that there is y ∈ K
and z ∈ L such that y = x+ z: it follows that x = y− z ∈ K− L, and since x was arbitrary
we deduce that Z(K,L) ⊂ K− L. Conversely, suppose that x ∈ K− L. Then for y ∈ K
and z ∈ L we have x = y− z, so that y = z+ x ∈ L+ x. Thus y ∈ K ∩ (L+ x) so that
K ∩ (L+ x) 	= ∅, meaning that x ∈ Z(K,L) and K− L ⊂ Z(K,L). Thus Z(K,L) = K− L.

2.2. Exclusion volume averaged over all rotations

Let Vol(Z(K,L)) denote the volume of the exclusion zone Z(K,L) associated with the
bodies K and L. We define the rotationally-averaged exclusion volume of a convex body
K with respect to another convex body L, denoted vex(K,L), to be the volume of Z(K,L)
averaged over all rotations of L with the orientation of K fixed. Let SO(d) denote the set
of d-dimensional rotations endowed with a Haar measure ω, under which all rotations
are equiprobable. The rotationally-averaged exclusion volume is given by

vex(K,L) =

∫
SO(d)

Vol(K + ωL) dω. (12)

Notice that when K = L, this formula reduces to relation (1) for vex(K) when the
orientational probability density function p(ω ; K) is set equal to unity.

2.3. Quermassintegrals and mixed volumes

In order to calculate the rotationally-averaged exclusion volume vex(K,L), we need
to first employ the notion of the mixed volume. Remarkably, the volume of an
ε-neighborhood of a convex body K varies as a polynomial in ε of degree d
[17, 18, 25], namely,

Vol(K + εBd) =
1

κd

d∑
i=0

(
d

i

)
Wi(K)εi (13)
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where the coefficients W0(K), . . . ,Wd(K) are called quermassintegrals (also known as
Minkowski functional or intrinsic volumes with a different normalization), and

κd =
πd/2

Γ(1 + d/2)
(14)

is the volume of a unit sphere. This is the famous Steiner formula, which is a special
case of the following formula:

Vol(t1K1 + · · ·+ tmKm) =

m∑
i1,...,id=1

V (Ki1, . . . ,Kim)ti1 . . . tim, (15)

where the coefficients V (Ki1, . . . , Vim) are called mixed volumes of the convex bodies
K1, . . . ,Km ⊂ R

d and t1, . . . , tm � 0 are positive constants. A particularly important fact
about mixed-volumes for the problem at hand is their behavior under averaged rotations
[18]; specifically,∫

SO(d)

V (K1, . . . ,Km,ωKm+1, . . . ,ωKd) dω

=
1

κd
V (K1, . . . ,m,Bd[d−m])V (Bd[m],Km+1, . . . ,Kd), (16)

where V(K[i],L[j]) is a shorthand notation for the mixed volume V(K, . . . ,K,L, . . . ,L)
with i copies of K and j copies of L.

The Aleksandrov–Fenchel inequality, which will be used later to prove a certain
bound, states

V (K1,K2,K3, . . . ,Kn)
2 � V (K1,K1,K3, . . . ,Kn)V (K2,K2,K3, . . . ,Kn).

(17)

For more details, see theorem 7.3.1 of [18].

3. General formula for the rotationally-averaged exclusion volume

3.1. Exclusion volume

We now have the tools needed to derive a formula for the exclusion volume for convex
bodies with random orientations.

Lemma 1. For any convex bodiesK,L ⊂ R
d, the rotationally-averaged exclusion volume

is explicitly given in terms of the mixed volumes by the following formula:

vex(K,L) =
1

κd

d∑
i=0

(
d

i

)
Wi(L)Wd−i(K). (18)

https://doi.org/10.1088/1742-5468/ac8c8b 8
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Proof. From the definition of the mixed volume in relation (15), we have

Vol(K + ωL) =

d∑
i=0

(
d

i

)
V (K[i],ωL[d− i]). (19)

Thus, equations (16) and (19) give us the following:

vex(K,L) =

∫
SO(d)

Vol(K + ωL) dω

=

∫
SO(d)

d∑
i=0

(
d

i

)
V (K[i],ωL[d− i]) dω

=

d∑
i=0

(
d

i

)[
1

κd
V (K[i],Bd[d− i])V (Bd[i],L[d− i])

]

=
1

κd

d∑
i=0

(
d

i

)
Wd−i(K)Wi(L). (20)

This completes the proof.

Remark. Lemma 1 is actually a special case of the so-called kinematic formula, in
which no assumption is made about the orientations of the bodies; see, for example,
equation (30) in [19].

Of particular interest for us is the situation when we have two copies of the same
body K, in which case the exclusion volume formula of lemma 1 simplifies as follows:

vex(K) = vex(K,K) =
1

κd

d∑
i=0

(
d

i

)
Wd−i(K)Wi(K). (21)

3.2. Quermassinegrals as cross-sectional volumes

Schneider [18] introduces the area measures Sm(K,ω) for a convex body K, where ω
a measurable set of rotations. As their name suggests, they give a measure of the m-
dimensional cross-sectional volume of K averaged over ω. In [18], the quermassintegrals
are introduced as

Wi(K) =
1

d
Sd−i(K, Sd−1), (22)

which is equivalent to the definition we have given. For example, if K is a d-dimensional
body in R

d, then the area measure Sd−1(K, Sd−1) is exactly equal to the surface area
of K, which we denote by s(K). More precisely, Sd−1(K, Sd−1) is equal to the (d− 1)-
dimensional Hausdorff measure of the set

⋃
u∈Sd−1F (K, u), where F(K, u) is the inter-

section of K with its supporting hyperplane with normal u. Thus, provided that K is

https://doi.org/10.1088/1742-5468/ac8c8b 9

https://doi.org/10.1088/1742-5468/ac8c8b


J.S
tat.

M
ech.

(2022)
093404

Exclusion volumes of convex bodies in high space dimensions: applications to virial coefficients and continuum percolation

sufficiently smooth (including polyhedra), we have

W1(K) =
s(K)

d
. (23)

Similarly, Wd−1(K) is related to the radius of mean curvature, R̄(K)(K), via the notion
of the mean width , denoted by w̄(K). Using the fact that R̄(K) = w̄(K)/2 [9], we have
that

Wd−1(K) =
κd

2
w̄(K) = κdR̄(K). (24)

Observe that directly from the definition of the mixed volume, V(K, . . . ,K) = v(K) for
any convex body K, so that the following two simple relationships immediately follow:

W0(K) = v(K), (25)

Wd(K) = κd. (26)

Other quermassintegrals in terms of other cross-sectional volumes can be obtained from
[18].

3.3. Comparison to the Torquato–Jiao exclusion-volume formula

Torquato and Jiao [9] proposed the following formula for the exclusion volume in d
dimensions:

vex(K) � 2v(K) +
2d − 2

d
s(K)R̄(K)(K), (27)

where s(K) is the surface area of K and R̄(K) is the radius of mean curvature of K. We
show here that formula (27) is exact for all bodies in dimensions 1, 2, and 3 and for
greater dimensions only specific classes of bodies. Interestingly, we prove that for d � 4
formula (27) is generally a lower bound on the exact exclusion volume, given by relation
(21) for d � 4.

First, we compare formulas (21) and (27), in the first three space dimensions. For
d = 1, formula (21) together with (25) and (23) yields

vex(K) = W0(K)W1(K) = 2v(K), (28)

which agrees with formula (27). For d = 2, formula (21) together with (24)–(26) yields

vex(K) =
1

κ2

(W0(K)W2(K) + 2W1(K)2 +W0(K)W2(K))

=
1

π

(
2πv(K) +

1

2
s(K)2

)
= 2v(K) +

s(K)2

2π
(29)

which agrees with formula (27). For d = 3, formula (21) together with (23)–(26) yields

https://doi.org/10.1088/1742-5468/ac8c8b 10
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vex(K) =
2

κ3
(W0(K)W3(K) + 3W1(K)W2(K))

=
2

κ3

(
κ3v(K) + 3

s(K)

3
(κ3R̄(K))

)

= 2v(K) + 2s(K)R̄(K). (30)

Thus, formula (27) agrees with formula (21) in dimensions 1, 2, and 3, since in these
dimensions only the quermassintegrals W0, W1, Wd−1, and Wd are relevant. In higher
dimensions, however, the other quermassintegrals will generally play a role.

The Aleksandrov–Fenchel inequality (17) will allow us to continue our comparison
of the formulas (21) and (27). Since the mixed volumes are symmetric [18], it follows
that for the quermassintegrals, we have

Wi(K)2 � Wi−1(K)Wi+1(K). (31)

This inequality implies the inequality

Wi(K)/Wi−1(K) � Wi+1(K)/Wi(K) (32)

and by iterating this we find that for any j � i and sufficiently small k (such that i− k � 0
and j+ k � d) we have

Wi(K)Wj(K) � Wi−1Wj+1(K) � Wi−k(K)Wj+k(K), (33)

where the second inequality follows from iterating the first. Thus, for all i,

Wi(K)Wd−i(K) � W1(K)Wd−1(K). (34)

Now we can write

vex(K) =
1

κd

d∑
i=0

(
d

i

)
Wd−i(K)Wi(K)

=
1

κd

(
2W0(K)Wd(K) +

d−1∑
i=1

(
d

i

)
Wi(K)Wd−i(K)

)

� 1

κd

(
2W0(K)Wd(K) +

d−1∑
i=1

(
d

i

)
W1(K)Wd−1(K)

)

=
1

κd

(
2W0(K)Wd(K) + (2d − 2)W1(K)Wd−1(K)

)
=

1

κd

(
2κdv(K) + (2d − 2)

s(K)

d
κdR̄(K)

)

= 2v(K) +
2d − 2

d
s(K)R̄(K). (35)
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In summary,

vex(K) =
1

κd

d∑
i=0

(
d

i

)
Wd−i(K)Wi(K) � 2v(K) +

2d − 2

d
s(K)R̄(K). (36)

Thus, we have proven that the formula (27) is a rigorous lower bound on vex(K).
The fact that these two formulas are linked via such an elegant argument is rather

surprising, and it leaves one wondering if there is a deeper reason. The method of
the proof and the fact that the formulas agree in the first three space dimensions do,
nonetheless, give an intuitive explanation: both formulas are derived from an average
measure of a body’s cross-sectional volumes. Formula (27) takes into account only one-,
(d− 1)-, and d-dimensional volumes, and hence does not account for information from
other dimensional volumes, if they exist. Formula (21) does take these other contribu-
tions into account, and thus it generally produces a larger value for the exclusion volume
for d � 4.

Are there situations under which the inequality in the bound (36) becomes an
equality for d � 4? We now show that there is a class of bodies for which the two
formulas do agree exactly. A sufficient condition to guarantee the bounds are equal is
that Wi(K)2 = Wi−1(K)Wi+1(K) for i ∈ {2, . . . , d− 2}; then, we would have

Wi(K)/Wi−1(K) = Wi+1(K)/Wi(K) (37)

for all i, and upon iterating this equality we find that

Wi(K)Wd−i(K) = W1(K)Wd−1(K) (38)

for all i. Then all of the inequalities in relation (35) become equalities, and the two
formulas (21) and (27) agree exactly.

It is not known in general whenWi(K)2 = Wi−1(K)Wi+1(K); however, it is known that
ifK is a d-dimensional centrally symmetric convex body thenWi(K)2 = Wi−1(K)Wi+1(K)
if and only if K is a (d− i− 1)-tangential body to a sphere; see theorem 7.6.20 of [18].
If this holds for i ∈ {2, . . . , d− 2}, then this is equivalent to K being a one-tangential
body to a sphere, which is also called a cap body [18]. A cap body is the convex hull of a
sphere and a countable sequence of points {xn} such that for distinct xi and xj, the line
going through xi and xj intersects the sphere.

4. Determination of quermassintegrals for specific convex bodies in R
d

With the relation (21), the problem of determining the rotationally-averaged exclusion
volume for specific convex bodies reduces to the problem of obtaining formulas for the
corresponding quermassintegrals W0(K), . . . ,Wd(K). We obtain such formulas in arbi-
trary dimension for the following convex bodies: sphere, cube, right parallelpiped, convex
cylinder, spherocylinder, general ellipsoid, ellipsoid of revolution, regular simplex, and
cross-polytope as well as lower-dimensional bodies, such as the line segment, spherical
hyperplate and cubical hyperplate. It bears repeating that the cube, regular simplex
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and cross-polytope are the only regular polytopes possible for d � 5 [20]. For some of
the convex bodies, we also provide explicit formulas for the exclusion volume vex(K)
via (21) that applies in arbitrary dimensions. In the remaining cases, while closed-form
analytical formulas for vex(K) can be presented, we do not do so because the resulting
equations would be cumbersomely long.

Throughout the following discussion, i ∈ {0, . . . , d} denotes the index of the quer-
massintegral. As the input to the quermassintegrals is obvious, we write Wi instead of
Wi(K). We denote the surface area of the unit sphere Bd in R

i as

βi = dκi (39)

where

κi =
πi/2

Γ(1 + i/2)
(40)

is the corresponding volume of the unit sphere, as obtained from (14).

4.1. Spheres

For a sphere (ball) of radius a, we have the following simple formula for the
quermassintegrals [16]:

Wi = κda
d−i. (41)

Using the identity
∑d

i=0

(
d
i

)
= 2d, formula (21) and the fact κd does not depend on the

index i, immediately leads to the well-known result that for spheres,

vex(K)

v(K)
= 2d. (42)

4.2. Cube

For a cube with side length b, we have the following simple formula [16]:

Wi = κib
d−i. (43)

Hence, according to formula (21), we have that the explicit formula for the dimensionless
exclusion volume for cubes is given by

vex(K)

v(K)
=

1

κd

d∑
i=0

(
d

i

)
κiκd−i. (44)

For example, for d = 3, 4, 5 and 6, we obtain from (44) the exact results vex(K)/v(K) =
11, 25.5812218, . . . , 70.75 and 184.3523083 . . . , respectively.

Elementary analysis of formula (44) in the high-d limit leads to the following
asymptotic formula for the dimensionless exclusion volume for the cube:
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vex(K)

v(K)
∼ 23(d+1)/2

√
3πd

(d→ +∞). (45)

Comparing formulas (42) and (45), we see that the dimensionless exclusion volume for

cubes relative to that for spheres grows exponentially faster according to 2d/2/
√
d as d

becomes large. We note that this asymptotic formula already leads to very accurate pre-
dictions of vex(K)/v(K) for cubes even in relatively low dimensions, say d � 6, as can be
seen from the results presented in section 6. In addition, randomly oriented hypercubes
have a much larger dimensionless exclusion volume than oriented hypercubes.

4.3. Right parallelepiped

A right parallelpiped with edge lengths bk, k = {1, . . . , d} is defined to be the product
[0, b1]× · · · × [0, bd]. To write the formula for its quermassintegrals, let σk denote the
kth elementary symmetric polynomial on d variables, namely

σk(x1, . . . , xd) =
∑

1�i1�...�ik�d

xi1 . . . xik . (46)

Then we have the following expressions for Wi(K) [16]:

Wi =
κi(
d
i

)σd−i(b1, . . . , bd). (47)

According to formula (21), we have the explicit formula for the dimensionless exclusion
volume, which is given by

vex(K)

v(K)
=

1

κdΠ
d
k=1bk

d∑
i=0

κiκd−i(
d

d−i

) σiσd−i (48)

where σk is given by equation (46).

4.4. Right parallelepiped with a specific aspect ratio

In applications, one may often encounter right parallelpipeds [0, b1]× · · · × [0, bd] where
all bk are equal (bk = b) except for one, say b1 = h. We call such a body a right paral-
lelepiped with an aspect ratio γ, defined as γ = h/b. We then have the following formula
for the quermassintegrals which is more efficient to calculate in simulations:

Wi =
κi(
d
i

)[(d− 1

d− i

)
bd−i +

((
d

d− i

)
−

(
d− 1

d− i

))
γbd−i

]
. (49)

4.5. Convex cylinder

A convex cylinder in R
d is the Cartesian product of a (d− 1)-dimensional sphere and

an interval. More specifically, let B be a (d− 1)-dimensional sphere of radius a in R
d−1.
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Then let C = (B× {0})× [0, h]. The body C is called a convex cylinder with radius a
and height h, and we have the following formulas [16]:

Wi =
κd−1

d

(
βi−1

κi−1

ad−i + (d− i)ad−i−1h

)
i � 2, (50)

and

W0 = κd−1a
d−1h, W1 =

κd−1

d
(2ad−1 + (d− 1)ad−2h). (51)

4.6. Spherocylinder

A spherocylinder is the Minkowski sum of a sphere and a line segment, and thus a
spherocylinder is an ε-neighborhood of a line segment. Equation (13.27) of [16] gives a
formula for the quermassintegrals of an ε-neighborhood of a body K, as follows:

Wi(K + εBd) =

d−i∑
j=0

(
d− i

j

)
jWi+j(K)εj. (52)

When K is a line segment of length h and when ε = a, this reduces to the following
formula for a spherocylinder of height h and radius a:

Wi = ad−iκd + (d− i)ad−i−1κd−1

d
h. (53)

High-d asymptotic analysis of the exclusion-volume formula (21) together with (53)
leads to the following exact scaling behavior for the dimensionless exclusion volume of
a spherocylinder with h > 0 and finite:

vex(K)

v(K)
∼ 2d

√
d√

32π

h

a
+

2d3

4
. (54)

We see that for positive, finite values of h, the dimensionless exclusion volume for a
spherocylinder relative to that of a sphere only rises like the square root of the dimension.

4.7. General ellipsoid

An ellipsoid with axes ak, k = {1, . . . , d} is the image of a sphere with radius 1 under the
linear transformation (x1, . . . , xd)→ (a1x1, . . . , adxd). Let {vj}ij=1 be independent centered

non-degenerate Gaussian random vectors in R
d whose kth coordinates are distributed

v
(k)
j ∼ N(0, a2k). (55)

Let M be a i× d matrix whose jth row is vj, in other words M = (v1, . . . , vi)
T. Then we

have the following [26]:

Wi =
κi(
d

d−i

) (2π)d−i

(d− i)!
E

(√
det(MMT)

)
, (56)
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where E(·) denotes the expectation function. While this formula cannot be calculated
exactly in general, the expectation can be readily calculated to arbitrary accuracy.

4.8. Ellipsoid of revolution

An ellipsoid of revolution in R
d is an ellipsoid with axes a1, . . . , ad where every ak except

for a1 has the same value. Furthermore, we assume by convention that a1 < ak for k 	= 1.
We let the common length be denoted by a and define λ so that a1 = λa.

Now let F denote the hypergeometric function, namely

F (a, b, c ;z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (57)

where (x)n is the Pochhammer symbol, defined as

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1) . . . (x+ n− 1). (58)

Then we have the following [16]:

Wi = κdλ
i+1ad−iF

(
d+ 1

2
,
i

2
,
d

2
; 1− λ2

)
. (59)

4.9. Regular simplex

A simplex in R
d is the convex hull of d+ 1 points. A regular simplex is a simplex whose

edges all have equal length. For a regular simplex with edge length c, we have [27]:

W0 =

(
c√
2

)d√
d+ 1

d!
, Wd = κd (60)

For 1 � i < d,

Wi =

(
c√
2

)d−i
κi(
d

d−i

)( d+ 1

d− i+ 1

)√
d− i+ 1

d!
γ(Td−i,Td) (61)

where γ(Td−i,Td) is the external angle of the simplex at a (d− 1)-dimensional face,
calculated by

γ(Td−i,Td) =

√
d− i+ 1

π

∫ ∞

−∞
e−(d−i+1)x2

(
1√
π

∫ x

−∞
e−y2 dy

)i

dx (62)

4.10. Cross-polytope

The canonical cross-polytope is the convex hull of the 2d unit vectors e1,−e1, . . . , ed,−ed.
We recall that a two-dimensional cross-polytope is a square, a three-dimensional cross-
polytope is a regular octahedron, and a four-dimensional cross-polytope is a 16-cell.
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The facets of a cross-polytope for d � 3 are regular simplices in dimension d− 1. For a
regular cross-polytope of side length c we have [27]:

W0 =
(c
√
2)d

d!
, Wd = κd. (63)

For 1 � i < d,

Wi =

(
c√
2

)d−i

2d−i+1 κi(
d

d−i

)( d

k + 1

)√
d− i+ 1

d!
γ(Td−i,C

Δ
d ) (64)

where again γ(Td−i,C
Δ
d ) denotes the external angle of the cross-polytope at a Td−i face,

calculated by

γ(Td−i,C
Δ
d ) =

√
k + 1

π

∫ ∞

0

e−(d−i+1)x2
(

2√
π

∫ x

0

e−y2 dy

)i−1

dx. (65)

4.11. Spherical hyperplates

The derivation of these formulas is given in appendix A. For a spherical hyperplate of
radius a, we have for i = 0 and i = 1

W0 = 0, W1 =
2κd−1

d
ad−1 (66)

and for i � 2

Wi =

(
κd−1

κi−1
· i
d

)
κia

d−i. (67)

According to equation (21), the explicit formula for the exclusion volume of spherical
hyperplates is given by

vex(KH)

veff(KH)
=

Γ(d/2 + 1)

πd/2

[
2κ3

d−1

κdκd−2

(d− 1)

d2
+

1

κd

d−1∑
i=1

(
d

i

)
κiκd−iκ

2
d−1

κi−1κd−i−1

(d− i)

d2

]
,

(68)

where veff(KH) is the effective volume given in equation (6), which is the volume of a d-
dimensional sphere with radius r = a. It is clear that veff(KH) for a spherical hyperplate
must have the same high-d scaling as a full-dimensional sphere in d dimensions, i.e. it
must scale as 2d.

4.12. Cubical hyperplates

As for spherical hyperplates, the derivation of the following formulas is given in appendix
A. For a cubical hyperplate of edge length b, we have for i = 0

W0 = 0 (69)
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and for i � 1

Wi =

(
i

d

)
κib

d−i. (70)

According to equation (21), the explicit formula for the exclusion volume of cubical
hyperplates is given by

vex(KH)

veff(KH)
=

Γ(d/2 + 1)

Γ((d+ 1)/2)
d

d−1

1

κd

d−1∑
i=1

(
d

i

)
(d− i)i

d2
κiκd−i, (71)

where the effective volume veff(KH) of a d-dimensional sphere, defined by equation (6),
has radius r = Γ((d+ 1)/2)1/(d−1)b/π1/2. This radius corresponds to the (d− 1)-
dimensional cubical hyperplate having the same volume as the (d− 1)-dimensional
spherical hyperplate. Similar to the case of cubes, our analysis of formula (71) in the
high-d limit leads to the following asymptotic formula:

vex(KH)

v(KH)
∼

√
e

4

23(d+1)/2

√
3πd

(d→ +∞). (72)

It can be seen that the cubical hyperplates possess the same large-d asymptotic scaling
as cubes (cf equation (45)), up to a constant. Comparing formulas (42) and (72), we
see that the dimensionless exclusion volume for cubical hyperplates relative to that for
spheres grows exponentially as 2d/2/

√
d for large d.

4.13. Line segment

Except for Wd−1 and Wd, all of the quermassintegrals of a line segment in R
d are exactly

0. This is because a line segment is intrinsically one-dimensional, and so it can only have
zero- and one-dimensional cross-sectional volumes. The issue of the quermassintegrals
of low-dimensional bodies is discussed in more detail and generality in appendix A. For
the line segment of length � in R

d, we have the following formulas [16]: for d � 2,

Wi = 0 (i = 0, 1, . . . , d− 2), Wd−1 =
κd−1

d
�, Wd = κd. (73)

For d = 1,

W0 = �, W1 = 2, (74)

which is identical to the case of overlapping rods of length �. The relations above together
with formula (21) prove that the exclusion volume for a line segment in R

d vanishes for
d � 3.
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Figure 3. Illustration of the exclusion volume of two-dimensional convex bodies,
each with the same orientation. In each of the two examples, the exclusion volume is
the region interior to the boundary delineated by the dashed lines. (Left) Centrally
symmetric spherocylinder. (Right) Non-centrally symmetric triangle.

5. Extremal values for exclusion volumes of oriented and non-oriented bodies

5.1. Oriented exclusion volume

The estimates (4) and (5) apply to systems of hyperparticles with any orientation dis-
tribution. For a system of uniformly oriented hyperparticles (figure 3), there are exact
results for the dimensionless quantity vex(K)/v(K) of (4) worth discussing here.

A result known as the Roger–Shepherd inequality (theorem 10.1.4 of [18]) states that
for any full-dimensional convex body K ⊂ R

d (i.e. a convex body with nonzero volume),
we have

2d � v(K −K)

v(K)
�

(
2d

d

)
. (75)

The quantity v(K−K) resembles the quantity v(K− ωK) appearing in the definition of
the exclusion volume, as specified by relation (12).

If we assume that we are working in a system where all particles have an identical,
fixed orientation, then it is reasonable to define an ‘oriented’ exclusion volume in the
same way that we defined the exclusion volume for randomly oriented particles, but
without the step of averaging over orientations. Following (1), let K be a convex body
with some orientation ω. Then f(r,ω ; K) is the indicator function of the exclusion zone
of K with respect to a copy of K centered at r with orientation ω. Then the oriented
exclusion volume of K, which we denote voex for clarity, is given by

voex(K) =

∫
Rd

f(r,ω ;K) dr

= Vol((K,K))

= v(K −K), (76)

where we have used (11) and the fact that Z(K,K) = K−K. The randomly oriented non-
spherical hyperparticles generally have a much higher dimensionless exclusion volume
than the oriented ones.
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5.2. Extremal exclusion volumes for oriented hyperparticles

Combining the definition (76) and the Roger–Shepherd inequality (75), we derive the
following inequality for any convex, full dimensional, oriented hyperparticle K:

2d � voex(K)

v(K)
�

(
2d

d

)
. (77)

It is known that equality holds on the left in formula (77) precisely when K is cen-
trally symmetric, and that equality holds on the right precisely when K is a simplex
(see theorem 10.1.4 of [18]). Thus, when restricted to oriented particles, we have the
fairly strong result that voex(K)/v(K) is minimized for centrally symmetric particles and

maximized for simplices, which has the high-d asymptotic behavior of 22d/d3/2. This
means that the ratio of voex(K)/v(K) for simplices relative to that for spheres and other

centrally symmetric bodies grows like 2d/d3/2.

5.3. Extremal exclusion volumes for non-oriented hyperparticles

For non-oriented hyperparticles, a result of the same strength as in (77) is not known for
vex(K)/v(K). For randomly oriented particles, however, we can recover the lower-bound
side of the inequality (77).

The Brunn–Minkowski inequality (theorem 7.1.1 of [18]) states that for two full
dimensional convex bodes K and L in R

d, we have

v(K + L)1/d � v(K)1/d + v(L)1/d. (78)

Thus, for any rotation ω we have

v(K + ωK)1/d = v(K + ωK)1/d

� v(K)1/d + v(ωK)1/d

= v(K)1/d + v(K)1/d

= 2v(K)1/d (79)

so that

v(K + ωK) � 2dv(K). (80)

From the definition of the randomly oriented exclusion volume (12), we then have

vex(K) =

∫
SO(d)

v(K + ωK) dω �
∫
SO(d)

2dv(K) dω = 2dv(K) (81)

and we thus derive

vex(K)

v(K)
� 2d. (82)

Here, we recover the same lower bound as in the inequality (77), but for randomly
oriented hyperparticles.
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For (77), which applies to oriented bodies, we know that the equality on the left
holds exactly when the body is centrally symmetric. This is not the case for randomly
oriented particles, with a simple counterexample being the cube. However, it is at least
true for spheres (balls), i.e. the lower bound is realizable by spheres. If Bd denotes the
unit sphere in R

d, then ωBd = Bd for any rotation ω. Thus,

v(Bd + ωBd) = v(Bd +Bd) = 2dv(Bd) (83)

and so

vex(Bd) =

∫
SO(d)

v(Bd + ωBd) dω =

∫
SO(d)

2dv(Bd) dω = 2dv(Bd). (84)

We then conclude that

vex(Bd)

v(Bd)
= 2d. (85)

In summary, from equations (82) and (85), we have, for full dimensional randomly
oriented hyperparticles, the lower bound is realized for spheres, i.e.

vex(K)

v(K)
� 2d =

v ex(Bd)

v(Bd)
. (86)

6. Results

In this section, we employ the general formula (21) and the formulas for the quer-
massintegrals presented in section 4 to explicitly calculate the rotationally-averaged
dimensionless exclusion volume vex(K)/v(K) for a variety of selected convex bodies,
including the sphere, spherocylinder, cylinder, cube, parallelpiped, cross-polytope, sim-
plex, as well as spherical and cubical hyperplates in dimensions d = 2 through 12. To the
best of our knowledge, we report exact results for the exclusion volumes for these shapes
for d � 4 for the first time. Our calculations for the first six dimensions for spheroids
indicate that they are very similar to other elongated bodies across dimensions and the
effects of elongation (i.e. aspect ratios) are illustrated using spherocylinders. Thus, we
do not plot our results for spheroids and general ellipsoids. The calculations for general
ellipsoids are highly non-trivial for d � 4, since their quermassintegrals involve statis-
tical expectations. We subsequently use the new results on vex(K)/v(K) to obtain the
second virial coefficient B2(K) for the these convex bodies in dimensions 2 through 12
using equation (3), as well as the estimates of the percolation threshold ηc across these
dimensions using scaling relation (5).

6.1. Dimensionless exclusion volumes across dimensions

Figure 4 shows the dimensionless exclusion volume vex(K)/v(K) for the sphere,
cube, spherocylinder with aspect ratio h/a = 2, cylinder with aspect ratio h/a = 2,
parallelpiped with aspect ratio h/b = 2, cross-polytope, and simplex in dimensions
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Figure 4. Rotationally-averaged dimensionless exclusion volume vex(K)/v(K) of a
convex body K for selected shapes, including the sphere, spherocylinder, cylin-
der, cube, parallelpiped, cross-polytope, and simplex in dimensions d = 2 to 12.
The aspect ratios of the spherocylinder, cylinder and parallelpiped are taken to be
relatively small so that all of the bodies considered are relatively compact.

d = 2 to 12. The values of vex(K)/v(K) for these shapes are provided in table A1 in
the appendix. Our results for d � 4 appear to be new and supplement well-known
results for these convex bodies in two and three dimensions [1]. We see from the figure
that the sphere minimizes the ratio vex(K)/v(K) among the convex bodies examined.
Of course, this is consistent with the rigorously exact relation (86) that the sphere
minimizes vex(K)/v(K) among all convex bodies. On the other hand, simplices possess
the largest ratio vex/v in any dimension among the compact shapes considered here.
The cube possesses the next largest ratio vex(K)/v(K) among the bodies considered in
figure 4. Interestingly, a least-squares fit of the data, whether in the range 6 � d � 12
or 10 � d � 12 yields a robust scaling behavior. In particular, for 10 � d � 12, we find
vex(K)/v(K) ∼ 21.44011...d, which is close to the exact high-d asymptotic scaling (45), which
is controlled by the power law 23d/2. Similarly, a least-squares fit of the data in figure 4
for simplices yields an approximate large-d scaling behavior of 21.6618...d, which will be
compared below to the corresponding high-d scaling behavior for oriented simplices.

Not surprisingly, the spherocylinder and cylinder with the same aspect ratio (i.e.
h/a = 2) possess very similar dimensionless exclusion volumes. The spherical caps of
spherocylinders lead to a slightly smaller ratio vex(K)/v(K) compared to cylinders. The
cross-polytope possesses a smaller vex/v than the cube in any dimension, and the differ-
ence increases as d increases due to the former becoming more ‘isotropic’ (i.e. sphere-like)
in shape in higher dimensions than cubes. The parallelpiped studied here possesses a
cubical base with edge length b and height h, with an aspect ratio h/b = 2. These paral-
lelpipeds possess a larger ratio vex(K)/v(K) than the cube in lower dimensions (d = 2, 3),
which then becomes smaller than that of the cubes for d � 4. A randomly oriented par-
allelpiped can make contact with another parallelpiped via either the cubical bases or
the ‘rectangular’ facets. When contacting via the cubical bases, the centroids of the
particles are further separated compared to contacts associated with the ‘rectangular’

https://doi.org/10.1088/1742-5468/ac8c8b 22

https://doi.org/10.1088/1742-5468/ac8c8b


J.S
tat.

M
ech.

(2022)
093404

Exclusion volumes of convex bodies in high space dimensions: applications to virial coefficients and continuum percolation

Figure 5. Rotationally-averaged dimensionless exclusion volume vex(K)/v(K) for
spherocylinders at selected aspect ratios h/a ∈ [1, 1000] in dimensions d = 2 to 12.

facets, which leads to a larger exclusion volume. In higher dimensions, the number of
the ‘rectangular’ facets is much larger than that of the cubical bases. Therefore, the
contribution of the ‘base’ contacts to the exclusion volume diminishes compared to the
‘facet’ contacts, leading to an orientation-averaged exclusion volume mainly dominated
by centroid separations associated with length scale b (i.e. the edge length of the cubical
base). On the other hand, a larger height h leads to a larger volume v(K), and thus an
overall smaller dimensionless exclusion volume.

To understand the effect of ‘elongation’ along an axis of symmetry of an anisotropic
convex body with inequivalent axes on the dimensionless exclusion volume, we plot in
figure 5 the ratio vex(K)/v(K) for spherocylinders for selected aspect ratios h/a in the
interval [1, 1000] in dimensions d = 2 to 12 and list these values in table A2 in the
appendix. For fixed d, vex/v increases significantly as the aspect ratio h/a increases,
as expected. Already for the relatively low dimensions in the range d = 6 to d = 12,
vex(K)/v(K) has a scaling behavior with d that is very close the exact high-d asymptotic
scaling (54), i.e. it is controlled by the power law 2d. By comparing these results for
spherocylinders to the cases of simplices in figure 4, it is seen that if the aspect ratio
h/a is sufficiently large at fixed d, the ratio vex(K)/v(K) for spherocylinders can exceed
that for simplices. Using the exact asymptotic formula (54) and the numerically fitted
scaling of 21.6618...d for simplices stated above, we find that, for fixed aspect ratio h/a,
the crossover dimension d ∗ scales like ln(h/a), i.e. for d � d ∗, vex(K)/v(K) is largest for
spherocylinders and for d� d ∗, vex(K)/v(K) is largest for simplices.

To get a sense of the behavior vex(KH)/veff(KH) for lower-dimensional bodies of
zero volume, we show the dimensionless exclusion volume for spherical and cubical
hyperplates in dimensions d = 3 to 12 in figure 6. The values of their dimensionless
exclusion volumes are given in table A3 in the appendix. It can be seen that spher-
ical hyperplates possess a smaller value of vex(KH)/veff(KH) than that of the cubical
hyperplates, consistent with the trend for d-dimensional spheres and d-dimensional
cubes. Specifically, our numerical scaling analysis of the data in figure 6 indicates that
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Figure 6. Rotationally-averaged dimensionless exclusion volume vex(KH)/veff(KH)
for spherical and cubical hyperplates in dimensions d = 3 to 12, where veff(KH) is
defined by (6).

vex(KH)/veff(KH) ∼ 21.01446...d for spherical hyperplates and vex(KH)/v(KH) ∼ 21.45687...d for
cubical hyperplates, the latter of which is consistent with the exact asymptotic formula
(72). These results in relatively low dimensions are consistent with the exact result that
vex(KH)/veff(KH) for cubical hyperplates relative to that for spherical hyperplates must
grow like 2d/2 for large d (see section 4). We note that it is not meaningful to compare
the dimensionless exclusion volumes for zero-volume (d− 1)-dimensional hyperplates
to those of nonzero-volume d-dimensional convex bodies, especially since the choice
of the effective volume veff(KH) used to make the exclusion volume for hyperplates
dimensionless is arbitrary.

Finally, the dimensionless exclusion volume v0ex(K)/v(K) for oriented simplices in
dimensions d = 3 to 12 in figure 7 and tabulated table A4 in the appendix. The figure
compares results for simplices to those for spheres (or any other centrally symmet-
ric convex body), which rigorously achieves the minimal value of v0ex(K)/v(K) = 2d

(cf section 5.1). Recall that for oriented simplices, the large-d scaling behavior of

v0ex(K)/v(K) is exactly given by 22d/d3/2 (cf section 5.1), which grows faster than that

of spheres according to a factor of 2d/d3/2 for large d. These substantially different
growth rates of v0ex(K)/v(K) for simplices and spheres is evident in figure 7. In addition,
the large-d scaling for oriented simplices is exponentially larger than that of randomly
oriented simplices, which we found earlier to be 21.6618...d.

6.2. Dimensionless second virial coefficients across dimensions

Figures 8 and 9 show the dimensionless second virial coefficients B2(K)/v(K) for selected
convex bodies and spherocylinders with different aspect ratios across dimensions, respec-
tively. Since B2(K) is trivially related to vex(K) via equation (3), the behaviors of
B2(K)/v(K) across dimensions follow exactly those for the dimensionless exclusion vol-
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Figure 7. Dimensionless exclusion volume v0ex(K)/v(K) for oriented simplices in
dimensions d = 2 to 12, compared to that of spheres.

Figure 8. Dimensionless second virial coefficient B2(K)/v(K) for randomly oriented
convex bodies for selected shapes, including the sphere, spherocylinder, cylinder,
cube, parallelpiped, cross-polytope, and simplex in dimensions d = 2 to 12, as well
as spherical and cubical hyperplates in dimensions d = 3 to 12.

ume vex(K)/v(K) discussed in the previous subsection. While B2(K) has long been known
for these convex bodies in two and three dimensions [1], our results for d � 4 appear to
be new. It is useful to reiterate that among the shapes considered, the sphere minimizes
B2(K)/v(K) in any d (which is rigorously true among all convex bodies) and the sim-
plices bound B2(K)/v(K) from above, provided that the convex bodies are sufficiently
compact, as shown in figure 8. Consistent with observations made in section 6.2, if
the aspect ratio h/a is sufficiently large at fixed d, B2(K)/v(K) for spherocylinders can
exceed that for simplices.
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Figure 9. Dimensionless second virial coefficient B2(K)/v(K) for randomly oriented
spherocylinders at selected aspect ratios h/a ∈ [1, 1000] in dimensions d = 2 to 12.

6.3. Percolation thresholds across dimensions

In our previous work [9], we showed the scaling relation (5), which depends on the
ratio vex(K)/v(K), provides reasonably accurate estimates of the percolation threshold
ηc of many different overlapping convex bodies in two and three dimensions when com-
pared to corresponding simulation data. It follows from the analysis given there that
the general scaling relation (5) must become increasingly accurate as d becomes large
for a given convex body. This is yet another manifestation of the principle that low-
dimensional percolation properties encode high-dimensional information [7]. In light of
the fact that the formula for dimensionless exclusion volume vex(K)/v(K) given in [9] of
a convex body is generally a lower bound on this quantity for d � 4 (see section 3.3), this
means that the scaling estimates for ηc for the selected convex shapes given there were
generally overestimated for d � 4. Thus, our interest here is in evaluating the accurate
scaling relation (5) across dimensions using the exact expressions for vex(K)/v(K) for
the aforementioned convex bodies given in the present paper.

While we expect the scaling relation (5) to be already very accurate for d = 4 and
greater dimensions, we confirm this expectation by carrying out computer simulations
of the percolation threshold ηc for spherocylinders and regular simplices for dimensions
2 through 5 using the rescaled-particle simulation method discussed in detail in [8].
Spherocylinders are centrally symmetric bodies and allow us to investigate the effects
of elongation on the theoretical estimates of ηc based on the scaling relation across
dimensions, which is a challenging case to predict. We chose to simulate percolation of
simplices because they are compact, noncentrally symmetric bodies.

Figure 10 compares the rescaled-particle simulation results for simplices to the scal-
ing relation (5) as well as to the lower bound (4). Figure 11 shows the corresponding
plot for spherocylinders. A crucial observation to be made from the figures is how
closely the scaling relation (5) predicts the simulated values of ηc for the both simplices
and spherocylinders across the relatively low dimensions from d = 2 through d = 5. For
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Figure 10. Percolation threshold ηc for systems of randomly oriented simplices in
dimensions d = 2 to 12 obtained using scaling relation (5), which is compared to
the simulation data and lower bound (4).

Figure 11. Percolation threshold ηc for systems of randomly oriented spherocylin-
ders with h/a = 10 in dimensions d = 2 to 12 obtained using scaling relation (5),
which is compared to the simulation data and lower bound (4).

reasons noted earlier, the scaling relation will yield analytical predictions with increas-
ing accuracy as d increases and becomes exact in d→∞. This can also be seen from the
convergence of the scaling relation prediction and the rigorous lower bound, the latter
of which becomes exact in the high-d limit [9]. Using the high-d scalings reported in
section 6.1 together with scaling relation (5) enables us to conclude that the decay of
ηc with d is controlled by the inverse power law 2−1.6618d for simplices and the inverse
power law 2−d for spherocylinders.

Having further verified the accuracy of the scaling relation for simplices and sphero-
cylinders, we now employ it to predict ηc for other shapes. Figure 12 shows such estimates
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Figure 12. Percolation threshold ηc for systems of randomly oriented convex bodies
for selected shapes, including the sphere, spherocylinder, cylinder, cube, paral-
lelpiped, cross-polytope, and simplex in dimensions d = 2 to 12, as obtained from
scaling relation (5).

of ηc for selected convex bodies across dimensions. Since ηc is inversely proportional to
the dimensionless exclusion volume vex(K)/v(K) (cf equation (5)), the behavior of ηc
for different shapes at fixed d is the opposite of the trends described in section 6.1 for
the corresponding vex(K)/v(K). For example, among the compact shapes with finite vol-
umes, spheres possess the largest threshold ηc, and simplices possess the smallest value
of ηc, whether they are randomly oriented or uniformly oriented. In fact, according to
the rigorous relations (77) and (86) and [7], the sphere provably possesses the maximal
threshold among all such nonzero-volume convex bodies in the high-d limit. Thus, we
conjecture that overlapping spheres possess the maximal value of ηc among all identical
nonzero-volume convex overlapping bodies, randomly or uniformly oriented, for d � 2.
Furthermore, in light of the upper bound (77), we conjecture that among all oriented
nonzero-volume convex bodies, overlapping simplices have the minimal value of ηc for
d � 2.

While randomly oriented simplices yield the lowest percolation thresholds among the
convex bodies considered, provided that they are relatively compact, elongated shapes,
such as spherocylinders, can have a lower threshold if their aspect ratio h/a is sufficiently
large. These distinctions between the percolation thresholds of these two convex bodies
are clearly seen in figure 13. Consistent with the results reported in section 6.1, we see
that for a fix aspect ratio h/a, there is a crossover dimension d ∗ ∼ ln(h/a) beyond which
the simplices possess smaller values of ηc compared to that of spherocylinders. We also
see from figure 12 that cubes possess a smaller value of ηc than that of cross-polytopes;
and cylinders possess a smaller value of ηc than that of spherocylinders with the same
aspect ratio. In the case of cubes, exact high-d asymptotic formula (45) reported together
with scaling relation (5) enables us to conclude that the decay of ηc with d is controlled
by the inverse power law 2−3d/2.
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Figure 13. Comparison of the percolation threshold ηc for randomly oriented sphe-
rocylinders with various aspect ratios h/a to that of randomly oriented simplices
across dimensions, as obtained using the scaling relation (5).

Figure 14. Ratio between the percolation threshold of cubical hyperplates (ηc) CHP
and that of spherical hyperplates (ηc) SHP dimensions d = 3 to 12 obtained using
the scaling relation (7).

Figure 14 shows the ratio between the percolation threshold of cubical hyperplates
(ηc) CHP and that of spherical hyperplates (ηc) SHP in dimensions d = 3 to 12 obtained
using the scaling relation (7). In principle, the scaling relation (7) allows one to obtain
accurate estimates of the percolation threshold for nonspherical hyperplates, given accu-
rate values of (ηc) SHP for the reference spherical hyperplate system. However, such values
are not available, except for d = 3 [28]. In [9], we showed that equation (7) indeed led
to very accurate estimates of the percolation thresholds for various two-dimensional
plates in three-dimensional space, including square, triangular, elliptical and rectangu-
lar plates. Such good agreement already for d = 3 means that the scaling relation (7)
should become increasingly more accurate as d increases above three. Figure 14 shows
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Figure 15. Percolation threshold ηc for uniformly oriented simplices and spheres in
dimensions d = 2 to 12, as obtained using the scaling relation (5).

the percolation threshold of cubical hyperplates relative to that of spherical hyperplates
descends exponentially fast with d, namely, it decays like 2−d/2, which is obtained using
the high-d scalings reported in section 4 together with scaling relation (7). In analogy
with the conjectures made above for full d-dimensional bodies, we conjecture that among
all the convex hyperplates, spherical hyperplates have the largest percolation thresholds
for any fixed d � 3. We emphasize again that in general, results for (d− 1)-dimensional
bodies should not be compared to those for full d-dimensional bodies, especially because
of the arbitrary choice used for the effective volume veff(KH) of a zero-volume hyperplate
in (7) to make its exclusion volume dimensionless, as stressed in section 6.1.

Finally, we note that randomly oriented non-spherical hyperparticles generally have
a much smaller threshold than that of their oriented counterparts due to the theorems
presented in section 5. This can be seen by comparing the curves of ηc of oriented
simplices, which must decay like 2−2d, shown in figure 15 to that of ηc of randomly
oriented simplices, which decays like 2−1.6618, shown in figure 12. Figure 15 also includes
the estimate of ηc for spheres.

7. Conclusions

In this paper, we have provided a general formula for the exclusion volume vex(K) for
an arbitrary convex body K in any space dimension, including both the rotationally-
averaged exclusion volume and the exclusion volume associated with uniform orienta-
tions of K. We showed that the sphere minimizes the dimensionless exclusion volume
vex(K)/v(K) among all convex bodies, whether randomly oriented or uniformly oriented,
for any d. When the bodies have the same orientation, the simplex maximizes the
dimensionless exclusion volume vex(K)/v(K) for any d with a large-d asymptotic scaling

behavior of 22d/d3/2. We demonstrated that the rotationally-averaged exclusion volume
vex(K) can be written as certain weighted sums of quermassintegrals W0(K), . . . ,Wd(K)
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of K. Subsequently, we presented explicit expressions for quermassintegrals for various
nonspherical convex bodies, including cubes, parallelepipeds, regular simplices, cross-
polytopes, cylinders, spherocylinders, ellipsoids as well as lower-dimensional bodies,
such as hyperplates and line segments. For certain shapes, explicit formula and large-d
asymptotic expressions of vex(K) are obtained. These results were used to evaluate the
rotationally-averaged ratio vex(K) for these convex-body shapes for dimensions 2 through
12. While the sphere is the minimal shape, we showed that among the convex bodies
considered that are sufficiently compact, the simplex possesses the maximal vex(K)/v(K)
with a scaling behavior of 21.6618...d, which grows more slowly than the corresponding ratio
for oriented simplices.

The exclusion volume results were subsequently utilized to determine the correspond-
ing second virial coefficient B2(K)/v(K) of the hard hyperparticles that we considered for
the first time. Such information allows us to draw some conclusions on the effect of body
shape on the disorder–order equilibrium phase transition in relatively low dimensions
for several reasons. First, we have demonstrated that the scaling behavior of vex(K)/v(K)
or, equivalently, B2(K)/v(K) for a range of relatively low dimensions considered (from
d = 6 to d = 12) agrees well with the exact high-d asymptotic scalings. This further sup-
ports the general principle that high-dimensional information is encoded in relatively
low dimensions [7–9]. Second, we noted earlier that the dominant contribution to the
pressure of a hard-hyperparticle equilibrium fluid is given by the truncation of the virial
expansion through second-order terms (cf (2)) in the high-d asymptotic limit [21]. Thus,
in sufficiently high dimensions, we expect that hyperparticles with a larger dimensionless
exclusion volume vex(K)/v(K) should have an entropy-driven disorder–order transition
occurring at a lower density, since hyperparticles with larger exclusion volumes impose
non-trivial correlations among their neighbors at much lower densities than those with
smaller exclusion volumes. The same idea was used by Onsager to discover a nematic
phase transition for needle-like particles in three dimensions [11].

We also applied our results to compute estimates of the continuum percolation
threshold ηc using a scaling relation derived previously by the authors for systems of
identical overlapping convex bodies. It is noteworthy that while the scaling relation
becomes exact in d→∞, it already yields very accurate predictions even in relatively
low dimensions. The accuracy of the scaling relation predictions is ascertained using
numerical simulations for simplices and spherocylinders in dimensions 2 through 5, which
verify that these estimates indeed become increasingly accurate as the space dimension
increases. Among the shapes with nonzero volume that we examined, we showed that
spheres possess the largest threshold ηc, and simplices possess the smallest value of ηc,
whether they are randomly oriented or uniformly oriented. We conjectured that overlap-
ping spheres possess the maximal value of ηc among all identical nonzero-volume convex
overlapping bodies, randomly or uniformly oriented, for d � 2. We also conjectured that,
among all identical, oriented nonzero-volume convex bodies, overlapping simplices have
the minimal value of ηc for d � 2. Similarly, we conjecture that among all the convex
hyperplates, spherical hyperplates have the largest percolation thresholds for any fixed
d � 3.
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It should not go unnoticed that the scaling relations for ηc that utilize the exact
general explicit expressions for the exclusion volume readily allow one to estimate
the percolation threshold of a wide spectrum of hyperparticles across dimensions, well
beyond the specific choices of shape parameters and dimensions that we explicitly stud-
ied here. Importantly, our numerical results indicate that the estimates of ηc are already
reasonably accurate in three dimensions, which opens up many practical applications
of our results in physics and material science problems that account for the effect of
particle shapes.

In the introduction, we noted the duality relation between the continuum percola-
tion of overlapping hyperparticles and the equilibrium hard-hyperparticle fluids of the
same shape [7]. Combination of this duality relation with the so-called decorrelation
principle for disordered hard-hyperparticle packings [29, 30], implies that in sufficiently
high dimensions the percolation threshold ηc of overlapping hyperparticles is directly
related to the disorder–order phase transition density (i.e. the freezing-point) of the cor-
responding equilibrium hard-hyperparticle fluid [7]. This is an outstanding open problem
for future research.

Finally, we note that our results for the dimensionless oriented exclusion volume
voex(K)/v(K) of convex body K has implications for the optimal packing of K [15].
Specifically, it has been conjectured [31] that the optimal packing of a centrally sym-
metric convex body with equivalent principal axes (e.g. an octahedron) is achieved
by the associated optimal Bravais-lattice packing in which all the bodies are aligned;
while the optimal packing of a body without central symmetry (e.g. a tetrahedron)
is generally given by a non-Bravais-lattice packing in which the bodies have differ-
ent orientations. Our current study further supports these organizing principles, i.e.
voex(K)/v(K) is minimized when the bodies are aligned for a centrally symmetric body,
while nonaligned orientations can result in a much smaller voex(K)/v(K) for noncentrally
symmetric shapes. Moreover, our new results on the exclusion volumes for a wide spec-
trum of convex bodies across dimensions suggest that similar organizing principles for
the densest packings could also hold in higher dimensions (d � 4), which we will explore
in our future studies.
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Appendix A. Quermassintegrals of lower-dimensional bodies and hyperplates

As discussed in the introduction, it is also of interest to consider lower-dimensional
bodies and hyperplates in R

d. These bodies in R
d have zero volume, and so an effective
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volume (6) is used in the bound (4). The exclusion volume of a hyperplate, however, is
defined exactly as in section 2, and the formula (21) still applies. Thus to calculate the
exclusion volume of a hyperplate, we must be able to calculate its quermassintegrals.
It turns out that there is a very general way to find the quermassintegrals of a low-
dimensional body in R

d. By a low-dimensional body, we mean a body whose intrinsic
dimension is (d− 1) or less.

A.1. Intrinsic volumes

The quermassintegrals of a body K ⊂ R
d measure the cross-sectional volumes of K in

R
d, which was explained in some detail in section 3.3. Intuitively, the cross-sectional

volumes of a body K should be the same regardless of the dimension of the ambient
space Rd in which K is embedded. However, the quermassintegrals of a body do actually
depend on the dimension of the embedding space: nevertheless, there is a normalization
of the quermassintegrals, called the intrinsic volumes or Minkowski functionals, which
is invariant with respect to the dimension of the embedding space.

To be more precise, fix a body K and an embedding space R
d. We have already

defined the quermassintegrals W0(K), . . . ,Wd(K). We now define a new set of functions,
V0(K), . . . ,Vd(K), called the intrinsic volumes of K, in the following manner [18]:

Vi(K) =
1

κd−i

(
d

i

)
Wd−i(K), (A.1)

where κd−i is the volume of the unit sphere in R
d−i, defined in relation (40); we take

the additional convention that κ0 = 1. This definition makes Vi a measure of the i-
dimensional cross-sectional volume of K.

As it turns out, the definition we have given for the functions Vi does not depend on
the definition of the ambient space. That is, suppose K is a body in R

d, with intrinsic
volumes V0(K), . . . ,Vd(K) with respect to R

d. Now place K into the space R
D with

D > d, and let V ′
0(K), . . . V ′

d(K), . . . , V ′
D(K) be the intrinsic volumes of K with respect

to R
D. Then, for 0 � i � d, we have Vi(K) = V ′

i (K).
Using this fact, we can find the quermassintegrals of a body in a lower dimensional

space to calculate its quermassintegrals in a higher dimensional space. Let K be a convex
body in R

d, with quermassintegrals W ′
0, . . . ,W

′
d and intrinsic volumes V0, . . . ,Vd. We

want to calculate the quermassintegrals W0, . . . ,WD for K embedded in R
D for D > d.

To do this, we first note the following: if K can be embedded in R
d, then K is at most

d-dimensional. In R
D, this means that Vi(K) = 0 for d < i � D. This follows formally

from equation (4.23) of [18]; intuitively, this follows from the idea that if K is at most
d-dimensional, then its cross-sectional volumes of dimension greater than d should be 0.

We now have the following from relation (A.1):

Wi(K) = κi

(
D

D − i

)−1

VD−i(K). (A.2)
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Thus, if D− i > d, then Wi(K) = 0. If D− i � d, then

Wi(K) = κi

(
D

D − i

)−1

VD−i(K)

= κi

(
D

D − i

)−1(
1

κd−D+i

(
d

d−D + i

)
W ′

d−D+i(K)

)

=
κi

κd−D+i

(
D

D − i

)−1(
d

d−D + i

)
W ′

d−D+i(K). (A.3)

In summary, we have

Wi(K) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κi

κd−D+i

(
D

D − i

)−1(
d

d−D + i

)
W ′

d−D+i(K) D − i � d

0 D − i > d.

(A.4)

A.2. Application to spherical hyperplates

Here, we apply formula (A.4) to spherical hyperplates. A spherical hyperplate is a
(d− 1)-dimensional sphere in R

d. Suppose we have a spherical hyperplate H of radius
a. Then, in R

d−1, we have

W ′
i (H) = κd−1a

d−1−i. (A.5)

Thus, in R
d, we have W0(H) = 0, and for i � 1

Wi(H) =
κi

κi−1

(
d

d− i

)−1(
d− 1

i− 1

)
W ′

i−1(H)

=

(
κd−1

κi−1
· i
d

)
κia

d−i. (A.6)

It is interesting to observe that if C is a cube with edge length a, then the above formula
says that

Wi(H) =

(
κd−1

κi−1
· i
d

)
Wi(C). (A.7)
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A.3. Application to cubical hyperplates

We now apply (A.4) to cubical hyperplates. A cubical hyperplate is a (d− 1)-dimensional
cube in R

d. Suppose we have a cubical hyperplate H with edge length b. Then, in R
d−1,

we have

W ′
i (H) = κib

d−1−i. (A.8)

Thus, in R
d, we have W0(H) = 0, and for i � 1

Wi(H) =
κi

κi−1

(
d

d− i

)−1(
d− 1

i− 1

)
W ′

i−1(H)

=

(
i

d

)
κib

d−i.

(A.9)

Once again, we observe that if C is a cube of edge length b, then the above formula says
that

Wi(H) =

(
i

d

)
Wi(C). (A.10)

Furthermore, if HS is a spherical hyperplate of radius a, then

Wi(H) =

(
κd−1

κi−1

)−1

Wi(HS). (A.11)

A.4. Dimensionless exclusion volume for selected shapes across dimensions

In the main paper, we graphically show the dimensionless exclusion volume vex(K)/v(K)
for selected shapes in dimensions 2 through 12. Here, we provide the values for these
shapes, which are provided in Tables A1–A4.
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Table A1. Values of dimensionless exclusion volume vex(K)/v(K) for selected shapes
in dimensions 2 through 12. The aspect ratio of the cylinder and parallelpiped are
respectively are h/a = 2 and h/b = 2.

Sphere Cylinder Cross-polytope Parallelpiped Cube Simplex

d = 2 4 4.546 48 4.546 48 4.864 79 4.546 48 5.307 97
d = 3 8 9.712 39 10.8301 12 11 14.6726
d = 4 16 20.3032 25.7981 27.5211 27.5812 40.5589
d = 5 32 42.0105 61.453 61.25 70.75 112.115
d = 6 64 86.4313 146.386 137.647 184.352 309.916
d = 7 128 177.184 348.702 319.417 485.875 856.69
d = 8 256 362.325 830.635 770.823 1291.69 2368.11
d = 9 512 739.563 1978.64 1928.83 3457.3 6546.0
d = 10 1024 1507.39 4713.27 4968.09 9304.28 18095.1
d = 11 2048 3068.79 11227.4 13069.1 25 152 50019.5
d = 12 4096 6241.36 26744.5 34886.3 68247.7 138267

Table A2. Values of dimensionless exclusion volume vex(K)/v(K) for spherocylin-
ders with selected aspect ratios h/a in dimensions 2 through 12.

h/a = 1 h/a = 2 h/a = 10 h/a = 50 h/a = 100 h/a = 500 h/a = 1000

d = 2 4.123 82 4.356 57 6.750 98 19.4307 35.3387 162.657 321.811
d = 3 8.428 57 9.2 16.8235 56.7013 106.684 506.67 1006.67
d = 4 17.1691 19.205 38.781 140.393 267.683 1286.25 2559.48
d = 5 34.9032 39.8261 86.2169 325.734 625.668 3025.61 6025.61
d = 6 70.8532 82.2191 187.671 729.985 1408.92 6841.3 13631.9
d = 7 143.672 169.176 402.869 1601.06 3100.82 15100.6 30100.6
d = 8 291.067 347.206 856.329 3460.44 6719.46 32 795 6389.9
d = 9 589.233 711.097 1806.77 7400.04 14399.1 70398.4 140 398
d = 10 1192.07 1453.86 3790.24 15697.6 30596.4 149 799 298 805
d = 11 2410.32 2968.11 7914.57 33089.3 64 586 316 583 631 583
d = 12 4871.15 6051.91 16464.4 69395.1 15 613 665 405 1327 650
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Table A3. Values of dimensionless exclusion volume vex(KH)/veff(KH) for spherical
and cubical hyperplates in dimensions 3 through 12.

Spherical hyperplate Cubical hyperplate

d = 3 2.356 19 2.658 68
d = 4 5.548 69 7.589 25
d = 5 12.1491 20.9595
d = 6 25.7115 57.3242
d = 7 53.4209 156.398
d = 8 109.785 426.778
d = 9 224.059 1165.98
d = 10 455.162 3190.45
d = 11 921.644 8744.25
d = 12 1861.86 24004.1

Table A4. Values of dimensionless exclusion volume v0ex(K)/v(K) for oriented
simplices in dimensions 2 through 12.

Oriented simplex

d = 2 4
d = 3 8
d = 4 16
d = 5 32
d = 6 64
d = 7 128
d = 8 256
d = 9 512
d = 10 1024
d = 11 2048
d = 12 4096
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the decorrelation principle for periodic sphere packings J. Stat. Mech. P10017
[31] Torquato S and Jiao Y 2012 Organizing principles for dense packings of nonspherical hard particles: not all

shapes are created equal Phys. Rev. E 86 011102

https://doi.org/10.1088/1742-5468/ac8c8b 38

https://doi.org/10.1063/1.4742750
https://doi.org/10.1063/1.4742750
https://doi.org/10.1103/physreve.87.022111
https://doi.org/10.1103/physreve.87.022111
https://doi.org/10.1103/physrev.65.117
https://doi.org/10.1103/physrev.65.117
https://doi.org/10.1103/physrev.65.117
https://doi.org/10.1103/physrev.65.117
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1021/j100303a008
https://doi.org/10.1021/j100303a008
https://doi.org/10.1021/j100303a008
https://doi.org/10.1021/j100303a008
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/10.1016/0021-9991(85)90171-8
https://doi.org/10.1016/s0021-9991(04)00394-8
https://doi.org/10.1016/s0021-9991(04)00394-8
https://doi.org/10.1016/s0021-9991(04)00394-8
https://doi.org/10.1016/s0021-9991(04)00394-8
https://doi.org/10.1038/nature08239
https://doi.org/10.1038/nature08239
https://doi.org/10.1038/nature08239
https://doi.org/10.1038/nature08239
https://doi.org/10.1103/physreve.60.2942
https://doi.org/10.1103/physreve.60.2942
https://doi.org/10.1103/physreve.60.2942
https://doi.org/10.1103/physreve.60.2942
https://doi.org/10.1088/0305-4470/33/42/104
https://doi.org/10.1088/0305-4470/33/42/104
https://doi.org/10.1088/0305-4470/33/42/104
https://doi.org/10.1088/0305-4470/33/42/104
https://doi.org/10.1088/0305-4470/30/16/005
https://doi.org/10.1088/0305-4470/30/16/005
https://doi.org/10.1088/0305-4470/30/16/005
https://doi.org/10.1088/0305-4470/30/16/005
https://doi.org/10.1063/1.1338506
https://doi.org/10.1063/1.1338506
https://doi.org/10.1007/s10958-014-1844-9
https://doi.org/10.1007/s10958-014-1844-9
https://doi.org/10.1007/s10958-014-1844-9
https://doi.org/10.1007/s10958-014-1844-9
https://doi.org/10.1103/physreve.79.041134
https://doi.org/10.1103/physreve.79.041134
https://doi.org/10.1080/10586458.2006.10128964
https://doi.org/10.1080/10586458.2006.10128964
https://doi.org/10.1088/1742-5468/2011/10/p10017
https://doi.org/10.1103/physreve.86.011102
https://doi.org/10.1103/physreve.86.011102
https://doi.org/10.1088/1742-5468/ac8c8b

	Exclusion volumes of convex bodies in high space dimensions: applications to virial coefficients and continuum percolation
	1.  Introduction
	2.  Basic definitions and background
	2.1.  Exclusion zones
	2.2.  Exclusion volume averaged over all rotations
	2.3.  Quermassintegrals and mixed volumes

	3.  General formula for the rotationally-averaged exclusion volume
	3.1.  Exclusion volume
	3.2.  Quermassinegrals as cross-sectional volumes
	3.3.  Comparison to the Torquato–Jiao exclusion-volume formula

	4.  Determination of quermassintegrals for specific convex bodies in Rd.
	4.1.  Spheres
	4.2.  Cube
	4.3.  Right parallelepiped
	4.4.  Right parallelepiped with a specific aspect ratio
	4.5.  Convex cylinder
	4.6.  Spherocylinder
	4.7.  General ellipsoid
	4.8.  Ellipsoid of revolution
	4.9.  Regular simplex
	4.10.  Cross-polytope
	4.11.  Spherical hyperplates
	4.12.  Cubical hyperplates
	4.13.  Line segment

	5.  Extremal values for exclusion volumes of oriented and non-oriented bodies
	5.1.  Oriented exclusion volume
	5.2.  Extremal exclusion volumes for oriented hyperparticles
	5.3.  Extremal exclusion volumes for non-oriented hyperparticles

	6.  Results
	6.1.  Dimensionless exclusion volumes across dimensions
	6.2.  Dimensionless second virial coefficients across dimensions
	6.3.  Percolation thresholds across dimensions

	7.  Conclusions
	Appendix A. Quermassintegrals of lower-dimensional bodies and hyperplates
	A.1.  Intrinsic volumes
	A.2.  Application to spherical hyperplates
	A.3.  Application to cubical hyperplates
	A.4.  Dimensionless exclusion volume for selected shapes across dimensions

	References


