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Abstract—As higher symbol rates are utilized in the intensity
modulation and direct detection (IM/DD) scheme to meet the
unrelenting growth of data traffic, overcoming the inter-symbol
interference (ISI) induced by the limited bandwidth has become
increasingly crucial. Channel equalization based on digital signal
processing (DSP) is an effective solution, where least-mean squares
(LMS) algorithm is adopted to adjust tap coefficients. However, the
LMS algorithm usually has slow rate of convergence and requires
lots of training symbols. This work proposes a novel training
sequence to accelerate the LMS-based equalization. A first-order
Markov chain (MC) is employed for sequence generation, which in-
troduces correlation between samples and shapes signal spectrum.
Compared with the conventional training sequence that consists
of independent and identically distributed (i.i.d.) samples and has
a white spectrum, the MC sequence enables faster convergence
of tap coefficients and mean-squared error (MSE). Moreover, an
experimental demonstration of a 43 Gbaud PAM-4 signal shows
that the proposed sequence can achieve a lower pre-forward-error-
correction (pre-FEC) bit error rate (BER) than that of the i.i.d. se-
quence with the same length. When the PAM-4 signal is transmitted
over a 5-km standard single mode fiber (SSMF) with 6-dB system
bandwidth of 10 GHz, more than 70% training sequence length
reduction can be attained. When the fiber length is increased to
10 km and the signal suffers from severe power fading, more than
48% reduction can be achieved.

Index Terms—Channel equalization, digital signal processing,
intensity modulation and direct detection, least-mean squares.

I. INTRODUCTION

HE exponential growth of data traffic fueled by data-
hungry services including cloud computing and video
streaming drives the development of high-speed transmissions
in short-reach, metro as well as long-haul optical networks
[1]. Considering the requirements of cost-effectiveness, low
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power consumption and small footprint of short-reach optical
networks, the intensity modulation and direct detection (IM/DD)
scheme is an attractive solution [2]. To keep pace with the
required capacity, multilevel pulse amplitude modulation (PAM)
has been utilized, and a steady increase of symbol rate has been
observed, from 10 Gbaud (e.g., IEEE 802.3ae [3]) to 25 Gbaud
(e.g., IEEE 802.3bs [4]) and 50 Gbaud (e.g., IEEE 802.3cu [5]),
with higher than 100 Gbaud being studied for beyond 400 Gb/s
operation [6].

One of the challenges with high symbol rate is the limited
bandwidth of the deployed devices, such as digital-to-analog
and analog-to-digital converters (DACs/ADCs), modulators and
photodetectors (PDs). It induces inter-symbol interference (ISI)
and degrades receiver sensitivity. Channel equalization via dig-
ital signal processing (DSP) can effectively mitigate the penalty
of ISI. Feedforward equalizers (FFE) are commonly utilized
linear equalizers that correct both postcursor and precursor ISI.
They can be used alone [7], [8], or along with decision feedback
equalizers (DFEs) and/or maximum likelihood sequence estima-
tion (MLSE) [9]-[14]. The tap coefficients can be adjusted with
least-mean squares (LMS) algorithm, where stochastic gradient
descent (SGD) is conducted to minimize the mean-squared error
(MSE) between training symbols and equalized symbols. LMS
algorithm has attracted a lot of attention, mainly due to its com-
putational simplicity. However, its convergence rate depends
on the autocorrelation of the equalizer input signal, which is
strongly influenced by the channel spectral characteristics. The
convergence rate is slow when the channel has severe distortion
[15], [16], which is often the case with bandlimited IM/DD
systems. A large number of training symbols are thus required
[9], [11], resulting in high transmission overhead, especially for
burst data transmission.

Recursive least squares (RLS) algorithm is an alternative
algorithm to adjust tap coefficients. The cost function is the
weighted sum of squared error calculated using all the past
received symbols. For the tap coefficients update, a matrix is
used in place of the scalar step size in the conventional LMS
algorithm, which greatly accelerates convergence [15], [16]. The
convergence rate can be improved by one order of magnitude
[13]. Nevertheless, the calculation of this matrix also gives
rise to higher computational complexity. Another solution is to
apply variable step size in tap coefficients adjustment. Rather
than being constant, the step size is initialized to a larger value
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to speed up initial convergence, and then reduced to smaller
ones as the equalizer output error decreases. Several algorithms
have been proposed, such as a two-step procedure in [17], and
varying step size at each iteration with values determined by
the number of sign changes of an estimated gradient of MSE
[18] or the squared instantaneous error [19]. The learning rate
decay techniques developed for the SGD including exponential
decay and staircase decay can also be applied to adjust step
size, achieving similar performance with the aforementioned
algorithms [8].

In this paper, the LMS-based equalization is accelerated by
exploiting a novel training sequence. Unlike the traditional
training sequence that is made up of independent and identi-
cally distributed (i.i.d.) samples, correlated samples generated
from a first-order Markov chain (MC) are utilized. It alters
the autocorrelation of the equalizer input signal and enables
rapid convergence. The performance of the proposed technique
is compared with the conventional i.i.d. sequence, where they
are both employed for training. Faster convergence is observed
in terms of tap coefficient adaptation and MSE. And lower
pre-forward-error-correction (pre-FEC) bit error rate (BER) can
be attained at a given training sequence length. An experimental
demonstration of a 43 Gbaud four-level PAM (PAM-4) signal
is conducted, where more than 70% training sequence length
reduction can be achieved for 5-km standard single mode fiber
(SSMF) transmission, and more than 48% reduction can be
achieved for 10-km SSMF transmission.

II. PRINCIPLES OF OPERATION
A. LMS Algorithm

For an N-tap equalizer adapted with LMS algorithm, the
equalizer input signal y(k) is often arranged into vectors of
length N:

y(k)=[y(k—=(N=1)/2),....y(k+ (N =1)/2)]" (1)

Here N is assumed to be an odd number. Let the equalizer tap
coefficients at instant & be w(k), and then the equalizer output
signal is

2 (k) = w(k) "y (k) )

where the superscript 7 denotes transpose. The tap coefficients
are updated according to

w(k+1)=w(k) + pe(k)y (k) 3)

where p is the step size and e(k) is the equalizer error calculated
using e (k) = x(k) — z(k), with z(k) being the training signal.
The optimal tap coefficients that achieve the minimum MSE
(MMSE) is

wop = A~ b @)

where A = E{y(k)y(k)"}isan N x N autocorrelation ma-
trix, and b = E{y(k)z(k)} is an N x 1 cross-correlation
vector.

Since A is a symmetric matrix, it can be expressed as A =
UAUT, where U is an orthonormal matrix whose column
vectors are the eigenvectors of A, and A is adiagonal matrix with
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elements equal to the eigenvalues of A. Define a transformed
tap coefficient error vector v (k) as

v (k) =UT (w (k) — wop) 5)
Then it can be proven that [15]-[17]:
Ef{v(k+1)} = (I - pA)E {v (k)} ©)

As iteration increases, v (k) decreases exponentially, and decay
rate of the ¢-th element is determined by the i-th eigenvalue
A; and the step size. To have E{v(k)} converge, the following
condition has to be met

I1—pr| <1,i=1,2,...,N 7)

Consequently,

0<p< (3)

)‘max

with A, 4, being the maximum eigenvalue. When there is a large
difference between A4, and A,,;, (the minimum eigenvalue),
having p satisfy (8) slows down the convergence of the elements
with small eigenvalues. Therefore, eigenvalue spread, defined
as X = Amaz/Amin, determines the convergence rate of LMS
algorithm. x is generally difficult to calculate, but it is bounded
by the dynamic range of the power spectrum P (w) of y(k) [20],
1.e.,

e Pl

~ min P (w)
—m<w<T

©)

The equality holds as N — oc.

B. Correlated Training Sequence to Accelerate LMS-Based
Equalization

Both RLS algorithm and LMS adaptation with variable step
size focus on amending (3), either by replacing p with an
estimate of A~! or by having 1 take different values at different
stages. The proposed method, on the other hand, aims at chang-
ing the eigenvalue spread of A. As (9) shows, smaller x can be
obtained if the dynamic range of P(w) reduces. Furthermore,
P (w) = |H(w)|? | X (w)|?, with H(w) and X (w) being the
channel response and the spectrum of the training signal. While
H(w) is fixed, it is still possible to modify P(w) by changing
X (w). Since most of the bandlimited IM/DD systems behave as
low-pass filters, the training sequence should have more power
distributed at higher frequencies to “flatten” P(w). A first-order
MC is employed to generate such a sequence and the transition
probability is

P2 (k1) = gl (k) = ay) = 5elren’
where a,, and a,, are symbols from the signal alphabet, 3 is
a hyperparameter to tune the spectrum of z(k), and Z,, is
a normalization factor to ensure that the probabilities sum to
1. When 8 = 0, it becomes the conventional i.i.d. process.
When 8 > 0, symbols with larger Euclidean distances from the
current symbol are transmitted at the next instant with higher
probabilities.

(10)
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TABLE I
EIGENVALUE SPREAD OF THE AUTOCORRELATION MATRIX

0.20 0.15 0.20 jfoR:f

/553 0.23 0.21

0.23 (131 0.20 0.15 0.20

(Wyfe) 0.1/ 0.07 0.06

W73 0.24 0.17 0.15

Fig. 1. Transition matrices of the MC with (a) 3 = 0.03; (b) 3 = 0.07.
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Fig.2. PSDs of the sequences generated by the first-order MC when (a) 3 =
0;(b) B = 0.01;(c) B = 0.03;(d) B = 0.07.

Fig. 1 shows the transition matrices for PAM-4 sequences
with # = 0.03 and 5 = 0.07. In both cases, all the symbols
have the lowest probability to remain unchanged at the next
instant. Thus, the diagonal element achieves the minimum in
each row. For the symbols with negative amplitudes, the most
probable symbol at the next instant is 3, while it becomes —3 for
the symbols with positive amplitudes. Although the exponential
term ¢?(@n=am)” is the same for the transitions from A tO an,
and from a,, to a.,,, Z,, are not necessarily equal as the symbol
at the current instant varies, and thus the transition matrix is
not symmetric. As [ increases, the symbol “furthest” from the
current symbol gains higher probability to appear in the MC
sequence at the following instant. Conversely, the current symbol
itself has lower probability to be retransmitted. Fig. 2(a)—(d)
plot the power spectral densities (PSDs) of the MC sequences
when S are 0, 0.01, 0.03 and 0.07, respectively. The correlation
between symbols enhances the power at high frequencies, and
such spectral shaping becomes stronger with larger 3.

H(w) id MC MC MC

3-dB se(ll.lll.eﬁce sequence  sequence  sequence

Type bandwidth p =001 =003 pg=0.07
0.4 BWy,q 19.252 12.935 5.470 2.125

Fourth-order
Bessel filter 0.5 BWyyq  4.685 3.137 1.324 4914
0.6 BWyyq 1.879 1.265 1.910 12.307
0.4 BWy,q 17.251 11.585 4.895 2.161
Gaussian

filter 0.5 BWyyq  3.928 2.628 1.176 5.934
0.6 BWyyq 1.840 1.237 1.954 12.593

C. Simulations

To illustrate the effect of the proposed MC sequence in
the LMS-based equalization, simulations are conducted where
H(w) is assumed to be fourth-order Bessel filters or Gaussian
filters with varying bandwidths. Additive white Gaussian noise
(AWGN) is added after the channel. A 15-tap T-spaced FFE is
employed to compensate the ISI. Table I lists ) of i.i.d. sequence
and MC sequence under various H(w). 3-dB bandwidth of
H(w) is normalized by the Nyquist bandwidth BWy,, (half
the symbol rate). The element at the i-th row and j-th column
of A is estimated by the Monte Carlo estimation:

L~

S k) (k+1i—i)

k=1

1

A(LJ)Zm

an

where L is the length of the training sequence and is fixed
at 10° in the simulations. Each kind of sequence is generated
independently for 1000 times and x reported in Table I is the
mean value of these 1000 sequences. For both kinds of filters,
x of the i.i.d. sequence increases with the decrease of the 3-dB
bandwidth as a result of stronger bandwidth limitation. For the
MC sequence, y depends on both (3 and the 3-dB bandwidth. For
the MC sequence with 5 = (.01, the relationship between x and
the 3-dB bandwidth is similar to that of the i.i.d. sequence. On the
other hand, for the MC sequence with = 0.07, x increases as
the 3-dB bandwidth becomes larger. In all the cases considered in
Table I, there exists at least one MC sequence whose  is smaller
than that of the i.i.d. sequence and the reduction becomes greater
when the bandwidth limitation becomes more severe.

All the tap coefficients of the 15-tap FFE is initialized to 0,
except for the center tap, which is initialized to 1. Fig. 3(a) and
(b) respectively plot the value of the center tap and the MSE
versus the number of iterations when H(w) is a fourth-order
Bessel filter with 3-dB bandwidth of 0.4 BW . The training
sequenceisani.i.d. sequence or an MC sequence with 5 = 0.07.
It can be clearly seen that the smaller y of the MC sequence
results in faster convergence. It takes the center tap fewer it-
erations to converge and the MSE decreases at a faster speed.
Furthermore, as shown in Fig. 4, there is negligible difference
between the converged tap coefficients of these two kinds of
training sequences. Thus, the tap coefficients trained by the MC
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Fig. 3. (a) Amplitude of the center tap versus the number of iterations.
(b) MSE versus the number of iterations.
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Fig. 4. Tap coefficients after reaching convergence.

sequence can be applied to channel equalization when i.i.d. data
are transmitted.

It is worth mentioning that by exploiting the MC, the prob-
ability distribution of the symbols is also shaped. In the case
of PAM-4 sequence, —3 and 3 have higher probabilities than
—1 and 1. However, the probabilistic shaping itself does not
contribute to a faster convergence since the spectrum remains
unchanged. For the example considered in Table I, if the MC
sequence is randomly shuffled before transmission, which pro-
duces a sequence with a white spectrum and the same probability
distribution with the original MC sequence, similar ) to that of
the i.i.d. sequence is observed. Consequently, the shuffled MC
sequence has a similar convergence rate with the i.i.d. sequence
and cannot accelerate the equalizer training as the unshuffled
MC sequence does.

III. EXPERIMENTAL SETUP

Fig. 5(a) shows the experimental setup. A 43 Gbaud PAM-4
signal is generated offline and pulse shaped by a root-raised-
cosine (RRC) filter with a roll-off factor of 0.1. The digital signal
is converted to an analog waveform by an arbitrary waveform
generator (AWG, Keysight M8195A) at 64 GSa/s with an analog
bandwidth of 25 GHz. The generated signal is amplified by a
35-GHz driver amplifier and modulated onto a 1550-nm optical
carrier via a 40-GHz Mach-Zehnder modulator (MZM) biased
at the quadrature point. The modulated optical signal is trans-
mitted over a 5-km or 10-km SSMEFE. A variable optical atten-
uator (VOA) adjusts the received optical power (ROP) before
a 11-GHz photodetector (PD) with integrated amplifiers. The
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Fig. 5. (a) Experimental setup. (b) Frequency response of the transmission
system with a 5-km SSMF (LD: Laser diode).

detected signal is captured for offline DSP by a digital storage
scope (DSO, Keysight DSOZ254A) with an analog bandwidth of
25 GHz at 80 GSa/s. The frequency response of the transmission
system with a 5-km SSMF is shown in Fig. 5(b). The 6-dB
bandwidth is about 10 GHz.

The transmitted sequence consists of an i.i.d. training se-
quence or an MC training sequence followed by a data sequence
with 1.5x10° i.i.d. PAM-4 samples with uniform distribution.
As mentioned in Section II.C, the probability distribution of the
PAM-4 symbols is not uniform in the MC sequence, resulting
in higher average power. For fair comparison, the MC sequence
is normalized to have the same average power with the i.i.d.
sequence before transmission. In the receiver-side DSP, the re-
ceived signal is first resampled to 2 samples per symbol, and then
equalized by a 7/2-spaced FFE for 5-km SSMF transmission or a
T/2-spaced FFE + T-spaced DFE for 10-km SSMF transmission.
Throughout the experiments, the center-tap initialization that has
been used in the simulation is adopted for the FFE. For the DFE,
the first tap is initialized to —1 and the other taps are initialized
to 0. BER calculation is conducted after the channel equalization
using only the data sequence.

IV. RESULTS AND DISCUSSION
A. 5-km SSMF Transmission

Hyperparameter [3 is first fixed at 0.07 and the FFE has 61 taps.
Fig. 6 shows the PSDs of the received training sequences. After
transmitting over the link, the spectrum of the MC sequence
has a smaller dynamic range due to the spectral shaping at the
transmitter. Fig. 7 plots the MSE versus the number of iterations.
Again, the MC training sequence has a faster speed of conver-
gence, achieving lower MSE after the same number of iterations.
Such improvement in MSE can be translated into improvement
of BER. Fig. 8(a) and (b) show the pre-FEC BER versus the
length of the training sequence at ROPs of —2.7 dBm and
—6.7 dBm, respectively. For both kinds of training sequences,
pre-FEC BER decreases as there are more training symbols
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Fig. 6. PSDs of the received i.i.d. sequence and the received MC sequence
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Fig. 7. MSE versus the number of iterations.

involved in the tap coefficients adaptation. At a fixed training
sequence length, the MC sequence has a lower pre-FEC BER.
Fig. 8(c) and (d) depict the pre-FEC BER versus ROP when the
training sequence lengths are 150 and 4000, respectively. If the
i.i.d. training sequence has only 150 symbols, the tap coefficients
are still far from the optimal solution and there is severe [SIin the
equalized signal, as can be seen from the eye diagram shown in
Fig. 8(e) and the histogram shown in Fig. 8(f). The performance
is dominated by the residual ISI and increasing ROP cannot bring
about improvement. Contrarily, the FFE acts more effectively to
eliminate IST when it is trained by the MC sequence with 150
symbols. Consequently, pre-FEC BER decreases with higher
ROP. The eye diagram and the histogram at an ROP of —2.7
dBm are illustrated in Fig. 8(g) and (h), respectively. When the
length of the training sequence is increased to 4000, the residual
ISI for both i.i.d. sequence and MC sequence becomes smaller
and the noise dominates the performance. Still, the pre-FEC
BER of the MC sequence is lower at all the measured ROPs,
with slightly higher performance gain at higher ROP.

Table II summarize the reductions in training sequence length
of the MC sequence compared with the i.i.d. sequence at various
FEC thresholds. At a fixed ROP, the improvement of adopting
the MC training sequence generally becomes larger as the con-
sidered FEC threshold becomes lower. For instance, at an ROP
of —2.7 dBm, the length of the training sequence can be reduced
by 72.63% at the FEC threshold of 1.25 x 1072, while it increases
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Fig. 8. Pre-FEC BER versus training sequence length at ROPs of (a) —2.7

dBm and (b) —6.7 dBm; pre-FEC BER versus ROP when the training sequence
lengths are (c) 150 and (d) 4000; (e) and (f) Eye diagram and histogram of
the equalized data sequence at an ROP of —2.7 dBm with a 150-symbol i.i.d.
training sequence; (g) and (h) Eye diagram and histogram of the equalized data
sequence at an ROP of —2.7 dBm with a 150-symbol MC training sequence.

TABLE II
TRAINING SEQUENCE LENGTH REDUCTION FOR 5-KM SSMF TRANSMISSION

FEC threshold
ROP (dBm) 3.15x107° R0 4.5x107°R 125%10721)
2.7 93.20% 90.51% 72.63%
-3.7 89.65% 85.10% 72.11%
—4.7 90.31% 92.64% 70.62%
-5.7 / / 75.52%
-6.7 / / 80.67%

to 93.20% at the FEC threshold of 3.15x 1073, For all the cases
listed in Table II, more than 70% reduction can be achieved with
the MC training sequence.

To further verify that the change in the probability distribution
does not lead to improvement, the shuffled MC sequence de-
scribed in Section II.C is also utilized for training. The pre-FEC
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Fig. 9. Pre-FEC BER versus the number of FFE taps for (a) i.i.d. training
sequence and (b) MC training sequence.
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Fig. 10. Pre-FEC BER versus the number of FFE taps when the training
sequence lengths are (a) 150 and (b) 800.

BER versus the length of the training sequence is plotted in
Fig. 8(a) and (b), where it is labelled as “SHUFF”. The shuf-
fled MC sequence achieves similar BER with the i.i.d. PAM-4
sequence under a given training sequence length at an ROP of
—2.7 dBm, and slightly worse BER at a lower ROP of —6.7
dBm.

The performance of the LMS-based equalization also depends
on the number of FFE taps. If the training sequence is adequately
long, the BER can be improved by increasing the number of
FFE taps. Fig. 9 shows the pre-FEC BER versus the number
of FFE taps in such a scenario, where there are 2 x 10* samples
in the training sequence. Fig. 9(a) and (b) are the results for
1.i.d. sequence and MC sequence, respectively. The BERs of
a 61-tap FFE that have been shown before are illustrated with
empty circles. The relationships between BER and the number
of FFE taps are similar at ROPs of —2.7 dBm, —4.7 dBm and
—6.7 dBm, where the BER decreases as the number of FFE taps
becomes larger. However, this relationship would change if the
length of the training sequence is limited. Fig. 10(a) and (b)
depict the pre-FEC BER versus the number of FFE taps at an
ROP of —2.7 dBm, when the training sequences have 150 and
800 symbols, respectively. The BER first decreases and then
increases as the number of FFE taps increases from 21 to 85.
This is because although increasing the number of FFE taps can
improve the capability to mitigate channel distortion, it would
slow the rate of convergence at the same time. No matter which
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Fig. 11.  Pre-FEC BER versus hyperparameter 3.

FFE is selected, the MC sequence offers a better choice for
training since it achieves lower BER 1in all the cases.

Another factor that affects the performance of the MC se-
quence is the hyperparameter 5. The pre-FEC BERs at different
[ are shown in Fig. 11, in which the ROP is —2.7 dBm and
the number of FFE taps is 61. Training sequences with 150
and 400 symbols are considered. In both cases, lower BER
compared with the i.i.d. sequence can already be observed at
B = 0.01. And it gets further reduced as [ becomes larger
until 0.07. After 0.07, the BER gets worse with higher 5. This is
mainly because the eigenvalue spread, on the other hand, will be
increased if the spectral shaping is too strong. It can also be seen
from Table I, where the MC sequences with 5 of 0.03 and 0.07
have higher eigenvalue spreads than that of the i.i.d. sequence
when the 3-dB bandwidth of the channel is 0.6 BWy,,. The
performance discrepancy between MC sequences with different
[ gets smaller as the length of the training sequence increases. In
real bandlimited IM/DD systems, (3 can be selected according to
the electrical bandwidth of the deployed components. A larger 3
should be chosen as the bandwidth limitation becomes stronger.

B. 10-km SSMF Transmission

Fig. 12 depicts the PSDs of the received signals after 10-km
SSMEF transmission. The spectral null at around 19.6 GHz is
due to the power fading induced by chromatic dispersion. S is
0.07 in the MC sequence and its spectrum again has a smaller
dynamic range. The channel equalization is fulfilled with a
77-tap FFE + 12-tap DFE. To mitigate the error propagation
of the DFE, joint symbol decision proposed in [14] is adopted.
When the Euclidean distance between the output of the equalizer
and the output of a decision device is larger than 0.5, the
symbol-wise decision is regarded as unreliable and 6 following
symbols are utilized for joint decision. To calculate the equalizer
output for the following symbols, all possible combinations of
PAM-4 symbols are used in the DFE part. The combination
that yields the smallest sum of squared distance between the
equalizer outputs and the assumed symbol decisions is selected.
Fig. 13(a) and (b) illustrate the PSDs of the equalized i.i.d.
sequence and the equalized MC sequence when the sequences
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Fig. 14. Pre-FEC BER versus training sequence length at ROPs of (a) —1.9

dBm and (b) —4.9 dBm.

are sufficiently long. The spectral null is successfully removed
through channel equalization.

The pre-FEC BER versus the length of the training sequence
at ROPs of —1.9 dBm and —4.9 dBm are plotted in Fig. 14(a)
and (b), respectively. Compared to the case of 5-km SSMF, more
training symbols are required since the equalizer exploits more
taps to recover the severe distortion. The MC sequence achieves
lower BER at both ROPs and the reductions of training sequence
length are summarized in Table III. At the FEC threshold of
1.25x 1072, the reductions are generally larger at higher ROPs.
54.02% fewer training symbols are required when the ROP is
—4.9 dBm, while it becomes 72.19% at an ROP of —1.9 dBm.

Fig. 15 plots the pre-FEC BER versus 8 when the ROP is
—1.9 dBm and the training sequence has 1000 symbols. The
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TABLE III
TRAINING SEQUENCE LENGTH REDUCTION FOR 10-KM SSMF TRANSMISSION

FEC threshold
ROP (dBm)
3.15x107° R0 45%x107° R 125%1072)
-1.9 67.11% 51.42% 72.19%
-2.9 / 57.43% 56.70%
-39 / 48.20% 69.11%
—49 / / 54.02%
—A—train len = 1000
% _____________________
m 2><10'2" IID sequence |
O
|
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o
o
02 I I ! !
0.01 0.03 0.05 0.07 0.09 0.11

g

Fig. 15. Pre-FEC BER versus hyperparameter 3.

BER of the i.i.d. sequence is shown with dashed line. The MC
sequence has better BER than i.i.d. sequence as (3 varies from
0.01 to 0.11. And the MC sequence with 3 of 0.07 still achieves
the best performance.

V. CONCLUSION

In this paper, a training sequence is proposed to accelerate
the LMS-based equalization in bandlimited IM/DD systems.
The sequence is generated with a first-order MC that introduces
correlation between samples and enhances the power at high
frequencies. Compared with the traditional i.i.d. sequence with
a white spectrum, the MC sequence can reach the convergence
with fewer iterations and achieve lower pre-FEC BER with a
fixed training sequence length. Experimental results show that
to transmit a 43 Gbaud PAM-4 signal over a system of 5-km
SSMF and 6-dB bandwidth about 10 GHz, the length of the
training sequence can be reduced by more than 70%. When a
10-km SSMF is utilized and the signal suffers from severe power
fading induced by chromatic dispersion, the training sequence
length can be reduced by more than 48%.
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