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Abstract—As higher symbol rates are utilized in the intensity
modulation and direct detection (IM/DD) scheme to meet the
unrelenting growth of data traffic, overcoming the inter-symbol
interference (ISI) induced by the limited bandwidth has become
increasingly crucial. Channel equalization based on digital signal
processing (DSP) is an effective solution, where least-mean squares
(LMS) algorithm is adopted to adjust tap coefficients. However, the
LMS algorithm usually has slow rate of convergence and requires
lots of training symbols. This work proposes a novel training
sequence to accelerate the LMS-based equalization. A first-order
Markov chain (MC) is employed for sequence generation, which in-
troduces correlation between samples and shapes signal spectrum.
Compared with the conventional training sequence that consists
of independent and identically distributed (i.i.d.) samples and has
a white spectrum, the MC sequence enables faster convergence
of tap coefficients and mean-squared error (MSE). Moreover, an
experimental demonstration of a 43 Gbaud PAM-4 signal shows
that the proposed sequence can achieve a lower pre-forward-error-
correction (pre-FEC) bit error rate (BER) than that of the i.i.d. se-
quence with the same length. When the PAM-4 signal is transmitted
over a 5-km standard single mode fiber (SSMF) with 6-dB system
bandwidth of 10 GHz, more than 70% training sequence length
reduction can be attained. When the fiber length is increased to
10 km and the signal suffers from severe power fading, more than
48% reduction can be achieved.

Index Terms—Channel equalization, digital signal processing,
intensity modulation and direct detection, least-mean squares.

I. INTRODUCTION

T
HE exponential growth of data traffic fueled by data-

hungry services including cloud computing and video

streaming drives the development of high-speed transmissions

in short-reach, metro as well as long-haul optical networks

[1]. Considering the requirements of cost-effectiveness, low
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power consumption and small footprint of short-reach optical

networks, the intensity modulation and direct detection (IM/DD)

scheme is an attractive solution [2]. To keep pace with the

required capacity, multilevel pulse amplitude modulation (PAM)

has been utilized, and a steady increase of symbol rate has been

observed, from 10 Gbaud (e.g., IEEE 802.3ae [3]) to 25 Gbaud

(e.g., IEEE 802.3bs [4]) and 50 Gbaud (e.g., IEEE 802.3cu [5]),

with higher than 100 Gbaud being studied for beyond 400 Gb/s

operation [6].

One of the challenges with high symbol rate is the limited

bandwidth of the deployed devices, such as digital-to-analog

and analog-to-digital converters (DACs/ADCs), modulators and

photodetectors (PDs). It induces inter-symbol interference (ISI)

and degrades receiver sensitivity. Channel equalization via dig-

ital signal processing (DSP) can effectively mitigate the penalty

of ISI. Feedforward equalizers (FFE) are commonly utilized

linear equalizers that correct both postcursor and precursor ISI.

They can be used alone [7], [8], or along with decision feedback

equalizers (DFEs) and/or maximum likelihood sequence estima-

tion (MLSE) [9]–[14]. The tap coefficients can be adjusted with

least-mean squares (LMS) algorithm, where stochastic gradient

descent (SGD) is conducted to minimize the mean-squared error

(MSE) between training symbols and equalized symbols. LMS

algorithm has attracted a lot of attention, mainly due to its com-

putational simplicity. However, its convergence rate depends

on the autocorrelation of the equalizer input signal, which is

strongly influenced by the channel spectral characteristics. The

convergence rate is slow when the channel has severe distortion

[15], [16], which is often the case with bandlimited IM/DD

systems. A large number of training symbols are thus required

[9], [11], resulting in high transmission overhead, especially for

burst data transmission.

Recursive least squares (RLS) algorithm is an alternative

algorithm to adjust tap coefficients. The cost function is the

weighted sum of squared error calculated using all the past

received symbols. For the tap coefficients update, a matrix is

used in place of the scalar step size in the conventional LMS

algorithm, which greatly accelerates convergence [15], [16]. The

convergence rate can be improved by one order of magnitude

[13]. Nevertheless, the calculation of this matrix also gives

rise to higher computational complexity. Another solution is to

apply variable step size in tap coefficients adjustment. Rather

than being constant, the step size is initialized to a larger value

0733-8724 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 23,2022 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: ACCELERATING LMS-BASED EQUALIZATION WITH CORRELATED TRAINING SEQUENCE 4269

to speed up initial convergence, and then reduced to smaller

ones as the equalizer output error decreases. Several algorithms

have been proposed, such as a two-step procedure in [17], and

varying step size at each iteration with values determined by

the number of sign changes of an estimated gradient of MSE

[18] or the squared instantaneous error [19]. The learning rate

decay techniques developed for the SGD including exponential

decay and staircase decay can also be applied to adjust step

size, achieving similar performance with the aforementioned

algorithms [8].

In this paper, the LMS-based equalization is accelerated by

exploiting a novel training sequence. Unlike the traditional

training sequence that is made up of independent and identi-

cally distributed (i.i.d.) samples, correlated samples generated

from a first-order Markov chain (MC) are utilized. It alters

the autocorrelation of the equalizer input signal and enables

rapid convergence. The performance of the proposed technique

is compared with the conventional i.i.d. sequence, where they

are both employed for training. Faster convergence is observed

in terms of tap coefficient adaptation and MSE. And lower

pre-forward-error-correction (pre-FEC) bit error rate (BER) can

be attained at a given training sequence length. An experimental

demonstration of a 43 Gbaud four-level PAM (PAM-4) signal

is conducted, where more than 70% training sequence length

reduction can be achieved for 5-km standard single mode fiber

(SSMF) transmission, and more than 48% reduction can be

achieved for 10-km SSMF transmission.

II. PRINCIPLES OF OPERATION

A. LMS Algorithm

For an N -tap equalizer adapted with LMS algorithm, the

equalizer input signal y(k) is often arranged into vectors of

length N :

y (k) = [y (k − (N − 1)/2) , . . . , y (k + (N − 1)/2)]T (1)

Here N is assumed to be an odd number. Let the equalizer tap

coefficients at instant k be w(k), and then the equalizer output

signal is

z (k) = w(k)Ty (k) (2)

where the superscript T denotes transpose. The tap coefficients

are updated according to

w (k + 1) = w (k) + µe (k)y (k) (3)

where µ is the step size and e(k) is the equalizer error calculated

using e (k) = x(k)− z(k), with x(k) being the training signal.

The optimal tap coefficients that achieve the minimum MSE

(MMSE) is

wopt = A−1b (4)

where A = E{y(k)y(k)T } is an N ×N autocorrelation ma-

trix, and b = E{y(k)x(k)} is an N × 1 cross-correlation

vector.

Since A is a symmetric matrix, it can be expressed as A =
UΛUT , where U is an orthonormal matrix whose column

vectors are the eigenvectors ofA, andΛ is a diagonal matrix with

elements equal to the eigenvalues of A. Define a transformed

tap coefficient error vector v(k) as

v (k) = UT (w (k)−wopt) (5)

Then it can be proven that [15]–[17]:

E {v (k + 1)} = (I − µΛ)E {v (k)} (6)

As iteration increases, v(k) decreases exponentially, and decay

rate of the i-th element is determined by the i-th eigenvalue

λi and the step size. To have E{v(k)} converge, the following

condition has to be met

|1− µλi| < 1, i = 1, 2, . . . , N (7)

Consequently,

0 < µ <
2

λmax
(8)

with λmax being the maximum eigenvalue. When there is a large

difference between λmax and λmin (the minimum eigenvalue),

having µ satisfy (8) slows down the convergence of the elements

with small eigenvalues. Therefore, eigenvalue spread, defined

as χ = λmax/λmin, determines the convergence rate of LMS

algorithm. χ is generally difficult to calculate, but it is bounded

by the dynamic range of the power spectrum P (ω) of y(k) [20],

i.e.,

χ ≤
max

−π≤ω<π
P (ω)

min
−π≤ω<π

P (ω)
(9)

The equality holds as N → ∞.

B. Correlated Training Sequence to Accelerate LMS-Based

Equalization

Both RLS algorithm and LMS adaptation with variable step

size focus on amending (3), either by replacing µ with an

estimate of A−1 or by having µ take different values at different

stages. The proposed method, on the other hand, aims at chang-

ing the eigenvalue spread of A. As (9) shows, smaller χ can be

obtained if the dynamic range of P (ω) reduces. Furthermore,

P (ω) = |H(ω)|2 |X(ω)|2, with H(ω) and X(ω) being the

channel response and the spectrum of the training signal. While

H(ω) is fixed, it is still possible to modify P (ω) by changing

X(ω). Since most of the bandlimited IM/DD systems behave as

low-pass filters, the training sequence should have more power

distributed at higher frequencies to “flatten” P (ω). A first-order

MC is employed to generate such a sequence and the transition

probability is

P (x (k + 1) = an|x (k) = am) =
1

Zm

eβ(an−am)2 (10)

where am and an are symbols from the signal alphabet, β is

a hyperparameter to tune the spectrum of x(k), and Zm is

a normalization factor to ensure that the probabilities sum to

1. When β = 0, it becomes the conventional i.i.d. process.

When β > 0, symbols with larger Euclidean distances from the

current symbol are transmitted at the next instant with higher

probabilities.
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Fig. 1. Transition matrices of the MC with (a) β = 0.03; (b) β = 0.07.

Fig. 2. PSDs of the sequences generated by the first-order MC when (a) β =

0; (b) β = 0.01; (c) β = 0.03; (d) β = 0.07.

Fig. 1 shows the transition matrices for PAM-4 sequences

with β = 0.03 and β = 0.07. In both cases, all the symbols

have the lowest probability to remain unchanged at the next

instant. Thus, the diagonal element achieves the minimum in

each row. For the symbols with negative amplitudes, the most

probable symbol at the next instant is 3, while it becomes −3 for

the symbols with positive amplitudes. Although the exponential

term eβ(an−am)2 is the same for the transitions from am to an
and from an to am, Zm are not necessarily equal as the symbol

at the current instant varies, and thus the transition matrix is

not symmetric. As β increases, the symbol “furthest” from the

current symbol gains higher probability to appear in the MC

sequence at the following instant. Conversely, the current symbol

itself has lower probability to be retransmitted. Fig. 2(a)–(d)

plot the power spectral densities (PSDs) of the MC sequences

when β are 0, 0.01, 0.03 and 0.07, respectively. The correlation

between symbols enhances the power at high frequencies, and

such spectral shaping becomes stronger with larger β.

TABLE I
EIGENVALUE SPREAD OF THE AUTOCORRELATION MATRIX

C. Simulations

To illustrate the effect of the proposed MC sequence in

the LMS-based equalization, simulations are conducted where

H(ω) is assumed to be fourth-order Bessel filters or Gaussian

filters with varying bandwidths. Additive white Gaussian noise

(AWGN) is added after the channel. A 15-tap T-spaced FFE is

employed to compensate the ISI. Table I listsχ of i.i.d. sequence

and MC sequence under various H(ω). 3-dB bandwidth of

H(ω) is normalized by the Nyquist bandwidth BWNyq (half

the symbol rate). The element at the i-th row and j-th column

of A is estimated by the Monte Carlo estimation:

A (i, j) =
1

L− |j − i|

L−|j−i|∑

k=1

y (k) y (k + |j − i|) (11)

where L is the length of the training sequence and is fixed

at 105 in the simulations. Each kind of sequence is generated

independently for 1000 times and χ reported in Table I is the

mean value of these 1000 sequences. For both kinds of filters,

χ of the i.i.d. sequence increases with the decrease of the 3-dB

bandwidth as a result of stronger bandwidth limitation. For the

MC sequence,χ depends on both β and the 3-dB bandwidth. For

the MC sequence withβ = 0.01, the relationship betweenχ and

the 3-dB bandwidth is similar to that of the i.i.d. sequence. On the

other hand, for the MC sequence with β = 0.07, χ increases as

the 3-dB bandwidth becomes larger. In all the cases considered in

Table I, there exists at least one MC sequence whoseχ is smaller

than that of the i.i.d. sequence and the reduction becomes greater

when the bandwidth limitation becomes more severe.

All the tap coefficients of the 15-tap FFE is initialized to 0,

except for the center tap, which is initialized to 1. Fig. 3(a) and

(b) respectively plot the value of the center tap and the MSE

versus the number of iterations when H(ω) is a fourth-order

Bessel filter with 3-dB bandwidth of 0.4 BWNyq . The training

sequence is an i.i.d. sequence or an MC sequence withβ = 0.07.

It can be clearly seen that the smaller χ of the MC sequence

results in faster convergence. It takes the center tap fewer it-

erations to converge and the MSE decreases at a faster speed.

Furthermore, as shown in Fig. 4, there is negligible difference

between the converged tap coefficients of these two kinds of

training sequences. Thus, the tap coefficients trained by the MC
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Fig. 3. (a) Amplitude of the center tap versus the number of iterations.
(b) MSE versus the number of iterations.

Fig. 4. Tap coefficients after reaching convergence.

sequence can be applied to channel equalization when i.i.d. data

are transmitted.

It is worth mentioning that by exploiting the MC, the prob-

ability distribution of the symbols is also shaped. In the case

of PAM-4 sequence, −3 and 3 have higher probabilities than

−1 and 1. However, the probabilistic shaping itself does not

contribute to a faster convergence since the spectrum remains

unchanged. For the example considered in Table I, if the MC

sequence is randomly shuffled before transmission, which pro-

duces a sequence with a white spectrum and the same probability

distribution with the original MC sequence, similar χ to that of

the i.i.d. sequence is observed. Consequently, the shuffled MC

sequence has a similar convergence rate with the i.i.d. sequence

and cannot accelerate the equalizer training as the unshuffled

MC sequence does.

III. EXPERIMENTAL SETUP

Fig. 5(a) shows the experimental setup. A 43 Gbaud PAM-4

signal is generated offline and pulse shaped by a root-raised-

cosine (RRC) filter with a roll-off factor of 0.1. The digital signal

is converted to an analog waveform by an arbitrary waveform

generator (AWG, Keysight M8195A) at 64 GSa/s with an analog

bandwidth of 25 GHz. The generated signal is amplified by a

35-GHz driver amplifier and modulated onto a 1550-nm optical

carrier via a 40-GHz Mach-Zehnder modulator (MZM) biased

at the quadrature point. The modulated optical signal is trans-

mitted over a 5-km or 10-km SSMF. A variable optical atten-

uator (VOA) adjusts the received optical power (ROP) before

a 11-GHz photodetector (PD) with integrated amplifiers. The

Fig. 5. (a) Experimental setup. (b) Frequency response of the transmission
system with a 5-km SSMF (LD: Laser diode).

detected signal is captured for offline DSP by a digital storage

scope (DSO, Keysight DSOZ254A) with an analog bandwidth of

25 GHz at 80 GSa/s. The frequency response of the transmission

system with a 5-km SSMF is shown in Fig. 5(b). The 6-dB

bandwidth is about 10 GHz.

The transmitted sequence consists of an i.i.d. training se-

quence or an MC training sequence followed by a data sequence

with 1.5×105 i.i.d. PAM-4 samples with uniform distribution.

As mentioned in Section II.C, the probability distribution of the

PAM-4 symbols is not uniform in the MC sequence, resulting

in higher average power. For fair comparison, the MC sequence

is normalized to have the same average power with the i.i.d.

sequence before transmission. In the receiver-side DSP, the re-

ceived signal is first resampled to 2 samples per symbol, and then

equalized by a T/2-spaced FFE for 5-km SSMF transmission or a

T/2-spaced FFE+T-spaced DFE for 10-km SSMF transmission.

Throughout the experiments, the center-tap initialization that has

been used in the simulation is adopted for the FFE. For the DFE,

the first tap is initialized to −1 and the other taps are initialized

to 0. BER calculation is conducted after the channel equalization

using only the data sequence.

IV. RESULTS AND DISCUSSION

A. 5-km SSMF Transmission

Hyperparameterβ is first fixed at 0.07 and the FFE has 61 taps.

Fig. 6 shows the PSDs of the received training sequences. After

transmitting over the link, the spectrum of the MC sequence

has a smaller dynamic range due to the spectral shaping at the

transmitter. Fig. 7 plots the MSE versus the number of iterations.

Again, the MC training sequence has a faster speed of conver-

gence, achieving lower MSE after the same number of iterations.

Such improvement in MSE can be translated into improvement

of BER. Fig. 8(a) and (b) show the pre-FEC BER versus the

length of the training sequence at ROPs of −2.7 dBm and

−6.7 dBm, respectively. For both kinds of training sequences,

pre-FEC BER decreases as there are more training symbols
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Fig. 6. PSDs of the received i.i.d. sequence and the received MC sequence
after 5-km SSMF.

Fig. 7. MSE versus the number of iterations.

involved in the tap coefficients adaptation. At a fixed training

sequence length, the MC sequence has a lower pre-FEC BER.

Fig. 8(c) and (d) depict the pre-FEC BER versus ROP when the

training sequence lengths are 150 and 4000, respectively. If the

i.i.d. training sequence has only 150 symbols, the tap coefficients

are still far from the optimal solution and there is severe ISI in the

equalized signal, as can be seen from the eye diagram shown in

Fig. 8(e) and the histogram shown in Fig. 8(f). The performance

is dominated by the residual ISI and increasing ROP cannot bring

about improvement. Contrarily, the FFE acts more effectively to

eliminate ISI when it is trained by the MC sequence with 150

symbols. Consequently, pre-FEC BER decreases with higher

ROP. The eye diagram and the histogram at an ROP of −2.7

dBm are illustrated in Fig. 8(g) and (h), respectively. When the

length of the training sequence is increased to 4000, the residual

ISI for both i.i.d. sequence and MC sequence becomes smaller

and the noise dominates the performance. Still, the pre-FEC

BER of the MC sequence is lower at all the measured ROPs,

with slightly higher performance gain at higher ROP.

Table II summarize the reductions in training sequence length

of the MC sequence compared with the i.i.d. sequence at various

FEC thresholds. At a fixed ROP, the improvement of adopting

the MC training sequence generally becomes larger as the con-

sidered FEC threshold becomes lower. For instance, at an ROP

of −2.7 dBm, the length of the training sequence can be reduced

by 72.63% at the FEC threshold of 1.25×10−2, while it increases

Fig. 8. Pre-FEC BER versus training sequence length at ROPs of (a) −2.7
dBm and (b) −6.7 dBm; pre-FEC BER versus ROP when the training sequence
lengths are (c) 150 and (d) 4000; (e) and (f) Eye diagram and histogram of
the equalized data sequence at an ROP of −2.7 dBm with a 150-symbol i.i.d.
training sequence; (g) and (h) Eye diagram and histogram of the equalized data
sequence at an ROP of −2.7 dBm with a 150-symbol MC training sequence.

TABLE II
TRAINING SEQUENCE LENGTH REDUCTION FOR 5-KM SSMF TRANSMISSION

to 93.20% at the FEC threshold of 3.15×10−3. For all the cases

listed in Table II, more than 70% reduction can be achieved with

the MC training sequence.

To further verify that the change in the probability distribution

does not lead to improvement, the shuffled MC sequence de-

scribed in Section II.C is also utilized for training. The pre-FEC
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Fig. 9. Pre-FEC BER versus the number of FFE taps for (a) i.i.d. training
sequence and (b) MC training sequence.

Fig. 10. Pre-FEC BER versus the number of FFE taps when the training
sequence lengths are (a) 150 and (b) 800.

BER versus the length of the training sequence is plotted in

Fig. 8(a) and (b), where it is labelled as “SHUFF”. The shuf-

fled MC sequence achieves similar BER with the i.i.d. PAM-4

sequence under a given training sequence length at an ROP of

−2.7 dBm, and slightly worse BER at a lower ROP of −6.7

dBm.

The performance of the LMS-based equalization also depends

on the number of FFE taps. If the training sequence is adequately

long, the BER can be improved by increasing the number of

FFE taps. Fig. 9 shows the pre-FEC BER versus the number

of FFE taps in such a scenario, where there are 2×104 samples

in the training sequence. Fig. 9(a) and (b) are the results for

i.i.d. sequence and MC sequence, respectively. The BERs of

a 61-tap FFE that have been shown before are illustrated with

empty circles. The relationships between BER and the number

of FFE taps are similar at ROPs of −2.7 dBm, −4.7 dBm and

−6.7 dBm, where the BER decreases as the number of FFE taps

becomes larger. However, this relationship would change if the

length of the training sequence is limited. Fig. 10(a) and (b)

depict the pre-FEC BER versus the number of FFE taps at an

ROP of −2.7 dBm, when the training sequences have 150 and

800 symbols, respectively. The BER first decreases and then

increases as the number of FFE taps increases from 21 to 85.

This is because although increasing the number of FFE taps can

improve the capability to mitigate channel distortion, it would

slow the rate of convergence at the same time. No matter which

Fig. 11. Pre-FEC BER versus hyperparameter β.

FFE is selected, the MC sequence offers a better choice for

training since it achieves lower BER in all the cases.

Another factor that affects the performance of the MC se-

quence is the hyperparameter β. The pre-FEC BERs at different

β are shown in Fig. 11, in which the ROP is −2.7 dBm and

the number of FFE taps is 61. Training sequences with 150

and 400 symbols are considered. In both cases, lower BER

compared with the i.i.d. sequence can already be observed at

β = 0.01. And it gets further reduced as β becomes larger

until 0.07. After 0.07, the BER gets worse with higher β. This is

mainly because the eigenvalue spread, on the other hand, will be

increased if the spectral shaping is too strong. It can also be seen

from Table I, where the MC sequences with β of 0.03 and 0.07

have higher eigenvalue spreads than that of the i.i.d. sequence

when the 3-dB bandwidth of the channel is 0.6 BWNyq . The

performance discrepancy between MC sequences with different

β gets smaller as the length of the training sequence increases. In

real bandlimited IM/DD systems, β can be selected according to

the electrical bandwidth of the deployed components. A larger β
should be chosen as the bandwidth limitation becomes stronger.

B. 10-km SSMF Transmission

Fig. 12 depicts the PSDs of the received signals after 10-km

SSMF transmission. The spectral null at around 19.6 GHz is

due to the power fading induced by chromatic dispersion. β is

0.07 in the MC sequence and its spectrum again has a smaller

dynamic range. The channel equalization is fulfilled with a

77-tap FFE + 12-tap DFE. To mitigate the error propagation

of the DFE, joint symbol decision proposed in [14] is adopted.

When the Euclidean distance between the output of the equalizer

and the output of a decision device is larger than 0.5, the

symbol-wise decision is regarded as unreliable and 6 following

symbols are utilized for joint decision. To calculate the equalizer

output for the following symbols, all possible combinations of

PAM-4 symbols are used in the DFE part. The combination

that yields the smallest sum of squared distance between the

equalizer outputs and the assumed symbol decisions is selected.

Fig. 13(a) and (b) illustrate the PSDs of the equalized i.i.d.

sequence and the equalized MC sequence when the sequences
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Fig. 12. PSDs of the received i.i.d. sequence and the received MC sequence
after 10-km SSMF.

Fig. 13. PSDs of the equalized (a) i.i.d. sequence; (b) MC sequence.

Fig. 14. Pre-FEC BER versus training sequence length at ROPs of (a) −1.9
dBm and (b) −4.9 dBm.

are sufficiently long. The spectral null is successfully removed

through channel equalization.

The pre-FEC BER versus the length of the training sequence

at ROPs of −1.9 dBm and −4.9 dBm are plotted in Fig. 14(a)

and (b), respectively. Compared to the case of 5-km SSMF, more

training symbols are required since the equalizer exploits more

taps to recover the severe distortion. The MC sequence achieves

lower BER at both ROPs and the reductions of training sequence

length are summarized in Table III. At the FEC threshold of

1.25×10−2, the reductions are generally larger at higher ROPs.

54.02% fewer training symbols are required when the ROP is

−4.9 dBm, while it becomes 72.19% at an ROP of −1.9 dBm.

Fig. 15 plots the pre-FEC BER versus β when the ROP is

−1.9 dBm and the training sequence has 1000 symbols. The

TABLE III
TRAINING SEQUENCE LENGTH REDUCTION FOR 10-KM SSMF TRANSMISSION

Fig. 15. Pre-FEC BER versus hyperparameter β.

BER of the i.i.d. sequence is shown with dashed line. The MC

sequence has better BER than i.i.d. sequence as β varies from

0.01 to 0.11. And the MC sequence with β of 0.07 still achieves

the best performance.

V. CONCLUSION

In this paper, a training sequence is proposed to accelerate

the LMS-based equalization in bandlimited IM/DD systems.

The sequence is generated with a first-order MC that introduces

correlation between samples and enhances the power at high

frequencies. Compared with the traditional i.i.d. sequence with

a white spectrum, the MC sequence can reach the convergence

with fewer iterations and achieve lower pre-FEC BER with a

fixed training sequence length. Experimental results show that

to transmit a 43 Gbaud PAM-4 signal over a system of 5-km

SSMF and 6-dB bandwidth about 10 GHz, the length of the

training sequence can be reduced by more than 70%. When a

10-km SSMF is utilized and the signal suffers from severe power

fading induced by chromatic dispersion, the training sequence

length can be reduced by more than 48%.
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