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Abstract. This paper proposes a new formulation for the school bus scheduling problem
(SBSP), which optimizes school start times and bus operation times tominimize transporta-
tion cost. The goal is to minimize the number of buses to serve all bus routes such that each
route arrives in a time window before school starts. We show that introducing context-
specific features, common in many school districts, can lead to a new time-indexed integer
linear programming (ILP) formulation. Based on a strengthened version of the linear relax-
ation of the ILP, we develop a dependent randomized rounding algorithm that yields
near-optimal solutions for large-scale problem instances. The efficient formulation and sol-
ution approach enable quick generation of multiple solutions to facilitate strategic plan-
ning, which we demonstrate with data from two public school districts in the United
States. We also generalize our methodologies to solve a robust version of the SBSP.
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1. Introduction
Public school districts across the United States face
critical budget challenges (Bidwell 2015) and transpor-
tation is a common area to look for cost reduction.
School districts can often lower transportation cost by
staggering school start times, which allows the district
to complete more than one route with a single bus.
The marginal cost of reusing a bus for a second route
is significantly lower than that of adding a new bus.
In this paper, we study the problem of jointly deter-
mining school start times and bus route operation
times to minimize total buses needed.

The school bus routing problem (SBRP) has been
extensively studied (Newton and Thomas 1969, Des-
rosiers et al. 1980, Park and Kim 2010). The SBRP con-
sists of two groups of subproblems: routing and
scheduling. The routing subproblems select bus stops,
assign students to stops, and connect stops into bus
routes. This paper focuses on the scheduling subpro-
blems, which determine school start times, bus route
operation times, and route-to-bus assignment. We use
the term “school bus scheduling problem” (SBSP)
from Fügenschuh (2009) to represent the joint problem
of determining school start times, bus route operation
times, and route-to-bus assignment.

Problem 1 (School Bus Scheduling Problem). Given a
set of schools and a set of routes for each school, the
school bus scheduling problem determines the start
times of schools and the arrival times of routes such
that each route arrives in a time window before school
starts. After school start times and route arrival times
are determined, routes are assigned to buses such that
routes assigned to the same bus operate on disjoint
time intervals. The goal is to minimize the number of
buses needed to complete all the routes.

The SBSP can be shown to be NP-hard by a reduc-
tion from the balanced partition problem (Garey and
Johnson 2002). Prior work has identified exact and heu-
ristic algorithms for the SBSP, such as column genera-
tion (Desrosiers et al. 1986), cutting planes (Fügenschuh
2009), and neighborhood search (Bertsimas et al. 2019).
Although exact algorithms perform well on small in-
stances, computational challenges arise as the problem
scale increases, which can become an issue with large
school districts. Heuristic algorithms scale well but typi-
cally lack theoretical guarantees.

Motivated by collaborations with two public school
districts, we use context-specific features, common in
many school districts in the United States, to develop
a new formulation of the SBSP. These features, that
appear in both collaborations, are as follows:
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1. Bus routes are assumed to be given. Our collabo-
rations focus on the impact of changing school start
times and bus operation times on transportation
costs. In contrast, Desrosiers et al. (1986), Spada et al.
(2005), Bertsimas et al. (2019) consider changing both
bus routes and school start times to potentially bring
larger savings.

2. Each bus route is assumed to serve only one school.
In contrast, several papers (Fügenschuh 2009; Park, Tae,
and Kim 2012; Campbell, North, and Ellegood 2015;
Ellegood, Campbell, and North 2015) study the “mixed
load” problem where one bus route can serve students
frommultiple schools.

3. The transition time between routes is assumed to
be constant. In contrast, several papers (Fügenschuh
2009; Kim, Kim, and Park 2012; Chen et al. 2015) allow
transition times that depend on school locations. We
also present a modification for location-dependent
transition times.

As noted, more general versions of the SBSP exist in
the literature. However, we show that incorporating
context-specific features leads to a new approach to
solve the SBSP that scales well and has a provable per-
formance guarantee. Having a fast solution technique
with a provable performance guarantee allows deci-
sion makers to more easily incorporate the impact on
transportation cost into strategic planning decisions.
Our approach provides decision makers with a set of
low transportation cost solutions from which they can
select one that best satisfies a variety of other require-
ments. As a result, our work aims to support strategic
planning, in contrast to more operationally focused
work designed to provide immediately actionable
plans.

Severalpapers (Lenstra, Shmoys,Tardos1990; Shmoys
and Tardos 1993; Schulz 1996) in the scheduling litera-
ture have used LP relaxations of suitable ILP formula-
tions to develop efficient approximation algorithms
with good lower bounds. Following this approach, we
formulate the SBSP as a time-indexed integer linear pro-
gram (ILP) where binary variables indicate school start
times and route arrival times. We strengthen the time-
indexed ILP by adding inequalities that fully character-
ize the convex hulls of variable subspaces and show that
the strengthened formulation has a bounded integrality
gap. We then develop an efficient randomized rounding
algorithm that is near-optimal for large-scale instances.
The randomized algorithm provides multiple high-
quality solutions, which can be used by decision makers
to consider additional factors (e.g., Banerjee and Smilo-
witz (2019) which incorporates equity in start time deci-
sions) when selecting the solution to implement.

The main contributions of this paper are as follows:
1. We develop a new time-indexed ILP formulation

for the SBSP. Based on the LP relaxation of the ILP,
we propose a randomized rounding algorithm with a

bounded performance guarantee that provides multi-
ple high-quality solutions efficiently. Our approach
enables school districts to quickly estimate the impact
on transportation cost of different plans when consid-
ering school start time changes. Providing multiple sol-
utions allows decision makers to incorporate external
considerations while maintaining low transportation
cost.

2. We are able to solve small SBSP instances to opti-
mality using this ILP formulation. For larger instances,
we prove that the randomized rounding algorithm is
near-optimal. The near-optimality of our algorithm
provides accurate estimates of potential cost-saving of
different policies, allowing decision makers to focus on
the most promising plans. With our context-specific
features, this approach yields better solutions faster
than existing approaches.

3. Using data from two public school districts, one
moderate and one large, we demonstrate how decision
makers can use this approach for strategic planning.

4. We generalize our findings for a robust version of
the SBSP. Robustness is critical in school bus schedul-
ing because school start times cannot be redesigned fre-
quently, yet bus routes may vary from year to year.
From a strategic planning perspective, districts are
interested in school start time plans that remain consis-
tent over time and still lower transportation cost.

The paper is organized as follows. In Section 2 we
review related literature. In Section 3 we present a
time-indexed ILP for the SBSP, which is strengthened
with valid cuts. In Section 4, we develop a random-
ized rounding algorithm based on the strengthened
LP-relaxation that is provably near-optimal for large-
scale instances. Our methodology is generalized in
Section 5 for a robust version of the SBSP. In Section 6,
we present a case study with partnering school dis-
tricts and a numerical analysis to complement our the-
oretical findings. We also generalize our approach for
location-dependent transition times. We summarize
results and discuss future work in Section 7.

2. Literature Review
We summarize related literature in school bus sched-
uling and link the SBSP to two other combinatorial
optimization problems: the machine scheduling prob-
lem and the bin packing problem.

2.1. School Bus Scheduling Problem
As a part of the school bus routing problem, the SBSP
specifies school start times and route arrival times to
maximize bus usage. Special cases of the SBSP have
been extensively studied in the literature. When route
arrival times are fixed, the problem can be formulated
as an assignment problem (Gavish, Schweitzer, and
Shlifer 1978; Carraresi and Gallo 1984). When arrival
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times are not fixed, Orloff (1976) proves that the prob-
lem is NP-complete. When school start times are fixed,
Swersey and Ballard (1984) present a mixed-integer
programming (MIP) formulation to determine opti-
mal route arrival times. The MIP formulation is fur-
ther simplified to an integer programming (IP) formu-
lation by discretizing the timeline into unit intervals.
Kim, Kim, and Park (2012) studies the SBSP in which
schools have fixed time windows within which routes
must be finished. The authors show that when route
operation times are fixed, the problem is equivalent to
an assignment problem, and can be solved to optimal-
ity in polynomial time.

For the general SBSP, Desrosiers et al. (1986) deter-
mine school start times and route arrival times sequen-
tially. They formulate the problem as a min-max
binary program that minimizes the maximum number
of routes operating during the same time period. The
formulation is solved using column generation for
small-sized instances. For large-scale instances, they
present a heuristic that alternately updates school start
times and route arrival times. Fügenschuh (2009) stud-
ies a general model for school bus scheduling where
bus routes are allowed to serve multiple schools. The
author uses a branch-and-cut algorithm to solve an IP
formulation that determines school start times and
route arrival times simultaneously. More recently,
Köksal Ahmed et al. (2020) develop a reinforcement
learning based genetic algorithm to provide fast solu-
tion to the SBSP. Banerjee and Smilowitz (2019) use a
variant of the time-indexed formulation developed in
this paper to incorporate equity (defined by the disutil-
ity associatedwith changing school start times).

Spada, Bierlaire, and Liebling (2005) consider bus
route generation and bus scheduling, providing an
initial feasible solution by solving an IP, which is then
improved using heuristics. Bertsimas, Delarue, and
Martin (2019) construct a set of routing scenarios for
each school using a biobjective routing decomposition
algorithm, and then formulate the school bell selection
problem as a generalized quadratic assignment prob-
lem (the formulation is introduced in Wenzel (2016)).
They implement their algorithms in collaboration
with the Boston Public Schools, leading to $5 million
savings per year.

In contrast to previous work which covered more
general SBSP settings, we focus on leveraging context-
specific features common in many school districts to
develop efficient approaches with provable perform-
ance guarantees to support strategic decision making.

2.2. Machine Scheduling and Bin Packing
Our work is related to machine scheduling problems
where jobs with higher priority must arrive (or end)
earlier than others. Ikura and Gimple (1986) study the
batched scheduling problem where jobs in the same

batch have the same priority. A simplified version of
the SBSP (where each route arrives exactly at the
school’s start time) can be restated as the batched
machine scheduling problem where routes in the
same school have the same priority. The SBSP is also
similar in spirit to the one-dimensional bin packing
problem (De La Vega and Lueker 1981; Scholl, Klein,
and Jürgens 1997) where objects are bus routes, and
bins are buses. The constraints on route arrival times
can be transformed to constraints on objects’ relative
locations.

3. Integer Linear Programming
Formulation for the SBSP

We introduce a time-indexed SBSP formulation, which
is then strengthened to support a randomized round-
ing algorithm, presented in Section 4.

3.1. Preliminaries
We use the following notation throughout the paper.
Let S be a set of schools and let R � ∪s∈SRs be a set of
routes, where Rs is the set of routes for school s. We
assume that each route only serves one school so that
Rs ∩Rs′ � ∅, ∀s≠ s′. We discretize the timeline into T
unit intervals and assume that each school (route)
chooses a start (arrival) time from [T] � {1, 2, : : : ,T}.
For each school s, ls ∈ N represents the length of the
time window during which its routes must arrive.
Specifically, if school s starts at time ts, all routes for
this school must arrive in the interval [ts − ls, ts] ([1, ts]
if ts − ls ≤ 0). Finally, we use ri ∈ N to denote the travel
time of route i.

We assume constant transition times between
routes, which allow us to leverage structural informa-
tion and design fast algorithms with provable bounds.
In Section 6, we generalize our approach, albeit with-
out provable bounds, for more general settings with-
out constant transition times.

The moderately sized school district with whom we
collaborate is fairly compact such that constant transit
time between routes is reasonable. The larger school
district also assumes constant transition times in their
analysis of school start times. They do so because their
aim to limit buses to operate within compact subre-
gions of the geographically dispersed district results
in significantly smaller ranges of bus transition times
compared with route travel and stopping times.

In what follows, the constant transition time is added
to the beginning of each route (e.g., a 30-minute route
with 10-minute transition becomes a 40-minute route)
and we assume that there is no transition time between
routes. School bell times are not affected because they
are only related to the arrival time of routes. In practice,
the transition time should not be added to the first route
taken by each bus. However, adding the same time to
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each route (including the first route for each bus) will
not affect the optimal solution. The time added to the
first route can be viewed as the travel time from the
depot to the first stop, which does not affect the route
connection pattern.

3.2. A Time-Indexed Formulation for the SBSP
Time-indexed formulations have been widely applied
to scheduling problems to obtain strong lower bounds
(Dyer and Wolsey 1990, Sousa and Wolsey 1992,
Queyranne and Schulz 1994). The time horizon is div-
ided into unit time periods, and binary variables indi-
cate job start/end times.

Similar to Desrosiers et al. (1986), we develop a time-
indexed SBSP formulation where binary variables
indicate school start times and route arrival times. The
novelty of our formulation is a set of constraints that
captures the relation between school start times and
route arrival times. We start with an observation from
Desrosiers et al. (1986) that transforms the minimum
number of buses to an easy-to-compute quantity.

Proposition 1 (Desrosiers et al. 1986). Given a set of
routes with fixed operation times, the minimum number of
buses to complete all the routes is equal to the maximum
number of routes in operation during the same time period.

Given the arrival time of each route, Proposition 1
states that the minimum number of buses required
can be computed by dividing the timeline into unit
intervals and counting the number of routes in opera-
tion during each interval. From Proposition 1, the
minimum number of buses required to serve all
routes is equal to the maximum number recorded
over all intervals. Moreover, with fixed route opera-
tion times, the route-to-bus assignment problem is
equivalent to an interval graph coloring problem,
which can be solved in polynomial time (see Olariu
(1991) for details). Motivated by this observation, we
introduce a time-indexed formulation in which the
maximum number of routes in operations during the
same unit interval is minimized.

For route i ∈R and time t ∈ [T], let xi,t be a binary
variable such that xi,t � 1 if route i arrives at time t.
For school s ∈ S and time t ∈ [T], we introduce a
binary variable ys,t such that ys,t � 1 if school s starts
at time t. The variables are defined based on route
arrival times and school start times for notational
convenience. We extend the definition of x, y varia-
bles to t ∉ [T] and define that xi,t � 0,yi,t � 0 if t ∉ [T].
The SBSP can be formulated as follows (formulation
ILP1).

min z (ILP1)

s:t:
∑T
t�1

xi,t � 1 ∀i ∈Rs, s ∈ S (1a)

∑T
t�1

ys,t � 1 ∀s ∈ S (1b)

xi,t ≤
∑min{t+ls,T}

t′�t
ys,t′ ∀i ∈Rs, s ∈ S, t ∈ [T] (1c)

∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′ ≤ z ∀t ∈ [T] (1d)

xi,t ∈ {0, 1} ∀i ∈Rs, s ∈ S, t ∈ [T] (1e)

ys,t ∈ {0, 1} ∀s ∈ S, t ∈ [T] (1f)

Assignment constraints (1a) and (1b) ensure that each
route (school) is assigned to one arrival (start) time.
Time-window constraints (1c) enforce that each route
arrives in a time window before school starts. Con-
straints (1d) link the decision variables to the objective
by Proposition 1. For each t ∈ [T], the left-hand side of
(1d) computes the number of routes in operation dur-
ing unit interval [t− 1, t]. By introducing a constraint
for each t ∈ [T], (1d) implies that the objective z is
equal to the maximum number of routes in operation
during the same unit time interval.

Formulation ILP1 can incorporate restrictions on
school start times and route operation times by fixing
some decision variables. For example, if school s can-
not (must) start at time t, we can add a constraint as
ys,t � 0 (ys,t � 1.) As shown in Section 4, incorporating
these restrictions does not affect the theoretical per-
formance guarantee of our solution approach.

Although the time-indexed formulation is known to
provide better bounds, its large size makes it hard to
solve directly to optimality. There are (|R | + |S |)T binary
variables in ILP1. For a districtwith 20 schools, 100 routes
and T � 120 (two-hour time horizon divided into one-
minute intervals), this requires solving an ILP with
14,400 variables (and even more constraints). Even with
school start times restricted to multiples of five minutes,
the number of binary variables still exceeds 12,000. Thus,
we first strengthen the LP-relaxation of ILP1 by adding
valid cuts. As shown in Section 4, although the problem
size increases after adding valid cuts, we obtain high-
quality solutions from the strengthened LP-relaxation
of ILP1. In Section 6, we use a numerical study to show
that the strengthened formulation provides tight lower
bounds in practice.

3.3. A Strong Integer Linear Programming
Formulation

Observe that ILP1 has a semidecomposable structure in
that all its constraints, except for (1d), only contain vari-
ables for a single school. By suitably reordering the vari-
ables and constraints, ILP1 exhibits the block-structure
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shown in Figure 1. For each school s ∈ S we define

Vs � {(xi,t,ys,t) | i ∈Rs, (xi,t,ys,t) satisfies (1a), (1b), (1c),
(1e), and (1f)}:

Vs can be interpreted as the set of variables satisfying
the block of constraints for school s in Figure 1. Hence,
ILP1 can be rewritten as

min z

s:t:
∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′ ≤ z ∀t ∈ [T]

(xi,t, ys,t) ∈ Vs ∀s ∈ S

A natural way to strengthen the LP-relaxation of ILP1
is by completely defining Conv(Vs), the convex hull of
Vs. The following theorem provides a complete char-
acterization of Conv(Vs).
Theorem 1 (Convex Hull of Vs). For any s ∈ S, Conv(Vs)
� Cs, where Cs is a convex polytope defined by the following
constraints:

(C1).
∑T

t�1 xi,t � 1, ∀i ∈Rs

(C2).
∑T

t�1 ys,t � 1, ∀s ∈ S

(C3).
∑t

t′�1 xi,t′ ≤∑min{t+ls,T}
t′�1 ys,t′ , ∀i ∈Rs, t ∈ [T]

(C4).
∑t

t′�1 ys,t′ ≤∑t
t′�1 xi,t′ , ∀i ∈Rs, t ∈ [T]

(C5). 0 ≤ xi,t ≤ 1, ∀i ∈Rs, t ∈ [T]
(C6). 0 ≤ ys,t ≤ 1, s ∈ S, ∀t ∈ [T].

(C1) − (C2) are the assignment constraints, and (C5) −
(C6) are relaxations of the integrality constraints.
(C3) − (C4) combined can be viewed as a stronger
form of the time-window constraint (1c). Specifically,
for any school s and route i ∈Rs, (C3) implies that the
start time of s is no later than the arrival time of i plus
a time-window length ls. (C4) implies that the arrival
time of i is no later than the start time of s.

Proof of Theorem 1. We first prove that Conv(Vs)
⊆ Cs, ∀s ∈ S. Because the set of extreme points of
Conv(Vs) is exactly Vs, it suffices to show that Vs ⊆ Cs.

This is equivalent to showing that any (xs,ys) ∈ Vs sat-
isfies (C1) − (C6). It is easy to see that (C1), (C2), (C5)
and (C6) follow from the assignment constraints
(1a)–(1b), and the binary constraints (1e)–(1f). It re-
mains to show that (xs, ys) satisfies (C3) and (C4) as
well.

For any (xs,ys) ∈ Vs and i ∈Rs, let ti, ts ∈ [T] be indices
such that xi,ti � 1 and ys,ts � 1. In constraint (1c), let t � ti.
We have 1 ≤∑min{ti+ls,T}

t′�ti ys,t′ , implying that ti ≤ ts ≤ ti + ls:
Note (C3) and (C4) can be derived from ts ≤ ti + ls and
ti ≤ ts, respectively. Thus, (xs, ys) satisfies (C1) − (C6).
We next prove that Cs ⊆ Conv(Vs), ∀s ∈ S. As a first

step, we show that every integral point in Cs is also in
Vs. For any integral (xs,ys) ∈ Cs and i ∈Rs, let ti, ts ∈
[T] be indices such that xi,ti � 1 and ys,ts � 1. Con-
straints (C3) and (C4) imply that ts ≤ ti + ls and ti ≤ ts,
which together indicate that (xs, ys) satisfies (1c).
Because (1a), (1b), (1e), and (1f) naturally follow from
(C1), (C2), (C5), and (C6), we have (xs,ys) ∈ Vs.

Now consider the linear projection f : Cs → Ps defined
by

f (xs,ys) � (Xs,Ys) where Xi,t �
∑t
t′�1

xi,t′

and Ys,t �
∑t
t′�1

ys,t′ ,

and Ps is the polytope defined by the following linear
inequalities:

(P1)Xi,T � 1, ∀i ∈Rs
(P2) Ys,T � 1, ∀s ∈ S
(P3)Xi,t ≤ Ys,min{t+ls,T}, ∀i ∈Rs, t ∈ [T]
(P4) Ys,t ≤ Xi,t, ∀i ∈Rs, t ∈ [T]
(P5) 0 ≤ Xi,t ≤ Xi,t+1, ∀i ∈Rs, t ∈ [T − 1]
(P6) 0 ≤ Ys,t ≤ Ys,t+1, ∀s ∈ S, t ∈ [T − 1].
The linear constraints (P1) − (P6) correspond to

(C1) − (C6) by transforming (x, y) variables to (X, Y)
variables. It is easy to verify that the inverse projection

Figure 1. Block-Structure of ILP1
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f−1 : Ps → Cs exists, and is linear:

f−1(Xs,Ys) � (xs,ys) where xi,t � Xi,t −Xi,t−1
and ys,t � Ys,t −Ys,t−1: (1)

Here we define Xi,0 � 0, Ys,0 � 0.
Moreover, thematrix containing (P1) − (P6) is totally

unimodular because it has no more than two nonzero
entries in each column (constraint) and every column
(constraint) that contains two nonzero entries has
exactly one + 1 and one –1 (Keller and Tompkins 1956).
Because the matrix defined by (P1) − (P6) is totally
unimodular, all extreme points of Ps are integral.

For any (x̃s, ỹs) ∈ Cs, note that f (x̃s, ỹs) ∈ Ps. By repre-
senting f (x̃s, ỹs) as a linear combination of extreme
points of Ps, we have

(x̃s, ỹs) � f−1( f (x̃s, ỹs))

� f−1
∑K
k�1

λkpk

( )

�∑K
k�1

λk f−1(pk)

where each λk is nonnegative,
∑K

k�1λk � 1, and all pk
are integral extreme points of Ps. The last step applies
the linearity of f−1. Figure 2 visualizes each step of the
projection.

From Equation (1), f−1(pk) ∈ Cs is also integral given
that pk is integral for every k. Thus (x̃s, ỹs) can be writ-
ten as a convex combination of integral points in Cs.
Because these integral points are also in Vs, (x̃s, ỹs)
must be in the convex hull of Vs, which immediately
implies Cs ⊆ Conv(Vs). This completes the proof of
Theorem 1. w

With Theorem 1, we obtain formulation ILP2 by
replacing (1c) in ILP1 with (C3) and (C4).
min z (ILP2)

s:t:
∑T
t�1

xi,t � 1 ∀i ∈Rs, s ∈ S (2a)

∑T
t�1

ys,t � 1 ∀s ∈ S (2b)

∑t
t′�1

xi,t′ ≤
∑min{t+ls,T}

t′�1
ys,t′ ∀i ∈Rs, s ∈ S, t ∈ [T] (2c)

∑t
t′�1

ys,t′ ≤
∑t
t′�1

xi,t′ ∀i ∈Rs, s ∈ S, t ∈ [T] (2d)

∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′ ≤ z ∀t ∈ [T] (2e)

xi,t ∈ {0, 1} ∀i ∈Rs, s ∈ S, t ∈ [T] (2f)
ys,t ∈ {0, 1} ∀s ∈ S, t ∈ [T] (2g)

As a remark on Theorem 1, we note that for instances
with external constraints on start time of schools and
arrival time of routes, we can redefine set Vs by add-
ing constraints (corresponding to the external con-
straints) in the form of: xi,t � 0 or ys,t � 0. Polytope Ps

can be redefined in a similar way, by adding con-
straints in the form of Xi,t−1 � Xi,t,Yi,t−1 � Yi,t. Incorpo-
rating these equality constraints does not affect the
totally unimodularity of the matrix that defines Ps.
Each equality constraint has one term with coefficient
+1 on the left-hand side and one term with coefficient
+1 on the right-hand side, which satisfies the condi-
tion for totally unimodular matrix in Keller and
Tompkins (1956). For problem instances with external
constraints on school start times and route arrival
times, ILP2 (plus linear constraints corresponding to
external constraints) remains a valid strengthened
formulation.

4. Randomized Rounding Algorithm for
the SBSP

We develop a dependent randomized rounding algo-
rithm for the SBSP based on the LP relaxation of ILP2.
Banerjee et al. (2021) observe that such algorithms
work well on routing problems. Our algorithm con-
structs a feasible integral solution to ILP2 based on a
fractional optimal solution of the LP relaxation of ILP2.
We show in Theorem 2 that the optimality gap of the
resulting integral solution is bounded by the square
root of the optimal solution value. We show in Corol-
lary 1 that this also gives a bounded integrality gap of
the LP relaxation of ILP2.

Algorithm 1 (Randomized Rounding Algorithm for the
SBSP)

Step 1: solve the LP relaxation of ILP2 to get
{(x∗s,y∗s)}s∈S

Step 2: for each school s ∈ S, draw a uniform random
number rs ~U[0, 1]

Step 3: for each route i ∈Rs, let ti � argmin{∑ti
t�1 x

∗
i,t ≥

rs} and set xi,ti � 1

Figure 2. Projections Between Polytopes Cs and Ps
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Step 4: for each school s ∈ S, let ts � argmin{∑ts
t�1 y

∗
s,t≥ rs} and set ys,ts � 1

Step 5: solve the route-to-bus assignment problem
using the scheduling from Steps 3 and 4

We illustrate the algorithm with an example of one
school and two routes (see Figure 3). For each school
and route, we divide a [0, 1] segment into T intervals
(some may have width 0 if the corresponding variable
has value 0) based on the fractional optimal solution
{(x∗s,y∗s)}. We then draw a random number rs ~U[0, 1]
(Step 2) and cut all [0, 1] segments at rs (Steps 3 and 4).
For each school (route), the index of the interval
where the random number rs falls is selected as its
start (arrival) time.

Let {(xs,ys)}s∈S be the integral solution generated by
Algorithm 1. In Proposition 2, we show that the inte-
gral solution is always feasible. In Proposition 3, we
show that the fractional optimal solution {(x∗s,y∗s)}s∈S
defines the probability that each corresponding varia-
ble takes the value 1 in the integer solution generated
by Algorithm 1. Finally, we prove in Theorem 2 that
the integral solution is near-optimal with constant
probability.

Proposition 2 {(xs,ys)}s∈S satisfies constraints (2a)–(2d)
and (2f)–(2g).

Proof. In Steps 3 and 4 of Algorithm 1, each route
(school) is assigned to exactly one arrival (start) time.
Hence, the assignment constraints (2a)–(2b), and the
binary constraints (2f)–(2g) naturally hold. For the
time-window constraints (2c)–(2d) to also hold, it suf-
fices to show that ti ≤ ts ≤ ti + ls for any school s ∈ S
and route i ∈Rs.

Recall that ti and ts are determined by the random
variable rs generated in Step 2. From the definition of
ti (Step 3) and ts (Step 4), we have

∑ti−1
t�1

x∗i,t < rs ≤
∑ti
t�1

x∗i,t (2)

and

∑ts−1
t�1

y∗s,t < rs ≤
∑ts
t�1

y∗s,t: (3)

Because the fractional solution {(x∗s,y∗s)}s∈S satisfies the
time-window constraints (2c)–(2d), we have

∑ts−1
t�1

y∗s,t < rs ≤
∑ti
t�1

x∗i,t ≤
∑ti+ls
t�1

y∗s,t: (4)

Comparing the left-hand and right-hand sides of (4),
ts − 1 < ti + ls, that is, ts ≤ ti + ls. Similarly, from

∑ti−1
t�1

x∗i,t < rs ≤
∑ts
t�1

y∗s,t ≤
∑ts
t�1

x∗i,t (5)

we have ti − 1 < ts, that is, ts ≥ ti. This completes the
proof of Proposition 2. w

Proposition 3 Pr[xi,t � 1] � x∗i,t ∀i ∈R, t ∈ [T]; Pr[ys,t
� 1] � y∗s,t ∀s ∈ S, t ∈ [T].
Proof. xi,t � 1 if and only if the random number rs falls

within the interval
∑t−1

t′�1 x∗i,t′ ,
∑t

t′�1 x∗i,t′
[ ]

. Because rs ~

U[0, 1],

Pr[xi,t � 1] �∑t
t′�1

x∗i,t′ −
∑t−1
t′�1

x∗i,t′ � x∗i,t:

The proof for y variables follows the same argument. w

Theorem 2 (Optimality Gap of Algorithm 1). Let OPT be
the optimal solution value to the SBSP and let zround be the
solution value obtained from Algorithm 1.We have

zround ≤ OPT +
������������������������
2Rmaxlog(2T)OPT

√
+ Rmaxlog(2T)

with probability at least 1
2, where Rmax is the maximum

number of routes in one school.
Thus, the optimality gap of Algorithm 1 is bounded

by
������������������������
2Rmaxlog(2T)OPT

√ +Rmaxlog(2T). In practice, Rmax

Figure 3. Randomized Rounding Algorithm
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is bounded by the maximum number of students in a
school (divided by bus capacity) and the term log(2T)
can be treated as a constant. If the number of routes for
each school is uniformly bounded and log(2T) is (or
can be bounded by) a constant, the optimality gap is
of order

�������
OPT

√
. Probability 1

2 can be boosted to (1− ε)
for any ε > 0 by running Algorithm 1 �log(1=ε)� times
and selecting the best solution.

Proof of Theorem 2. Let {(x∗s,y∗s)}s∈S be an optimal
fractional solution to the LP relaxation of ILP2 and let
{(xs,ys)}s∈S be the integral solution obtained from
Algorithm 1. Let z∗LP be the optimal objective value of
the LP relaxation of ILP2 and let zround be the objective
value of ILP2 using the integral solution {(xs,ys)}s∈S .

For any t ∈ [T], let zt �∑
i∈R

∑min{t+ri−1,T}
t′�t xi,t′ . From

Proposition 3,

E[zt] � E
∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′

[ ]
�∑

i∈R

∑min{t+ri−1,T}

t′�t
x∗i,t′ ≤ z∗LP:

Note that zt �∑
i∈R

∑min{t+ri−1,T}
t′�t xi,t′ �∑

s∈S(∑i∈Rs∑min{t+ri−1,T}
t′�t xi,t′ ) is the sum of |S | independent random

variables (x variables for different schools are independ-
ent) where each is in [0,Rmax]. The next step is to bound
the deviation of zt from its mean with high probability
for each t ∈ [T], which can be derived from the Chernoff
bound (Chernoff 1952).

Lemma 1 (Chernoff Bound). Let a1,a2, : : : , an be n inde-
pendent random variables in [0,M] and A �∑n

i�1 ai with
mean E[A] ≤ µ. For any ε > 0,

Pr[A > µ+ ε] ≤ exp − ε2

(2µ+ ε)M
( )

:

For any t ∈ [T], note that

zt �
∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′ �

∑
s∈S

∑
i∈Rs

∑min{t+ri−1,T}

t′�t
xi,t′

( )

is the sum of |S | independent random variables where
each of them lies in [0,Rmax]. Further,

E[zt] �
∑
i∈R

∑min{t+ri−1,T}

t′�t
x∗i,t′ ≤ z∗LP:

Let ε∗ be the positive root of exp − (ε∗)2
(2z∗LP+ε∗)Rmax

( )
� 1

2T.

Using Lemma 1, for all t ∈ [T]

Pr[zt > z∗LP + ε∗] ≤ 1
2T

:

Applying a union bound over all t ∈ [T], we have

Pr[maxt∈[T] zt{ } > z∗LP + ε∗] ≤ T · 1
2T

� 1
2
:

From constraint (2d) in ILP2,

zround � maxt∈[T]
∑
i∈R

∑min{t+ri−1,T}

t′�t
xi,t′

{ }
� maxt∈[T]{zt}:

Therefore, with probability at least 1
2 , zround ≤ z∗LP + ε∗.

It is easy to calculate that

ε∗ � Rmaxlog(2T) +
��������������������������������������������
(Rmaxlog(2T))2 + 8Rmaxlog(2T)z∗LP

√
2

≤ Rmaxlog(2T) +
��������������������
(Rmaxlog(2T))2

√
+ ����������������������

8Rmaxlog(2T)z∗LP
√

2

� Rmaxlog(2T) +
����������������������
2Rmaxlog(2T)z∗LP

√
:

Note that z∗LP ≤OPT, this completes the proof of Theo-
rem 2. w

In fact, the proof of Theorem 2 implies the stronger
result that with probability at least 1

2,

zround ≤ z∗LP +Rmaxlog(2T) +
����������������������
2Rmaxlog(2T)z∗LP

√
:

Because zround is always greater than or equal to OPT,
we have the following corollary.

Corollary 1 (Integrality Gap of ILP2).

z∗LP ≤ OPT ≤ z∗LP + Rmaxlog(2T) +
����������������������
2Rmaxlog(2T)z∗LP

√
:

Because z∗LP and OPT are deterministic values for a
given instance, the probabilistic condition in Theorem
2 can be dropped in Corollary 1.

The randomized rounding algorithm and its theo-
retical guarantee do not rely on specific values of the
optimal solution to ILP2; that is, {(x∗s,y∗s)}s∈S . Adding
external constraints on school start and route arrival
times does not affect the correctness of the algorithm
and its theoretical guarantee. Further, the optimality
gap proved in Theorem 2 is the gap between the
upper bound obtained from Algorithm 1 and z∗LP - a
lower bound of the optimal solution OPT. In practice,
the optimality gap of Algorithm 1 is considerably
smaller than the one proved in Theorem 2.

5. Robust SBSP
The route set, R, may vary over time due to enrollment
changes and route redesigns. School start times, how-
ever, cannot be changed frequently. Decisionmakers are
interested in plans for a long time period. We introduce
a robust SBSP, generalizing results of Sections 3 and 4.

When start times are set, uncertainty may exist in
the number and travel time of routes over the plan-
ning horizon. We model uncertainty in the route set R
with scenarios where each scenario has a set of routes
that may differ by number and travel time of routes.
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Scenarios can be derived from historical route data
or from routes designed to accommodate projected
future enrollment distributions. Our goal is to deter-
mine school start times and route schedules such that
all scenarios share the same school start times, mini-
mizing the maximum number of buses over all scenar-
ios. Let Π be the set of scenarios. In scenario π ∈
Π, Rπ is the route set, Rπ

s is the route set for school s
and rπi is the travel time of route i. The robust SBSP
can be modeled as follows.

min zrobust (ILP-robust)

s:t:
∑T
t�1

xπi,t � 1 ∀i ∈R,π ∈Π (3a)

∑T
t�1

ys,t � 1 ∀s ∈ S (3b)

∑t
t′�1

xπi,t′ ≤
∑min{t+ls,T}

t′�1
ys,t′

∀i ∈Rπ
s , s ∈ S, t ∈ [T],π ∈Π (3c)

∑t
t′�1

ys,t′ ≤
∑t
t′�1

xπi,t′

∀i ∈Rπ
s , s ∈ S, t ∈ [T],π ∈Π (3d)

∑
i∈R

∑min{t+rπi −1,T}

t′�t
xπi,t′ ≤ zrobust ∀t ∈ [T],π ∈Π (3e)

xπi,t ∈ {0, 1} ∀i ∈Rπ, t ∈ [T],π ∈Π (3f)

ys,t ∈ {0, 1} ∀s ∈ S, t ∈ [T] (3g)

ILP-robust can be viewed as an extension of ILP2,
minimizing the maximum number of buses across sce-
narios. Binary variable xπi,t indicates the arrival time of
route i in scenario π. Because all scenarios share the
same school start times, binary variable ys,t indicates
the start time of school s across all scenarios. Similar
to ILP2, ILP-robust consists of assignment constraints
(3a)–(3b), time-window constraints (3c)–(3d), linking
constraints (3e) and binary constraints (3f)–(3g).

Similar to Algorithm 1, after solving the LP relaxation
of ILP-robust, for school s, the start time of s and arrival
times of routes in s over all scenarios are determined
simultaneously through the rounding algorithm to
ensure feasibility. We use the same probabilistic
approach (detailed in Theorem 2) to provide an
optimality gap of the rounding algorithm for the robust
SBSP.

Table 1 compares the SBSP (|Π| � 1) and the robust
SBSP (|Π|> 1) in terms of formulation size and theoretical
optimality gap. The number of variables and constraints
in ILP-robust increases linearly with the number of
scenarios and the optimality gap of the rounding
algorithm includes an additional term

�����������
log(|Π|)√

. In
practice, this additional term

�����������
log(|Π|)√

can be viewed as
a constant; the rounding algorithm still provides near-
optimal solutions for large-scale instances.

6. Numerical Studies
We present a case study based on two school districts
of different size, followed by experiments with syn-
thetic data to complement our theoretical findings.

6.1. Case Study
This work is motivated by collaborations with two
public school districts: one moderately sized with ~20
schools and one large with ~200 schools. Both districts
wished to explore transportation cost savings from
changes to school start times. For the moderate dis-
trict, our work focuses on 39 routes serving 13 schools.
For the larger district, we focus on 380 bus routes for
127 schools.

The districts currently use commercial software to
determine routes. With these routes, we optimize school
and bus scheduling using our solution approach and
evaluate potential cost reductions from more flexible
start time options. Although both districts assume a con-
stant transition time when determining routes to pair,
we explore the impact of location-dependent transition
times by extending our approach in Section 6.2.4.

6.1.1. District-Specific Modifications. Each district has
specific operational considerations detailed, which we
incorporate into our approach.

Arrival time windows. In Problem 1, routes arrive in a
time window before school starts. If school s starts at
time ts with a time window ls, routes arrive in interval
[ts − ls, ts]. Both districts use a fixed arrival time qs prior
to the start time rather than a window; routes arrive at
ts − qs. For the moderate district, qs is 15 minutes for
two schools and 10 minutes for the others. For the
larger district, qs varies by school between 5 and 30
minutes.We simplify constraints (2c) and (2d) as

xi,t � ys,t+qs ∀i ∈Rs, s ∈ S, t ∈ [T]:

Table 1. Comparison of the SBSP (|Π |� 1) and the Robust SBSP (|Π |> 1)

Number of scenarios Single (|Π | � 1) Multiple (|Π |> 1)

Number of ILP variables O(T(|S | + |R |)) O(T(|S | + |R | · |Π |))
Number of ILP constraints O(T(|S | + |R |)) O(T(|S | + |R | · |Π |))
Optimality gap of rounding algorithm O( ���������������������

Rmaxlog(T)OPT
√ ) O( ���������������������������

Rmaxlog(|Π | ·T)OPT
√ )
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We also relax this constraint to assess the value of
introducing arrival time windows.

Restriction on school start times. As is common, both
districts have restricted times when schools may start.
The moderate district operates two tiers of start time
options:

• Tier 1: 8:05 a.m., 8:30 a.m.;
• Tier 2: 9:05 a.m.

For the large district, these are:

• Tier 1: 7:30 a.m., 7:35 a.m., 7:40 a.m.;
• Tier 2: 8:05 a.m., 8:10 a.m., 8:15 a.m., 8:20 a.m., 8:25

a.m.;
• Tier 3: 8:45 a.m., 8:50 a.m., 8:55 a.m., 9:00 a.m., 9:05

a.m.
In ILP2, let Tpossible(s) ⊆ [T] be the set of possible start

times for school s. We add a constraint for start time
restrictions by tier options and school type.

ys,t � 0 ∀s ∈ S, t ∉ Tpossible(s):
6.1.2. Improving Solutions and Expanding Flexibility.
Given current operating constraints and constant tran-
sition times, we examine the extent to which our
approach improves on current practice. Table 2 com-
pares the current number of buses (column 3) with
solutions obtained using our approach for both con-
stant and location dependent transition times. For
each district, schools can begin in any tier option for
that district (i.e., a common set of tiers for all schools,
Tpossible). For the moderate district, we also evaluated a
set of tiers restricted by school type, Tpossible(s), and
found that it was not possible to reduce the number of
buses through improved route scheduling. This high-
lighted to the district the limits on cost reductions set
by their current tiers, prompting a further study of
where best to introduce flexibility.

With constant transition times, Table 2 shows a
reduction in the number of buses (compared with cur-
rent practice) by 36.4% for the moderate district and
14.5% for the large district. The rounding algorithm
(best from 100 runs) provides the optimal solution for
the moderate district and is within 5% of the lower
bound for the large district.

The last two columns in Table 2 present solutions
when the assumption of constant transition time is
relaxed. We estimate transition times for each pair of
routes based on geographical information of the start
and end points of routes, plus an added three minutes
of buffer time. Travel times are derived from the Dis-
tance Matrix API in Google Map API (Wang and Xu
2011) We apply the modified randomized rounding
algorithm described in Section 6.2.4 to solve the prob-
lem with location dependent transition times. For
both districts, the use of location dependent transition
times reduces the number of buses required, but the
solution obtained remains within 10% of the solution
values with constant transition times. This shows that
our approach works well with nonconstant transition
times. Well-estimated constant transition times, how-
ever, provide good solutions in practice if they are
representative of travel times between nearby schools
and include a buffer that is independent of the actual
distance between routes.

Although the results in Table 2 represent cost sav-
ings, they may also represent significant deviations
from current operations. Many practical considera-
tions can limit the set of feasible start times. To allow
school administrators the opportunity to consider
many low-cost transportation options when making
strategic choices, we explore the ability of the random-
ized rounding algorithm to generate multiple near-
optimal solutions. We generate 100 solutions using
the randomized rounding algorithm for each district
and record the number of unique solutions within
10% of the best solution value. For the moderate dis-
trict, we obtain 52 solutions requiring no more than 23
buses. For the large district, we obtain 83 solutions
requiring no more than 133 buses. This demonstrates
the ability of our approach to provide multiple sched-
uling plans with near-optimal costs.

The discussion is based on a district-specific con-
straint that bus routes arrive at a fixed time before the
school start time (i.e., the length of arrival time win-
dow for each school is equal to 0). Increasing the
length of this time window can potentially reduce the
number of buses because it adds flexibility to route

Table 2. SBSP Solutions for Fixed Route Arrival Time (No Arrival Windows)

Constant transition Location-dependent transition

Size Current
Lower bound
(CPU time)

Rounding
(CPU time)

Lower bound
(CPU time)

Rounding
(CPU time)

Moderate 39 routes
13 schools

33 21
(3.1)

21
(3.3)

17
(3.3)

19
(3.6)

Large 380 routes
127 schools

144 117
(297.4)

123
(303.2)

82
(297.8)

116
(316.1)
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arrival times, thus increasing the set of feasible route
connections.

Figure 4 illustrates the value of flexible arrival time
windows by comparing solutions with increasing
timewindow lengths from 0 to 20minutes. The dashed
line represents solutions with constant transition times
and the solid line represents solutions with location-
dependent transition times.

Figure 4 shows that increasing the arrival time win-
dows typically decreases the number of buses required.
For a large enough time window (here, 20 minutes), the
benefit of location-dependent transition times disap-
pears. For a large enough time window, using a well-
estimated constant transition time gives a solution that
is as good as using location-dependent transition times.

6.2. Numerical Analysis of Formulations and
Solution Methods

We extend the case study findings with synthetic
data for a broader analysis of our approach. The case
study shows the power of the strengthened formula-
tion (ILP2) to provide tight lower bounds and the
near-optimality of the rounding algorithm. We ex-
plore these results for a wider range of instances. We
also explore our robust SBSP approach and location-
dependent transition times.

6.2.1. SBSP Instances and Benchmarks. We generate
ten SBSP instances representing a range of district
sizes; the number of schools and routes are (10,
50), (20, 100), ⋯ , (100, 500). Across all instances, each
school has a fixed time window of 20 minutes.
School start times and route arrival times can be
chosen from {1, 2, ⋯ , 120}, which corresponds to
minutes in a two-hour time window. School start
times are further restricted to multiples of five
minutes; that is, {5, 10, ⋯ , 120}. The route set for

each instance is generated with Algorithm 2. All
generated data can be found at https://github.com/
zenglw1206/school_bus_scheduling/.

Algorithm 2 (Route Generation for SBSP Instances).
Step 1: Generate a 100× 100 grid and locate schools

on integral points of the grid at random
Step 2: For each route, randomly select an integral

point of the grid as its starting point and a school loca-
tion as its ending point

Step 3: Route travel time is computed by the L1 dis-
tance between starting and ending points, divided by
constant travel speed v1, rounded to the nearest integer.
The travel speed v1 is deter- mined such that the aver-
age route travel time is approximately 25 minutes.

For each instance, after solving the LP relaxation,
we perform the randomized rounding algorithm 10
times and select the best solution. As benchmarks, we
implement the integer programming approach from
Fügenschuh (2009) and a local search heuristic. Our
problem can be viewed as a special case of the formula-
tion in Fügenschuh (2009) where mixed loads and non-
constant transition times are allowed. As described in
the Appendix, we tailor their IP approach to accommo-
date our context-specific features. Local search heuristics
have been widely applied to scheduling problems due
to their simplicity and scalability, including for school
bus scheduling (Spada, Bierlaire, and Liebling 2005;
Chen et al. 2015; Bertsimas, Delarue, and Martin 2019).
In each iteration of these heuristics, a typical strategy
is to optimize the objective for a small set of schools,
keeping decisions for all other schools fixed. In our
implementation, we select one school at random in each
iteration and optimize its start time by enumerating all
possible start time choices (and shift arrival times for
routes in the selected school to maintain feasibility) and
then select the one that requires the minimum number

Figure 4. Value of Arrival TimeWindow Expansion

Note. (a) Moderate district; (b) Large district.
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of buses. We apply two policies to initialize the local
search heuristic: first, we use the solution of the random-
ized rounding algorithm as a starting point; second, we
draw multiple starting points at random and select the
best one.

6.2.2. Comparing Formulations and Solution Ap-
proaches. We illustrate the strength of our ILP for-
mulations by comparing the lower bounds obtained
from the LP relaxations of ILP1 and ILP2 with the
exact optimal solution value (obtained by solving
ILP2) as well as the computational times (in seconds)
to obtain these bounds and solutions. As shown in
Table 3, the relaxation of ILP2 outperforms that of
ILP1 and gives tight lower bound for all instances. In
nine of the 10 instances, rounding up the lower bound
from the LP-relaxation of ILP2 provides the optimal
integer value. The largest instance can be solved to
optimality within 30 minutes using formulation ILP2.

For larger instances where exact methods are
intractable, we compare the lower bounds from ILP1
and ILP2 with the feasible solution from the rounding
algorithm. We test the algorithms on three sets of
instances varying the number of schools and routes
(each with five instances) and report the average and
maximum relative gap for each set. The relative gap
of ILP1 (ILP2) is defined as:

relative gap � rounding solution
lower bound from ILP1 (ILP2) − 1
( )

× 100%:

As shown in Table 4, the relative gap for ILP2 is smaller
and shrinks faster as the instance size increases. This
supports our theoretical findings that ILP2 is a strong
formulation for the SBSP and that the randomized
rounding algorithm provides high-quality solution for
large instances.

We next evaluate the efficiency of our approach rela-
tive to other approaches within our context-specific fea-
tures. Recall that the goal of this work is not to develop
an approach for the general SBSP, but to show that lever-
aging specific features can lead to more efficient ap-
proaches to assist with strategic decisionmaking. Table 5
compares the exact solution, the lower bound obtained
from the LP relaxation of ILP2 and five upper bounds.
The first three upper bounds are (i) rounding algorithm,
(ii) rounding algorithm followed by local search, and (iii)
local search algorithm. We set a two-hour time limit for
local search. For the second policy, we use the first 30
minutes to select starting points, followed by a two-hour
local search. The final upper bounds come from our
implementation of the SBSP-IP from Fügenschuh (2009).
Column “IP-2.5” (“IP-24”) corresponds to bounds
obtained by running the IP for 2.5 (24) hours.

The randomized rounding algorithm achieves an
average optimality gap (optimality gap � {rounding
solution value - optimal solution value}/optimal solu-
tion value) of 12.9%, which improves to 10.3% with
local search. The local search heuristic yields an aver-
age optimality gap of 37.3% and the IP approach has
an average optimality gap of 39.6% (in 2.5 hours)
and 33.0% (in 24 hours). Moreover, the rounding

Table 3. Comparison Between LP Relaxations of ILP1 and ILP2

Instance size
Exact solution
(CPU time)

Lower bound (relaxation of ILP1)
(CPU time)

Lower bound (relaxation of ILP2)
(CPU time)

10 schools 9 7.7 8.5
50 routes (102.9) (1.2) (4.8)
20 schools 17 15.6 16.5
100 routes (174.2) (3.1) (10.9)
30 schools 24 22.0 23.9
150 routes (345.4) (4.4) (16.8)
40 schools 32 30.8 31.1
200 routes (464.2) (6.2) 4(29.6)
50 schools 42 38.1 40.1
250 routes (548.2) (10.1) (31.5)
60 schools 51 48.1 50.9
300 routes (864.6) (11.0) (42.8)
70 schools 61 58.2 60.5
350 routes (937.1) (15.4) (55.1)
80 schools 65 61.5 64.5
400 routes (1048.6) (13.9) (75.7)
90 schools 76 71.7 75.2
450 routes (1361.8) (19.5) (97.5)
100 schools 84 80.6 83.8
500 routes (1782.3) (21.8) (99.3)
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algorithm solves the largest instancewithin twominutes
(for each one of the 10 runs). These results suggest that
the randomized rounding algorithm is very fast and
provides better solutions compared with benchmark
algorithms for our context-specific features.

As in the case study, we evaluate the ability of our
approach to generatemultiple near-optimal solutions. In
our experiments, we record all solutions obtained with
the rounding algorithm, in addition to the best solutions
reported in Table 5. We find that all generated solutions
are within 10% of the best solution and 73.3% of solu-
tions are within 5% of the best solution, further demon-
strating that the rounding algorithm is able to generate
multiple high quality solutions quickly.

6.2.3. Analysis of the Robust SBSP. We incorporate
two sources of uncertainty into the route set R: (i)
uncertainty in the number of routes, and (ii) uncer-
tainty in travel times. For uncertainty (i), we increase
or decrease the number of routes in each school by 1,
each with probability 15%. For uncertainty (ii), we

add a random integer from [−5, 5] to the travel time of
each route. The transition times are perturbed in a
similar way. We construct three groups of instances
with one or both types of uncertainty: in each set, we
use the 10 combinations of routes and schools from
6.2.2 with five route set scenarios.

Table 6 presents results with different sources of
uncertainty. Compared with Tables 4 and 5, the aver-
age relative gap of the rounding algorithm increases
from 12.9% to 24:1% ~ 26:7%. The number of buses
can be highly sensitive to small changes in route travel
times and number of routes across scenarios (e.g.,
adding a route may require a new bus). Thus, it is
harder to obtain tight lower bounds for the robust
SBSP with multiple scenarios.

We observe that the relative gap between the
upper and lower bounds shrinks with instance size,
suggesting that formulation ILP-robust and the
modified randomized rounding algorithm remain
effective for the robust SBSP, especially for large-
scale instances.

Table 4. Comparison Between LP Relaxations of ILP1 and ILP2 for Large Instances (Over 5
Instances)

Instance size Average/maximum relative gap of ILP1 Average/maximum relative gap of ILP2

200 schools
1,000 routes

10.7%/12.5% 5.7%/7.1%

500 schools
2,500 routes

8.2%/8.6% 3.7%/4.2%

1000 schools
5,000 routes

7.3%/7.8% 2.7%/3.1%

Table 5. Solution Comparisons with Benchmarks

Instance size Exact solution Lower bound (ILP2) Rounding Rounding + local search Local search IP-2.5 IP-24

10 schools
50 routes

9 9 11 11 12 12 11

20 schools
100 routes

17 17 21 19 24 24 23

30 schools
150 routes

24 24 27 27 32 32 32

40 schools
200 routes

32 32 36 35 45 44 44

50 schools
250 routes

42 41 46 46 56 55 55

60 schools
300 routes

51 51 57 55 66 65 65

70 schools
350 routes

61 61 66 65 89 89 83

80 schools
400 routes

65 65 70 69 92 94 88

90 schools
450 routes

76 76 81 80 101 111 102

100 schools
500 routes

84 84 94 92 116 128 113

Average gap 12.9% 10.3% 37.3% 39.6% 33.0%
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6.2.4. Modifications for Location-Dependent Transi-
tion Times. Although the theoretical performance
guarantee for the rounding algorithm relies on the as-
sumption of constant transition times, we are able to
modify the rounding algorithm to provide feasible
solutions and cost lower bounds for instances with
location-dependent transition times through the fol-
lowing steps.

• Step 1: Reduce the problem to a tractable instance
• Step 2: Determine route arrival times using the

randomized rounding algorithm
• Step 3: Obtain a feasible solution for the original

problem
• Step 4: Obtain a cost lower bound
Step 1: Reduction to a tractable instance
We define a class of SBSP instances with location-

dependent transition times that are tractable using the
rounding algorithm.

Definition 1 (Tractable Instance). A SBSP instance is
tractable if there exists tini and touti for each route i such that
the transition time from route i to route j is equal to touti +
tinj for all (i, j).

For a tractable instance, the transition time tij can be
decomposed into two parts—an “outbound transition
time” touti and an “inbound transition time” tinj . By add-
ing these to the route travel time (i.e., a route with travel
time ri becomes one with travel time tini + ri + touti ), the
instance is reduced to one with constant transition time.
As in practice, we also add a constant buffer to all

transitions, as shown in the case study. The randomized
rounding algorithm can then be directly applied to solve
this tractable SBSP instance.

First, we seek to find a tractable instance that approx-
imates the given instance with location-dependent tran-
sition times. In other words, we find tini and touti such
that tranij (transition time in the given instance) can be
approximated by touti + tinj . To that end, we fit tini and touti
into the following linear regression model.

tranij � touti + tinj + εij (6)

In practice, we use least square regression (i.e., mini-
mizing

∑
ε2ij) to obtain tini and touti .

Step 2: Route arrival times
In Step 2, we apply the randomized rounding algo-

rithm to solve the tractable instance obtained from
Step 1 and determine school start times and route
arrival times for the original instance.

Step 3: Feasible solution
After determining the arrival time for each route,

we find the minimum number of buses to serve all the
routes using the following proposition.

Proposition 4. Given a route set R and an arrival time of
each route, consider a bipartite graph G � (U,V;E) where
U � V �R. For any r1 ∈U and r2 ∈ V, (r1, r2) ∈ E if and
only if route r2 can be served after route r1 using the same
bus. Let |GBM| be the size of the maximum bipartite match-
ing of graph G. Then, the minimum number of buses to
complete all routes is equal to |R| − |GBM|.

Table 6. Robust Instances with Varying Sources of Uncertainty

Source of uncertainty
#Routes Travel time #Routes + route travel time

Instance size Lower bound Rounding Lower bound Rounding Lower bound Rounding

10 schools
50 routes

9 12 9 12 8 12

20 schools
100 routes

16 22 17 23 17 25

30 schools
150 routes

24 33 26 33 25 33

40 schools
200 routes

33 45 34 43 32 38

50 schools
250 routes

39 50 42 55 41 53

60 schools
300 routes

48 59 51 64 46 60

70 schools
350 routes

56 66 57 67 54 65

80 schools
400 routes

66 78 65 77 66 76

90 schools
450 routes

71 80 72 82 73 82

100 schools
500 routes

81 91 82 92 84 94

Average gap 25.7% 24.1% 26.7%
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From Proposition 4, finding the minimum number
of buses is equivalent to solving a maximum bipartite
matching problem, which can be done in polynomial
time. To see the correctness of Proposition 4, each
route connection pattern corresponds to a bipartite
matching of graph G where (r1, r2) ∈ E if and only if
route r2 is served immediately after route r1 using the
same bus. Moreover, the size of this bipartite match-
ing is equal to |R| minus the number of buses. There-
fore, minimizing the number of buses is equivalent to
finding a maximum bipartite matching on G.

Step 4: Cost lower bound
Enforcing the error term εij in the regression model

(6) to be nonnegative, such that the estimated transi-
tion time touti + tinj is less than or equal to tranij, pro-
vides a lower bound on the number of buses. By
inserting the tini and touti , with the buffer time, into
ILP2 and its LP relaxation, we are able to obtain a
lower bound on the number of buses.

The transition time between routes is computed by
the L1 distance between the ending point of the first
route and the starting point of the second route, div-
ided by constant transition speed v2. The value of v2 is
chosen such that the average transition time is
approximately 15 minutes.

In our analysis of location-dependent transition
times, we explore the relative gap between the lower
bound and the feasible solutions obtained from the
rounding heuristic, as well as the impact of the buffer
time estimation on solution values. Comparisons with
benchmark approaches are included in the Appendix.

As in Table 4, we define the relative gap of ILP2 as:

relative gap � rounding solution
lower bound from ILP2

− 1
( )

× 100%:

To compare solutions with location-dependent transi-
tion times and varying buffer times relative to those
with constant transition time, we define

change from constant

� location-dependent solution
solution with constant transition

− 1
( )

× 100%:

From Table 7, we observe that the relative gap of ILP2
is larger with the location-dependent SBSP. One possi-
ble explanation is that transition times are underesti-
mated in the regression model in Step 1, which then
weakens the lower bound, as compared with instan-
ces with constant transition time. These gaps decrease
as the buffer increases from 0 to five minutes between
routes. As with the constant transition time SBSP, we
find that the relative gap of ILP2 decreases with
instance size. Although we believe the larger gap
mainly comes from the lower bound, it remains to be
explored whether the location-dependent transition
time can be better incorporated into the rounding
algorithm, which is a potential topic for future
research.

Note the negative gaps in columns 6 and 7 of
Table 7. Without a buffer, the location-dependent
transition times can be quite low, providing more
opportunities to reuse buses. However, solutions may

Table 7. Instances with Location-Dependent Transition Time

Relative gap of ILP2 Change from constant

Instance size Constant Buffer � 0 Buffer � 3 Buffer � 5 Buffer � 0 Buffer � 3 Buffer � 5

10 schools
50 routes

25% 50% 50% 36% 0% 0% 0%

20 schools
100 routes

8% 37% 29% 27% −8% −4% 0%

30 schools
150 routes

8% 42% 34% 30% −5% 0% 0%

40 schools
200 routes

4% 35% 24% 28% −6% −4% 4%

50 schools
250 routes

8% 31% 29% 33% −12% −5% 3%

60 schools
300 routes

4% 35% 30% 30% −8% −3% 3%

70 schools
350 routes

6% 35% 30% 27% −9% −3% 0%

80 schools
400 routes

5% 39% 33% 31% −8% −4% 1%

90 schools
450 routes

5% 35% 30% 30% −10% −4% 0%

100 schools
500 routes

3% 33% 32% 29% −11% −2% 2%

Average gap 8% 37% 32% 30% −7% −3% 1%
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be infeasible in practice as routes can be scheduled in
quick succession (i.e., if the transition time is simply
the travel distance from the end of one route to the
start of the other, the time between routes is insuffi-
cient). Thus, adding a buffer time is of practical
importance. As the buffer time increases, the location-
dependent transition time solutions come closer to the
constant transition time solutions. We observe this in
the case study solutions which used a buffer time of
three minutes. Thus, if well-chosen, the constant tran-
sition time, adopted often in practice, can be a good
approximation for location-dependent transition
times.

7. Discussion
In this paper, we develop a time-indexed ILP formula-
tion for the SBSP and use its LP relaxation to develop
a randomized rounding algorithm that yields near-
optimal solutions for large-scale instances in polynomial
time. Our computational study suggests that the round-
ing algorithm is fast and effective to solve problems
where the transition time between routes is a constant.
Our approach is generalized to solve instanceswith non-
constant transition times (by reducing them to tractable
instances) as well as to obtain robust solutions for multi-
ple scenarios. From a strategic planning perspective, our
approach provides an efficient way to identify schedul-
ing plans with sufficient potential for cost savings (and
remove from consideration those without sufficient sav-
ings) beforemore detailed operational analysis.

In this work, we assume that bus routes are fixed in
the scheduling problem. Future work can expand our
analysis to incorporate route changes to increase the
benefit of such models, building on Bertsimas, Delarue,
and Martin (2019), which demonstrates the advantages
of jointly solving route design problem and school bus
scheduling problem, and Zeng, Chopra, and Smilowitz
(2019), which proposes efficientmethods to approximate
bus route travel time. Another important extension is to
integrate our results with other strategic decisions, such
as school boundary design and school location selection.
Our approach can serve as a toolbox to help decision
makers understand the effect on school transportation
when making policy changes. Currently we are explor-
ing these generalizations with partner school districts to
provide solution approaches that are efficient, robust
and easy to implement.
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