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Don’t Deny Your Inner Environmental Physiologist: Investigating Physiology with Environmental
Stimuli

An urban diet differentially alters the gut microbiome and metabolomic profiles
compared with a seed diet in mourning doves
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Abstract

Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsi-
dies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal
tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic
expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to
examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of
plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning
doves (Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabo-
lomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-
wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on
plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was sig-
nificantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae, Oribacterium, and
Sanguibacter and decreased circulating LPS in the urban-fed birds. These differences were largely not reflected in the surveyed
metabolomes and plasma inflammatory markers. This research supports the notion that the microbial composition in urban doves is

impacted by diet, though may only weakly associate with host physiology.

birds; gut microbiome; lipopolysaccharide; metabolomics; urban

INTRODUCTION

Research across several animal species suggest a diet high
in refined carbohydrates, saturated fats, and salt promotes
deleterious alterations in the composition and function of
microbes harbored in the digestive tract (1, 2). This dietary
pattern has also been associated with increased systemic
inflammation, which is mediated, in part, through alterations
in the gut microbiome (GM) (1, 3, 4). The GM plays a vital role
in regulating the intestinal epithelial barrier and composi-
tional alterations can increase the abundance of Gram-nega-
tive bacteria that release lipopolysaccharides (LPS) (5). LPS is
an endotoxin with different serotypes (i.e., toxicity of the lipid
A portion of LPS) harboring the ability to impair tight junction
proteins and increase intestinal permeability (6). Ultimately,
bacterial translocation from increased intestinal permeability
can result in an inflammatory response and metabolic insulin
resistance (7). Emerging evidence from animal and human
studies has suggested an important role of the GM in the de-
velopment of type 2 diabetes mellitus (T2D) and other
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metabolic diseases (8-10). In relation, urbanization influences
food quality and availability for many wild animal species,
which may promote a shift in the GM that could ultimately
impact host physiology. As a model organism, birds living in
urban environments have access to a variety of food subsidies
not available to rural birds such as bread, popcorn, restaurant
waste, and other anthropogenic foods (11, 12).

Across multiple animal species, it is becoming increasingly
evident that the GM plays an important role in modulating
host physiology (13). In relation, the suite of small molecules
present in biological samples (known as the metabolome) can
complement GM data and may reveal important metabolic sig-
natures from environmental stimuli (14, 15). Because of the
unique attributes of their energetic metabolism and physiol-
ogy, birds have been suggested as pathology-free models of
T2D (16). In support, birds have plasma glucose concentrations
1.5-2 times that of similar sized mammals and yet can forego
the regulation of glucose by insulin without any adverse effects
(17). Furthermore, most avian species appear to possess mecha-
nisms to enhance fatty acid transport and oxidation during
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flight (18, 19). These traits are similar to the way energy is uti-
lized by humans with diabetes who are unable to efficiently
utilize glucose and consequently rely more on fatty acid oxida-
tion when carbohydrates are plentiful (20). Previous research
has found mourning doves (Zenaida macroura) fed either a
refined-carbohydrate or high-fat diet over a 4-wk period do not
develop metabolic complications that mammals normally
show in response to consumption of these diets (21, 22). In
addition, metabolomics analyses of plasma, liver, pectoralis
muscle, and kidney revealed significant differences in several
individual metabolites but no changes in overall metabolic
pathways (21, 22). These findings suggest that mourning doves
may alter their nutritional physiology to avoid metabolic com-
plications. In contrast to the metabolome, examination of the
GM of house sparrows (Passer domesticus) from rural and
urban environments revealed enrichment of Proteobacteria in
the urban birds, which are implicated in several mammalian
intestinal and extraintestinal diseases (23). Moreover, and
more recently, we reported impaired vasodilation in mourning
doves fed a diet modeled on food available in an urban envi-
ronment compared with a bird seed diet (24). Urbanization
influences food quality and availability for many wild species
and has been suggested to promote a shift in the GM that could
impact other nutritional physiology outcomes. Indeed, research
exploring the consumption of foods available in urban environ-
ments by birds has reported significant shifts in the GM and
associated physiology (25-28).

Overall, our knowledge of the role of intestinal microbes in
avian hosts lags far behind our understanding of mammalian
systems. However, constitutional taxa detected from birds
using 16S rRNA gene amplicon sequencing have also been
identified in mammalian microbial communities, suggesting
that birds may harbor some shared microbial milieu (29).
Moreover, in a large comparative study across 59 bird species,
diet was reported to be a significant variable in explaining GM
composition (30). However, more recent work has down-
played the influence of diet on the avian GM (31). Regardless,
much of the work conducted in this area is cross-sectional in
nature and lacks the rigor of a controlled feeding trial, which
enables researchers to control for other environmental varia-
bles (e.g., pathogens, pollution, stress, etc.). Such worKk is criti-
cal for allowing us to better understand the role of diet in the
urban environment. Therefore, as a continuation of our
research we investigated the potential differential effects of
an urban-type (i.e., bird seeds mixed with French fries; herein
“Urban” diet) versus control (i.e., bird seeds; herein “Seed”
diet) diet on the GM, metabolic profile (plasma, liver, adipose,
kidney, and muscle), and circulating endotoxin and inflam-
matory factors in mourning doves. The common Western diet
food, French fries, was used as birds have ready access to this
food source in urban environments. We hypothesized that the
Urban diet would differently impact the profiles of GM and
tissue metabolomes, and increase plasma LPS and proinflam-
matory factors, compared with animals fed a Seed diet.

MATERIALS AND METHODS

Animals and Diets

Blood and tissue samples and contents from the lower
intestines from a total of 13 birds were provided from a
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prior study comparing Seed and Urban diets in mourning
doves (24). Briefly, 16 adult male and female mourning
doves (body mass: 110-130 g) were captured from the ASU
Tempe campus, AZ (33°25'11.5"N-111°55'55.6"W; altitude:
365 m), using a walk-in style funnel trap baited with wild-
bird seeds, as previously described (21, 22, 24). All animals
were captured during the same hours and were trans-
ported to the ASU Department of Animal Care and
Technology facility located on the Tempe campus in indi-
vidual cloth bags with drawstring closures to minimize
stress. Birds were housed individually to prevent fighting
and were exposed to a 14:10 h light/dark cycle and an am-
bient temperature of 77 = 4°F (~25°C) to mimic natural
conditions at the time of capture. All study protocols were
approved by the ASU Institutional Animal Care and Use
Committee and were conducted under appropriate state
and federal scientific collecting permits.

After a 2-wk acclimation period, birds in the original study
were divided randomly and fed either an Urban diet (4 male
and 4 females) or a Seed only diet (4 males and 4 females) for
4wk, as previously described (24). Two birds died in captivity,
and one was released due to poor housing acclimation result-
ing in 13 animals at the end of the study (Urban diet: 3 males
and 4 females; Seed diet: 2 males and 4 females). Veterinarian
examination (necropsy) suggested the two deaths may have
been due to preexisting conditions. The Urban diet consisted
of a 50:50 mixture of nutritionally balanced dove seeds mixed
with mashed French fries. French fries were selected as they
are an anthropogenic food item and prevalent in urban areas
(32). The seed-to-French fry ratio was based on tolerability
during the acclimation period and to model the expected
mixed diet of birds in these environments. An overview of the
study design is outlined in Fig. 1.

Intestinal Content Sample Collection and Extraction

After birds were euthanized, contents of the large intestine
(proximal to the cecum) were harvested. Although we under-
stand the disadvantages of lacking a baseline measurement,
it was not feasible to collect intestinal samples in birds with-
out highly invasive techniques thus preventing pre- and
postmeasures within the same individual. Although cloacal
swab or fecal samples have been used in the past, they are of-
ten unreliable and less accurate compared with the methods
used presently and outlined previously (33). Intestinal con-
tents were stored at —80°C until processing for microbial
analyses. Microbial genomic DNA was extracted from intesti-
nal samples using a commercially available kit following the
manufacturer's protocol (PowerSoil DNA Isolation Kit,
MoBio Laboratories, Inc., Carlsbad, CA). DNA concentration
was quantified using a uDrop plate adaptor (Cat. No. N12391,
Thermo Fisher Scientific, Waltham, MA) and Multiskan GO
microplate spectrophotometer (Cat. No. 5119300, Thermo
Fisher Scientific). The OD,60/ODyg0 ratio of all samples were
> 1.80, demonstrating purity.

Microbiome Analysis

Microbial DNA samples were sent to the Genomics Core
Facility in the Biodesign Institute at Arizona State University
(Tempe, AZ) for bacterial community analysis via next-gener-
ation paired-end sequencing on the MiSeq Illumina platform.
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Figure 1. Schematic of study design. A: a total of 16 male and female mourning doves (Zenaida macroura) were captured in Tempe, AZ. B: after capture,
birds where acclimatized to their conditions for a 2-wk period. Next, birds were randomly assigned to the Urban diet (4 male and 4 females) or a Seed
only diet (4 males and 4 females). Two birds died and one was released, leaving 7 birds in the Urban diet group and 6 in the Seed diet group. C: the
Urban diet consisted of a 50:50 ratio of French fry to seed based on tolerability. The Seed diet consisted of bird seed. D: after the intervention, contents
of the large intestine were removed, and microbial DNA was extracted for 16S rRNA gene sequencing. Plasma samples were assessed for lipopolysac-
charide (LPS) and inflammatory cytokine concentrations. Plasma, liver, kidney, adipose, and pectoralis and gastrocnemius muscle samples were taken,
and metabolomics analyses were performed. LC-MS, liquid chromatography—mass spectrometry.

Specifically, amplicon sequencing of the V4 region of the
16S rRNA gene was performed with the barcoded universal
forward (515 F: GTGYCAGCMGCCGCGGTAA) and reverse
(806 R: GGACTACNVGGGTWTCTAAT) primers containing
Illumina adapter sequences and following the protocol by the
Earth Microbiome Project (EMP; https://earthmicrobiome.
org/protocols-and-standards/16s/) for the library preparation
(34). PCR amplifications for each sample were done in tripli-
cate, then pooled and quantified using Quant-iT PicoGreen
dsDNA Assay Kit (Invitrogen). A no-template control sample
was included during the library preparation as a control for
extraneous nucleic acid contamination. DNA (200 ng) per
sample was pooled and then cleaned using QIA quick PCR
purification kit (QIAGEN, Valencia, CA). The pool was quanti-
fied by Illumina library Quantification Kit ABI Prism (Kapa
Biosystems, Wilmington, MA). The DNA pool was diluted to a
final concentration of 4 nM then denatured and diluted to a
final concentration of 4 pM with a 25% of PhiX. Finally, the
DNA library was loaded in the MiSeq Illumina and run using
the version 2 module, 2 x 250 paired end, as per the direc-
tions of the manufacturer.
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The resultant paired end, demultiplexed data were imported
and analyzed using QIIME 2 software v. 2021.2 (35). Briefly, the
sequencing generated 1,014,547 reads with a median of 77,450
reads per sample. After sequence quality plots were viewed
based on 10,000 randomly selected reads, the first 25 bases of
the forward and reverse reads were trimmed. Next, quality
control was performed via the DADA2 denoise-paired method
to remove low quality regions and construct a feature table
using Amplicon Sequence Variants (ASVs) (36). The feature-
classifier plugin was used to classify ASVs taxonomically. A
pretrained I Bayes machine-learning classifier was trained to
differentiate taxa present in the 99% SILVA (version 138.1)
reference set trimmed to 250 bp of the V4 hypervariable
region (corresponding to the 515 F-806R primers). This classi-
fier works by identifying k-mers that are diagnostic for partic-
ular taxonomic groups and using that information to predict
the taxonomic affiliation of each ASV (37). A phylogenic tree
was then constructed using the fragment-insertion plugin
where the sequences were inserted into the SILVA identity
reference tree backbone. Based on the inherent issues with
rarefaction (38) and lack of a large difference in sequencing
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depth between samples, data was not rarefied (Supplemental
Fig. S1; all Supplemental material is available at https://doi.org/
10.6084/m9.figshare.20084090). A phyloseq (v1.38.0) object was
created, and downstream analyses and visualizations were per-
formed in R (v4.1.2). Sequences were removed including mito-
chondrial and plant DNA. In addition, ASVs that had a mean
read count of less than 2 across all samples were removed.

o Diversity (intracommunity diversity) was measured using
the Shannon index, which accounts for richness and evenness,
and phylogenetic diversity (PD), which is a phylogenetically
weighted measure of richness, using the phyloseq and picante
(v1.8.2) packages, respectively. B Diversity (between-sample di-
versity) was calculated using the Aitchison distance rooted in a
centered log ratio (CLR) transformation as it is robust to
high levels of sparsity (39). Before transformation, a pseu-
docount of 1 was assigned, and CLR was performed using
the package microbiome (v1.18.0). Differences in GM com-
position by diet group were visualized via a Principal
Component Analysis (PCA) of the Aitchison distance. To
predict the function of GM, data analysis was performed
through the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States 2 (PICRUSt2) pipe-
line (40). PICRUSt2 output was based on structured path-
way mappings of Enzyme Commission gene families to the
MetaCyc database (41).

Metabolomics Analysis

Plasma, liver, kidney, adipose, as well as pectoralis and
gastrocnemius muscle samples were analyzed by the
Arizona Metabolomics Laboratory core facility at Arizona
State University using targeted liquid chromatography-mass
spectrometry techniques as previously described (21, 22).
Contents of the large intestine were not used in this analysis
due to very low sample amount. All samples were thawed
overnight at 4°C before extraction and analyses. Internal
quality control samples were created by pooling aliquots of
plasma from all animals. These quality controls were ana-
lyzed at the beginning, middle, and end of the analyses. Data
for tissue samples were normalized to tissue mass before
analyses. Sample analyses were carried out using an Agilent
1290 UPLC-6490 QQQ-MS (Santa Clara, CA) system equipped
with an electrospray ionization (ESI) source. The resulting
data were statistically analyzed as described subsequently.

LPS Assay and Inflammatory Cytokine Analyses

After the 4-wk diet, plasma and tissue samples were col-
lected, as previously described (24). LPS concentrations were
quantified in duplicate using undiluted cardiac plasma sam-
ples that were collected at euthanasia for both diet treatments.
A commercially available kit was used per the manufacturer’s
protocol [Cat No. KTE30162, Abbkine, Inc., China; intra-assay
coefficient variation (CV) <10%]. Undiluted plasma samples
were sent to Eve Technologies (Calgary, Alberta, Canada) for
assessment of inflammatory cytokines [interferon-o (IFNa),
interferon-y (IFNy), interleukin (IL)-2, IL-6, IL-10, IL-16, IL-21,
macrophage inflammatory protein-1 § (MIP)-1B, MIP-3a, mac-
rophage colony-stimulating factor (M-CSF), regulated on acti-
vation, normal T cell expressed and secreted (RANTES),
vascular endothelial growth factor (VEGF)] using a 12-plex
chicken cytokine array (Millipore, Burlington, MA).
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Statistical Methods

For the GM, o diversity metrics were compared with
Mann-Whitney U tests and B diversity was compared with
permutational multivariate analysis of variance (PERMANOVA;
permutation n = 999) using the “adonis” function in the vegan
package (v2.6.2). To compare dispersion, a permutation test for
homogeneity in multivariate dispersion (PERMDISP) was con-
ducted using the “betadisper” function in the vegan package.
Next, to evaluate whether taxa frequencies in the two groups
were equal, a Dirichlet-multinomial distribution was assumed
and difference in the mean distribution of taxa was tested
(accounting for the overdispersion). This was conducted at the
phyla level after pooling rare taxa using the HMP package
(v2.0.1) (42). For differential abundance testing, analysis
of compositions of microbiomes with bias correction was
employed on taxa present in at least 30% of all the samples
using the R package ANCOMBC (v1.4.0) (43). Adjustment
for multiple testing was conducted with a Bonferroni cor-
rection. Features with a g value <0.05 were considered sig-
nificant. Data generated from the PICRUSt2 pipeline was
first filtered, retaining features present in at least 30% of
all samples, and then assigned a pseudocount of 1 and
transformed via CLR using the package microbiome.
Analyses with Mann-Whitney Utests were then performed
with P-value corrections performed using the Bonferroni
approach (setat g < 0.05).

To determine significantly affected metabolites, data were
log-transformed and subjected to independent sample ¢ tests
(Seed versus Urban diets) for all plasma and tissue samples
using IBM SPSS Statistics for Windows, version 27.0 (SPSS, Inc.,
Chicago, IL). If data were not normally distributed, a Mann-
Whitney U test was used. To adjust for multiple hypothesis
testing, a false discovery rate (FDR) correction was used with a
significance level of P < 0.05. The online software package
MetaboAnalyst (metaboanalyst.ca) was used for the pathway
analyses, integrating enrichment analyses, and pathway topol-
ogy analyses of metabolomic data. The data were log;o-trans-
formed before model construction and the reported Holm
adjusted P value was used to determine significance (44). The
pathway analysis was calculated from the chicken metabolic
pathway library. PubChem Open Chemistry Database (https://
pubchem.ncbi.nlm.nih.gov/) was used for interpretation of
individual metabolites and metabolic pathways.

For LPS and inflammatory markers, normality statistics and
probability plots were generated to test normality assumptions,
and log transformations were performed as appropriate.
Plasma data were analyzed by ¢ tests (Urban vs. Seed diet).
Statistical analyses were performed using IBM SPSS Statistics
for Windows, version 27.0 (SPSS, Inc., Chicago, IL). A P
value of < 0.05 was considered statistically significant.

RESULTS

Gut Microbiome Analysis Revealed Compositional
Differences between Seed and Urban Diet Groups

Aitchison distance matrices of CLR transformed ASV
counts were used to compare overall GM composition
between the Seed and Urban diet groups. Significant cluster-
ing by diet was observed accounting for 11.37% of the

AJP-Regul Integr Comp Physiol « doi:10.1152/ajpregu.00323.2021 - www.ajpregu.org

Downloaded from journals.physiology.org/journal/ajpregu at Arizona State Univ (149.169.081.050) on October 28, 2022.


https://doi.org/10.6084/m9.figshare.20084090
https://doi.org/10.6084/m9.figshare.20084090
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.ajpregu.org

(}) URBAN DIET INFLUENCE ON BIRD MICROBIOME AND METABOLOME

explained proportion of variance [PERMANOVA: F 15 = 1.41,
R?=0.11, P = 0.04; Fig. 2A]. Importantly, we did not detect a
significant difference in group dispersion for Seed versus
Urban diet groups [PERMDISP: F;1, = 0.80, P = 0.78],
increasing our confidence that the significant compositional
differences were not an artifact of variance in group disper-
sion. In comparison, there were no significant differences
between Seed and Urban diet groups for the o diversity met-
rics, Shannon index, or PD (Mann-Whitney U test: P > 0.37;
Fig. 2, B and C; Supplemental Table S1). These findings sug-
gest that diet was not associated with GM richness or even-
ness in these animals.

Overall, we identified 178 unique ASVs after filtering pro-
viding taxonomy assignment for 75 features at the genus level
(phylum: 9; class: 14; order: 28; family: 49). The predominant
phyla across the two groups, irrespective of diet, were
Firmicutes, Actinobacteriota, Proteobacteria, Bacteroidota,
and Desulfobacteria (Fig. 3A). On evaluation of the distribu-
tion of phyla, we did not detect a significant difference
between the Seed and Urban diets (xdc statistic = —29.51, P =
1.00). However, there was more visually apparent variation at
the genus level. Of the top 10 most abundant genera, we noted
several biologically notable taxa including, Lactobacillus,
Enterococcus, and Veillonella (Fig. 3B).

In relation to differential abundance testing, signifi-
cance was detected at the family and genus levels, with
several differentially abundant taxa between the two diet
groups (ANCOMBC: g < 0.05). Specifically, families more
abundant in the GM of birds fed the Urban diet included,
Erysipelatoclostridiaceae [log-fold-change (log-FC) = 2.18]
and Sanguibacteraceae (log-FC = 1.28; Fig. 4A; Supplemental

A
101 p=0.04 Group
R%=0.11 Seed
Urban
5_
3
~
o
o 97
O
o
_54
5 0 5 10
PC1 [17.5%]

Table S2). In the GM of Seed birds, Aeromonadaceae (log-
FC = 1.23) was more abundant. At the genus level, two taxa
were more abundant in the Urban diet group, including
Oribacterium (log-FC = 2.06) and Sanguibacter (log-FC =
1.04), whereas three were more abundant in the Seed diet
group, including Aeromonas (log-FC = 1.58), Galibacterium
(log-FC = 2.51), and Solobacterium (log-FC = 2.04; Fig. 4B;
Supplemental Table S2).

The PICRUSt 2 pipeline was implemented to predict the
function of GM based on the 16S rRNA gene amplicon
sequencing data. Overall, there were 342 predicted path-
ways, though after filtering and statistical testing only 4
pathways displayed significant differences in enrichment
between the Seed and Urban Diet groups (Fig. 5, A-D). The
Urban diet had greater abundance in “methanol oxidation to
carbon dioxide,” whereas the Seed diet had greater abun-
dance in “glucose and glucose-1-phosphate degradation,”
“superpathway of UDP-glucose-derived O-antigen building
blocks biosynthesis,” and “2-methylcitrate cycle I” (Mann-
Whitney U test: g < 0.05).

Metabolome Analysis of Host Tissues Displayed Subtle
Differences between Seed and Urban Diet Groups

The metabolomics analyses yielded numerous metabo-
lites per plasma/tissue sample (plasma: n = 154; pectoralis
muscle: n = 123; liver: n = 125; kidney: n = 188; gastrocnemius
muscle: n = 105; adipose: n = 92). Although 32 metabolites
were initially significantly different between diet groups, af-
ter adjusting for multiple hypothesis testing, only one pec-
toralis muscle metabolite remained significantly different
between diet groups (Table 1; Supplemental Fig. S2). The
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Figure 2. A: the composition of microbiome samples from the contents of the large intestine differed significantly in mourning doves fed a Seed (n = 6)
vs Urban (n = 7) diet, as visualized by principal components analysis (PCA) of Aitchison distances of centered log-ratio ASV counts (P = 0.04). Each point
represents an individual sample, and the dashed lines are the 95% confidence intervals of the two diet groups. Significance testing was performed with
permutational analysis of variance (PERMANOVA; permutation n = 999). a-Diversity boxplots display, Shannon diversity (B) and phylogenic diversity (C)
for Seed and Urban diet groups. Boxes denote the interquartile range (IQR) between the first and third quartiles, and the horizontal line defines the me-
dian. Significance was determined by Mann—Whitney U tests. NS, not significant.
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Figure 3. A: the relative abundance (%) of bacterial phyla in microbiome samples from the contents of the Iarge intestine in mourning doves separated
by Seed and Urban diet groups. Each vertical bar represents a separate individual sample. Phyla with a median relative abundance of less than 1% are
collapsed into the category “Other.” B: the relative abundance (%) of bacterial genera in microbiome samples from the contents of the large intestine in
mourning doves separated by Seed and Urban diet groups. Each vertical bar represents a separate individual sample. Genera with a median relative

abundance of less than 1% are collapsed into the category “Other.”

pathway enrichment analyses yielded numerous pathways
per plasma and tissue samples (plasma: n = 49; pectoralis
muscle: n = 50; liver: n = 44; kidney: n = 54; gastrocnemius
muscle: n = 47; adipose: n = 45). Similarly, although nine
pathways were initially significantly altered between diet
groups, after adjusting for multiple hypothesis testing, only
three pathways within pectoralis muscle remained signifi-
cantly downregulated in the urban diet group (Table 2;
Supplemental Fig. S3).

Plasma LPS Was Elevated in Seed-Fed Compared with
Urban-Fed Mourning Doves

Plasma LPS concentrations were significantly higher in
the Seed diet group compared with the Urban diet group
(51.01+1.18 ng/L vs. 45.11+1.02 ng/L; t test: P = 0.003;
Table 3). No significance was detected for the tested inflam-
matory markers (P > 0.161). Note, IFNq, IL-21, MIP-1f, and

MIP-30 were not detected in many of the plasma samples and
were therefore not included in the analysis. Furthermore,
one animal in the Seed group displayed outlying values for
nearly all of the inflammatory markers (Z-scores > 2.5) and
was removed from the analysis.

DISCUSSION

Urbanization influences food quality and availability for
many wild species. In the current study, we hypothesized
that such a diet could significantly influence the GM, host
metabolome, and circulating LPS and inflammatory markers
in urban mourning doves as many avian species have
increased access to human refuse and food subsidies in
urban areas. The GM of doves in the Urban and Seed diet
groups showed significant dissimilarity in terms of microbial
composition and significant differences in microbial

Oribacterium - —
Erysipelatoclostridiaceae - <&
Sanguibacter- —_—C—
z g
g Sanguibacteraceae - —— g Aeromonas -
L (O]
Gallibacterium -
Aeromonadaceae -
Solobacterium -
-2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3

Log-fold change (Urban:Seed)

Log-fold change (Urban:Seed)

Figure 4. A: differentially abundant features at the family level in the microbiome samples from the contents of the large intestine of mourning doves in
Seed (n = 6) and Urban (n = 7) diet groups. B: differentially abundant features at the genus level in the microbiome samples from the contents of the large
intestine of mourning doves in Seed (n = 6) and Urban (n = 7) diet groups. Points represent the log-fold-change (effect size) of individual bacterial features
with only those with significant effect sizes (g < 0.05) are shown. A positive log-fold-change indicates that a feature is more abundant in individuals in
the Urban diet group (orange), and a negative log-fold-change indicates a higher abundance in individuals in the Seed diet group (Blue). Bars represent

standard error derived from the ANCOMBC model.
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Figure 5. Boxplots displaying statistically significant differences in predicted metabolic pathways in the microbiome samples from the contents of the
large intestine of mourning doves from the Seed and Urban diet groups: methanol oxidation to carbon dioxide (4), glucose and glucose-1-phosphate
degradation (B), superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis (C), and 2-methylcitrate cycle | (D). Pathway abundances
were transformed by centered log-ratio (CLR) and statistical testing was performed via Mann—Whitney U tests with a Bonferroni multiple-comparison cor-
rection. Boxes denote the interquartile range (IQR) between the first and third quartiles, and the horizontal line defines the median. *q value < 0.05.

abundance at the family and genus level. Moreover, and in
contrast to our hypothesis, the Seed-fed doves had a signifi-
cantly greater concentration of circulating LPS, though there
were no differences in inflammatory markers between
groups. These differences between the diet models imple-
mented in this investigation suggest an urbanized versus a
seed diet can promote differential shifts in the community
profile and dynamics of the GM. Though, whether these dif-
ferences could potentially impact other nutritional physiol-
ogy outcomes were less apparent as a comprehensive survey
of the metabolomes from plasma and tissue samples
revealed a single significantly altered metabolite and three
pathways, all within the pectoralis muscle samples.

Previous work from our laboratory examining the GM in
house sparrows from rural and urban environments reported
urban animals were more enriched with class- and order-
level microbes from the phylum Proteobacteria, which are
implicated in several mammalian intestinal and extraintesti-
nal diseases (23, 45). In the present work, we did not note sig-
nificant differences at these higher phylogenic levels,
instead observing more subtle differences at the family and
genus level between the Seed- and Urban-fed doves. This dis-
cordant finding between studies is of note and could be
related to differences in the species, environmental exposure
(experimental diet and laboratory housing vs. wild-caught),
and the inclusion of only urban-caught doves in the present
study. Indeed, the house sparrows from the previous study
presumably had much longer exposure to their respective
environments compared with the short-duration experimen-
tal diets in the present work. Moreover, the mourning doves
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used in this study were captured from an urban environ-
ment, and it is likely the diet provided to the birds in the
Seed group was a greater departure from their normal nutri-
tional intake compared with the mixed diet provided to the
birds in the Urban group. Another consideration and impor-
tant feature of the avian GM is the large variation that has
been noted over multiple species (31, 46). It may be that birds
are more apt to acquire microbes based on their environ-
ment and this transfer may be even more variable in birds of
flight as they potentially have greater exposure to different
environments (46). Although we acquired mourning doves
used in the current study at a confined location, central to a
large urban environment, it is likely they were exposed to
disparate conditions before being captured. Therefore,
future work should implement longer dietary intervention
periods and, importantly, dietary change with ABA study
designs [e.g., 1) seed diet to, 2) urban diet, 3) to seed diet, and
vice versa] to observe if potential shifts in the GM alter and/
or diminish.

Overall, diet-focused GM research indicates the gut
microbes in adult animals are resilient, both in wild and
controlled conditions (47-49). However, as Bodawatta and
colleagues recently highlighted, the avian GM does appear
to possess a greater degree of malleability to environmen-
tal and dietary changes, as compared with other species
(50). The avian GM is also of particular interest due to the
unique physiology of these animals. In the case of the
doves used in our study, the capability of powered flight
likely plays a large role in the contents and assembly of
their GM. However, Song et al. (2020) recently assessed the
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Table 1. Altered plasma and tissue metabolites between
diet groups

Table 3. Plasma markers related to inflammation
between groups

P Value q Value (FDR) Fold-Change Urban/Seed Marker Urban Diet Seed Diet P Value

Plasma LPS, ng/dL 45.11+1.01 51.01+1.18 0.003
Acrylamide 0.001* 0.220 0.54 Down IFNY, pg/mL 19.66+£12.01 7.24+11.66 0.893
1-Methylhistidine 0.008* 0.609 0.64 Down IL-2, pg/mL 1548.24 +200.61 1553.41+175.58 0.989
Epinephrine 0.009 0.609 0.68 Down IL-6, pg/mL 63.10+41.34 19.45+14.63 0.161
Pantothenic acid 0.019 0.883 1.61 Up IL-10, pg/mL 11.28+9.75 1.06 £1.05 0.283
3-Hydroxybutyric acid  0.029 1.000 0.72 Down IL-16, pg/mL 6.96+2.08 4.29+173 0.256
Choline 0.034 1.000 1.50 Up M-CSF, pg/mL 3.66+2.55 1.46+0.95 0.329

Pectoralis muscle RANTES, pg/mL 5.55+2.93 7.98+3.83 0.620
Myoinositol <0.001 0.017 0.80 Down VEGF, pg/mL 3.661+2.54 1.45+0.95 0.322
Leucic acid 0.016 0.822 0.62 Down

e I W Data displayed as means * SE; bold values are P < 0.05. IFNy,
Malate 0.036 0.822 127 Up . . ; N )

Liver interferon-y; IL, interleukin; LPS, plasma lipopolysaccharide; M-
Nerveline 0.005%  0.5M 069 Down CSF, macyophage colony-stimulating factor; RANTES, regulated
B - 0.008 0511 079 Down on activation, normal T cell expressed and secreted; VEGF, vascu-
Valine 0.008* 0.5 069 Down lar endothelial growth factor.

Proline 0.014* 0.658 0.77 Down
Homoserine/threonine 0.034 0.955 0.77 Down h . d . bial ces in bird b
Threonine 0.034 0.955 077 Down ost factors and microbial composition in birds may be
Isoleucine 0.045 0.955 0.88 Down partly a consequence of an overall lower level of specificity
Muconic acid 0.046 0.955 0.41 Down between microbial and host taxa than is found in mammals.
K_dTMAO 0.049  0.955 133 Up This may be related to flight, as birds’ intestinal tracts are
idney .
e EEEE 0.001 0.212 124 Up much shorter than those qf compar‘ably sized land mammals
Allopurinol 0.019 0.929 1.41 Up and carry far fewer bacteria, reducing the burden of holding
Urocanic acid 0.027 0.929 2.12 Up extra weight (31). There is also the possibility that their diges-
Phenylacetic acid 0-034* 0.929 1.1 Up tive tracts are not providing the necessary food to bacteria to
Il.:-‘(sf)/-GaerSanitol g'ggg* 8'333 g'gg’ ggwn maintain the symbiotic (mutually beneficial) exchange that
S 0.035* 0929 119 Up wou}d make living therg beneficial to bgcteria. Altk'lough thesg
Uridine 0.041 0.929 0.67 Down findings partly align with our nonsignificant findings for mi-

Gastrocnemius muscle crobial richness between groups, null findings do not appear
2-Hydroxybenzoic acid 0.018  0.884 0.84 Down  to be the rule as previous observational research has impli-
Citrate 0.026 ~ 0.884 0.64 Down  ated diet as a potential modulator of the avian GM, includin,
Betaine 0.035+* 0.884 0.88 Down : p _ , g

Adipose animals from rural and urban environments (23, 25, 26, 28).
4-Aminobutyric acid 0.001 0.224 0.51 Down More recent experimental work with house sparrows found
Carnitine 0.007  0.663 0.61 Down that birds fed urban or rural-modeled diets for 6 wk signifi-
Suberic acid 0.020 1.000 0.60 Down

*P value determined via Wilcoxon Mann-Whitney U test; bold
values are P < 0.05.

gut microorganisms of ~900 vertebrate species, including
315 mammals and 491 birds, and reported that bird’s GMs
are only weakly correlated with host phylogeny and not
correlated with host diet (31). Whereas mammals have a
strong correlation to both diet and phylogeny. Song and
colleagues speculated that the lack of correlation between

Table 2. Altered metabolic pathways between diet groups

cantly altered the diversity and taxonomic composition of the
GM (27).

In the present study, we noted the GM from Urban-fed doves
was significantly more abundant in Erysipelatoclostridiaceae
and Sanguibacteraceae at the family level and Oribacterium
and Sanguibacter at the genus level. Of note, Erysipelatoclos-
tridiaceae is a butyrate-producing family of bacteria and has
been reported to be enriched in Pekin ducks fed diets with
high levels of dietary fiber (51). The genus Oribacterium, which
is also from a butyrate-producing family (Lachnospiraceae),

Matched Compounds P Value Holm Adj. P Value Impact

Plasma

Pantothenate and CoA biosynthesis 3/19 0.020 0.988 0.025

Synthesis and degradation of ketone bodies 1/5 0.029 1.000 0.000

Glycerophospholipid metabolism 1/35 0.034 1.000 0.030

Pectoralis muscle

Inositol phosphate metabolism 1/30 <0.001 0.007 0.080

Phosphatidylinositol signaling system 1/28 <0.001 0.007 0.024

Ascorbate and aldarate metabolism 110 <0.001 0.007 0.000
Liver

Valine, leucine, and isoleucine biosynthesis 5/8 0.039 1.000 0.000
Adipose

Butanoate metabolism 4/15 0.012 0.533 0.032

Purine metabolism 5/62 0.049 1.000 0.036

Kidney and gastrocnemius muscle revealed no significant pathways; bold values are P < 0.05.
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has been reported to be associated with obesity in humans (52).
The other genus found to be more abundant in the Urban-fed
group, Sanguibacter, was found to be among the dominant
genera in wintering black-necked cranes (Grus nigricollis) (53).
Increased abundance of these taxa is suggestive of greater
energy extraction potential by the GM, though this was not
reflected in physiological data previously described (e.g.,
plasma glucose and triglyceride concentration) (24). In com-
parison, the Seed diet group had greater abundance of the fam-
ily, Aeromonadaceae, and genera, Aeromonas, Gallibacterium,
and Solobacterium. The genus, Aeromonas, often found in
aquatic environments and in soil, comprises mostly patho-
genic species (54) and has been detected in several birds of
flight, particularly in seabirds (55, 56). As part of the family,
Aeromonadaceae, these bacteria are Gram-negative and con-
tain LPS on their surface (54). Similarly, the Gram-negative
Gallibacterium has been found to contain species that are
pathogenic to chickens (e.g., Gallibacterium anatis) (57) and
has been proposed to be an indicator of microbiome dysbiosis
in songbirds (58). Overall, reconciling and understanding the
differential findings between diet groups is difficult with the
nonsignificant physiological data. In addition, the composition
of the GMs between diet groups only showed modest separa-
tion. It may be that many of these microbes are symbionts or
regular inhabitants in the GI tract of urban mourning doves.
To better understand these differences, longer intervention
durations are needed, as well as ABA study designs as noted
previously. Such designs may reveal the observed differences
in abundances at the family and genus levels are more transi-
tory and therefore influence the host to a very small degree.
When compared with mammals, the avian GM appears to have
less complexity and specificity (31). Ultimately, these traits
may make the avian GM more sensitive to changes in bacterial
abundance and more apt to harbor transitory taxa (31, 59, 60).
Regardless, our findings are of interest considering birds in
built environments subsisting off urban-type foods may carry
differential abundance of specific microbes compared with
their rural counterparts.

Contrary to our initial hypothesis, the doves fed the Seed
diet had significantly greater levels of circulating LPS in
comparison to the Urban diet birds. Although a relatively
unexplored area in avian research, prior work in goslings
supported our original hypothesis as a relationship was
found with increased circulating LPS from so-called dysbio-
sis and intestinal permeability and kidney injury (61). An im-
portant consideration with the birds in the present study
may be related to prior environmental exposure. Although
we did have a 2-wk control period before the animals were
randomized into their respective diets, further work may
consider longer control periods. Regardless, we did not find
an increase in inflammation that might be expected with
increased circulating endotoxin. The reason for this is
unclear, however, the GM of doves in the Seed diet did dis-
play increased abundance of several Gram-negative taxa and
the predicted metabolic pathway, “superpathway of UDP-
glucose-derived O-antigen building blocks biosynthesis,”
which forms specific sugar residues used by several taxa for
incorporation in the repeated subunit O-antigen in the LPS
structure (62). Another notable predicted pathway was “glu-
cose and glucose-1-phosphate degradation,” suggestive of an
enhanced ability to utilize sugars and their modes of
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utilization. In comparison, the Urban group displayed
greater abundance in the “methanol oxidation to carbon
dioxide” pathway. This finding was of note as the GM is now
recognized as an important source of metabolic methanol
(63). The water-soluble fiber pectin, found in fruits and vege-
tables (including potatoes), is degraded by the gut microbes
to produce methanol (63). Although this analysis offers an
exploration of the differences in potential functionalities of
these two diet types, the data are inherently predictive.
Moreover, although significant, the number of significant
pathways were quite small and should be interpreted with
caution.

With the exception of pectoralis muscle samples, metabo-
lomics analyses revealed no significant differences in indi-
vidual metabolites or pathways in plasma or several tissue
samples (liver, kidney, adipose, and gastrocnemius muscle)
between diet groups following multiple hypothesis testing.
Of note, the metabolite myoinositol was decreased in pector-
alis muscles from doves fed the Urban diet as compared with
the seed diet. Myoinositol is involved in numerous metabolic
pathways in poultry (lipid signaling, osmolarity, glucose,
and insulin metabolism) and thus, it is possible that the
decrease of myoinositol observed in the Urban diet pectora-
lis muscle could affect glucose metabolism in the muscle
(64). Since seeds are a rich source of dietary myoinositol (65),
the observed decrease in muscle myoinositol could be
related to the decreased proportion of seeds provided in the
Urban diet. Similarly, the pathway enrichment analyses
revealed only three low-impact pathways that were downre-
gulated in pectoralis muscles from doves fed the Urban diet
as compared with birds fed the seed diet. Moreover, since all
three pathways only had one metabolite matched to them
for the analyses, which was also the only altered metabolite
(myoinositol), this further demonstrates that the main
metabolite altered by the Urban diet is myoinositol and its
associated pathways in pectoralis muscles. The minimal dif-
ferences observed in the metabolites align with the initial
results from this study (24), where body mass and numerous
nutritional physiology markers were likewise not altered
between diet groups.

Perspectives and Significance

In summary, data generated from this study show a diet
modeled after what birds in urban environments plausibly
consume significantly alters the community of microbes har-
bored in the large intestine. The Urban diet fed doves had
greater abundance of potentially energy harvesting taxa;
however, alterations as a result of this were not reflected in
metabolomic analyses from several tissues, in addition to
circulating LPS and inflammatory markers. Indeed, contrary
to our hypothesis, doves feed the diet of seeds had a signifi-
cantly greater concentration of circulating LPS in compari-
son to the Urban diet fed doves. This may have been due to
prior environmental exposures and deserves future investi-
gation as this elevation did not appear to negatively impact
the health of these animals. In addition, metabolites and
metabolite-produced metabolic pathway analysis revealed
largely no difference between diet groups, with the exception
of decreased pectoralis myoinositol in the doves fed the
Urban diet. Although our analysis was limited by a smaller
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sample size and study length, our research supports the
notion that the microbial composition in doves is impacted
by diet, though may only weakly associate with host

physiology.
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