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Abstract

In this paper, we have developed a solver based on the message-passing inter-
face (MPI) to enable rapid large-scale simulation of generic metastructures
composed of bi- or multi-stable elements. The in-house solver has been thor-
oughly validated against a commercial numerical solver (Abaqus) and the
well-established serial codes from the previous studies. We can achieve up to
4th-order solution accuracy with fully explicit Runge-Kutta (RK) methods,
exceeding what many commercial structural analysis tools provide. With
our parallel code dedicated to solving specific problem types, the absolute
computational speed can be improved by three orders of magnitude, enabling
the investigation of a large parameter space. More importantly, the in-house
implementation enables an effective distribution of the computational load
following the intrinsic structural periodicity, thus achieving efficient parallel
scalability. To demonstrate our code’s capability to handle massively large
problems previously unattainable with existing solvers, we investigate the
amplitude-dependent energy transmissibility of bi-stable metabeams and the
stability of the transition wave’s propagation speed. The achieved numeri-
cal and computational performance gains drastically expand the accessible
analysis domains of general nonlinear metamaterial and metastructure archi-
tectures, thus opening up the potential to uncover new dynamics and enable
practical implementations.
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PROGRAM SUMMARY
Program Title: NMˆ3 (Nonlinear MetaMaterials MPI) solver
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://github.com/wonnie87/NMCube
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: MIT
Programming language: Fortran
Nature of problem: NMˆ3 enables massively parallel simulations of strongly non-
linear metamaterials and metastructures, including 1D multi-stable lattice with
coupled pendula (discrete sine-Gordon model), 1D lattice with quartic on-site po-
tentials (discrete ϕ-4 model), and metabeam with a bi-stable microstructure.
Solution method: Up to the 4th-order explicit Runge-Kutta (RK) methods are
implemented in NMˆ3. The Newmark-β (implicit) method with constant average
acceleration is also available if unconditional numerical stability is desired.
Additional comments including restrictions and unusual features: Running NMˆ3
requires installation of Python (with NumPy library), MPI, and HDF5. A Python
script is used to generate input files. The code use MPI system calls to allow a
massive parallelization among the compute processes. The code uses HDF5 file
format for data storage.

1. Introduction

Mechanical metamaterials are arrangements of engineering units designed
to realize effective, unconventional macroscopic properties [1, 2, 3]. One
class of such metamaterials featuring bi-stable or multi-stable microstruc-
tures [4, 5, 6, 7] displays nonlinearity leading to uncommon dynamics in-
cluding extreme wave directionality [8, 9, 10], bandgap transmission [11,
12], input-independent dynamics [13], which can be utilized for various en-
gineering applications, such as energy trapping [14, 15, 16], energy har-
vesting [13, 17], structural programmability [18, 19, 20, 21, 22, 23], and
mechanologic [9, 24, 25]. Metamaterials are typically designed with peri-
odic microstructures, and the resulting dynamics are best explained by the
associated dispersion relations. For many simple periodic structures, the
linear and weakly nonlinear wave dispersion relations [26, 27] can be read-
ily obtained through systematic approaches on a single unit cell, such as
Bloch wave theorem [28] or transfer function method [29]. Although simple
mathematical designs provide an inexhaustible framework for understand-
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ing the fundamental physics in metamaterials, more complex microstruc-
ture designs [30, 31, 32, 33, 34, 35, 36, 37, 38] or perturbations in the lat-
tices [39, 40, 41, 20, 42] are typically desired for more practical applica-
tions. Obtaining the dispersion relations for such nonlinear metamaterials
through analytical means becomes challenging, if not impossible, even with
the computer-aided symbolic analysis tools. Furthermore, the recent study
utilizing a bi-stable lattice with unconstrained transverse motion has enabled
an input-independent energy transfer between incommensurate frequencies
that can be orders of magnitude apart, called solitonic resonance [43]. Since
the interaction with the transition waves, which are quasi-particles traveling
through the metastructure, is fundamental to the appearance of this extreme
behavior, its dynamics cannot be obtained from the analyses of its unit cell
only.

Linear

Weak

Strong

Small Large

Figure 1: Landscape of nonlinear structural dynamics, modified from Ref. 44. The numer-
ical simulations of multi-stable metastructures with a massively large number of degrees
of freedom sit outside the boundary set by the computational cost, warranting the devel-
opment of high-performance computation tools.

Due to the strong nonlinearities involved in achieving the desired dy-
namics, the use of systematic analytical approaches is limited, leading to
the widespread adoption of numerical approaches, such as the finite element
method [45, 46, 47]. Consequently, the analysis of complex metamaterials or
metastructures are typically conducted using either commercial solvers, such
as COMSOL [32, 33, 34, 37] and Abaqus [31, 19, 48, 20, 43], or in-house imple-
mentations [49, 50, 39, 13, 36, 21, 22]. However, employing general-purpose
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software packages presents challenges stemming from the use of solvers that
are not tailored to work optimally for specific problem classes. Despite the
progress afforded by in-house implementations, less attention has been fo-
cused on computational performance as most analyses are limited to small
finite-sized lattices only. Research in metamaterials and matastructures ulti-
mately aims to realize functional structures using miniaturized metamaterial
arrangements as constitutive building blocks, thereby requiring simulations
of millions of unit cells. Such massive problems were once deemed impossible
to solve from the direct computation of its microscopic components, result-
ing in the development of approximate continuum-limit [51, 52] or reduced-
order [53, 54, 55] models. However, important phenomena, such as those aris-
ing from the lattice discreteness [56, 57] or engineered defects [58, 59, 60, 13],
can be lost in the process. The limitation of solving problems with high
complexities is illustrated by the landscape of nonlinear structural dynam-
ics (Fig. 1) [44], showing the numerical simulation boundaries set by the
modeling confidence and computational cost in relation to the nonlinear-
ity and problem complexity (e.g., the number of degrees of freedom). For
example, the bi-stable architectures with a massively large number of de-
grees of freedom would sit on the top-right corner of the plot, outside the
boundary set by the computational cost. However, as cutting-edge computer
technology becomes more affordable and accessible to the general public, the
full-scale characterization of such problems is no longer unimaginable with
dedicated solvers. Moreover, recent technological advancements have focused
on process parallelization as a route to achieving greater computational effi-
ciency [61, 62, 63].

The repeating building blocks of metamaterials and metastructures in-
herently lend themselves for efficient parallel implementation, such that the
computational load can be evenly distributed over multiple local processes.
In this paper, we adopt the message-passing interface (MPI) to develop a
high-fidelity simulation tool that can potentially run on millions of parallel
processes for analyzing generic multi-stable metastructures. Our in-house
implementation of Nonlinear MetaMaterials MPI (NMˆ3) solver allows for
accurately analyzing massively-sized problems featuring strong nonlinearity
while drastically reducing simulation and analysis time. We leverage the
performance gains afforded by NMˆ3 to investigate the extreme dynamics
of multi-stable metastructures. Specifically, massive parallelization allows us
to investigate the amplitude-dependent energy transmission in a bi-stable
metastructure and the transition waves’ propagation speed in a discrete
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medium, both of which are infeasible to obtain with general-purpose tools.
More generally, the acceleration in simulation time enabled by NMˆ3 thus
allows for investigating dynamics involving different length scales in strongly
nonlinear media, opening up an avenue for the analysis and design of systems
made of nonlinear mechanical metamaterials.

2. Metastructures of multi-stable unit cells

We consider three different systems sharing multi-stable constitutive unit
cells: a one-dimensional (1D) multi-stable lattice with coupled pendula (dis-
crete sine-Gordon model), a 1D lattice with quartic on-site potentials (dis-
crete ϕ-4 model), and a metabeam with a bi-stable microstructure. Although
the physical interpretations differ, the governing equations of these architec-
tures share the following form:

Mi
d2ui

dt2
+Bi

dui

dt
= f intersite

i (ui−1,ui,ui+1) + f onsite
i (ui) + pi, (1)

where Mi, Bi, f
intersite
i , f onsite

i , pi, and ui are the inertial matrix, damping
matrix, inter-site force vector, on-site force vector, external force vector, and
displacement vector of the ith unit cell, respectively. We solve for the global
displacement vector u =

[
u⊺

1, ...,u
⊺
NUC

]⊺
=

[
u1, ..., uNDoF

]⊺
, where NUC and

NDoF are the total number of unit cells and the total number of degrees of
freedom (e.g., NDoF = 6 × NUC for the metabeam problem), respectively.
The detailed designs and the specific expressions for the governing equations
of the systems considered in this study can be found in Appendix B and
the respective references [43, 51]. This set of governing equations is highly
coupled and nonlinear, for which the closed-form solutions are not readily
available. Thus, the implementation of an efficient numerical solution tool
is warranted to investigate their rich dynamics fully. Although only three
multi-stable architectures are introduced in this study, the implementation
strategy to follow is applicable to any other systems following the form of
Eq. (1), rendering the code highly extensible. NMˆ3 is capable of handling
tunable lattice properties (e.g., engineered defects or graded properties) and
various boundary conditions (e.g., cantilevered, simply-supported, or fixed-
fixed conditions) to encompass a variety of applications.
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Figure 2: (a) Schematic representation of the domain-level parallelization scheme on the
metabeam. Each process analyzes the elements in each boxed set only, and the elements in
the shaded regions are ghost cells that need to be communicated between the neighboring
processes. (b) Illustration of the solution algorithm for the explicit method.

3. Numerical and parallelization strategy

The standard explicit 4th-order Runge-Kutta (RK4) method is imple-
mented as the primary numerical solution method. The developed code al-
lows to use any set of the parameters for a general RK4 method, but the
classical method (c1=1/2, c2=1/2, c3=1, a21=1/2, a32=1/2, a43=1, b1=1/6,
b2=1/3, b3=1/3 and b4=1/6, following Butcher’s notation in Ref. 64) has
been adopted in this paper. Lower-order RK methods (1st, 2nd and 3rd) are
also optionally available for faster solution convergence at the expense of
the numerical accuracy. The governing equations (NDoF second-order differ-
ential equations) are recast into a state-space form (2NDoF first-order dif-
ferential equations), where the global state vector x =

[
x1, x2, ..., x2NDoF

]⊺
contains pairs of the displacements and velocities such that x2j−1 = uj and
x2j = duj/dt.

The periodically repeating building blocks of the metamaterial and metas-
tructure architectures provide an excellent framework for a parallelized com-
putational model since the computational load can be readily balanced. To
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analyze problems with large numbers of degrees of freedom, we adopt the
MPI standard to decompose the problem domain into subdomains to be han-
dled by multiple individual processes in parallel. Starting with NUC unit
cells of the global structure, we divide the problem domain into P smaller
subdomains, where P is the number of compute processes. The unit cells are
equally distributed such that each process computes NUC/P unit cells (as-
suming NUC is evenly divisible by P ) as shown in Fig. 2a for the metabeam.
Each process, except the ones containing the structural boundaries, stores
two additional unit cell data (ghost cells) to the left and right of the subdo-
main (the shaded regions in Fig. 2a) since the governing equation requires
the states of the adjacent unit cells. An example algorithm for the parallel
code with explicit methods is graphically illustrated in Fig. 2b.

Also, a 2nd-order implicit method is implemented for better numerical sta-
bility. As the default implicit method, we implement the Newmark-β (NB)
method with constant average acceleration (γ=1/2 , β=1/4) [65], which is
unconditionally stable. This unconditional stability is conducive to solving
stiff problems, thereby enhancing the range of the problems NMˆ3 can han-
dle and allowing cross-check of the solutions from explicit methods. The
displacement vector is decomposed in the same way as that of the explicit
method. With the NB method, matrix inversion operations are unavoidable
during the Newton-Raphson iterations. Since the tangent stiffness (Jaco-
bian) matrix k̂T is sparse (e.g., at most 18 nonzero elements for each row
for the metabeam problem) but large, the conjugate gradient method is used
for matrix inversion. For the parallel implementation of the conjugate gra-
dient method, the block-decomposed vector algorithm [66] is adopted. The
decomposition scheme for conjugate gradient method in NMˆ3 is illustrated
in Appendix C.

In order to reduce the latency from the overall data communications
among the processes, the MPI calls are made contiguous and invoked spar-
ingly; for example, the number of the RK solver’s communication calls for
each time iteration is twice the order of the numerical accuracy of the adopted
RK method. As the data storage format, HDF5 file format is chosen in an-
ticipation of using parallel I/O capability and storing extended metadata.
The baseline output data structure is composed of an Nt×Nf external force
array, Nt × 1 time array, Nt ×NDoF displacement array, Nt ×NDoF velocity
array, and metadata containing the geometric and compositional informa-
tion, where Nt and Nf are the numbers of time steps and input sources,
respectively. For all the simulations to follow, double-precision (64 bit in the
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tested environment) floating-point values are used for both the computation
and data storage.

4. Code validation

a.

b.

d.

c.

i.

iii.ii.

Figure 3: Comparison of the time responses obtained from Abaqus and NMˆ3’s NB and
RK4 methods for representative (a) low-amplitude response (0.1 N at 8 Hz), (b) second
harmonic generation (0.5 N at 76 Hz), (c) frequency doubling (0.6 N at 96 Hz), and (d-i)
solitonic resonance (1.4 N at 35 Hz). (ii) The responses of the solitonic resonance at a
later simulation time and (iii) their frequency spectra. The frequency spectra plots are
shifted vertically for visualization purpose.

We validate our NMˆ3 code by obtaining the various nonlinear responses
of the 1D lattices and metabeam—see Appendix B for the list of the de-
sign parameters. For the 1D lattices, the responses are validated with either
Matlab or Python codes built from the previous studies—see Appendix D
for details. For the metabeam with a bi-stable microstructure, its responses
under various in-plane sinusoidal loads (applied at the leftmost unit cell) in a
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fixed-free configuration are compared with those from Abaqus simulations to
validate the code. Specifically, this type of a metabeam is known to exhibit a
wide span of linear and nonlinear dynamics from a single metastructure de-
sign, affording different opportunities for energy exchange between disparate
frequency ranges. Thus, it is imperative to verify if NMˆ3 can capture all
the key extreme wave phenomena. To that end, four example cases with dif-
ferent characteristic behaviors of the metabeam are tested: low-amplitude,
linear-like behavior (0.1 N at 8 Hz), weakly nonlinear behaviors yielding su-
perharmonic generation (0.5 N at 76 Hz) and frequency doubling (0.6 N at
96 Hz), and chaotic behavior leading to solitonic resonance (1.4 N at 35 Hz).
For all the example cases, the responses are simulated for 6 s at ∆t=10−5 s.

Fig. 3 shows the transverse responses w2,30 of the top mass at the right-
most (30th) unit of the metabeam. The blue squares and red crosses cor-
respond to the results from the RK4 and the NB methods, respectively.
Both follow the black lines (obtained from Abaqus) almost exactly except
the solitonic resonance case. The root-mean-square (RMS) errors of the
time response between the solution sets from the RK4 method and Abaqus
are 1.206 × 10−6 mm (0.1 N at 8 Hz), 9.03 × 10−6 mm (0.5 N at 76 Hz),
3.81 × 10−5 mm (0.6 N at 96 Hz), and 4.71 × 10−1 mm (1.4 N at 35 Hz),
respectively; those from the NB method and Abaqus are 5.53 × 10−9 mm
(0.1 N at 8 Hz), 2.21 × 10−7 mm (0.5 N at 76 Hz), 7.50 × 10−7 mm (0.6 N
at 96 Hz), and 5.18 × 10−1 mm (1.4 N at 35 Hz), respectively. The RMS
errors for the three non-chaotic behaviors (Fig. 3a-c) are minimal for the
chosen output response ranges. On the other hand, the responses for the
solitonic resonance obtained with the three compared methods diverge after
several oscillations (Fig. 3d-i,ii). This is not surprising since the solitonic
resonance involves a chaotic response that is highly sensitive to any slight
perturbations in the initial condition or intermediate values. Thus, different
numerical solution algorithms and parameters make it improbable to yield
identical responses. Nevertheless, the crucial property of this metastructure
architecture is its input-independent characteristic of the output frequency
when transition waves are generated within a metabeam. This crucial char-
acteristic is well-captured by NMˆ3 when analyzing the frequency contents
between 2-6 s, obtained with fftpack from Python’s scipy library at 1000 Hz
sampling frequency without a window function. Indeed, the general shapes of
the output frequency spectra from Abaqus simulation, NB, and RK4 method
are similar, and the most dominant output frequencies occur at the same
frequency (∼40 Hz), confirming the validity of the implemented solution
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methods (Fig. 3d-iii).

5. Numerical performance

-1

-2

-3

-4

Figure 4: RMS error as a function of time step size for each of the numerical solution
methods (Abaqus Implicit, NB, RK1, RK2, RK3, RK4), showing the global truncation
errors.

The default implicit Abaqus solver uses Hilber-Hughes-Taylor (HHT-α)
method [67] to find solutions. The HHT-α method is a variant of the NB
method and thus has the 2nd-order global truncation error. With the flex-
ibility in choosing the numerical solution methods in NMˆ3, the solution
accuracy can be extended to higher orders than 2.

For each of the aforementioned solution methods, we solve the solutions of
the low-amplitude case introduced in Section 4 at the time instant t=0.01 s,
using time steps ranging from 5× 10−3 s to 10−11 s. Since the exact theoret-
ical solution is not available for this type of problem, the numerical solution
obtained at one of the small time steps is used as the reference set for the
convergence. We expect implicit methods to be more susceptible to the ma-
chine’s precision limit due to the necessary higher dimensional matrix opera-
tions (i.e., the matrix inversions during the Newton-Raphson iterations) and
reliance on the residual tolerance. Thus, we rule them out from the choices.
Due to the accumulation of round-off errors as approaching the machine’s
numerical precision limit, the time step cannot be reduced indefinitely to
improve the solution accuracy. Hence, the reference solution set is selected
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by checking the convergence of the solutions from the RK methods as the
time step is reduced. We choose the reference solution as the one obtained at
∆t showing the minimum rate of the change of the magnitude, which occurs
at ∆tref=10−6 s with the RK4 method for this example.

The RMS errors between the solutions obtained at trial ∆t’s and the ref-
erence solution are plotted in a log-log scale in Fig. 4 for different solution
methods: Abaqus Implicit, NB, explicit RK1, explicit RK2, explicit RK3,
explicit RK4. The negative slope of the curve corresponds to the error’s log-
arithmic rate of decrease as the time step is reduced, hence mathematically
indicating the global truncation error. The black dashed lines are the ref-
erence lines indicating the slopes of 1, 2, 3, and 4 in order, confirming the
desired global truncation errors of the implemented solution methods. The
accuracy of the in-house implementation of the NB method closely matches
that of Abaqus since Abaqus uses the HHT-α method by default. The small
discrepancy in the achievable error is due to the different specification of the
residual tolerance. With the RK4 method, we observe a very fast conver-
gence to the accurate solution as expected. Furthermore, Abaqus requires to
be run with ∆t=2 × 10−7 s to reach a similar level of accuracy available to
our NMˆ3’s RK4 implementation with ∆t=5 × 10−5 s. Thus, the resulting
numerical accuracy plot confirms the extension of the solution accuracy to
higher orders than what a commercial solver offers. The fast approach to
the exact solution allows the solver to use a larger time step with less sus-
ceptibility to the hardware precision error, which is useful when solving stiff
problems.

6. Computational performance

The computational performance of NMˆ3 is demonstrated by comparing
the measured wallclock times obtained from the in-house solvers and Abaqus
solver in computing both fixed-size problems (showing the strong scaling) and
scaled-size problems (showing the weak scaling) with respect to the number of
processes. Since the primary interest of NMˆ3 is in the analyses of strongly
nonlinear behavior, we use the same unit cell design as the solitonic reso-
nance example in Section 4—the computational performance for a linear-like
behavior is also provided in Appendix E for reference. The responses are
simulated for 1 s at ∆t=10−4 s, and file I/O operations have been disabled
in order to focus the comparison on the CPU time when measuring the wall-
clock times. Both for the NB and the RK4 methods, the wallclock times are
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Figure 5: Wallclock time comparison among Abaqus Implicit solver and NMˆ3’s NB and
RK4 methods, showing (a) the strong scalings and (b) the weak scalings with the number
of processes.

measured by comparing the timestamps from the MPI-intrinsic subroutine
MPI WTIME placed before and after the main computation loop while all
the HDF5 calls are commented out. For Abaqus simulations, the frequencies
for the field and history output and restart request have been set to zeros,
and the output diagnostics feature is disabled. The wallclock times from
Abaqus simulations are directly read off from the generated .dat (or .msg)
files. All the simulations are tested on dedicated compute nodes (Two Sky
Lake CPUs at 2.6 GHz with 24 cores and 96 GB memory per node) at Purdue
University, with no other user programs running.

For the strong scaling analysis [68], three differently sized (128, 1,024,
and 16,384 unit cells, each) metabeam problems are simulated with a vary-
ing number of processes. To avoid any MPI load balancing issue, only the
metabeams composed of power of 2 unit cells are tested for a power of 2
number of processes. The wallclock times are measured three times for each
case for a statistical purpose, and their averages are plotted with respect to
the number of processes in Fig. 5a on a log-log scale. NMˆ3’s RK4 solver
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exhibits absolute computation times about three orders of magnitude faster
than those of the Abaqus solver for all three problem sizes. Since NMˆ3 is
streamlined to solve a particular type of problem, the absolute computation
times from the NB method are also faster than those from the Abaqus simula-
tions. These results are expected since Abaqus is a general-purpose commer-
cial solver, which performs many cross-checks and other tasks nontransparent
to the end-users. Also, Abaqus is not aware of the specific periodic arrange-
ment of the structure, and thus it may not adopt the best load balancing
strategy. Hence, a better comparison measure is how the wallclock time
scales with the increased number of the processes. To that end, the linear
regression (Appendix F) of the first few data points of the wallclock times
for each method is plotted with the dashed line slightly beneath the corre-
sponding curve. The slopes of the regressed lines (as indicated in Fig. 5a)
immediately show that the computation time of NMˆ3’s RK4 method scales
much better with the number of processes and more consistently through-
out the problem sizes than those of Abaqus. The NB solver’s performance
tends to scale adversely when the number of processes becomes very large
compared to the given problem size. This is caused by the increased MPI
overhead of the global matrix inversion process.

The weak scaling exhibits the best utilization of the available resources
rather than a reduction in the absolute computation times with the increased
number of processes [69]. For the weak scaling analysis, the problem size
(NUC) is proportionally scaled with the number of processes P . For ex-
ample, if we desire each process to compute 10 unit cells, we measure the
wallclock times for a 10-unit cell metabeam with one process, a 20-unit cell
metabeam with two processes, and a 40-unit cell metabeam with four pro-
cesses. Figure 5b shows the weak scalings for the problem densities (NUC/P )
of 1, 10, and 100 unit cells. The implementation of the explicit solution
schemes does not contain inherently sequential tasks if the input processing
is disregarded. Thus, the measured wallclock times from the RK4 method
for the scaled problem sizes remain nearly constant throughout the number
of processes. The slight increase is deemed to arise from the latency of the
underlying computer architecture’s interconnection network scheme. For the
implicit methods (Abaqus and NB), parallel implementation of matrix inver-
sion is required, which is dependent on the global problem size (e.g., data
communications need to be made among all the processes for the calculation
of the residual sums), hence their weak scalabilities are not as balanced as
the scalability of the RK4 method.

13



7. Nonlinear energy transmissibility of bi-stable metabeam
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Figure 6: (a) Schematic diagram of a very long metabeam under a modulated sinusoidal
input force at the midpoint of the metabeam. (b) Representative input force, localized
both in temporal and spatial domains. (c) Energy transmissibility diagram, showing the
ratio between the transmitted energy to a distant site and the input energy. Around the
diagram are the in-plane displacements u1 at the excitation site (40,001st unit) and the
measuring site (41,001st unit) for the selected forcing conditions.

The improved computational capability from the massively parallelized
spatial domain is especially useful to explore the nonlinear behaviors of
periodic structures, for which the theoretical solutions are in general not
available. Our code enables users to access previously unreachable analysis
regimes. An important example is the nonlinear amplitude-dependent en-
ergy propagation in a metabeam with bi-stable microstructure. To that end,
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a very long metabeam (NUC= 80,001) with a fixed-fixed boundary is excited
by a modulated sinusoidal force of the form Fin(t) = F sin(2πfint) sin

2(t −
c1)/(c2 − c1) for c1 ≤ t ≤ c2 at the center mass of 40,001st unit cell in the
in-plane direction (Fig. 6a), where F and fin are the forcing amplitude and
the input frequency. A representative input signal is shown in Fig. 6b, where
the values for c1 (10 ms) and c2 (1,010 ms) are chosen such that the signal is
localized in both time and frequency domains of interest. We limit the sim-
ulation time such that no major reflections occur during the analysis. The
responses are simulated with NMˆ3’s RK4 solver for 10 s at ∆t=10−4 s. The
metabeam is undamped except at both the leftmost and rightmost 2,000 unit
cells, where mass proportional damping coefficients gradually increasing from
0.0661 s-1 to 132.1 s-1 are applied to eliminate unphysically fast low-frequency
waves reflecting back toward the origin.

To quantify the energy propagation in the metabeam, we define energy
transmissibility as the ratio between the energy transmitted to the measuring
site (41,001st unit) and the input energy into the system—see Appendix G
for details. The reason for considering the energy transmissibility as the wave
propagation measure rather than the shape of the wave pulse itself is that
the characteristics of the waves change depending on the forcing amplitude;
for example, the propagated pulse does not retain the original modulated si-
nusoidal input for cases P4, P5, and P6 in Fig. 6c. Figure 6c summarizes the
energy transmissibility for various combinations of the input force and fre-
quency. Note that, in general, the transmissibility does not exceed 50% since
the metabeam is symmetrically excited at the midpoint, making the waves
travel both to the left and right. Thus, the closer the color is to green (red),
the more (less) input energy survives through the measuring site. In the sense
that the transmissibility shows the original energy proportion transferred to a
distant location, it can be regarded as a practical measure of the pass or stop
bands of the metastructure. The boundary of the pass band under low in-
put forces closely matches that of the analytically obtained linear dispersion
relation—see Appendix H for details. Several representative time responses
of the waves at the excitation and measuring sites are plotted alongside the
energy transmissibility diagram—see the supplementary videos S1-S6 for the
responses in the space configuration. Case P1 exhibits undisturbed transmis-
sion of the original input pulse through the metabeam, while P2 exhibits a
stop band behavior. P3 shows a similar stop band behavior, although a small
portion of the input energy can survive through a coupled wave mode. P4
shows the separation into two pulse groups, the details of which are addressed
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shortly. For a large enough forcing amplitude, we observe the formation of
transition waves (P5) or transformation into nondefinite waveforms (P6).

From the energy transmissibility diagram, we can observe the overall
effect of the amplitude dependence on the energy propagation: the pass band
expands with an increasing forcing amplitude. What is more remarkable than
the observed dynamics is that the diagram not only allows us to observe the
different nonlinear behaviors of this metastructure but also epitomizes the
capability afforded by NMˆ3. Every square in the energy transmissibility
diagram represents the individual dynamic (100,000 time steps) simulation
of a metabeam with 80,001 unit cells (480,006 DoFs). There are 1,260 such
squares (i.e., individual simulations) in this energy transmissibility diagram,
which is a scale too large to be conceivable with a serial implementation or
with commercial solvers. On our tested platform, it takes about 12 hours
to obtain this diagram when run concurrently with 21 sets of 120 processes,
including file I/O operations.

a.

b.

Figure 7: Separation of the input pulse into multiple pulses for F=1.8 N at 25 Hz. (a)
In-plane response u1,41001 at the measuring site (41,001st unit cell) with the corresponding
temporal frequency of each pulse group. (b) In-plane displacement u1 in the spatial domain
with the corresponding spatial frequency of each pulse group.

With proper terminating conditions (e.g., artificial damping), the same
energy transmissibility diagram can be obtained without using a massive
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domain since only the time data passing through the specific points of interest
are needed to calculate the transmitted energy. However, we can obtain
information about the associated waves in its entirety with the additional
solution dimension in the spatial domain. When the forcing amplitude is
moderately high, we observe that the input pulse separates into multiple
pulses near the boundary of the low-frequency stop band and the pass band
(e.g., P4 in Fig. 6c). We employ the term moderate in this paper to describe
a force not large enough to trigger transition waves. One such phenomenon
occurs for F=1.8 N at 25 Hz, and the corresponding time response of the
41,001st unit cell is plotted in Fig. 7a. We can identify two main pulse groups.
To be precise, the second group itself is composed of two separate identifiable
subgroups. Since one of the subgroups dominates the other, we disregard such
a detailed description of the pulses for analytical simplicity. The dominant
frequency of the first group is the same as the carrier frequency, and the
dominant frequency of the second is twice the carrier frequency, showing
harmonic generation of the main input frequency.

Since our parallel solver allows for efficient analyses of very large spa-
tial domains, the corresponding wavenumber of each pulse group can also be
identified from the analysis of waveform in the space configuration. Fig. 7b
shows the responses in the space configuration, obtained at t=2 s. The same
pulse groups are indicated by matching colors in Figs. 7a,b (red dashed box
for the fast-moving pulse and green dashed box for the slow-moving pulse).
We obtain FFT of each pulse in the space configuration to extract spatial fre-
quency spectrum, yielding wavenumbers ν=∼0.0002 m−1 for 25 Hz pulse and
ν=∼0.002 m−1 for 50 Hz pulse. By collecting the wavefrequency-wavenumber
pairs for each input excitation, NMˆ3 allows for numerically constructing the
medium’s nonlinear dispersion relation, which fundamentally governs its dy-
namic behaviors. Thus, we provide a route to obtaining nonlinear dispersion
relations given the intractability of an analytical treatment for this type of
strongly nonlinear system.

8. Propagation speeds of the transition waves in a ϕ-4 model

For the continuous ϕ-4 model with symmetric on-site potential, there is
a known theoretical solution for the displacement u(x, t) in the following
canonical form: u(x, t) = tanh x−vt√

2
√
1−v2

[52], where x and v are the spatial
coordinate and the constant propagation speed of the transition wave. This
particular solution indicates that the transition wave has an invariant wave-
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Decreasing initial velocity

Figure 8: Propagation speeds of the transition waves in a discrete ϕ-4 model under various
initial velocities (obtained with the different numbers of units Nd in the dissipation section)
of the transition waves. Black dashed lines are constant reference lines.

form for any subsonic propagation. It is of interest to investigate if such a
d’Alembert’s (traveling at a constant speed) solution exists for the discrete
ϕ-4 model as well. To that end, the responses of a periodic lattice com-
posed of 20,000 bi-stable unit cells are simulated for 20,000 s at ∆t=10−3 s,
where a discrete symmetric unit cell design (in Tab. B.1) is used. A tran-
sition wave can be easily generated by imposing an initial velocity on the
first unit cell (1.5 m/s in this example). However, this imposed initial ve-
locity does not directly translate into the initial propagation speed of the
transition wave due to the chaotic snap-through dynamics involved when it
is first triggered. In this type of lattice, dissipation is known to slow down
the transition waves [40]. Hence, to manipulate the propagation speed of the
transition wave, we intentionally impose on-site damping (0.01 Ns/m in this
example) to the first Nd unit cells. The longer the dissipation region spans,
the slower the transition wave becomes.

Numerically, the propagation speed vTW of the transition wave can be ob-
tained by finding the zero crossings of the time responses at two nearby sites
and then dividing the distance between the two sites by their time difference.
Figure 8 shows the instantaneous propagation speeds of the transition waves
for various initial velocities (obtained with dissipation sections of 10, 30, 40,
52, 60, 72, 80, and 90 units long, respectively). As opposed to the theoreti-
cal traveling wave solution in the continuous ϕ-4 model, the transition wave
in the discrete counterpart does not always propagate at a constant speed.
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Rather, there exists a certain critical value, above which the propagation
speed continuously decreases at a slow, diminishing rate (e.g., the top three
curves) but below which the propagation speed settles relatively quickly to a
nearly constant value (e.g., the bottom five curves). This behavior is presum-
ably due to the lattice discreteness effect coupled with the interaction with
the allowed phase speeds of the phonons. In a discrete lattice, oscillatory tails
(radiated phonons) are generated as a result of snap-through transitions that
the traveling transition wave yields. If the propagation speeds of these oscil-
latory tails are slower than the speed of the transition wave, the transition
wave continuously loses a portion of its transport energy for the generation
of these tails, hence slowing down, similar to the mechanism leading to the
quasi-steady states in a discrete sine-Gordon model [57]. On the contrary, if
the tails travel faster than the transition wave, the tails and the main tran-
sition wave always interact with each other, conserving its transport energy.
The verification of this postulate and more in-depth investigation on the sta-
bility of the transition wave speed in a discrete ϕ-4 model will be addressed
in a separate paper.

9. Conclusion

We adopt a message-passing model to achieve massively parallelized com-
putation for dynamics of multi-stable architectures in metamaterials and
metastructures. The implemented NMˆ3 solvers are thoroughly validated
against existing solvers. The freedom of choice on the numerical solution
schemes allows the global truncation error to be extended to higher orders,
surpassing the 2nd-order accuracy limit posed by implicit Abaqus solver, a
package widely used in both academia and industry. The increased accu-
racy opens up the possibility for NMˆ3 to be readily coupled with existing
high-fidelity solvers in other dynamical systems, providing solutions to more
complex problems. Since NMˆ3 is dedicated to solving multi-stable archi-
tectures, the computation time can be reduced by as much as three orders
of magnitude compared to that of a commercial solver. Additionally, the
matamaterial and metastructure architectures’ inherent periodicity provides
an excellent framework for balanced computational loads among the com-
pute processes, achieving a great scaling with the number of processes. The
improved computational performance allows for analyzing a large number
of large-scale problems expeditiously and investigating previously unreach-
able analysis regimes—the nonlinear energy transmissibility diagram of a
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metabeam and the propagation speeds of the transition waves in a discrete
ϕ-4 model showcase such examples.

The strongly nonlinear behaviors investigated in this paper are only a
small fraction of the possible investigations enabled by this parallel imple-
mentation. The frontier of the extreme dynamics in 1D multi-stable metama-
terials and metastructures still has much to be explored. Future implemen-
tation of nonlinear metamaterials and metastructures in practical systems
will require a higher level of design complexity, for which analytical means
to investigate their dynamics become unmanageable. The implemented com-
putational design is generally applicable and thus readily extendable to any
dynamical system as long as the governing equations and their Jacobians
(for implicit numerical methods) are available—see supplementary mate-
rial S7 for an example code update process. Particularly, the code’s ex-
tension into higher-dimensional architectures, such as metaplates (i.e., 2D
slender metastructures) with a multi-stable microstructure, can provide an
interface to be used in conjunction with MPI-based high-performance fluid
solvers [70, 71, 72], enabling fast simulations of flow stabilization problems
through fluid-metastructure interactions. NMˆ3 is open-source and readily
upgradable with additional computational schemes, such as OpenMP and
dynamic domain decomposition, in response to increased communication
overhead or non-homogeneous computational load distribution. In essence,
NMˆ3 can provide an excellent numerical alternative to investigate previ-
ously unreachable analysis regimes for general nonlinear metamaterials and
metastructures.
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Appendix A. Running MPI jobs

The parallel Fortran script is first compiled with an MPI Fortran wrapper
compiler (Intel MPI library 2017 Update 1 is used throughout the examples in
this paper). The input parameters for the numerical solution method and the
multi-stable architecture design are then stored in a Python script. Running
the Python script generates two input files: one defining the numerical solu-
tion method and the other defining the structural design. Both input files can
be read by the compiled program. This entire process is automated through
GNU make. The script can be compiled by executing a command make in
NMˆ3’s root directory; then, each analysis can be performed by running a
command make run NP=(number of processes) INP=(input file name).

The source codes and example input files are available at https://github.
com/wonnie87/NMCube. Additional datasets generated and analyzed in this
paper are available from the corresponding author upon request.

Appendix B. Model description

We study three different strongly nonlinear systems featuring multi-stable
constitutive units: 1) a 1D multi-stable lattice with coupled pendula, 2) a 1D
lattice with quartic on-site potentials, and 3) a metabeam with a bi-stable
constitutive microstructure.

The schematic representation of a multi-stable lattice with coupled pen-
dula (discrete sine-Gordon model) is shown in Fig. B.9a. Its governing equa-
tion can be written as:

I
d2θi
dt2

+ bθ
dθi
dt

= kθ(θi+1 − 2θi + θi−1)−mgl sin θi + qi, (B.1)

where θi is the rotation of the ith pendulum, I is the moment of inertia of the
pendulum about the rotational axis, bθ is the rotational damping coefficient,
kθ is the stiffness of the torsional spring coupling two neighboring pendula,
m is the tip mass of the pendulum, g is the gravitational constant, l is the
length of the pendulum, and qi is the applied moment at the ith pendulum.
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Figure B.9: Schematic representations of (a) a 1D multi-stable lattice with coupled pen-
dula, (b) a 1D lattice with quartic on-site potentials, and (c) a metabeam with a bi-stable
microstructure (from Ref. 43). The inset (i) shows the key components of the unit cell.
The inset (ii) shows the physical coordinates that describe the motion of each unit cell.

The unit cell of a 1D lattice of quartic on-site potentials (discrete ϕ-4
model) is composed of a bistable element with a mass element connected
to the nearest neighbors (Fig. B.9b). The following form of the governing
equation is used:

m
d2ui

dt2
+b

dui

dt
= k(ui+1−2ui+ui−1)−(C1+2C2ui+3C3u

2
i+4C4u

3
i )+pi, (B.2)

where ui is the displacement of the ith unit cell, m is the mass of the unit
cell, b is the on-site damping coefficient, k is the inter-site spring stiffness,
Cj’s are the coefficients of the quartic on-site potential, and pi is the applied
force at the ith unit cell. The design parameters for the ϕ-4 lattices used in
this paper are listed in Tab. B.1. Although the dynamics of the ϕ-4 lattices
do not depend on the lattice spacing, we set the spacing to be 1 m for the
numerical calculation of the propagation speed in Section 8.

Lastly, the metabeam with a bi-stable microstructure is shown in Fig. B.9c.
Due to the complexity of the constitutive unit, its equations of motion are
very lengthy. The full expressions can be found in the supplementary mate-
rial of Ref. 43. The unit cell of the metabeam is composed of three masses
confined in a 2D space, so that its displacement vector can be represented
as ui =

[
u1,i, w1,i, u2,i, w2,i, u3,i, w3,i

]⊺
, where uj,i and wj,i are the in-plane

and out-of-plane displacements of the jth mass of the ith unit cell, respec-
tively. The following single unit cell design in Tab. B.2 is used throughout
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Design k m C1 C2 C3 C4 b

Discrete asymmetric 1 2 -0.036 -0.060 0.012 0.030 0.1
Continuous asymmetric 1 2 -0.0090 -0.0150 0.0030 0.0075 0.1
Discrete symmetric 1 2 0 -0.03 0 0.015 0

Table B.1: Summary of the design parameters for 1D bi-stable lattices. The units of k,
m, C1, C2, C3, C4, and b are N/m, kg, N, N/m, N/m2, N/m3, and Ns/m, respectively.

all the simulations of the metabeam problems in this paper. Only the num-
ber of the unit cells are varied among the analyses: NUC=30 is used for the
code validation and numerical performance analyses; three different values
for NUC (128, 1024, 16384) are used for the strong scaling analysis; propor-
tionally scaled sizes to the number of processes for the weak scaling analysis;
and, NUC=80,001 is used for the nonlinear energy transmission example. To
suppress any undesirable transient effects, we impose a mass proportional
damping coefficient γ=9.91 s-1 throughout the analyses except for the energy
transmission example, where we are interested in the fundamental propaga-
tion characteristics.

k1 k2 k3 k4, k5 k6 k7, k8 m1 m2, m3 L1 L2 L3 R

1.241 1.076 0.6 100 100 100 2 1 20 40 20 8

Table B.2: Summary of the metabeam design parameters. The units of the stiffness kj ’s,
mass mj ’s, and lengths Lj ’s and R are N/mm, g, and mm, respectively.

Appendix C. Parallel implementation of the conjugate gradient
method

During the Newton-Raphson iteration process of the NB method, a lin-
ear system k̂T∆u = R̂ needs to be solved for ∆u, where ∆u and R̂ are
the change in the global displacement vector between the Newton-Raphson
iterations and the global residual force vector, respectively [65]. We adopt
the conjugate gradient method, an iterative method, in solving the linear
system. Since the force vector of each unit cell depends on the displacements
of its own unit and the two neighboring unit cells, only 3n2

DoFNUC elements

(disregarding the boundary elements) of k̂T can be strictly nonzero, where
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Figure C.10: Example decomposition scheme for the conjugate gradient method in NMˆ3.

nDoF is the number of degrees of freedom for each unit cell. Accordingly, k̂T

is decomposed such that each process holds 3n2
DoFNUC/P elements (assuming

NUC is evenly divisible by P ). R̂ is evenly divided among the processes such
that each process holds NDoF/P elements. ∆u is similarly distributed but
contains ghost cells at the boundaries of the subdomain in the same way as
the global displacement vector u is distributed. Figure C.10 illustrates an
example decomposition for the parallel implementation of the conjugate gra-
dient method in NMˆ3. In this example, 12 unit cells are decomposed among
3 processes. k̂Ti,j

’s are the components of k̂T . ∆uj’s and R̂j’s are the change
in the displacement vector and the residual vector of the jth unit cell such

that ∆u =
[
∆u⊺

1, ...,∆u⊺
NUC

]⊺
and R̂ =

[
R̂⊺

1, ..., R̂
⊺
NUC

]⊺
. The shaded re-

gions in ∆u represent the ghost cells that need to be communicated with
the adjacent processes.

Appendix D. Code validation for the 1D lattices

In order to validate the implementation of the discrete sine-Gordon model,
a system of four coupled pendula is used. A simple canonical design is used
for the unit cell, where the values of I, kθ, m, g, and l are all set to 1 for the
numerical simplicity while bθ is set to 0. Two qualitatively different behaviors
are tested by imposing different initial velocity dθ1/dt|t=0 at the first element.
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Figure D.11: (a) Code validation for the 1D multi-stable lattice with coupled pendula.
The response angles of the 3rd element from a built-in Python function and NMˆ3’s RK4
method are compared for two qualitatively different motions (one bounded in a single
potential well, the other traversing through multiple wells). (b) Code validation for the
discrete 1D lattice with quartic on-site potentials. The displacements of the 100th element
from NMˆ3’s RK4 method are plotted for discrete asymmetric, continuous asymmetric,
and discrete symmetric designs and compared with those obtained from the Matlab code
in the previous study [13].

The simulations are performed for 20 s with ∆t=10−3 s. The pendula motions
are confined in a single potential well for dθ1/dt|t=0= 2.0, while the motions
traverse multiple wells (i.e., a transition wave is generated) for dθ1/dt|t=0=
4.6. The reference solution sets are obtained from odeint method in SciPy’s (a
Python library) integrate module. The responses obtained from NMˆ3’s RK4
method are plotted together with the reference sets in Fig. D.11a, showing
almost exact agreement with each other. For example, the RMS errors for the
time response of the 3rd element between the two methods are 5.80×10−4 rad
and 1.394×10−3 rad, respectively, which are small compared to the ranges of
its motion.

The exact solution for the discrete 1D lattice with quartic on-site po-
tentials is not available. Hence, its correct implementation is validated by
comparing the solutions obtained from our RK4 code with those from the
Matlab code used in the previous studies [13], which uses 2nd-order accurate
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central difference method. Three example cases are considered: 1) a bi-stable
lattice with asymmetric on-site potentials, where the ratio between the inter-
site and on-site stiffness is small, representing a typical discrete lattice; 2) a
similar lattice with asymmetric on-site potentials but with a larger inter-site
to on-site stiffness ratio, effectively closer to a continuum-limit model; 3)
a bi-stable lattice with symmetric on-site potentials. All three designs are
composed of 500 unit cells, and the corresponding unit cell design parameters
are listed in Tab. B.1. Transition waves are triggered by prescribing initial
velocities to the first unit cells, the velocities of which are 2 m/s for both
of the asymmetric cases and 1 m/s for the symmetric case. The responses
are simulated for 400 s with ∆t=0.01 s. Figure D.11b shows the displace-
ments of the 100th unit cell for each design, obtained from both codes. For
all of the example cases, the solutions match closely, and the RMS errors
between the solutions from the two codes are 1.721×10−4 m, 3.39×10−4 m,
and 4.23×10−4 m, respectively.

Appendix E. Computational performance for a linear-like prob-
lem

To see the effects of system nonlinearity on the computational perfor-
mance, we plotted the strong and weak scalings for the unit cell design used
for the low-amplitude case in Section 6 in Fig. E.12. Each simulation is
performed for 1 s at ∆t=10−4 s with file I/O disabled just as the strongly
nonlinear (solitonic resonance) example. The wallclock times for the strongly
nonlinear case are also plotted in dashed lines for comparison. Both per-
formance measures follow similar trends to those of the strongly nonlinear
case. However, the problems involving stronger nonlinearity typically require
more iterations for the implicit methods to converge since it induces larger
perturbations during the iterative processes (i.e., the matrix inversion and
Newton-Raphson method). This added computational cost is manifested by
the increased wallclock time for both Abaqus and NB solvers to solve the
solitonic resonance case compared to the nearly linear case. In contrast,
the fully explicit RK solver involves only a fixed number of operations for a
given problem size. Hence, introducing nonlinearity to a problem does not
yield additional computational cost, as demonstrated by the near overlaps
of the solid (linear-like problem) and dashed (strongly nonlinear problem)
time curves for the RK solver. This insensitivity to the problem nonlinear-
ity makes NMˆ3’s RK solver especially shines in the analyses of strongly
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N     = 128UC

a. Strong scaling

b. Weak scaling

UCN     /P = 1

N     = 1,024UC N     = 16,384UC

UCN     /P = 10 UCN     /P = 100

Figure E.12: (a) Strong and (b) weak scalings of Abaqus Implicit solver and NMˆ3 for the
solution of a linear-like problem.

nonlinear problems as long as the solver runs within the numerical stability
limit.

Appendix F. Linear regression

The approximate slopes of the wallclock time curves in Fig. 5 are obtained
by finding the linear fits of the first four data points. Since the plots are
in log-log scales, the approximate relationship is in the form log tWC,p =
a0 + a1 log p (equivalent to tWC,p = 10a0pa1), where tWC,p is the wallclock
time corresponding to the number of the processes p. To solve for a set of
the approximate values for constants a0 and a1, an overdetermined system
of equations can be formed as follows:

1 log 1
1 log 2
1 log 4
1 log 8


︸ ︷︷ ︸

A

(
a0
a1

)
=


log tWC,1

log tWC,2

log tWC,4

log tWC,8

 . (F.1)
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By premultiplying both sides of Eq. (F.1) by A⊺, we can find a0 and a1 that
best fit the measured time data.

Appendix G. Calculating energy transmissibility

The energy transmissibility in this paper is defined as the ratio between
the transmitted energy to a distant site and the input energy to the system;
that is, TR = Etr/Ein. For the example in Section 7, only the vector com-
ponent in the in-plane direction is considered to investigate the pass/stop
band characteristics in the in-plane direction. Hence, the input energy Ein

is obtained from the time integration of the instantaneous power supplied
to the excitation site in the in-plane direction: Ein =

∫∞
0

Finu̇1,indt, where
Fin is the input force, u̇1,in is the velocity of the excited mass in the in-plane
direction, and the integrand is assumed to be well-behaved.

Similarly, the transmitted energy to the mass of interest is obtained by
integrating the power supplied to the mass of the interest from the left (for a
right-propagating wave). The force transmitted through the inter-site spring
left of the mass of interest is

Fleft =
∂

∂u1,out

(
1

2
k1∆

2
1,out

)
, (G.1)

where u1,out is the in-plane displacement of the center mass at the measuring
site, and ∆1,out is the deflection of the inter-site spring (with the stiffness k1)
connected to the left of the mass—the full expression for the spring deflection
can be found in the supplementary material of Ref. 43. Thus, the transmitted
energy can be calculated as Etr =

∫∞
0

Fleftu̇1,outdt.

Appendix H. Linear Dispersion relation

To check the validity of the pass and stop bands obtained from the energy
transmissibility diagram (Fig. 6c), we make a comparison with those of the
analytically obtained linear dispersion relation. The governing equations can
be linearized by keeping only up to the first-order term in the Taylor series
of the governing equations. The linear dispersion relation can be obtained
by substituting a traveling wave solution ui = ūeqL1i−ωt into the linearized
equations, where ū is a constant vector, and solving for the wavenumber q
in terms of the wave frequency ω. The solution process yields six highly

28



Full dispersion relation Modes with dominant in-plane motionb.a.

Figure H.13: (a) Dispersion relations of the linearized metabeam analyzed in Section 7.
The real parts of the wavenumbers are plotted in blue, and the imaginary parts are plotted
in red. (b) Dispersion relation showing only the modes dominant in the in-plane direction
of the center mass.

coupled characteristic equations for the ith unit cell containing many expo-
nential terms for q, the closed-form solution of which is very difficult to obtain
if not impossible. Hence, we solve these characteristic equations numerically
with the aid of Mathematica. The complete dispersion relation is plotted in
Fig. H.13a, which includes every available wave mode in the metabeam. The
blue plots represent the real (propagating) parts of the wavenumber, and
the red plots represent the imaginary parts, which contribute to the spatial
attenuation. Since our output quantity of interest is the in-plane displace-
ments of the center masses, only the modes with the eigenvectors having
dominant first entry (corresponding to u1,i) are plotted in Fig. H.13b. The
upper limit of the pass band is 254 Hz, which closely matches the upper
boundary of the energy transmissibility diagram under low forcing ampli-
tude (0.1 N). The lower limit is not definitive since there are multiple modes
with the dominant in-plane motions of the center mass. The coupling be-
tween these modes contribute to the region with the wavenumbers having
both nonzero real and imaginary parts—if it were a strictly 1D lattice (i.e.,
w1,i, u2,i, w2,i, u3,i, w3,i = 0), there would be a sharp boundary at 40 Hz. De-
pending on the coupling level, a small portion of the incident wave energy is
transferred into the other modes, decreasing the transmitted energy. This is
manifested by the slight color change near 40 Hz in Fig 6c.
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