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Organic solution-phase transmission
electron microscopy of copolymer
nanoassembly morphology and dynamics

Joanna Korpanty,' Karthikeyan Gnanasekaran,’ Cadapakam Venkatramani,” Nanzhi Zang,?*
and Nathan C. Gianneschi!-34*

SUMMARY

Direct imaging of the dynamics of polymeric assemblies in organic
solvents is an outstanding challenge. Herein, we apply liquid cell
transmission electron microscopy (LCTEM) to study polymeric nano-
materials in organic solvents. LCTEM is distinct from other TEM
methods as it can be applied to characterize the morphology of
nanomaterials in organic solvents. To enable this demonstration,
we examined electron-solvent interactions for two common organic
solvents, N,N-dimethylformamide and methanol, and compared
these solvents to water. For each solvent, we developed Monte
Carlo simulations and kinetic radiolysis models, providing scattering
and chemical insight, respectively. Guided by theoretical results, we
applied LCTEM and postmortem mass spectral imaging of poly(sty-
rene)-b-poly(4-vinylpyridine) assemblies in each solvent. Then, a
worm-to-micelle transformation in poly(styrene)-b-poly(4-vinylpyri-
dine) was triggered via organic solvent mixing during LCTEM,
enabling an experiment not possible through a cryogenic TEM
time series. Our work provides a pathway for an expanded examina-
tion of nanomaterials in organic solvents via LCTEM, a neglected
research area despite the obvious prevalence of such materials
across chemistry and materials science.

INTRODUCTION

Amphiphilic polymeric assemblies have attracted broad interest for their ability to
form solution-phase hierarchical assemblies, including micelles, wormlike micelles,
vesicles, bicontinuous structures, and toroids.” Their tunable assembly behavior
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Given the challenges that face standard TEM and cryo-TEM for organic solvated sys-
tems, direct imaging of nanoscale organic materials in organic solvents is an unmet
need in chemistry and materials science. Therefore, we turn here to the development
of liquid cell transmission electron microscopy (LCTEM). By hermetically sealing a
liquid sample between two silicon microchips, LCTEM enables the direct visualization
of solvated nanomaterials in real time."’~'? Despite its potential utility for imaging
polymeric nanomaterials dispersed in organic solvents, LCTEM has never been used
to simply image the solution-phase morphology of such a system. Rather, the majority
of LCTEM studies on polymeric materials have been performed under aqueous condi-
tions,”®?? with several recent experiments having been performed in aqueous solu-
tion with organic solvents as additives.”*** The lack of LCTEM studies performed in
organic solvents is partially due to a lack of understanding about how the electron
beam interacts with different solvents and because of a steady focus on aqueous phase
systems within the field. Given the potential for reactive species generated from
beam-induced solvent radiolysis to perturb sample chemistry regardless of

25-30

solvent, it is critical to first understand organic solvent radiolysis in the context

of LCTEM, but such studies have only been conducted for aqueous solutions.?*?>°

Aiming to build fundamental insight into electron-solvent interactions, we describe
the coupling of experiment, simulations, and modeling to elucidate electron-solvent
interactions for two organic solvents, N,N-dimethylformamide (DMF) and methanol,
which were chosen due to their increasing use in LCTEM studies.'®?"*? We use
GEANT4 Monte Carlo simulations, which assess electron-sample interactions from
a scattering perspective, combined with COMSOL radiolysis modeling, which
provides chemical insight into electron-sample interactions. Modeled and simulated
results for the organic solvents were then compared to water. We experimentally
verified the models for a test system, poly(styrene)-b-poly(4-vinylpyridine) dispersed
in DMF, methanol, or water. The system was studied via LCTEM, and the chemical
structure of the polymer, following imaging with the electron beam, was then veri-
fied via matrix-assisted laser desorption/ionization imaging mass spectrometry
(MALDI-IMS) of the imaged area.?***

RESULTS AND DISCUSSION

Monte Carlo simulations

To develop a GEANT4 simulation representative of LCTEM conditions, a literature
precedent employing GEANT4 to model a scanning transmission electron
microscope (STEM) was amended.** In brief, the amended Monte Carlo simulation
incorporates an electron source operated at 300 keV, as is typical for an LCTEM

microscope’18,24,33,35,36

and the underlying physics accounts for multiple scattering
under the penetration and energy loss of positions and electrons (Penelope)
system.?’ The three-dimensional sample geometry mirrors the typical liquid cell win-
dow size of 50 x 50 pm in the x and y dimensions (Figure 1). Given the variability of
the liquid thickness across liquid cell experiments, we simulated liquid cells with
liquid layers between 100 nm and 10 um containing DMF, methanol, or water (Fig-
ure 1A). Each simulation was repeated three times with one million primary elec-
trons. To assess electron-solvent interactions for each solvent, the average number
of secondary electrons (SEs), the average absorbed energy, and the average
absorbed dose were measured by a detector placed in the center of the sample ge-
ometry (Figures 1B-1D and S1-S3).

Across the examined liquid thicknesses, the average number of SEs is close for wa-
ter and methanol, while DMF slightly surpasses these solvents at higher
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Figure 1. GEANT4 Monte Carlo simulation setup and results

(A) Liquid-cell assembly with the inset showing the geometric setup of a simulated liquid cell.
(B-D) (B) Average secondary electron generation, (C) absorbed energy, and (D) absorbed dose for
methanol, N,N-dimethylacrylamide, and water over liquid layers in the range of 100 nm to 10 pm.

thicknesses (Figure 1B). The increased SE generation in DMF may be due to the
comparatively high molar concentration of DMF (77.4 mol L™" relative to methanol
(40.5 mol L™") and water (55.5 mol L™"), the pure solutions of which these systems
approximate. Given the increased SE generation in DMF, the simulated results
indicate that the contribution of SEs to solvent damage should be highest for
DMF, whereas water and methanol should be similarly affected. For all three sol-
vents, the average number of SEs generated increases with increasing thickness
and, at lower thicknesses, the difference in SE generation for the three solvents
is minimized. However, given the similarity in SE generation for all three solvents
at the low liquid thicknesses most relevant for LCTEM (<1 pm), the simulated re-
sults suggest that SE generation contributes similarly to electron beam-induced
damage in all three solvents.®

On the other hand, the absorbed energy is highest for water, followed by DMF, and
finally methanol (Figure 1C). Since water has the highest density, electrons penetrating
through the sample lose more energy compared to less dense solvents. Likewise, for
thicker samples, more energy is lost when electrons travel through the sample, mani-
festing in an increase in the absorbed energy (Figure 1C). Similarly, the absorbed
dose is highest for water, followed by methanol, and then DMF (Figure 1D). The ab-
sorbed dose results can be rationalized by considering the elemental composition of
each solvent, particularly the percentage of oxygen, the heaviest constituent element.
Water is roughly composed of 88% oxygen, compared to 50% for methanol, and 22%
for DMF. Since the absorbed dose measures the energy absorbed per unit mass, the
results correlate with the percentage of oxygen, thus resulting in water having the high-
est absorbed dose and DMF the lowest. As with the absorbed energy and number of
SEs, the absorbed dose increases with liquid thickness when each solvent is examined
individually (Figures S1-S3).

Taken together, the Monte Carlo simulation results suggest that water should un-
dergo the most damaging electron-solvent interactions. For all three solvents, the
number of generated SEs does not vary greatly, specifically at the low liquid thick-
nesses typical for LCTEM (100 nm to 1 um).>” However, for all liquid thicknesses,
both the absorbed dose and energy are far higher for water compared to the two
organic solvents. Ultimately, these results indicate that, from a scattering
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Figure 2. Modeled results for solvent radiolysis using the reaction engineering module in COMSOL
(A-C) Results for (A) methanol, (B) N,N-dimethylformamide, and (C) water. Note that dimers formed in DMF result from self or mixed reactions
between HCONMeCH,® and ®*CONMe; radicals. For all three simulations, a 300 keV electron beam with a beam current of 1 nA and radius of 1T pm were

used.

perspective, aqueous solutions are likely more prone to electron beam-induced
damage. Correlated with this increased electron beam-induced solvent damage,
the more strongly scattered electrons would be expected to lead to lower image
contrast compared to organic solvents when attempting to image low contrast sol-
vated organic materials, pointing to the value in expanding LCTEM to the study of
organic nanomaterials in organic solvents.

Radiolysis modeling

Seeking more chemical insight into solvent damage, we next endeavored to
model radiolysis for methanol, DMF, and water (Figure 2). Using the reaction
engineering module in the multiphysics software COMSOL, we developed a
kinetic model for the radiolysis of each solvent under LCTEM conditions. Mirroring
previous studies,”*?> we assume all radiolytic species are homogeneously distrib-
uted in the irradiated solvent and that the concentration of each solvent remains
constant. The concentration for each radiolytic species was calculated by summing
the rates of individual reactions between different radiolytic species and the yield
due to direct irradiation. Under a fixed beam current and diameter, we note that
the delivered dose, measured in Gy s, varies slightly for each solvent, as each sol-
vent has a unique density-normalized stopping power.?>*? In all cases, numerous
radiolytic species are generated, and we consider a subset of the radical and molec-
ular species formed in methanol, DMF, and water (Figures 2A-2C; Tables S1-S6).

For our modeled results, there are several clear distinctions between the three
solvents. The radiolytic species generated from methanol and DMF reach a
steady-state concentration the slowest, taking roughly 1,000 s, compared to 1 s
for water. In contrast to DMF and water, the radical species generated from meth-
anol, namely the methyl radical (*CHj3), solvated electron (es™), and hydrogen atom
(H®), all remain below ~10~* mM for the entire simulation (1076-10° s).

Since all three solvents form H® and e,~, we examine the reactivity of the radicals
unique to each solvent, namely ®CHj; in methanol, HCONMeCH,® and ®*CONMe,
in DMF, and ®OH in water. It is well established that radicals centered on more elec-
tronegative atoms are less stable, resulting in a high reactivity for ®OH radicals
generated in water compared to the carbon-centered radicals formed in the two
organic solvents.*’*? The two radicals generated from DMF, although distinct in sta-
bility, are both less reactive than the comparatively unstable ®CHj radicals
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Figure 3. Imaging and mass spectral results for PS-b-P4VP assemblies dispersed in different solvents

(A-D) PS-b-P4VP assemblies in methanol imaged via (A) dry state and (B) LCTEM. PS-b-P4VP assemblies in DMF imaged via (C) dry state and (D) LCTEM.
(E and F) PS-b-P4VP assemblies in methanol imaged via (E) dry state and (F) LCTEM.

(G-N) (G) MALDI mass spectra from top to bottom for unimaged control, methanol imaged at low flux (0.8 e~ A=2571 4.0e” A2, methanol at high flux
(147e A 257,882 x 10°e~ A2, DMF at low flux, DMF at high flux, water at low flux, and water at high flux. MALDI-IMS mass-filtered color maps for
(H) small chip and (I) window for methanol imaged at low flux, (J) window for methanol imaged at high flux, (K) window for DMF imaged at low flux, (L)
window for DMF imaged at high flux, (M) window for water imaged at low flux, and (N) window for water imaged at high flux. MALDI-IMS color maps are
shown with a mass filter of 5,200 + 300 m/z displayed as 0%-100% of total intensity on a logarithmic scale.

generated from methanol.**** We note that there is no evidence in the radiation
chemistry literature that ®OH radicals are generated in methanol, likely due to the

scavenging of ®*OH radicals by methanol.*®

In brief, based purely on radical reactivity, ®OH radicals generated from water are
likely to cause the most secondary damage to the sample under study, and previous
studies have demonstrated the destructive nature of these radicals to soft matter in
particular.z“““”49 It is worth noting that the HCONMeCH,® and ®*CONMe; radicals
generated in DMF, although the least reactive, attain the highest steady-state con-
centrations (~107° mM) compared to ®*CHj; (~107° mM) and ®OH (~10~* mM) rad-
icals formed in methanol and water, respectively; this suggests that DMF likely shows
intermediate radiolytic sensitivity. Finally, ®CH3 radicals generated in methanol are
notonly less reactive than ®OH radicals generated in water, but also attain the lowest
steady-state concentration of the examined radicals, suggesting that methanol is
more amenable to LCTEM than water.

LCTEM and MALDI-IMS

With modeled results in hand, we next aimed to image poly(styrene)-b-poly(4-vinylpyr-
idine) (PS-b-P4VP) polymeric assemblies dispersed in the organic solvents. This class of
polymer was chosen due to the numerous previous studies focused on the phase
behavior of the polymer in organic solvents.*~ For our studies, we specifically utilized
PS116-b-P4VP,3 assemblies prepared in methanol, DMF, or water (Figure 3). To charac-
terize the nanoscale structures, we utilized both dry-state TEM, dynamic light scattering
(DLS) (Figure S¢), and LCTEM. For the sample prepared in methanol, the assemblies
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appeared to be large, tangled worms by dry-state TEM with clear drying and aggrega-
tion artifacts (Figure 3A). Overcoming the artifacts of dry-state TEM, LCTEM clearly
showed the presence of worms in methanol ata flux of 0.8 e~ A~2s~", enabling the first
of its kind observation of a polymeric nanoassembly in liquid methanol (Figure 3B).
Next, we visualized assemblies dispersed in DMF via dry-state TEM and LCTEM. As
observed via dry-state TEM imaging, the assemblies appeared to be aggregated
micellar nanoparticles. In LCTEM, micelles were likewise observed at a flux of 0.8 e~
A=2 57" (Figures 3C and 3D). Finally, we imaged assemblies dispersed in water. By
dry-state TEM, the assemblies appeared to have undergone drying and aggregation
effects, making the morphology unclear (Figure 3E). Similarly, in liquid, the high density
of water prevented any meaningful morphological insight at the same flux of 0.8 e~ A2
s~' employed for the other two experiments (Figure 3F). In agreement with modeled
results, LCTEM data further affirm the value in exploring methanol or related solvents
in LCTEM over aqueous systems. We note that, for LCTEM experiments, it is difficult
to control the liquid thickness via sample dropcasting and so the effect of varying liquid
thickness could not be easily explored. For all experiments, however, imaging was con-
ducted at minimal liquid thickness (<1 pm).

To evaluate sample survival following LCTEM imaging, we utilized a lower molecular
weight PS33-b-P4VP3, polymer that could be ionized more efficiently by MALDI-IMS
than the larger PSq14-b-P4VP23 polymer. We have previously demonstrated the ability
of MALDI-IMS to serve as a postmortem technique for imaged liquid cell chips to eval-
uate sample survival after imaging with high spatial resolution.?*** We conducted two
liquid cell experiments on the lower molecular weight PS33-b-P4VP3; polymer
dispersed in each solvent: a stroboscopic imaging experiment in which each sample
was imaged once every 3 min at 0.8 e~ A=2 s~ " with a cumulative fluence of 4.0 e~
A2 and a continuous imaging experiment at 14.7 e~ A 2 s~ with a cumulative fluence
of 8.82 x 10° e~ A2 (Figures 3G-3N; Figure S4; Videos S1, 52, and S3).

Under stroboscopic imaging conditions, the overall mass spectra of the imaged win-
dows show that PS-b-P4VP has similar mass signal retention when imaged in methanol
and DMF (Figure 3G). However, under stroboscopic imaging in water, the PS block ap-
pears to be selectively degraded, and the remaining lower-molecular-weight signal has
a spacing that corresponds to the 4-vinylpyridine monomer mass (Figure S5). However,
under higher flux and fluence conditions, the PS-b-P4VP polymer signal is retained in
methanol, reduced in DMF, and obliterated in water. We note that, in agreement
with previous studies, a reduction in polymer mass signal intensity could indicate sam-
ple scission, leading to a low molecular weight signal or crosslinking.”*** The MALDI-
IMS results agree with modeled and simulated results, both of which indicate that water
should undergo the most solvent damage of the three solvents examined. The LCTEM
and MALDI-IMS data reaffirm the value in studying non-aqueous nanomaterials via
LCTEM, particularly in methanol or related alcoholic solvents. Not only are such alco-
holic solvents less dense, enabling higher contrast, but they form less-reactive radicals
at lower concentrations compared to water (Figures 2A and 2C).

Finally, having confirmed the radiation sensitivity of water through both experimen-
tation and modeling, we endeavored to visualize the polymeric nanoassembly dy-
namics of PS-b-P4VP in purely organic solvents. Specifically, we aimed to trigger a
worm-to-micelle transformation in situ by mixing worms in methanol with DMF (Fig-
ure 4; Figure Sé). To ensure sample survival, specifically in the seemingly more sen-
sitive DMF solvent, we employed a flux of 0.8 e~ A~2 s~ and a cumulative fluence of
4.0 e~ A2, reproducing the conditions under which the polymer was shown to sur-
vive in both DMF and methanol (Figures 3G and 4A).
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Figure 4. LCTEM results for PS-b-P4VP assemblies undergoing solvent switch from methanol to DMF imaged at 0.8 e~ A2g
(A) Three LCTEM images during in situ solvent switch with yellow dotted squares highlighting regions of interest for image processing.

1

(B) Image processing for region of interest performed by cropping, subtracting background, applying 4 x 4 average binning, and implementing a “fire"
color filter.
(C) Proposed mechanism for worm-to-micelle transformation during solvent switch.

Initially, in pure methanol, we observed diffuse worms throughout the liquid cell, as
observed in repeat experiments (Figures S7-58). Upon flowing DMF into the liquid
cell with the electron beam blanked, we observed the formation of dense micellar
structures. To aid in image interpretation, we performed image processing on a
selected region of interest using ImageJ (Figure 4B). Specifically, we performed a
background subtraction, 4 X 4 average binning, and applied a color filter by which
each gray scale pixel was assigned a corresponding RGB value; using a color filter
allowed us to better differentiate between dense micelles and more diffuse worms
(Figure 4B). After a further 10 min of flowing in DMF with the beam off, the worms
appeared to have fully transformed into micelles, and subsequent time points
showed no further morphological evolution (Figure S8).

LCTEM data of the solvent-induced transformation suggest that the worms transi-
tion to micellar particles gradually, with micelles seemingly forming from and around
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diffuse worms (Figure 4C). As worms do not fully redissolve to reform micelles, our
LCTEM results suggest that the PS and P4VP blocks do not undergo core-corona
inversion upon solvent switching.”" Thus, since methanol preferentially solubilizes
the P4VP block, our results imply that, in both DMF and methanol, the core is
composed of PS and the corona of P4VP, in agreement with existing studies.>*>°
As the worm-to-micelle transformation was induced by the mixing of two organic sol-
vents, such an insight likely could not be obtained by a cryo-TEM time series, as such
a study would require optimization of vitrification conditions for DMF, methanol, and
different compositions of the two solvents.

In summary, utilizing a multimodal approach with newly developed Monte
Carlo simulations and radiolysis models, we have gained critical insight into
electron-solvent interactions for DMF, methanol, and water, which will enable the
study of soft nanomaterials dispersed in organic solvents via LCTEM. Both Monte
Carlo simulations of electron trajectories through the solvents and kinetic modeling
of radiolysis indicate that water is the most radiolytically sensitive of the three sol-
vents, while the organic solvents appear comparatively stable. Our modeled findings
were verified via LCTEM and MALDI-IMS experiments performed on poly(styrene)-b-
poly(4-vinylpyridine) dispersed in either DMF, methanol, or water. Using optimized
imaging conditions and guided by modeled results, we visualized a worm-to-micelle
transformation in poly(styrene)-b-poly(4-vinylpyridine) assemblies, which was trig-
gered by a methanol-to-DMF solvent switch. The solvent mixing experiment, not
possible by standard techniques, such as cryo-TEM, provides direct mechanistic
insight into the phase dynamics of poly(styrene)-b-poly(4-vinylpyridine) nanoassem-
blies. Thus, we conclude that radiation-sensitive soft nanomaterials dispersed in
organic solvents should be more routinely studied with LCTEM. Such studies con-
cerning morphology and dynamics can be used to directly probe specific polymeric
systems, with correlation to scattering experiments and where standard imaging
methods cannot easily be employed.”®

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to
and will be fulfilled by the lead contact, Nathan Gianneschi (nathan.gianneschi@
northwestern.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All other data and code supporting the findings of this study are available within the
article and are described in the supplemental information or are available from the
corresponding author upon reasonable request.

Materials

PS116-b-P4VP,3 and PS33-b-P4VP3q were purchased from Polymer Source and used
as received. All other materials were purchased from Sigma and used as received
unless otherwise noted.

Sample preparation

PS-b-P4VP (PS144-b-P4VP,3 or PS33-b-P4VP34) powder was dissolved in a vial with
tetrahydrofuran (THF) at a concentration of 0.125 mg uL~". The solution was stirred
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overnight, and the THF was removed with a stream of nitrogen. Then, methanol,
DMF, or milli-Q water (pH 5) was added to the dried polymer sample to again
achieve a concentration of 0.125 mg uL™". The solution was stirred for 3 days to yield
an opaque solution of nanoassemblies.

LCTEM imaging

The Protochips Poseidon Select Heating holder was used to collect LCTEM data. The
lines of the holder were prefilled with either methanol, DMF, or water in all LCTEM
experiments. LCTEM chips with 50-nm-thick, 200 X 50 um window SiN, membranes
were cleaned in acetone followed by methanol, dried, and subsequently glow dis-
charged in a PELCO easiGlow glow discharge unit for 5 min. Next, 0.5 uL of sample
was pipetted manually onto the bottom chip, and then the liquid cell was assembled
with the windows (50 x 200 pm) aligned perpendicularly (50 X 50 um LCTEM viewing
area), and the lines of the holder were sealed off without external flow. For the data
shown in Figure 4, the lines were prefilled with DMF, and the sample dropcasted on
the chips was dispersed in methanol. Then, using a syringe pump at a rate of 1 plL
min~", DMF was flowed into the viewing window of the LCTEM holder.

Experiments were performed using a JEM-ARM300F (JEOL, Tokyo, Japan) operated
at 300 keV. Micrographs were recorded on a 2k X 2k Gatan OneView-IS CCD cam-
era (Gatan, Pleasanton, CA, USA) using Gatan Digital Micrograph image acquisition
software (Roper Technologies, Sarasota, FL, USA). The electron flux values used in
LCTEM experiments were calculated using the beam current for each aperture selec-
tion, as measured by a Faraday Holder through vacuum, and the beam diameter
incident upon the sample. For video acquisition, Camtasia Studio 2018 was used
to record the screen at 30 frames per second (TechSmith, USA).

MALDI-IMS

LCTEM chips, with their SiN, membranes facing upward, were adhered to the
conductive face of an ITO-coated glass slide with 70-100 Q resistivity (Bruker Dalton-
ics), using ~0.5 pL nail polish and allowed to dry. To equalize the height difference
from SiN, chips on the slide (~0.25 mm), four pieces of Scotch tape were applied to
both short edges of the slide on the same side. As a control, unimaged PS33-b-
P4VP3; at 0.125 mg uL™" in THF was dropcasted onto a clean liquid cell chip. All
chips were coated with trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]
malononitrile matrix in (20 mg mL™" in THF).

Slides were mounted into an MTP Slide Adapter Il and loaded onto a Bruker Rapiflex
MALDI-ToF mass spectrometer for analysis using the flexControl software (Bruker
Daltonics). Samples were analyzed by MALDI-MS under reflector positive mode
(2,000-10,000 Da) using a 355 nm smartbeam 3D laser with a 50 um focus diameter
and 200 Hz frequency, a constant laser power of 50%, and a sum of 500 shots per spec-
trum. Spectra were collected using an accelerating voltage of 20 kV and detector gain of
792 V. Region of interest mapping was performed at a raster width of 50 um, and image
analysis was performed in fleximaging software (Bruker Daltonics).

For each MALDI-IMS experiment performed for chips imaged in the liquid cell, the
mass spectra displayed in the main text (Figure 4G) were generated by averaging
the mass spectra of the windows for the two chips used in the liquid cell assembly;
thatis, the spectra generated from the top chip and the bottom chip, which together
comprise the liquid cell, are averaged. For the mass signal of PS33-b-P4VP3, fromiirra-
diated chips to be visible compared to an unimaged control, the overall intensity of
the mass spectrum was set to 50% of the total intensity of the control mass spectrum.
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DLS
DLS measurements were performed on a Zetasizer (Malvern Instruments, Nano ZS)
with a 60 s equilibrium time for each measurement.

Monte Carlo simulations
To develop a GEANT4 simulation representative of LCTEM conditions, a literature
precedent employing GEANT4 to model an STEM was amended.** The amended
Monte Carlo simulation incorporates an electron source operated at 300 keV, as is
18,24,33,35,36

typical for an LCTEM microscope, and the underlying physics accounts
for multiple scattering under the Penelope system.?” The three-dimensional sample
geometry and the size of the world were set to be equal sizes so that only scattering

in the sample would be considered.

The size of the sample mirrors the typical liquid cell window size of 50 x 50 pm in the x
and y dimensions. We investigated z dimensions of 100, 200, and 500 nm, and 1, 2, 5,
and 10 pm. The sample was made of either DMF, methanol, or water. These solvents
were programmed into the simulation by specifying their elemental composition and
density. Each simulation was repeated three times with one million primary electrons.
To assess electron-solvent interactions for each solvent, the number of SEs, the ab-
sorbed energy, and the absorbed dose were measured by a detector placed in the cen-
ter of the sample geometry. For the three repeated simulations, the average number of
SEs, absorbed energy, and absorbed dose were calculated with standard deviations.

COMSOL radiolysis modeling

To create a model for solvent radiolysis, we utilized the reaction engineering module
of COMSOL with the PARADISO solver. The concentration with time (C(t)) of each
radiolytic product in each solvent was measured by summing the reaction rates of
individual reactions (R)) between radiolytic products and adding in the yield from
direct irradiation (G,), according to the equation:

Note that G, is measured in units of M s™" and is dependent on the G value of the
given radiolytic species (G, molecules/100 eV) and the dose rate (D, Gy s™'), as
shown in the equation below, where p is the density of the solvent (g cm s~3) and
Fis Faraday's constant:*®

For our modeling, we used a 300 keV electron beam with a 1 um radius (a) and 1 nA
current (). This resulted in a dose rate of 7.7 x 107 Gy s~ for methanol, 7.51 x 107
Gy s~ for DMF, and 7.50 x 10’ Gy s~ ' for water. These values were calculated ac-
cording to the equation below and are slightly different due to the difference in the

density-normalized stopping power (S) for the three solvents.?**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.
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