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ABSTRACT The prediction of protein mutations that affect function may be exploited for multiple uses. In the context of dis-
ease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of
genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dy-
namics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible
rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follic-
ular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior
compared with wild-type (WT) PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based
on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar
structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where
single-nucleotide polymorphisms have been identified as connected to disease and can shed light on the biophysical effects of
such changes as well as provide a way to discover potential mutants that could restore WT-like functionality. This can, in turn, be
further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.

SIGNIFICANCE Discovering protein mutations with desired phenotypes can be challenging due to its combinatorial
nature. Herein, we employ a methodology combining gene SNP association to disease, direct coupling analysis, and
molecular dynamics simulations to systematically predict rescue mutations. Our workflow identifies A755E as a potential
rescue for the PARP1 V762A mutation, which has been associated with cancer. This methodology is general and can be
applied broadly.

The identification and characterization of missense muta-
tions has been a field of active research. Some of us have
developed an approach termed hypothesis-driven SNP
search (HyDn-SNP-S). This approach involves the search
of single-nucleotide polymorphisms (SNPs) resulting in
missense mutations that are associated with a specific
phenotype on a particular gene or genes, followed by atom-
istic simulations to characterize the impact of the mutation
(2,3). We have previously employed this approach to un-
cover and characterize various cancer-associated mutations
(2,4,5), including the prediction and experimental confirma-

INTRODUCTION

The identification of disease-associated mutations that result
in missense protein variants can provide avenues for thera-
peutic development. For example, trans-splicing is a thera-
peutic approach that can be employed to repair mutations at
the mRNA level (1). Therefore, understanding the impact of
disease variants may be of value to determine if these muta-
tions can or should be targeted for genetic therapies.

Submitted November 20, 2021, and accepted for publication May 23, 2022.
*Correspondence: faruckm@utdallas.edu or andres @utdallas.edu
Krithika Ravishankar and Xianli Jiang contributed equally to this work.
Editor: Alemayehu A. Gorfe.

https://doi.org/10.1016/j.bpj.2022.05.036

© 2022 Biophysical Society.

tion of a rescue mutation for a lung cancer-associated muta-
tion on APOBEC3H (6). Although there are successful
examples for the prediction of rescue mutations, a system-
atic method to discover these variants would be beneficial.
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Proteins evolve through a series of neutral or selectively
favored mutations (7,8) that could coevolve with corre-
sponding compensatory mutations to maintain constraints
from folding structure or function (9-11). Such coevolu-
tionary information between residue sites can be inferred
by a statistical modeling of sequences in a protein family
and has achieved significant performance in predicting
physical contacts for protein folding and protein-protein
interaction prediction (12—15). The coevolutionary model
has also been used to estimate mutational effects in epistasis
studies (16—19). The direct coupling analysis (DCA)
method is a statistical model that estimates a global proba-
bility distribution of protein sequences by inferring param-
eters, including covariation coupling between residues and
site-wise conservation from multiple sequence alignments
(MSAs) of homologous sequences (20). As a result, DCA
is a useful tool that has been successfully applied in the pre-
diction of protein structures (21,22), conformational
changes (23), protein interactions (24), function (25),
sequence evolution with epistatic contributions (19), and
recently in protein design (25,26).

Given the features of these two methodologies, coevolu-
tionary analysis and SNP search can be combined to further
understand the relationship between cancer-related muta-
tions and compensatory mutations that could rescue the
SNP variant (Fig. 2). Working from these two origins, mo-
lecular dynamics (MD) simulations of the identified muta-
tions can be used to contextualize their impacts in
reference to the wild-type (WT) structure. In this contribu-
tion we present the development of a methodology that
combines HyDn-SNP-S with coevolutionary analysis to un-
cover possible compensatory mutations for disease variants.
We apply this approach to the regulatory domain of protein
PARP1 and use MD simulations to understand the muta-
tion’s effect on the overall PARP1 structure.

Poly(ADP-ribose) polymerase 1 (PARP1) performs base
excision and repairs single-stranded breaks. It acts as an
ADP-ribosylating enzyme, covalently attaching ADP-ribose
to proteins. The successive transfer of ADP-ribose results in
a PAR chain, which acts as a signal for other DNA repair en-
zymes (27). This process, known as PARsylation or PARy-
lation, occurs on both single- and double-stranded DNA
(28,29). PARP1 is believed to perform over 90% of all
cellular PARsylation activity (30). PARP1 is known to assist
with the repair of single- and double-stranded breaks
through several DNA repair pathways, including base exci-
sion repair, nucleotide excision repair, mismatch repair,
homologous recombination repair (HRR), and nonhomolo-
gous end joining (28,31). Despite its involvement in these
various pathways, PARP1 is only essential for single-strand
break repair, and it is considered nonessential for double-
stranded repair (32). When it is in a position to repair strand
breaks, PARP1 is believed to dimerize with the DNA-bind-
ing domain of another PARP1 (33). This dimerization is
facilitated by the central automodification domain (34).
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PARPI1 is of particular interest because of its inextricable
link with the BRCA1 enzyme, known for breast cancer sus-
ceptibility (29,35). Both PARP1 and BRCA1 are involved in
HRR, where a damaged area of DNA is resynthesized using
a sister chromatid (36-38). BRCAI1 is also known to
perform PARsylation, which, together with RAP80,
regulates HRR (39). This link has been utilized in the treat-
ment of BRCA-mutated cancers, as demonstrated by the
FDA-approved use the PARPI inhibitor Olaparib for
advanced ovarian cancer (40). Inhibiting PARP1 leads to a
stalling of the replication fork and the subsequent switch
to repair via the nonhomologous end-joining pathway
in cancer cells, but a continuation via HRR in noncancer
cells (41).

PARPI’s N-terminal domain has three zinc fingers, one
responsible for interactions between domains, and the other
two involved in DNA binding (43). When DNA damage oc-
curs, PARPI localizes to the damaged area (44). The zinc
fingers bind to the exposed nucleotides, instead of the 3’
and 5’ ends at the break sites, allowing for versatility in
binding other secondary arrangements of DNA (45). The
catalytic region then goes through three enzymatic reactions
for PARsylation, composed of initiation, elongation, and
branching. Central to this process is an “ADP-ribosyltrans-
ferase (ART) signature” (Fig. 1) comprised of a conserved
His-Tyr-Glu (H-Y-E) triad in its nicotinamide binding
pocket (46). PARsylation requires the nicotinamide adenine
dinucleotide (NAD™) as a coenzyme, because PARP1 poly-
merizes the ADP-ribose units (47). Unfolding of the helical
subdomain (HD) (Fig. 1) is crucial for the activation of
PARP-1 and, thus, changes in stability in this region can
affect the enzyme’s catalytic output or how it binds NAD™*
(48). This unfolding has been proposed to occur through a
two-step mechanism, first through DNA binding and
secondarily through substrate binding to destabilize the
folded HD structure (49). WT PARPI1 has been found to
be upregulated in different cancers (50-56). In turn, overac-
tivation of PARPI can lead to mitochondrial distress and

FIGURE 1 The ADP-ribosyltransferase (ART) (red) and the helical (HD)
(pale orange) subdomains of the catalytic domain of PARP1 are highlighted
on the (PDB: 4Z7Z7Z) WT structure (42). Residues A755 and V762 are
shown in black. To see this figure in color, go online.
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cell necrosis (57-59). One particular SNP, rs1136410, re-
sults in the V762A missense mutation in the HD region of
PARP1. The resulting V762A mutation has been shown to
reduce the enzymatic activity of PARP1 (60). This SNP
has been linked to both lung cancer and follicular lymphoma
through the HyDn-SNP-S method (2, 3). The rs1136410
SNP has also been shown to serve as a protective factor
against breast cancer and coronary artery disease in the
Han Chinese population, but it may lead to an increased
overall risk of age-related cataracts and cancers (61-65).

In the remainder of this paper we describe the application
of the combined HyDn-SNP-S and coevolutionary analysis
methods to determine whether there are possible compensa-
tory mutations for the PARP1 V762A variant. In the next
section we provide details of the coevolutionary analysis
and MD simulations methods, followed by the results of
these approaches for WT and various mutants of PARPI.
Finally, concluding remarks are provided on the applica-
bility of this combined approach.

MATERIALS AND METHODS

Coevolutionary analysis for PARP regulatory
domain

The V762A mutation is found within the PARP regulatory domain of
PARPI. To investigate evolutionary footprints for this functional domain,
MSAs of homologous sequences for this specific domain are obtained
from the Pfam database with an entry ID of PF02877 (66). The DCA
method (20) is then applied to the MSA data set to extract information about
coevolutionary coupling between any pairwise residues and the preference
of amino acid occurrence at each residue position. As described in (20),
DCA utilizes maximum entropy modeling to estimate the joint probability
distribution of amino acid sequences of a protein or domain sequence:

P(S) = %exp Zeiﬂrzhi ; ey
ij i
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FIGURE 2 Workflow of DCA-MD method for
identifying compensatory mutations for SNP(s).
The DCA method infers coevolutionary parame-
ters from MSA(s) containing the mutated residue
(see Materials and methods). Then a mutational
landscape of protein energy function scores for
all possible single mutations is generated to eval-
uate the SNP and initially screen possible compen-
satory mutations. The MD method simulates and
validates the effect of SNP and compensatory mu-
‘ | tation candidates. To see this figure in color, go on-
1 line.
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where Z is the partition function, the position of residues within the aligned
domain or protein sequence are denoted as i and j, and parameters e;; and /;
can be inferred by DCA. Parameters quantify coevolutionary coupling
strength for residues i and j for all possible amino acid occurrence pairs.
The amino acid biases for single-residue positions are captured by the param-
eter h;. Since the inference of the exact parameters being an intractable prob-
lem, there are multiple approximations to infer these parameters with
different complexities and accuracies. In this work we use the mean field
formulation (20), which optimizes the identification of highly coupled sites;
however, itis not as generative as other approximations, such as bmDCA (67)
or arDCA (68). Since the generative property is not useful in our context,
mfDCA provides both accuracy and low computational complexity.

Calculation of a sequence-based energy function
for PARP1 mutants

Using the collection of e;; and h; parameters estimated by DCA, a
sequence-based energy function can be calculated from Eq. 1 for any given
aligned sequence. This collection of parameters or Hamiltonian (H) for a
protein sequence S is expressed as:

HS) = — Ze, - Zh,«.

@

Calculating the energy function H(Swr) for the WT sequence of PARP1’s
regulatory domain provides a reference energy to compare against amino
acid changes in the sequence. This sequence Hamiltonian has been predictive
of functional and nonfunctional effects in proteins and RNA (69-71). Any
amino acid substitution in this domain would update the energy function
to a mutant one, H(Syy). Then the effect of any mutant could be estimated
in terms of the differential of this sequence-based energy function:

AI—[mut - H(SMut) - H(SWT) (3)

In this context, a more positive AHp,,, score is predicted in general to
have an unfavorable effect, while a more negative one represents a favor-
able or neutral change for fitness.

Original codes for coevolutionary parameter inference by DCA and H(S)
score calculation were written in MATLAB (The MathWorks, Natick, MA)
and published before at https://github.com/morcoslab/coevolution-compatib
ility (72).
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MD analysis of PARP1

Seven systems of the catalytic domain in PARP1 were considered,
including the WT from crystal structure PDB: 4ZZ7 (WT) (42,73), a cancer
mutant containing the V762A mutation (rs1136410) from crystal structure
PDB: 5WS1 (V762A) (74), a mutant containing the V762A mutation from
the WT (V762A-from-WT), single mutants containing either A755E only
(A755E) or A755L only (A755L), and double mutants containing the hy-
pothesized rescue mutations and the V762A cancer-related mutation,
AT755E/VT762A and A755L/V762A (Table 1). None of the systems studied
contained DNA. The V762A-from-WT was created by using LEaP in
AmberTools to edit structure 4ZZZ (75,76). Modeller was used to incorpo-
rate the missing residues into both crystal structures (77,78). The single mu-
tants were created by editing structure 4ZZZ using UCSF Chimera and
replacing the amino acid using the Dunbrack rotamer libraries (79,80).
The double mutants were similarly created by modifying structure SWS1.
VMD and UCSF Chimera were used for visualization (81,79).

Using LEaP, chloride ions were added to neutralize the total charge of
each system (75). WT, V762A, and V762A-from-WT were each solvated
using TIP3P water extending at least 8 A from the solute, and the
AT755E, A755L, A755E/V762A, and A755L/V762A systems were each sol-
vated extending at least 12 A from the solute (75,82). A simulation fora WT
system with a 12 A solvent buffer was also performed, and no significant
differences were observed compared with the smaller box results (Figs.
S4 and S7). Charged residues were assigned the default protonation state
in LEaP, consistent with PROPKA (five His had suggested protonation at
N-delta by PROPKA, three of which were inconclusive by electrostatic
calculation and visual inspection) (83-85). The ff14SB force field was
used for all protein residues (86). AMBER MD simulations were run using
pmemd.cuda (76,87,88), with the NVT ensemble (number of atoms, vol-
ume, and temperature held constant) for the minimization and heating
phases. The NPT ensemble (number of atoms, pressure, and temperature
held constant) with the Langevin thermostat (temperature held at 300 K)
was used for equilibration and production (89). The systems were run in
triplicate with a 2-fs time step for the total simulation time shown in Table 1.
Results for a representative trajectory of each system are shown below. All
difference data between systems is presented as variant-WT.

Cpptraj was used to analyze production dynamics (90). Normal modes
were visualized using the Normal Mode Wizard in VMD (81,91). Further
data processing and graphing were performed with Gnuplot and the Mat-
plotlib, NumPy, and statsmodels Python libraries (92-96). A
FORTRANO90 program was used for the energy decomposition analysis
(EDA) (97). EDA averaging was done using R (98), with the data.table,
abind, and tidyverse libraries (99-101).

RESULTS AND DISCUSSION

We developed a compensatory mutation discovery workflow
comprised of two computational approaches: 1) MD simula-
tions to investigate the effect of mutations on the protein’s
structure and dynamics and 2) sequence-based coevolu-
tionary analysis that provides a global single-mutation land-

TABLE 1 Naming scheme for MD simulations of PARP1
Time simulated

Abbreviation Mutations Original PDB (ns)
WT 47277 500
V762A V762A 5WS1 500
V762A-from-WT V762A 47277 500
AT55E AT755E 4777 200
A755L A755L 47277 200
ATS5E/VT62A AT755E and V762A 5WSl1 200
AT55LIVT62A A755L and V762A 5WSI 200
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scape to screen out potential rescuing mutations for the SNP
variant of interest. The compensatory mutation discovery
workflow that has been developed herein is depicted sche-
matically in Fig. 2. In brief, the two computational ap-
proaches are performed in tandem to investigate the
structural and dynamic properties of the protein and disease
variants under study via MD; coupled with the sequence-
based coevolutionary analysis to obtain a single-mutation
landscape to screen out possible rescue mutations for the
SNP variant of interest.

Guided by the results from HyDn-SNP-S on PARPI1, we
sought to understand how the rs1136410 SNP affected the
overall structure and dynamics of PARP1. Thus, we per-
formed MD simulations of both WT PARPI and the
V762A PARP1 (V762A) variant structures.

Each system’s root mean-square deviations were stable
across all simulations (see Figs. S2, S3, and S8 A). One
way to assess the mutation’s effect on the dynamics of the
system is through the use of a by-residue correlation matrix.
This analysis can reveal regions of motion and dynamical
correlation, anticorrelation, and no correlation within the
protein (see Figs. S9-S14). Based on the differences in
correlated movements in Fig. 3 A, about half of the residues
in the HD subdomain (710-770) and a fifth of the residues in
the ART domain (910-960) show enhanced correlated
movement in V762A than in WT.

An analysis of the root mean-square fluctuation (RMSF)
can be used to identify areas of higher or lower fluctuation
between a system and its reference. Detailed RMSF data
can be found in Table SI and Figs. S5-S7, S8, B and C.
V762A and the WT differ in RMSF by more than 1 A atres-
idues 724, 747, 782, and 825. Each of these residues is cen-
tral to flexible loops throughout the subdomains, indicating
a difference in dynamics between V762A and the WT.
V762A impacts the active site because of its proximity to
the nicotinamide binding pocket. The active site residues
(879-889; Fig. 3 B) show increased fluctuation in the
V762A structure compared with WT, leading to decreased
structural stability in the mutant. These residues are in a
flexible loop opposite the NAD"-coordinating residues in
the binding pocket, and several residues interact directly
with V762.

An EDA, comprised of coulomb and van der Waals
(nonbonded) interactions, was used to study all of the intermo-
lecular interactions between individual protein residues and
residue 762 (see Figs. S15-S25). Residues G888 and Y889,
specifically, interact more favorably with residue 762 in the
V762A mutant than in the WT. The reverse behavior occurs
with residue N759, which is located in the same helix as
V762, but opposite the loop. N759 interacts more favorably
with V762 in the WT than in the V762A system (Fig. 3 C).
Furthermore, one of the hydrogen bonds between the HD
and ART subdomains, GLN 717-THR 887, is present for
27% less of the production time in the V762A system than
the WT (Fig. 3 B). The V762A mutation appears to result in
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RMSF between V762A and the WT. A 1 A threshold is shown with a blue dashed line. (C) Differences in EDA and hydrogen bonding between V762A and
the WT. Beige residues have undefined values. Differences in EDA above a threshold of 0.5 A are marked. Hydrogen bond donor in orange, acceptor in pink;

bond indicated with bold dashed line. To see this figure in color, go online.

areduction in stability in the active site because the loop and
helix are not held as tightly together. This instability could
mean that the NAD' may bind with lower affinity in the
PARP1 V762A holoenzyme.

We then utilized a DCA-based energy scoring function
AHy (see Materials and methods) to explore the single-
mutation landscape for all residues in the regulatory domain
of PARP1 (Fig. 4 A). The majority of single mutations had
disruptive scores in for PAPR1 regulatory domain. V762A
has a more positive score than the WT, indicating its poten-
tial disruptive role in protein folding or stability from the
perspective of coevolutionary analysis. Among all possible

mutations, the top 2 most favorable mutations are observed
in residue 755, specifically A755E and A755L. A double-
mutation profile generated with V762A also reports
A755E and A755L as the best compensatory mutations
occurring at positions other than 762 for the V762A mutant
(Figs. S1 and 4 B). This SNP-based profile directly estimates
the effect of a second mutation on the original SNP variant,
to uncover if there are second mutations that reverse the ef-
fect of SNP on the energy function score (Fig. S1). Both
A755E and A755L single mutations cause a comparable,
but opposite, effect on protein coevolutionary score as
V762A, while the double mutations, V762A/A755E and

Biophysical Journal 121, 3663—-3673, October 4, 2022 3667



Ravishankar et al.

i ME T T T || T
VE ‘ i ] |
Al I I LR
(s } \
]| ! R A I
Wi i 1 1
YE \ i i 1
3 o | |‘
[$] | 8
< |
e 9F | F
€ Sp i
< Tp \ |
DL 1l |
EF \
RE |
HE
KE |
Gk \ I
P 1 | I i | 1 1 | ‘ il
663 683 693 703 713 723 733 743 753 763 773 783 793
Residue Position
B 40
H(S) Disruptive
o Te) o Yo} o [Tp) o Te} o T9) o
= = N N ™ ™ < < Y] e} (e}
O 1O WO WO W W W W WO 5
1 1 1 1 I- II ‘I II II II 1 @
T WT
g
Disruptive Favorable >
V762A WT 5
Favorable
C 0.4 2 — -10
@ S 8 < W =
Epistasis: ﬁ N o B 8 o0
Double AH(S) - AH(S1) -AH(S2) B O < W E B B S
(& e —
-0.4 ~ N Double
= mutant

FIGURE 4 Coevolutionary information-based energy for PARP1 and mutant.

(A) Sequence energy landscape of mutations on PARP regulatory domain for

PARPI. (B) Mutational effect of PARP1 SNP V762A and potential complementary mutants, A755E/L. (C) Epistatic effect for V755E and V755L for PARP1

SNP V762A. To see this figure in color, go online.

V762A/A755L, lead to scores near WT (Figs. 4, B and C).
A755L generates a positive epistatic effect on V762A, sug-
gesting that the double mutation has a better fitness energy
score than the additive effect of two single mutations.
A755E causes a negative epistatic effect on V762A. In sum-
mary, the coevolutionary analysis indicates that two muta-
tions at residue 755 are promising for rescuing V762A.
Working from the results of the coevolutionary analysis,
we simulated the A775E and A755L single mutants to
establish a baseline for those mutations. The hydrogen
bond between GLN 717 and THR 887 is present for
28% (OE1-OGl1) and 23% (OE1-N) less of the production
time in the A755L system than in the WT, indicating that
A755L leads to less stability in the active site (lower box
of Fig. 5 A). The EDA revealed significant differences in
the nonbonded interactions between A755E and the WT,
with a large number of residues in the catalytic domain
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showing changes larger than 1 kcal/mol (Fig. 5 B). This
is due to the change from a residue with no charge to
one that is negatively charged. In addition, several HD
subdomain residues (717, 720, and 758-759) and residue
887, which is located in the active site, all interact more
favorably with residue 755 in A755L than in the WT
(Fig. 5 B). Four residues in flexible loops, two in the
HD subdomain (744 and 746) and two in the ART subdo-
main (824 and 825), have a significantly lower RMSF in
A755E and A755L than in the WT (Figs. 5 C and S8
O), suggesting that both A755E and A755L stabilize the
overall structure as a result of this decreased flexibility.
Based on the differences in correlated movements, the
portion of the helices of the HD subdomain near the
variant (residues 710-770) show more correlated move-
ment in both A755E and A755L than in the WT with
themselves (Fig. 5, D and E).
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We then simulated the A755E/V762A and A755L/V762A
double mutant systems to evaluate the role of the predicted
residues as compensatory mutations on the dynamics of
PARP1. The hydrogen bond between GLN 717 and THR
887 is present for 28% (OE1-OGl) less of the production
time in A755L/V762A than in the WT, indicating that
A755L/VT762A leads to less stability in the active site
(Fig. 6 A). Residues 717, 720, and 758-759, which are
near the site of mutation, and 887, which is located in the
active site, all interact more favorably with residue 762 in
A755L/V762A than in the WT (Fig. 6 A).

There is minimal difference in correlated movements be-
tween A755E/V762A and the WT, potentially indicating
that A755E is a rescue mutation (Fig. 6 B). Based on the dif-
ferences in correlated movements, residues 710770 show
more correlated movement in A755L/V762A than in the
WT with themselves and 885-985 with themselves (Fig. 6
(). This impact on the HD subdomain may point to a similar
or increased catalytic output for structures with A755E/L
rescue mutations.
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In A755E/V762A, the hydrogen bond between GLN 717
and THR 887 is present for 29% (OE1-OGl) and 24%
(OE1-N) Iess of the production time than in the WT, indi-
cating that A755E/V762A also leads to less stability in the
active site (lower box of Fig. 6 D). There are significant dif-
ferences in the nonbonded interactions between A755E/
V762A and the WT; residues all over the catalytic domain
are impacted (Fig. 6 D). Similar to A755E, the changes
may be due to the additional charge at position 755.

Atresidues 724, 748, and 826, the RMSF was significantly
lowerin A755E/V762A thaninthe WT (Fig. 6 E). Atresidues
960, 961, and 968, the RMSF was significantly higher in
A755E/V762A than in the WT (Fig. 6 E). These correspond
to differences seen for A755E/V762A in the normal modes
analysis (see Figs. S26-S27), where the HD subdomain
shows less motion than the ART subdomain. The A755L/
V762A system, however, closely resembles the WT in its first
normal mode. As these residues are indicated by RMSF in
each mutant studied, their fluctuation may be important for
the recognition of the cofactor, which is absent from these
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Correlated Movement

FIGURE 6 Comparison between A755E/V762A
and the WT and A755L/V762A and the WT. (A)
Differences in EDA and hydrogen bonding be-
tween A755L/V762A and the WT. Beige residues
have undefined values. Differences in EDA above
a threshold of 0.5 kcal/mol are marked. Hydrogen
bond donor in orange, acceptor in pink; bonds indi-
cated with bold dashed line. (B) Differences in
correlated movement between A755E/V762A
(blue) and the WT (red). (C) Differences in corre-
lated movement between A755L/V762A (blue)
and the WT (red). (D) Differences in EDA and

hydrogen bonding between A755E/V762A and
the WT. Beige residues have undefined values. Dif-
ferences in EDA above a threshold of 0.5 kcal/mol

are marked. Hydrogen bond donor in orange,
acceptor in pink; bonds indicated with bold dashed
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simulations. The added stability provided by A755L in the
AT55L/VT62A gives strong support for its evolution as a
compensatory mutation. Because HD region destabilization
is necessary for PARP1 activation, this particular double
mutant may more tightly control activation.

CONCLUSION

In this study, we have demonstrated that integrating coevo-
lutionary analysis and MD simulations can be useful to
discover and validate compensatory mutations for SNPs us-
ing PARPI rs1136410 as an example. A755E/L is first
recognized by the DCA coevolutionary method as variants
that are most favorable for PARP1 structures and the subse-
quent MD simulations validated that both variants stabilize
the overall structure. Coevolutionary information can also
be used to estimate double mutations that contain SNP to
uncover rescue mutations. Both A755E/L lead to favorable
“fitness” conditions in the context of the V762A variant
from an evolutionary perspective. In addition, the effects
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of A755E/L and V762A on PARPI1 protein are not purely
additive, with A755E being negatively synergetic and
A755L being positively synergetic (Fig. 4 B). MD simula-
tions show that the cancer mutation affects the structure
and dynamics of V762A PARP1 compared with the WT.
These results indicate that the A775E mutation, in conjunc-
tion with V762A, can resolve some of the structural and
dynamical impacts, mimicking the WT. Our work can
help understand the effects of SNPs in their association
with disease, such as cancer in this case, as well as identi-
fying changes that could ameliorate those changes. The dis-
covery of important compensatory mutations can be used to
study how particular SNPs are not always associated with
disease and provide a roadmap for molecular therapeutic ap-
proaches aiming at reducing the negative effects of muta-
tions. This methodology is generic in the sense that can be
applied to a large number of systems where structural and
sequence data are available. The case of PARP1, presented
here, is only one of many that could be studied with our in-
tegrated approach. Subsequent computational and new



experimental investigation of the potential of the two pro-
posed rescue mutations would provide further insights. We
expect that future work could uncover important insights
on the effect of mutations for many more genes and their
associated diseases.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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