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The driving effects of common atmospheric
molecules for formation of prenucleation clusters:
the case of sulfuric acid, formic acid, nitric acid,
ammonia, and dimethyl aminet

Conor J. Bready,@ Vance R. Fowler, Leah A. Juechter, Luke A. Kurfman,
Grace E. Mazaleski and George C. Shields @ *

How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of
uncertainty for understanding global warming. The beginning stages for formation of prenucleation
complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present
a computational chemistry study of the interactions between three different acid molecules and two
different bases. By combining a comprehensive search routine covering many thousands of
configurations at the semiempirical level with high level quantum chemical calculations of approximately
1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic
acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water
molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//wB97X-D/6-
314+4+G** Gibbs free energy surface for this system. We find that the detailed geometries of each
minimum free energy cluster are often more important than traditional acid or base strength. Addition of
a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W)
cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum
chemical AG°
monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as
efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results
from the combination of many different molecules that are able to form highly stable complexes with

acid molecules such as SA, NA, and FA.

values for cluster formation and realistic estimates of the concentrations of these

Understanding how secondary aerosols form is extremely important as aerosols’ impact on Earth's climate is one of the main sources of uncertainty for

understanding global warming. The beginning stages for the formation of prenucleation complexes, that eventually lead to larger aerosols, cannot currently be

investigated experimentally. We have determined the lowest Gibbs free energy clusters using robust computational chemistry methods, which allows for the

prediction of the equilibrium concentrations of the sulfuric acid-formic acid-nitric acid-ammonia-dimethylamine-water system. Optimal pathways were
mapped out and revealed that nitric acid could initiate new particle formation just as well as sulfuric acid under certain conditions, particularly with water. This

indicates that particle growth in the atmosphere likely results from many unique molecules producing clusters stabilized with acids.

1. Introduction

forms of precipitation.” Secondary aerosol particles form from
atmospheric gases and are predicted to make up 50% or more of
global CCN.>* The precise way that gaseous vapor comes

Aerosols affect the climate through light scattering, absorbing
and emitting radiation, and by serving as cloud condensation
nuclei (CCN)." They exert a substantial influence on the
microphysical properties of water and ice clouds, thereby
affecting the processes that lead to the formation of various
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together to form prenucleation complexes, which eventually
build to aerosols, and thus form CCN, is a very active area of
research.>>”7* Much of this activity is driven by the uncertainty
in how much aerosols and clouds will impact global warm-
ing.”»”® While it is thought that in general more aerosols will
lead to a cooling effect, the uncertainty in our knowledge
exceeds the actual size of the predicted cooling.” Aerosols
promote photochemical reactions at their surfaces and ampli-
fication of light within aerosols accelerates photochemistry.””**
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In addition, nanodroplets and microdroplets catalyze chemical
reactions at the air-water interface.***

Current instrumentation is capable of examining the various
stages of aerosol formation, but no single instrument can
concurrently analyze data from the sub-nanometer size regime
to the 10 nm size regime, leading to gaps in our knowledge
about initial aerosol formation.®”” Meanwhile accurate calcula-
tions of the Gibbs free energy for cluster formation (AG°)
requires both a comprehensive exploration of the potential
energy surfaces for each possible cluster along with high-level
quantum chemical calculations on all the lowest free energy
structures.*>** In this study we have used robust computational
chemistry methods to determine the AG° values for every
possible cluster that can be formed in the sulfuric acid-nitric
acid-formic acid-ammonia-dimethylamine-water system from
monomers of each molecule along with 0-5 waters. This is the
first study to probe three different acid molecules and two
different bases to date, and adds to the insights obtained from
previous work.

2. Methodology

Configurational sampling of every possible combination of
sulfuric acid (SA), formic acid (FA), nitric acid (NA), ammonia (A),
dimethylamine (DMA), and 0-5 water (W) molecules was per-
formed with a genetic-algorithm-based protocol using the OGO-
LEM program®*** and semiempirical methods. This algorithm
takes an initial pool of randomly generated configurations and
changes them according to an evolutionary algorithm to produce
a final set of converged structures. We typically used a pool size of
1000 and set the number of global optimizations to 20 000. Two
different semiempirical methods were used, PM7,”* and
GFN2,°% to calculate approximately 1000 final structures for
each system. These geometries were then used for DFT geometry
optimizations with the Gaussian 16 Rev. BO1 program® using
either the M08-HX'® or wB97X-D'**'** functionals. Clusters con-
taining SA, FA, A, and W were previously optimized with the M08-
HX functional and the MG3S basis set.®*'* All of these M08-HX
geometries were re-optimized with ®wB97X-D using the 6-
31++G** basis set'®™% to obtain a final set of consistent geom-
etries. The electronic energies of all structures within 8 kcal
mol " of the wB97X-D global minimum for each system were
recomputed using the domain-based local pair natural orbital
coupled-cluster (DLPNO-CCSD(T)) method'”** with single,
double, and semi-canonical perturbative triple excitations with
three Dunning basis sets, cc-pvnZ (n = D, T, Q),"**** using the
ORCA 5.0.1 program.'*'** The wB97X-D frequencies were scaled
by 0.971 to partially correct for anharmonicity*” and used to
estimate the thermodynamic corrections for H°, S°, and G° at
a standard state of 1 atm pressure and temperatures of 217.65,
273.15, and 298.15 K using the THERMO.pl script**® from the
National Institute of Science and Technology. The three CCSD(T)
electronic energies were used in a 4-5 inverse polynomial
complete basis set (CBS) extrapolation'® and combined with the
scaled wB97X-D thermodynamic corrections to obtain the final
set of AG® values for every system. For the tetramers of two acids
and two bases and the pentamer systems, we include
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Fig.1 Computational methodology employed to obtain the minimum
free energy structures and AG® values.

a comparison of the cc-pvnZ and aug-cc-pvnZ (n = D, T, Q) for
the dry clusters. Additionally, we show the difference between
using the cc-pVnZ versus the aug-cc-pVnZ basis sets in the ESI
(Table S1), as well as a comparison of using scaled vs. unscaled
frequencies for the calculation of AE° and AG®° values (Table S27).
The rate-limiting step in our computational methodology is the
DFT geometry optimizations from the initial set of PM7 or GFN2
structures produced from the genetic algorithm. Semiempirical
methods have long been known to do a better job at predicting
structures for hydrogen-bonded clusters than energies.*****
Because of this the PM7 and GFN2 potential energy surfaces are
quite flat, such that we cannot rely on a cut-off in energy to select
the lowest energy ensemble of structures, but must optimize
every semiempirical structure. Switching to the wB97X-D func-
tional and the smaller 6-31++G** basis set has sped up this rate-
limiting step.*»*>* Further details on methodology are presented
in our previous works>**® and a summary of the most effective
methodology is presented in Fig. 1. This methodology allows for
the determination of accurate AG° values for every possible
combination of our monomers SA, FA, NA, A, DMA, and up to five
waters. An example of how to calculate all possible stepwise
energies is shown in the ESL.f Assuming a closed system, we can
then calculate the equilibrium concentrations for all possible
clusters from the AG° values and initial concentrations of the
monomers.***® We note that two big caveats about our method-
ology are that (a) no search routine based on lower level methods
can possibly find every final minimum energy cluster, and (b)
that any combination of electronic energy theory such as
CCSD(T) with DFT geometries like wB97X-D means that the
electronic energy theory is calculated on the DFT PES. Both of
these uncertainties will produce AG° values that are more posi-
tive than the values one would obtain if (a) a lower energy
conformer is obtained, or (b) the PES is improved to be closer to
the electronic energy method used in the calculation.

3. Results and discussion
3.1 Monomer and dimer systems

All of the monomer and dimer systems researched have been well
examined prior to this study. Therefore, all of the structures and

© 2022 The Author(s). Published by the Royal Society of Chemistry
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corresponding energies are presented in the ESI (Fig. S1-S6 and
Tables S3-S8).1 Our results are consistent with previous studies
of these clusters, with some new structures designated as the
minimum due to level of theory differences from past
studies.®?%3337:48,50,61,65,66,68,87,127-137 T these systems, no minimum
energy clusters undergo proton transfers. This is unlike two-acid
dimer systems such as (SA),(W),y_s, which have been found to
undergo proton transfers in the 3-5 water range.'®>**3>

Additional studies of these smaller systems have been per-
formed experimentally. For example, rapid growth of new atmo-
spheric particles through condensation of NA and A has been
observed in the CLOUD chamber at CERN to produce particles as
small as a few nm in diameter.”® This same system has been
studied in a flow tube and NA-DMA particles were detected with
diameters of 9-30 nm in dry and humid conditions.* The NA/
DMA ratio remained close to one, and modeling predicted that
1 : 1 clusters had smaller evaporation rates, resulting in the most
favorable thermodynamic pathway for growth.*®

3.2 Trimers of a single acid and two bases

The structures and AG° values for formation of clusters con-
sisting of the sequential hydration of one acid (SA, NA, or FA
alone) and both bases (A and DMA), are listed in the ESI (Fig. S7
and Table S9)T as our results reveal they are less likely to be
atmospherically relevant at any temperature (see Section 3.8).
However, these systems do demonstrate the clear relationship
that the strongest acid, sulfuric, which is a known driver of CCN
formation,"**** forms more negative AG° clusters with bases
than either nitric or formic acid. The AG° of formation for the
dry formic acid cluster with the two bases is roughly 0 kcal
mol " at 298 K. The dry nitric acid and sulfuric acid with two
base clusters are more stable, with AG®° values of —5 and —15
kecal mol ™" respectively. This decrease in cluster formation
Gibbs free energy likely results from the proton transfer from
the acid to DMA. Even though nitric acid donates its proton and
forms the same number of hydrogen bonds as sulfuric acid (Fig.
S71), the (NA)(A)(DMA) cluster is still roughly 10 kcal mol ™"
higher in energy, demonstrating the importance of sulfuric acid
in prenucleation cluster formation. For all of the one acid-two
base hydrated clusters, the acid always acts as a bridge between
the two bases such that the bases are on opposite sides of the
clusters. The (FA)(A)(DMA)(W),-, clusters consist of neutral
molecules, but in every other case one acid-two base cluster the
acid always transfers its proton to the dimethylamine. In the
unique case of (SA)(A)(DMA)(W)s, the sulfuric acid becomes
a sulfate anion, with proton transfers forming both the
protonated dimethyl amine and ammonium moieties. (This is
the only instance where a sulfate anion was part of the lowest
free energy cluster for any of the trimers and smaller systems in
this work.) However, even with the additional proton transfer,
the five-water cluster is still uphill in free energy compared to
(SA)(A)(DMA)(W), at 298 K (Table S97).

3.3 Trimers of two acids and one base

In our figures we have denoted strong hydrogen bonds, which
have hydrogen-bonded distances less than 2.2 A and hydrogen

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** Gibbs free
energy changes associated with the formation and sequential hydra-
tion of sulfuric acid—formic acid—ammonia, sulfuric acid—nitric acid—
ammonia, and formic acid—nitric acid—ammonia trimers at atmo-
spherically relevant temperatures and 1 atm pressure

Cluster 216.65 K 273.15 K 298.15 K
SA +FA + A = (SA)(FA)(A) -17.13 1339 —11.74
(SA)(FA)(A) + W = (SA)(FA)(A)(W) —-4.65 —-2.76  —1.93
(SA)FA)(A)(W) + W = (SA)(FA)A)W),  —3.19 —1.36  —0.55
(SA)FA)(A)W), + W = (SA)FA)A)(W); —3.23  —1.42  —0.62
(SA)(FA)(A)(W); + W = (SA)(FA)(A)(W), 0.43 2.07 2.79
(SA)FA)(A)(W), + W = (SA)FA)(A)W)s —3.58 —1.11  —0.01
SA+NA+A = (SA)(NA)(A) —-15.74 —11.99 —10.40
(SA)(NA)(A) + W = (SA)(NA)(A)(W) 573  —4.04 —3.23
(SA)(NA )(A)(W) +W = (SA)(NA)A)W), —3.83 —2.13  —1.38
(SA)NA)(A)(W), + W (SA(NA)A)W);  —3.15  —1.51  —0.79
(SA)(NA)(A)W); + W = (SA)(NA)A(W), —1.07 0.85 171
(SA)(NA)(A)(W), + w (SANA)A)(W); —3.87  —2.27  —1.56
FA + NA + A = (FA)(NA)(A) —842  —525  —3.87
(FA)(NA)(A) + W = (FA)(NA)(A)(W) —2.79  —0.32 0.78
(FA)(NA)(A)(W) + W = (FA)(NA)(A)(W), —2.84  —0.96  —0.18
(FA)(NA)(A)(W), w = (FA)NA)(A)W); —0.80 0.69 1.40
(FA)(NA)(A)(W); = (FA(NA)A)(W), —1.55 0.67 1.65
(FA)(NA)(A)(W) = (FA)NA)(A)(W); —0.07 1.78 2.60

bond angles between 140° and 180°, with blue lines. We have
used red lines to denote other van der Waals forces where the
bond angle is less than 140° and/or the putative hydrogen bond
distance is greater than 2.2 A. The clusters consisting of two
acids paired with one base allow for an easy comparison of the
strength of the driving force between the two bases. Prior
studies have investigated the stabilities of sulfuric-acid based
clusters with ammonia versus amines such as methylamine
(MA),  dimethylamine (DMA), and trimethylamine
(TMA).242528:37,50,61,63,92,139-145  Qyerall, the more substituted
amines, specifically DMA and TMA, tend to be better nucleators
with SA,™>"¢ with A forming the least stable complexes.
However, the 2-3 orders of magnitude higher concentration of
ammonia may compensate for the lower stabilities. When
ammonia and amines are both present together, the effects are
synergistic, with nucleation increasing by nearly a thousand-
fold.>0138139.143,147152 Ag seen from Tables 1 and 2, substituting
DMA for A decreases the AG® for formation of the dry clusters by
roughly 6-8 kcal mol ™, further supporting the idea that DMA is
a better nucleator. As all of these clusters contain three strong
hydrogen bonds (Fig. 2 and 3), and all except (FA)(NA)(A)
transfer a proton from the stronger acid to the base, the
stronger base DMA forms more stable hydrogen bonds than
ammonia. This view is consistent with past results.**

While the dry cluster with DMA is a lot more stable than with
A, adding waters to the ammonia clusters tends to yield lower
AG° values than adding to the dimethyl amine clusters (Tables 1
and 2). This is because ammonium is able to form more
hydrogen bonds than the dimethyl ammonium ion. The
ammonium ion remains near the middle of large clusters to
donate three or four hydrogen bonds to the surrounding
molecules, while protonated DMA can only donate two. This is
in line with previous work where it was found that for small

Environ. Sci.. Atmos.
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Table 2 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** Gibbs free energy changes associated with the formation and sequential hydration of
sulfuric acid—formic acid—dimethyl amine, sulfuric acid—nitric acid—dimethyl amine, and formic acid—nitric acid—dimethyl amine trimers at

atmospherically relevant temperatures and 1 atm pressure

Cluster 216.65 K 273.15 K 298.15 K
SA + FA + DMA = (SA)(FA)(DMA) —26.08 —22.19 —20.48
(SA)(FA)(DMA) + (SA)(FA)(DMA)(W) -3.31 -1.57 —0.80
(SA)(FA)(DMA)(W) = (SA)(FA)(DMA)(W), -1.93 0.00 0.85
(SA)(FA)(DMA)(W), + W = (SA)(FA)(DMA)(W), -1.21 0.50 1.25
(SA)(FA)(DMA)(W); + W = (SA)(FA)(DMA)(W), —~1.74 0.23 1.08
(SA)(FA)(DMA)(W), + W = (SA)(FA)(DMA)(W)s 0.05 2.01 2.91
SA + NA + DMA = (SA)(NA)(DMA) —25.19 —21.37 ~19.69
(SA)(NA)(DMA) + W = (SA)(NA)(DMA)(W) —3.60 —1.66 —0.89
(SA)(NA)(DMA)(W) + W = (SA)(NA)(DMA)(W), ~2.95 ~1.24 —0.42
(SA)(NA)(DMA)(W), + W = (SA)(NA)(DMA)(W); —2.35 —0.62 0.16
(SA)(NA)(DMA)(W); + W = (SA)(NA)(DMA)(W), 0.68 3.11 4.19
(SA)(NA)(DMA)(W), + W = (SA)(NA)(DMA)(W)5 —2.90 —1.29 —0.58
FA + NA + DMA = (FA)(NA)(DMA) -15.58 —11.46 —9.65
(FA)(NA)(DMA) + W = (FA)(NA)(DMA)(W) —-2.34 -0.71 0.00
(FA)(NA)(DMA)(W) + W = (FA)(NA)(DMA)(W), —1.42 0.34 112
(FA)(NA)(DMA)(W), + W = (FA)(NA)(DMA)(W), —1.66 0.31 1.18
(FA)(NA)(DMA)(W); + W = (FA)(NA)(DMA)(W), —-0.92 0.98 1.82
(FA)(NA)(DMA)(W), + W = (FA)(NA)(DMA)(W)5 0.72 2.47 3.25

clusters, like the dry clusters reported here, the gas phase
basicity determines gas phase base strength: DMA is a much
stronger gas phase base than A and is better able to promote
proton transfer. On the other hand, as a cluster is hydrated and
grows in size, ammonia is better able to bind multiple mole-
cules together in larger clusters.”” The general trend is that
ammonium will be located between waters, whereas DMA tends
to remain on the outside of the cluster. One effect of this is that
the DMA clusters tend to have spines of hydration, as can be
seen for the (SA)(FA)(DMA)(W),, (SA)(NA)(DMA)(W),, and
(FA)(NA)(DMA)(W)3; 4 structures in Fig. 2.

Previous work on SA-FA-A reveals that FA is geometrically
suited to form a stable hydrogen bonded complex with SA, and
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that hydrogen bond topology is sometimes more important
than acid/base strength.®® The weak acid FA can form structures
with SA with the same strength as structures of SA with the base
A. Structures (SA)(FA)(A)(W), and (SA)(FA)(A)(W); in Fig. 3
illustrate the SA-FA hydrogen-bonded dimer.

Recent DFT work by Li et al. on SA-FA-A and SA-FA-DMA
reveal that although amines are generally confirmed to be more
active than A as stabilizers of binary clusters, in some cases
mixed trimers containing A are more stable thermodynamically
than those containing DMA.™* In addition they studied the
interactions of SA with A, amines, and 14 organic acids, and
they show that (SA)(FA)(A) and (SA)(FA)(DMA) trimers are more
stable than (SA),(A) and (SA),(DMA) trimers."**

~
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Fig. 2 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** minimum energy clusters for the sequential hydration of two acids with dimethylamine.
Strong hydrogen bonds are drawn in blue while weaker van der Waals interactions are in red. The molecule labels are colored according to
charge as follows: blue = +1, black = 0, red = —1, orange = —2. Atoms are drawn in the following colors: hydrogen — white, carbon — gray,

nitrogen — blue, oxygen — red, sulfur — yellow.
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Fig. 3 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** minimum energy clusters for the sequential hydration of two acids with ammonia. Strong
hydrogen bonds are drawn in blue while weaker van der Waals interactions are in red. The molecule labels are colored according to charge as
follows: blue = +1, black = 0, red = —1, orange = —2. Atoms are drawn in the following colors: hydrogen — white, carbon — gray, nitrogen — blue,

oxygen — red, sulfur — yellow.

3.4 Trimers of three acids

The system composed of all three acids (SA, FA, and NA)
together with up to five waters is shown in Fig. S8 with energies
in Table S10.T Comparing this system's dry energies of forma-
tion with those of the other trimer systems, one will notice that
even without a base present, this system is more stable than any
other trimer without SA except for (FA)(NA)(DMA) (Tables 1, 2,
S7 and S87). With multiple strong acids, a proton transfer might
be expected with the first available water molecule, as it can act
as a base. However, proton transfer only occurs when there are
three or more waters present. The proton transfer is always from
the sulfuric acid to one of the waters, forming the bisulfate
anion and a hydronium cation. The proton transfer occurring
only from 3-5 waters is consistent with the results from Ras-
mussen et al., who studied (SA);(W), for n = 0-5.>* Addition of
acetic acid to the (SA),(W), system results in proton transfer
with two waters.”” Our SA-NA-FA-(W), system as well as the

Rasmussen et al. (SA);(W),, were both calculated using wB97X-D
for the geometry optimizations and DLPNO-CCSD(T) for the
single-point energy calculations while the Zhu et al. (SA),(acetic
acid)(W),, system was calculated using PW91PW91 for both
geometries and energies. Differences in these methodologies
could explain the discrepancy for when ionization occurs in
these systems, as quite often the DLPNO-CCSD(T)/CBS
minimum differs from the DFT minimum for atmospheric

clusters.#5%¢8

3.5 Tetramers of three acids and one base

The energies of formation and sequential hydration of the
tetramer systems containing SA, FA, NA and either A or DMA are
listed in Table 3, with the corresponding minimum energy
structures shown in Fig. 4. Forming the dry cluster with DMA is
roughly 8.5 kcal mol " lower in free energy than forming the dry
cluster with ammonia at all three temperatures. While part of

Table 3 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** Gibbs free energy changes associated with the formation and sequential hydration of
sulfuric acid—formic acid—nitric acid—ammonia and sulfuric acid—formic acid—nitric acid—dimethyl amine tetramers at atmospherically relevant

temperatures and 1 atm pressure

Cluster 216.65 K 273.15 K 298.15 K
SA + FA + NA + A = (SA)(FA)(NA)(A) —24.77 —18.82 -16.28
(SA)(FA)(NA)A) + W = (SA)(FA)(NA)( W) ~3.77 ~2.38 -1.71
(SA)(FA)(NA)(A)(W ) = (SA)(FA)(NA)(A)(W), —2.81 -1.14 —0.40
(SA)(FA)(NA)(A)(W), + W = (SA)(FA)(NA)(A)(W)s ~0.98 0.86 1.68
(SA)(FA)(NA)(A)(W)s +W (SA)(FA)(NA)(A)(W), —2.23 -0.16 0.75
(SA)(FA)(NA)(A)(W), + W = (SA)(FA)(NA)(A)(W)s ~1.80 0.56 1.60
SA + FA + NA + DMA = (SA)(FA)(NA)(D A) —33.41 —27.50 —24.90
(SA)(FA)(NA)(DMA) + W = (SA)(FA)(NA)(DMA)(W) —2.39 —0.48 0.36
(SA)(FA)(NA)(DMA)(W) + W = (SA)(FA)(NA)(DMA)(W), ~1.81 —0.01 0.78
(SA)(FA)(NA)(DMA)(W), + W = (SA)(FA)(NA)(DMA)(W), —0.87 0.82 1.57
(SA)(FA)(NA)(DMA)(W); + W = (SA)(FA)(NA)(DMA)(W), ~1.79 0.21 1.11
(SA)(FA)(NA)(DMA)(W), + W = (SA)(FA)(NA)(DMA)(W)s —0.77 1.54 2.57

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.4 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** minimum energy clusters for the sequential hydration of three acids with one base. Strong
hydrogen bonds are drawn in blue while weaker van der Waals interactions are in red. The molecule labels are colored according to charge as
follows: blue = +1, black = 0, red = —1, orange = —2. Atoms are drawn in the following colors: hydrogen — white, carbon — gray, nitrogen — blue,

oxygen — red, sulfur — yellow.

this is likely because of DMA's ability to form more stable
clusters, it could also be due to the strength of the hydrogen
bonds. Both clusters contain 5 strong hydrogen bonds;
however, the cluster with ammonia has three of the type N-H---
O, whereas the cluster with DMA only has two of these. Since
oxygen is more electronegative, this difference in the strength of
the hydrogen bond could also play a role in the extra stability of
the dry cluster with DMA.

In all of these tetramer systems, a proton transfer occurs
between the sulfuric acid and the base. Similar to smaller
clusters, the energy of formation for the SA-FA-NA-base dry
cluster has a more positive free energy for ammonia than for
dimethylamine, but the sequential hydration energies decrease
more rapidly for A than for DMA. This is because the ammo-
nium cation usually donates three or four hydrogen bonds as
the cluster is hydrated, whereas the dimethyl ammonium ion
can only donate two in any system. The bisulfate anion is in the
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middle of these clusters which maximizes hydrogen bonding
interactions, but this leaves NA on the outside where it can
donate only one hydrogen bond and accept at most one
hydrogen bond.

3.6 Tetramers of two acids and two bases

The interactions between the two acid and two base systems are
shown in Fig. 5, with the energies corresponding to their
formation listed in Table 4. Sulfuric acid has a strong driving
effect, accounting for more than 10 kcal mol " of stabilization
for the dry clusters with either acid and the two bases at all three
temperatures. The two dry clusters SA-FA-A-DMA, and SA-NA-
A-DMA are only 2-3 kcal mol " different in free energy (Table
4). The extra stabilization for the NA cluster stems from the
additional proton transfer from the nitric acid to one of the
bases, forming an overall tetra-ionic cluster, resulting in
a strong hydrogen bond between the two ions.
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Fig.5 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** minimum energy clusters for the sequential hydration of two acids with two bases. Strong
hydrogen bonds are drawn in blue while weaker van der Waals interactions are in red. The molecule labels are colored according to charge as
follows: blue = +1, black = 0, red = —1, orange = —2. Atoms are drawn in the following colors: hydrogen — white, carbon — gray, nitrogen - blue,

oxygen — red, sulfur — yellow.
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Table 4 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** Gibbs free energy changes associated with the formation and sequential hydration of
sulfuric acid—formic acid—ammonia—dimethyl amine, sulfuric acid—nitric acid—ammonia—dimethyl amine, and formic acid—nitric acid—
ammonia—dimethyl amine tetramers at atmospherically relevant temperatures and 1 atm pressure. DLPNO-CCSD(T)/aug-CBS//wB97X-D/6-
31++G** Gibbs free energy changes are shown in parenthesis for the formation of the dry tetramers

Cluster

216.65 K

273.15 K

298.15 K

SA + FA + A + DMA = (SA)(FA)(A)(DMA)
(SA)(FA)(A)(DMA) + W = (SA)(FA)(A)(DMA)(W)
(SA)(FA)(A)(DMA)(W) + W = (SA)(FA)(A)(DMA)(W),
(SA)(FA)(A)(DMA)(W), + W = (SA)(FA)(A)(DMA)(W);
(SA)(FA)(A)(DMA)(W); + W == (SA)(FA)(A)(DMA)(W),
(SA)(FA)(A)(DMA)(W); + W = (SA)(FA)(A)(DMA)(W)s
SA +NA + A+ DMA = (SA)(NA)(A)(DMA)
(SA)(NA)(A)(DMA) + W = (SA)(NA)( )(DMA)(W)
(NA)(A)(DMA)(W) + W = (SA)(NA)(A)(DMA)(W)

—30.63 (—29.82)
—2.25
—1.07
—2.05
-2.10
—2.83
—33.31 (=32.14)
—6.79

—24.98 (—24.17)
—0.50

1.10

—0.48

0.17

—0.93

—27.23 (—26.06)
—4.84

—22.49 (—21.68)
0.27

1.99

0.28

1.18

—0.09

—24.55 (—23.38)
-3.99

(SA) 2 —1.60 0.48 1.40
(SA)(NA)(A)(DMA)(W), + W = (SA)(NA)(A)(DMA)(W); -1.62 0.22 1.04
(SA)(NA)(A)(DMA)(W); + w = (SA)(NA)(A)(DMA)(W), —0.35 1.39 2.16
(SA)(NA)(A)(DMA)(W), + W = (SA)(NA)(A)(DMA)(W)5 ~1.67 0.52 1.48

FA+ NA+A+DMA = (FA)(NA)(A)(D A) —19.35 (—16.67) —13.94 (—11.26) —11.57 (—8.88)
(FA)(NA)(A)(DMA) + W = (FA)(NA)(A)(DMA)(W) ~2.16 —0.32 0.50
(FA)(NA)(A)(DMA)(W) + W = (FA)(NA)(A)(DMA)(W), -1.82 0.38 1.36
(FA)(NA)(A)(DMA)(W), + W = (FA)(NA)(A)(DMA)(W); ~2.73 -1.23 —0.66
(FA)(NA)(A)(DMA)(W); + W = (FA)(NA)(A)(DMA)(W), —0.52 1.95 3.14
(FA)(NA)(A)(DMA)(W), + W = (FA)(NA)(A)(DMA)(W)s —0.74 0.85 1.55

The addition of water molecules has some interesting effects
on these systems. The (SA)(FA)(A)(DMA)(W), system remains
mostly di-ionic, only undergoing two proton transfers to form
a tetra-ionic system when four or five waters are added. In this
case sulfuric acid loses both its protons and the bisulfate dia-
nion is complexed with the protonated bases and a neutral
formic acid (Fig. 5). In contrast, the (SA)(NA)(A)(DMA)(W),
system is tetra-ionic for n = 0-5, with the sulfuric acid and nitric
acid both losing one proton. The addition of one water molecule
greatly stabilizes the dry tetra-ionic cluster, as both acids bridge
the two bases together in (SA)(NA)(A)(DMA)(W),, resulting in
a stepwise AG® value of —6.8 kcal mol " at 217 K and —4.0 kcal
mol " at 298 K. This is the most negative drop in free energy for
the addition of any water in all of the reported structures, such
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Fig. 6 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G**  minimum
energy clusters for the sequential hydration of two acids with three
bases. Strong hydrogen bonds are drawn in blue while weaker van der
Waals interactions are in red. The molecule labels are colored
according to charge as follows: blue = +1, black = 0, red = —1, orange
= —2. Atoms are drawn in the following colors: hydrogen — white,
carbon — gray, nitrogen — blue, oxygen — red, sulfur — yellow.

© 2022 The Author(s). Published by the Royal Society of Chemistry

that the (SA)(NA)(A)(DMA)(W); cluster has an outsized effect on
the results of the simulation reported in Section 3.8. The water
appears to greatly stabilize this tetra-ionic structure. The
(FA)(NA)(A)(DMA)(W),, clusters became tetra-ionic with the
addition of one water. Unlike the (SA)(FA)(A)(DMA)(W)4s
structures, in this case formic acid does lose its proton.
However, this additional proton transfer does not account for
a lot of stability, as the AG® value at 298 K is still positive (0.50
kecal mol™"). These results are mostly consistent with our
knowledge of acid strength. However, HSO,  is a weak acid, and
yet it loses a proton to become SO,>~ while formic acid remains
neutral in the (SA)(FA)(A)(DMA)(W),_s systems. This is probably
because hydrogen bonding topology is more important than
acid/base strength,*®”* and the details of the hydrogen-bonded
structure in the gas phase govern the overall free energy
change. For all of the clusters that contain a proton transferred
to ammonia, the ammonium cation donates at least three
hydrogen bonds and resides near the middle of the cluster.

3.7 Pentamers of three acids and two bases

The system containing all five molecules along with zero to five
waters is depicted in Fig. 6, and the respective energies for
formation of the clusters are in Table 5. The system remains
tetra-ionic at all stages of hydration, with the sulfuric acid and
nitric acid donating their protons to the two bases.

Without any water present, the pentamer system forms
a tetra-ionic species with SA and NA donating protons to A and
DMA. These four molecules make a ring with both A (1.70 A,
170°;1.78 A, 145°) and DMA (1.69 A, 173°; 1.77 A, 164°) donating
a hydrogen bond to each strong acid. The FA receives a strong
hydrogen bond from the A (1.78 A, 166°) and donates one to the
NA (1.64 A, 175°), making a triangular structure between those
three molecules.
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Table 5 DLPNO-CCSD(T)/CBS//wB97X-D/6-31++G** Gibbs free energy changes associated with the formation and sequential hydration of
sulfuric acid—formic acid—nitric acid—ammonia—dimethyl amine pentamer at atmospherically relevant temperatures and 1 atm pressure.
DLPNO-CCSD(T)/aug-CBS//wB97X-D/6-31++G** Gibbs free energy changes are shown in parenthesis for the formation of the dry pentamer

Cluster

216.65 K 273.15 K 298.15 K

SA + FA+ NA + A + DMA = (SA)(FA)(NA)(A)(DMA)
(SA)(FA)(NA)(A)(DMA) + W = (SA)(FA)(NA)(A)(DMA)(W)
(SA)(FA)(NA)(A)(DMA)(W) + W = (SA)(FA)(NA)(A)(DMA)(W),
(SA)(FA)(NA)(A)(DMA)(W), + W = (SA)(FA)(NA)(A)(DMA)(W);
(SA)(FA)(NA)(A)(DMA)(W); + W = (SA)(FA)(NA)(A)(DMA)(W),
(SA)(FA)(NA)(A)(DMA)(W), + W = (SA)(FA)(NA)(A)(DMA)(W)s

Upon the addition of one water, FA and SA form the strong
SA-FA dimer (1.68 A, 173° 1.67 A, 178°).° The SA then receives
an additional three strong hydrogen bonds: (1.85 A, 149°) from
the A, (1.99 A, 146°) from the W, and (1.83 A, 158°) from DMA, as
well as forming a weaker van der Waals interaction with A (2.22
A, 118°). The DMA donates another strong hydrogen bond to the
water (1.70 A, 166°), bridging it to the two strong acids through
a strong bond to the SA and a van der Waals interaction with NA
(2.04 A, 134°). The NA also receives a strong bond from the A
(1.58 A, 167°), resulting in a total of seven strong hydrogen
bonds and two weaker van der Waals interactions.

When a second water is added, the A donates a strong
hydrogen bond to all three acids present (1.76 A, 157°; 1.79 A,
162°; 1.72 A, 175°). The SA receives from the FA (1.64 A, 172°)
and donates to the NA (1.62 A, 171°), making a loop on either
side of the SA between the A, SA, and NA. The SA also receives
a hydrogen bond from both of the two waters (1.88 A, 162°; 1.81
A, 160°), which bond to each other to form a water dimer (1.85
A, 154°). The DMA bridges the NA (1.76 A, 169°) to the one water
(1.66 A, 179°) through two strong hydrogen bonds. Overall, the
structure has 10 hydrogen bonds.

The three-water cluster is the only pentamer cluster in which
the A appears to donate all four hydrogens. These four link to
awater (1.74 A, 165°), SA (1.88 A, 167°), NA (1.97 A, 141°), and FA
(2.09 A, 124°); we classify the A-FA contact as a weaker van der
Waals force. That singular water molecule only donates one
hydrogen bond, which is to the SA (1.90 A, 154°). The FA donates
from its singular proton to the SA (1.72 A, 172°). The other two
waters form a dimer (1.88 A, 153°) with both waters donating to
the SA (1.88 A, 166°; 1.95 A, 150°) and the DMA donating to one
of the waters (1.68 A, 173°). This same bonding pattern is
present in the two-water cluster. However, the DMA does not
form a second strong hydrogen bond but instead forms two
weak van der Waals interactions: one to the NA (2.05 A, 128°)
and one to the SA (2.18 A, 132°). The SA uses its singular proton
to donate a strong hydrogen bond to the NA (1.55 A, 172°).
Overall, this structure forms 10 strong hydrogen bonds with
three weak van der Waals interactions. Interestingly, this three-
water pentamer cluster is less stable than the two-water cluster
by 4 keal mol " at 298 K (Table 5). The three-water system is also
the only pentamer system in which another structure was
identified within 1 kcal mol™* of the DLPNO-CCSD(T)/CBS//
wB97X-D/6-31++G**Gibbs free energy minimum. The next
lowest three-water cluster is 0.42 kcal mol™' higher in free
energy than the minimum. In this cluster, the SA donates both

Environ. Sci.. Atmos.

—39.56 (—37.78) —31.53 (—29.75) —28.00 (—26.22)

—4.13 —2.15 —1.27
—4.07 —2.06 -1.17
1.16 3.17 4.05

—2.62 —0.84 —0.06
—4.47 —2.85 —2.12

of its protons to A and DMA, forming the sulfate anion, while
NA and FA both remain neutral. In this cluster, A forms three
strong hydrogen bonds with SA (1.82 A, 148°), FA (1.82 A, 162°),
and a water molecule (1.86 A, 155°), with the fourth donor site
forming two weak interactions with SA (2.08 A, 128°) and NA
(2.29 A, 120°) respectively. The NA forms another weak inter-
action with the first water molecule (1.95 A, 139°), and donates
a strong hydrogen bond to SA (1.45 A, 178°). FA donates a strong
hydrogen bond to SA as well (1.57 A, 163°). Again, the pattern
appears of a water dimer (1.89 A, 151°) where each water
donates a hydrogen bond to SA (1.74 A, 171°; 1.93 A, 147°) and
one receives a hydrogen bond from DMA (1.69 A, 170°). DMA
also donates a hydrogen bond to SA (1.66 A, 175°) for a total of
10 hydrogen bonds and 3 weak interactions.

The four-water cluster reverts to the A only donating three
hydrogen bonds, to the SA (1.73 A, 167°), NA (1.79 A, 172°), and
one of the waters (1.80 A, 156°). That one water donates one
bond to the SA (1.73 A, 170°), forming a ring. On the other side
of the SA, it receives hydrogen bonds (1.92 A, 166°; 1.73 A, 170°)
from each W in a water dimer, although this dimer itself is
weakly bound (2.28 A, 125°). The DMA again donates to the one
water in the dimer (1.83 A, 173°). Here, the DMA also donates to
the NA (1.79 A, 160°), similar to the two-water structure. The NA
receives from the last water molecule (1.75 A, 168°), which
receives from the FA (1.58 A, 179°). The other end of the FA
receives from the SA (1.63 A, 177°). Overall, this structure has 11
strong hydrogen bonds, and one weak van der Waals force
holding it together.

When 5 waters are present, there are two water dimers
around the three SA oxy groups. The waters in the first dimer
(1.84 A, 159°) each donate to an oxy group in SA (1.79 A, 170°;
1.92 A, 158°). In the second dimer (1.93 A, 154°), one water
donates to the same oxy group as the first dimer (1.90 A, 156°),
and the other donates to the third oxy group in SA (1.76 A, 169°).
The A connects these two dimers together by donating to one
water molecule in each (1.69 A, 165°; 1.68 A, 167°). The A also
donates to the NA (1.83 A, 160°), which receives from the second
of the waters in the second dimer (2.00 A, 144°) and the DMA
(1.73 A, 180°). The DMA donates its second hydrogen bond to
the SA (1.75 A, 173°). SA donates one proton to the last water
molecule (1.61 A, 178°), which donates to the FA (1.77 A, 170°).
The FA donates to the same water that bonds to the NA (1.62 A,
171°), resulting in that one water having four hydrogen bonds.
Overall, the structure has 15 strong hydrogen bonds.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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3.8 Equilibrium concentrations and optimal pathways

To calculate the equilibrium concentrations of the clusters,
equilibrium constants were calculated using the AG° values at
217 and 298 K. For each temperature, a system of 186 equations
was created according to Odbadrakh et al.,”” using the equilib-
rium constants, with 5 equations representing mass balances
for the 5 monomers and 181 equations for the reactions. This
system of equations solves for the thermodynamics and does
not completely account for the kinetics. The ratio of each
equilibrium constant is of course the ratio of the forward and
reverse reaction of each elementary clustering reaction.
However, the results would likely change when accounting for
the collision and evaporation rates of these clusters in the
atmosphere. The system of equations was solved simulta-
neously to predict the equilibrium cluster concentrations
assuming initial starting concentrations of 5 x 10” cm ™ for SA,
2 x 10" em ™3 for FA, 9.8 x 10 em ™3 for NA, 2 x 10" em ™3 for
A, and 2 x 10° ecm™? for DMA at 298 K. These concentrations
were picked as they are atmospherically relevant over conti-
nents, typically near urban areas.'®***'*37'>¢ To account for the
decrease in monomeric concentrations with an increase in
altitude, the initial concentrations were decreased by three
orders of magnitude at 217 K. We chose a water concentration
of 7.7 x 10 em ™ at 298 K and 9.9 x 10™ ¢cm ™ at 217 K, which
corresponds to 100% humidity at the bottom and top of the
troposphere.’*® The results are shown in Table 6. We only
populated Table 6 with clusters that exceeded 1 cm™? at either
217 or 298 K. While most monomers remain close to their
starting concentrations, sulfuric acid is almost completely used
up at 217 K. In urban areas where the DMA concentration is
high, the rates of new particle formation are also quite
high."**13>%7 Interestingly, although ammonia has an initial
concentration two orders of magnitude greater than DMA,
clusters with DMA are still more common and typically are
present in higher equilibrium concentrations, supporting the
idea that DMA is a stronger driver for prenucleation than
ammonia."*>"® Using these concentrations, the optimal path-
ways for forming clusters can be mapped out by finding which
smaller clusters have the highest equilibrium concentrations
and sequentially adding monomers until the larger cluster is
formed. From this, the three best pathways for forming the dry
pentamer at both 217 and 298 K are shown in Table 7. While
forming the (SA)(DMA) cluster first is optimal at both temper-
atures, starting with NA instead of SA will also lead to good
cluster growth. In five of the six pathways, SA or NA first forms
a dimer with a base, and then a second acid is added to form
a trimer, and then the third acid is added to form a tetramer.
The best pathway at 217 and 298 K forms the (SA)(FA)(NA)(DMA)
tetramer. Of these six possible pathways for growing the dry
pentamer, the only pathway that forms the (SA)(NA)(A)(DMA)
tetramer is the second best at 298 K. Thus, the three acids tend
to preferentially build up these clusters.

For all of the hydrated and dehydrated tetramer and pen-
tamer clusters, the only one that appears in an equilibrium
concentration above 1 cm ™ is (SA)(NA)(A)(DMA)(W). This
individual cluster, which was identified with exceptional

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Equilibrium concentrations of clusters that form at more than
1 cm~3 at 217 and 298 K. Starting concentrations were [SAl = 5.0 x
107, [FAlg = 2.0 x 108, [NAlg = 9.8 x 107, [Alp = 2.0 x 108 and [DMA],
=2.0 x 10% at 217 K and [SAlp = 5.0 x 107, [FAlg = 2.0 x 10%, [NA]o =
9.8 x 10, [Alp = 2.0 x 10, and [DMAlp = 2.0 x 10° at 298 K

Cluster 216.65 K 298.15 K
SA 2.87 x 10* 1.48 x 107
FA 2.00 x 10° 1.99 x 10
NA 9.77 x 107 9.62 x 10™°
A 2.00 x 108 2.00 x 10"
DMA 1.95 x 10° 1.98 x 10°
SA-FA 3.79 x 1072 1.03 x 10°
SA-NA 6.29 x 107° 2.10 x 10°
SA-A 9.29 x 102 5.98 x 10°
SA-DMA 2.42 x 10* 1.14 x 107
FA-NA 3.40 x 10" 1.76 x 10*
FA-A 4.85 x 10 2.90 x 10"
FA-DMA 6.04 x 107" 5.00 x 10>
NA-A 2.71 x 10? 2.15 x 10°
NA-DMA 1.87 x 10> 2.23 x 10*
SA-FA-DMA 2.00 x 10° 9.85 x 10°
SA-NA-DMA 1.22 x 10% 1.26 x 10°
SA-A-DMA 2.44 x 103 1.05 x 10°
SA-W1 2.42 x 10" 1.50 x 107
SA-W2 3.31 x 10° 2.90 x 10°
SA-W3 7.26 x 107> 1.45 x 10°
SA-W4 3.19 x 103 1.19 x 10*
SA-W5 4.39 x 1077 1.82 x 10
FA-W1 1.92 x 10° 1.13 x 10°
FA-W2 1.07 x 10° 1.99 x 107
FA-W3 1.80 x 10! 5.22 x 10*
FA-W4 2.57 x 107° 7.25 x 10°
NA-W1 3.18 x 10° 1.73 x 10°
NA-W2 3.03 x 10% 1.33 x 107
NA-W3 3.13 x 102 1.50 x 10*
NA-W4 2.35 x 107° 1.16 x 10
A-W1 6.52 x 10° 3.79 x 10°
A-W2 5.59 x 10> 4.52 x 10*
A-W3 1.89 x 10°° 1.03 x 10*
DMA-W1 1.84 x 10> 5.00 x 10°
DMA-W2 1.04 x 102 3.76 x 10°
DMA-W3 2.46 x 107° 5.54 x 10°
SA-FA-W1 1.13 x 102 3.79 x 10%
SA-FA-W2 457 x 107* 2.71 x 10"
SA-NA-W1 6.85 x 10°° 2.13 x 10°
SA-A-W1 6.44 x 10 5.61 x 10>
SA-A-W2 8.70 x 10! 1.29 x 10*
SA-A-W3 3.72 x 107 6.30 x 10"
SA-A-W4 1.48 x 10°° 2.76 x 10°
SA-DMA-W1 2.27 x 10* 5.41 x 10°
SA-DMA-W2 7.12 x 10* 3.06 x 10°
SA-DMA-W3 7.68 x 10" 4.30 x 10*
SA-DMA-W4 7.75 x 103 2.12 x 10"
SA-DMA-W5 3.48 x 107* 1.26 x 10°
FA-NA-W1 6.88 x 10° 5.38 x 10"
FA-A-W1 2.63 x 107° 4.56 x 10"
FA-DMA-W1 3.56 x 10 1.12 x 10
NA-A-W1 9.58 x 10° 1.28 x 10*
NA-DMA-W1 6.67 x 10° 1.42 x 10°
NA-DMA-W2 1.37 x 10* 6.54 x 10"
NA-DMA-W3 1.24 x 103 3.39 x 10°
SA-FA-DMA-W1 1.28 x 10* 1.19 x 10°
SA-FA-DMA-W2 3.28 x 107! 8.87 x 10°
SA-NA-DMA-W1 1.51 x 10° 1.77 x 10*
SA-NA-DMA-W2 418 x 107" 1.12 x 10
SA-NA-A-DMA-W1 2.34 x 10* 9.79 x 10!
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Table 7 Optimal pathways for growing the dry pentamer at 1 atm pressure according to equilibrium concentrations calculated using initial
concentrations of [SAlp = 5.0 x 107, [FAlg = 2.0 x 10, [NA]o = 9.8 x 10, [Alo = 2.0 x 10", and [DMA]y = 2.0 x 10° at 298 K. Concentrations

were decreased by 3 orders of magnitude for 217 K

216.65 K

298.15 K

Optimal pathway
+FA = (SA)(FA)(DMA)

+NA = (SA)(FA)(NA)(DMA)
+ A = (SA)(FA)(NA)(A)(DMA)

NA + A = (NA)(A)
+FA = (FA)(NA)(A)
+SA = (SA)(FA)(NA)(A)

2" best pathway

+ DMA = (SA)(FA)(NA)(A)(DMA)
NA + DMA = (NA)(DMA)

3" best pathway
+SA = (SA)(NA)(DMA)

+FA = (SA)(FA)(NA)(DMA)
+A = (SA)(FA)(NA)(A)(DMA)

SA + DMA = (SA)(DMA)

SA + DMA = (SA)(DMA)

+ FA = (SA)(FA)(DMA)

+NA = (SA)(FA)(NA)(DMA)
+ A = (SA)(FA)(NA)(A)(DMA)
NA +A = (NA)(A)

+SA = (SA)(NA)(A)

+DMA = (SA)(NA)(A)(DMA)
+ FA = (SA)(FA)(NA)(A)(DMA)
NA + DMA = (NA)(DMA)
+SA = (SA)(NA)(DMA)

+FA = (SA)(FA)(NA)(DMA)
+ A = (SA)(FA)(NA)(A)(DMA)

Table 8 Optimal pathways for growing the growing the (SA)(NA)(A)(DMA)(W) cluster at 1 atm pressure according to equilibrium concentrations
calculated using initial concentrations of [SAlp = 5.0 x 107, [FAlg = 2.0 x 10%, [NAlo = 9.8 x 10%°, [Alp = 2.0 x 10%, and [DMA] = 2.0 x 10° at 298

K. Concentrations were decreased by 3 orders of magnitude for 217 K

216.65 K

298.15 K

Optimal pathway NA + W = (NA)(W)

+ DMA = (NA)(DMA)(W)
+SA = (SA)(NA)(DMA)(W)
+A = (SA)(NA)(A)(DMA)(W)
SA + DMA = (SA)(DMA)

2" best pathway

+W = (SA)(DMA)W)

+NA = (SA)(NA)(DMA)(W)
+A = (SA)(NA)(A)(DMA)(W)

3" best pathway A+W :( (A))((W))( :
+NA = (NA)(A)(W

+SA = (SA)(NA)(A)W)

+DMA = (SA)(NA)(A)(DMA)(W)

stability in Section 3.6, demonstrates the synergistic effects
between the two bases when there are also at least the same
number of acids present. For this reason, the three best path-
ways to forming this cluster have been identified in Table 8.
Interestingly, the second and third pathways are different at the
two temperatures. Additionally, these clusters tend to add in SA
later, preferring early growth with NA. In every pathway except
the second best at 217 K, where the water adds second to form
the trimer, the water adds first to form the dimer, likely caused
by the extreme amount of water present in the atmosphere. In
four of these six pathways, the tetramer consists of SA, NA,
DMA, and W. In the third best pathway at 217 K, A replaces
DMA. The only pathway where one acid, both bases, and a water
form a tetramer is for the second-best pathway at 298 K, where
the (SA)(A)(SMA)(W) tetramer is predicted to form along this
pathway, with NA adding last to form the final (SA)(N-
A)(A)(DMA)(W) cluster.

Unlike the other molecules in our experiment, DMA is
believed to have a very short lifetime in the atmosphere, of only
1-2 hours above coastal areas and 5-10 hours over other parts of
populated continents.® Because of this, we have also per-
formed the calculations where the concentration of DMA was

Environ. Sci.. Atmos.

NA +W = (NA)(W)

+ DMA = (NA)(DMA)(W)
+SA = (SA)(NA)(DMA)(W)
+A = (SA)(NA)(A)(DMA)(W)
A+ W = (AW)

+SA = (SA)(A)(W)

+ DMA = (SA)(A)(DMA)(W)
+NA = (SA)(NA)(A)(DMA)(W)
SA+W = (SA)(W)

+ DMA = (SA)(DMA)(W)
+NA = (SA)(NA)(DMA)(W)
+A = (SA)(NA)(A)(DMA)(W)

decreased further. When the concentration of DMA remained
above the concentration of SA, there were nearly no changes in
the results. However, as soon as the concentration of DMA
dropped below that of SA, the results changed drastically, with
the DMA being depleted in place of the SA. As the DMA
concentration was continually lowered, the system converged
towards one more like that shown by Harold et al., where the
clusters containing acids and ammonia had the highest
concentrations (Tables S11-S137).%®

4. Conclusions

This is the first study to probe three different acid molecules
and two different bases to date, and adds to the insights ob-
tained from previous work. Accurate AG° values for the forma-
tion of every possible cluster that can be formed from a sulfuric
acid molecule, a formic acid molecule, a nitric acid molecule, an
ammonia molecule, a dimethylamine molecule, and 0-5 water
molecules were determined from a comprehensive search of the
PM7, GFN2, and wB97X-D potential energy surfaces combined
with DLPNO-CCSD(T)/CBS electronic energy calculations on the
DFT geometries. The detailed geometries of each minimum free

© 2022 The Author(s). Published by the Royal Society of Chemistry
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energy cluster are more important than traditional acid or base
strength in many cases. Addition of a water molecule to a dry
cluster can enhance stabilization of that cluster. Dimethyl-
amine forms stronger clusters than ammonia in the absence of
water, but as waters are added, the ammonium cation is able to
donate more hydrogen bonds than the dimethyl ammonium
cation, increasing the stability of the ammonium-water clusters
relative to DMA. Results presented here reveal that the (SA)(N-
A)(A)(DMA)(W) cluster has special stability. Equilibrium
concentrations were then calculated and used to map out the
optimal pathways for forming the dry pentamer and this espe-
cially stable (SA)(NA)(A)(DMA)(W) cluster. The pathways indi-
cate that NA could initiate new particle formation just as
efficiently as SA, especially in the presence of water. This
suggests that particle growth in the atmosphere results from the
combination of many different molecules that are able to form
highly stable complexes with nitric, formic, and sulfuric acids.
Pathways that lead to tetramers with all three acids and one
base are predicted to be important in the growth of mixed acid/
base clusters.
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