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Abstract—Tree-based algorithms for spatial domain applica-
tions scale poorly in the distributed setting without extensive
experimentation and optimization. Reusability via well-designed
parallel abstractions supported by efficient parallel algorithms is
therefore desirable. We present ParaTreeT, a parallel tree toolkit
for state-of-the-art performance and programmer productivity.
ParaTreeT leverages a novel shared-memory software cache
to reduce communication volume and idle time throughout
traversal. By dividing particles and subtrees across processors
independently, it improves decomposition and limits synchro-
nization during tree build. Tree-node states are extracted from
the particle set with the Data abstraction, and traversal work
and pruning are defined by the Visitor abstraction. ParaTreeT
provides built-in trees, decompositions, and traversals that offer
application-specific customization. We demonstrate ParaTreeT’s
improved computational performance over even specialized codes
with multiple applications on CPUs. We evaluate how several
applications derive benefit from ParaTreeT’s models while pro-
viding new insights to these workloads through experimentation.

Index Terms—N-body simulation, Tree traversals, Shared-
memory models

I. INTRODUCTION

Sophisticated tree-based algorithms are effective in reducing
the complexity of many science applications from an unre-
alistic O(N?) to O(Nlog N) or lower. Prominent examples
include tree-based N-body gravity calculations [1], [2] and k-
nearest neighbor searches [3]. However, parallelization of such
tree codes is a complex task, especially when combined with
a modern mix of sophisticated algorithms, e.g., the Fast Multi-
pole Method (FMM) [4], [5] and heterogeneous hardware, e.g.,
many-core shared memory nodes and GPGPU architectures.
Nevertheless, significant success at scaling tree codes has
been made starting from the time massively parallel machines
became readily available [6]. More recently, pure tree codes
successfully scaled, with appropriately large problem sizes, to
hundreds of thousands of compute cores [7], [8]. GPGPUs
have been used effectively at scale [9]; The FMM method
was implemented on GPGPU nodes [10], efficiently scaling
to thousands of nodes for very large (more than a trillion
particles) problems.

These successes were achieved through expertise in both
domain science and computer science. This level of knowledge
is widely considered necessary to extend these benefits to other
problems amenable to tree-based solutions. However, the use
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of good abstractions can significantly ease the implementation
of algorithms. This is particularly true for parallel implemen-
tations where a fairly trivial algorithmic component requires
significant implementation effort, e.g., visiting the next ele-
ment in a tree structure might require communication with the
processor on which it is located. For linear data structures like
arrays or regular grids, parallel languages such as UPC [11],
Chapel, [12] and Co-array Fortran [13] have demonstrated
increased programmer productivity without sacrificing parallel
performance. Tree-based algorithms could be implemented in
these languages by linearizing the data structures, but only
at the expense of code complexity, efficiency, and effort
for the programmer, particularly for more sophisticated tree-
based algorithms. Here we explore the use of abstractions
specifically designed for tree algorithms with the same aim
of increasing programmer productivity with minimal loss of
parallel performance. We focus on spatial trees because of
their wide applicability to physical science problems.

Spatial trees consist of a collection of nodes where each
node represents a contiguous region of space and the particles
within that region. The root node contains all the particles in
the simulation “universe”, and represents the region defined
by a bounding box that contains all particles. Child nodes are
defined by recursively subdividing this region along with the
contained particles. The recursion finishes when a child node
contains less than a specified number of particles. Such nodes
are referred to as “leaf nodes” and their contained particles are
referred to as a “bucket” of particles. Tree types are defined by
the strategy used to subdivide the spatial regions. For example,
in 3D simulations octrees are created by subdividing each node
into eight regions of equal volume. On the other hand, k-d
trees are created by subdividing each node along its longest
dimension into two subregions such that each of the child
nodes contains half the particles of the parent. The preferred
tree type depends on the particle distribution and application.
For example, octrees can become significantly imbalanced
in representing highly non-uniform particle distributions, but
each node always has a bounding box with an aspect ratio near
one. On the other hand kd-trees are guaranteed to be balanced,
but nodes can have very different aspect ratios.

Tree algorithms offer computational efficiencies when the
traversal of a particular node’s descendants can be replaced
by an approximation based on the properties of the node.
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For example, in the Barnes-Hut algorithm, the gravitational
forces on a distant body due to all particles within a node
may be approximated by a single force calculated from the
center of mass of the node. If the approximation is sufficiently
accurate, the traversal can be “pruned” at that node. Since the
gravitational force approximation is more accurate for near-
spherical regions, an octree with its bounding boxes with
aspect ratios near one, tends to be preferred for the Barnes-
Hut application. In contrast, k-nearest neighbor searches
prefer nodes with children that are uniform in particle count.
However, these preferences do not necessarily hold for all
particle distributions, and the best choice of tree type for
a given application and particle distribution is often best
determined by experimentation.

Mapping tree traversals to a distributed setting requires
dividing particles and the global tree across processors. Tra-
ditionally, the particle set is decomposed according to an
octree or a space-filling curve (SFC, i.e. a continuous curve
whose range fills an n-dimensional hypercube), and the tree is
built around the decomposition. Octree-based decomposition
performs a parallel octree build breadth-first until there are
enough nodes, then particles are assigned to the processor
that represents their node in the global octree. SFC-based
decomposition maps particles to the number line using a space-
filling curve, and then divides that number line into slices
uniform in particle count [6], [14]. Starting with a set of
assigned particles and an artificial root node, each processor
recursively creates node children and assigns them particles
until each leaf represents a bucket. Then those pieces of the
global tree are merged to form one unified global tree.

ParaTreeT aims to make development of applications in-
volving hierarchical tree-structured data easy while delivering
high performance and scalability. Our specific contributions
are as follows:

« a set of core abstractions and interfaces that define the

fundamental nature of spatial tree traversals.

« a shared-memory tree-cache model for aggregating local
data and received remote data with atomic read and write
operations.

« a model for separating concerns of tree build from tree
traversal that reduces synchronization and offers new
combinations of decomposition and tree type.

After elaborating on these contributions, we assess their im-
plications for a number of important algorithms in the spatial
tree domain. We explain how those applications can be built
in C++ with ParaTreeT, their computational performance, and
the implied productivity. Finally, we discuss the impact of
standardization on parallel tree algorithms.

II. PARATREET FRAMEWORK

ParaTreeT builds up a layered set of abstractions that allow
fluid transitions from spatial structures to tree structures and
back again during a single iteration step. These abstractions
work to unlock new insights and resultant improvements to
how spatial tree traversals are conducted in multi-threaded and
distributed settings.

A. Tree Traversal Abstractions

ParaTreeT establishes the core relationships among parti-
cles, tree nodes, and traversals. It offers users several powerful
abstractions to build and traverse spatial trees efficiently. Trees
and their Data live at the lowest level of abstraction and
are interpreted by traversals and their Visitors to specify tree
algorithms. These abstractions allow the user to focus on the
application at hand, oblivious to parallelism.

Trees are built from the root down according to tree type,
but data is aggregated from the leaves to the root according to
the Data abstraction. The data consists of application-specific
attributes that adorn internal nodes of the tree, summarizing
the set of particles contained within that subtree in some
fashion. Trees are traversed according to traversal type but are
pruned according to the Visitor abstraction. These concepts
are illustrated more concretely in Figure 1 for a universe of 5
particles represented by a k-d tree of maximum bucket size 2.

Tree Build Data Aggregation Tree Traversal with Visitor
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Fig. 1: Visual overview of the steps to spatial tree traversal with
ParaTreeT. Left: the spacial extent of the leaf nodes of a kd-tree
in a universe of 5 particles. Center: the accumulation of user Data
from leaves to parent nodes. Right: a traversal which is pruned at the
second child of the root node based on the value of open().

1) Data Abstraction: ParaTreeT’s traversals access user-
created data stored at each tree node to let the user dynam-
ically decide when to stop traversing. This state for each
node typically summarizes characteristics of its subtree with
constant space. For example, gravity applications need to know
for each node the centroid (or higher-order moments) of all
particles contained within its subtree’s bounding box. This can
be achieved by accumulating the moments from the leaves to
the root.

The Data operators help the user extract state from the
particle set into nodes of the tree. The user defines the state
in a Data class and defines functions that extract data from
particles. When the library assigns particles to leaves, the
user implements Data (Particlex particles, int
n_particles) to set the leaf’s state. Parent nodes are
initialized with the empty constructor and accumulate data
from their children. The user defines this functionality by
implementing Data () and operator+=(const Dataé&
child_data). As diagrammed in Figure 1, the library will
use these functions to initialize the parent nodes and leaf
nodes, then accumulate Data up towards the root.

2) Visitor Abstraction: ParaTreeT pre-packages the most
common traversal types. Top-down traversals begin at the root
and iterate depth-first, onto the local, unpruned children of
each node. In the distributed setting, depth-first ordering is
preferred but somewhat relaxed: traversals can bypass it by
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evaluating local nodes before remote nodes. A second type
of traversal, called up-and-down, does a top-down traversal
iteratively from each node on the path from the leaf to the root.
This traversal is usually reserved for pruning criteria that can
change during the traversal, as with k-nearest neighbors. Users
may implement their own traversal types using the Traverser
interface, such as a priority-driven traversal for ray tracing.

The Visitor abstraction helps the user perform actions
at each step of the traversal, including telling the library
when to prune and stop traversing. Following the traditional
terminology in the field, “opening” a node during traversal
means deciding to continue the traversal underneath it. Not
opening a node means the traversal will use the summary
information attached to it instead. The user defines the boolean
function open () to decide whether to traverse the source
node’s children. If not, the library invokes node (). When
the traversal reaches a leaf, it invokes leaf (). This flow is
shown in Figure 1. ParaTreeT separates out the open and leaf
functions so that compilers can freely generate vectorized in-
structions in node () without restriction from the control flow
in leaf (). Dual-tree traversals [15] require an additional
function cell () to decide, when evaluating the interaction
of two nodes with B children, whether to open both target
and source (B? interactions), or keep the target and open the
source (B interactions).

3) Performance with Generality: ParaTreeT is able to offer
generality with no cost to performance by leveraging C++
techniques and building on its well-designed layers. The tree
algorithms are not required to be shoe-horned into some
inefficient general structure provided by the library. Rather,
ParaTreeT exposes decisions each step of the way to help
the user tune the program according to their application’s
needs. The more complex decisions, like finding splitters to
recursively decompose the particle domain, are exposed via
abstract classes that users can implement in addition to the
prepackaged ones. The smaller decisions, like how to evaluate
the interaction of two nodes, are exposed via class templates.
Users write a class that defines a few member functions, and
then those decisions can be compiled into the traversal code it-
self. Housing the frequently called functions in class templates
eliminates the cost of virtualization. These static interfaces are
tightly crafted so that users cannot easily add inefficiencies to
the overarching tree algorithms. The program state is well-
protected through read-only semantics enforced on functions
executed in parallel to prevent the user from introducing race
conditions. The large set of static and dynamic interfaces offers
users a modular approach to development that lends itself to
customization. These techniques limit the performance loss
due to abstraction.

B. Shared-Memory Cache Model for Tree Data

Because spatial tree traversals comprise many simultaneous
singular traversals, e.g. each particle can concurrently engage
in a traversal to calculate the forces on it, a large number
of tree nodes and particles must be communicated across
processes each iteration. Caching these received remote data

reduces the total communication volume, but the best design of
this software cache remains an open problem. Past distributed
tree traversal libraries have implemented the cache as a table
of tree-node data hashed by tree-node key [6], [16]. Unfortu-
nately, hash tables do not extend well to shared memory to
take advantage of today’s wider multicore chips. Because the
software cache is constantly being updated as remote requests
are filled, its parallel accesses by threads on the process must
be thread-safe, which is a challenge for hash tables of dynamic
size. One approach is to use a lock-free, no-delete hash table.
In practice however, allocating a large enough table prior to
traversal is impractical since the number of nodes traversed
on a process is highly variable. A second approach is to
flush thread-local hash tables to a process-wide hash table by
locking. But this requires extra work, extra synchronization,
and extra space for the thread-local hash tables.

ParaTreeT introduces a new shared-memory software cache
model for the global tree that is wait-free (lock-free) and
supports parallel reads and writes. We implement our software
cache as a single tree per process, as opposed to a hash
table over a collection of pointers, leveraging the intrinsically
safe nature of the tree data structure to avoid locking. We
extend beyond prior insights that threads need only contend
on individual tree nodes, and remove contention entirely [17].

Parallel writing to the software cache can accelerate the
tree traversal step, particularly towards the end. We insert into
the cache directly so that other threads on the process can
access previously received remote data without doing extra
work to find them, i.e. as if local. Parallel cache writing
can significantly reduce the length of a communication-bound
critical path by enabling parallelism to cache insertions after
remote request receipts. This is as opposed to assigning
all cache inserts to a single thread, which is simpler than
designing thread-safe cache insertions. ParaTreeT’s shared-
memory model permits multiple simultaneous readers and
writers by using atomics with relaxed memory order load
and store operations. We reduce the critical path by assigning
remote request fill messages to the currently least busy worker
thread on the process.

1) Implementation: The software cache setup begins during
the tree build step. Pointers to the roots of the local subtrees are
inserted into a process-level hash table, which uses locks for
these inserts but not during the traversal step. This hash table is
shown in the bottom left of Figure 2, where it is used in Step 3.
Afterwards, the global root and a user-specified number of its
descendants are shared with each process. Placeholder nodes
represent remote data and are given an atomic flag indicating
if they have been requested yet. When a traversal reaches a
remote node (node 5), not yet requested, its thread sends a
request to that node’s home process (Step 0) and continues
handling other nodes. Then the requested node and a user-
specified number of its descendants, along with particles for
any leaves, are serialized and sent to the requesting process
(Step 1). The least busy worker on the requesting process
will convert this collapsed array into Node objects and wire
together the parent and child pointers (Step 2). In Step 3, it will
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Fig. 2: Shared-memory model for our software cache of distributed
tree traversals, shown by enumerating all the steps from cache miss
of remote data (node 5) to resumption of the traversal, with a focus
on the data structures at play.
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Local Local Local
subtree subtree subtree

assign particles to the leaves (node 10) and create placeholders
(node 23) for the nodes not shipped by the home process,
checking the hash table first (node 22). Only then is the
placeholder that represented the requested remote node (node
5) swapped out atomically from the tree (Step 4). Finally, in
Step 5, the process enqueues tasks for its worker threads to
resume the paused traversals. This wait-free model maintains
the software cache in a valid state at all times.

2) Performance Benefits: We demonstrate the effect of the
improved software cache on a gravity traversal by comparing
against a per-thread software cache and an exclusive-write
shared-memory cache, where every cache insertion is protected
by a lock. Shown in Figure 3, we measure the runtime of
the average Barnes-Hut gravity traversal on Stampede2’s SKX
partition for a clustered dataset of 80 million particles. Com-
pared to our shared-memory model, the exclusive-write ap-
proach begins to degrade in scaling efficiency at around 1,536
cores, followed by the single-threaded approach at around
6,144 cores. Even at 1,536 cores, increased synchronization
costs plague the exclusive-write model, since threads have to
wait for permission to insert to the shared-memory cache.
The single-threaded approach requires more communication
volume and memory footprint than the two shared-memory
approaches. But effective overlap of communication and com-
putation hides the impact of this increased communication up
until 6,144 cores, when the traversal’s critical path appears to
become communication bound. This experiment indicates that
ParaTreeT’s wait-free cache model performs better and scales
more effectively than less sophisticated models.

C. PFartitions-Subtrees Model

Tree build and traversal are made easier when particles
are distributed across processes according to their position
in the global tree. Unfortunately, distributing load accord-
ing to the cubical shapes engendered by octrees can create
imbalances in parallel execution. SFC (Space-Filling Curve)
based decomposition balances load well, but requires building
an octree with non-local ancestors. All such branch nodes,
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Fig. 3: Comparison of our shared memory cache ‘WaitFree’ against
a single-threaded model ‘Sequential’ and an exclusive-write model
‘XWrite’ when performing Barnes-Hut gravity calculations on 80m
particles. This was executed on Stampede2 with 24 cores to a process,
one thread per core.

or tree nodes whose descendants are divided across multiple
processing elements, require synchronization to merge their
data. For example, if two particles A and B are in the same
leaf of the octree, but SFC decomposition chooses a splitter
key between their particle keys, then their leaf node and its
entire path to the root must be duplicated across at least two
processing elements. At the extreme end of strong scaling,
wherein the SFC decomposition is very fine, merging these
tree nodes will require a significant amount of communication.
SFC decomposition can pair well with octrees using a mapping
function from particle key to octree node key [6]; however, this
kind of mapping does not exist naturally between all tree types
and decomposition types.

We present the Partitions-Subtrees model, a solution to
the problem of decomposing particles in a manner inconsis-
tent with the tree structure. Tree decompositions serve dual
purposes in traditional n-body codes: dividing work among
processors, and acting as a distributed repository of hierarchi-
cally organized data. Our model separates these concerns by
using two distributed data structures to provide multiple views
of the same data. This allows ParaTreeT to offer seemingly
contradictory tree and decomposition types at no cost to
parallelism.

The crucial insight of the Partitions-Subtrees model is that
at the boundaries of decomposed Partitions, only buckets need
be split up, and not tree segments. Towards this end, we assign
the division of particle buckets (i.e., load) to the Partitions, and
the division of the tree (i.e., memory) to the Subtrees. More
concretely, particles are held in Subtrees, and after the tree is
built, buckets are passed by pointer or by value to Partitions.
The Partitions-Subtrees model grants users several advantages
over the traditional approach of splitting up subtrees. Firstly,
communication volume is reduced — only split leaf nodes need
to be communicated across processes, not their whole path to
the root. Secondly, as early as the parallel tree build, users can
locally access all the ancestors of local nodes. Thirdly, users
of custom, application-specific tree types can write just one
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implementation instead of one for each paired decomposition
type. This is a great improvement to user productivity, and
we showcase this by making an application-specific tree and
decomposition type in our case study.

Steps to Partitions-Subtrees decomposition /Root\
1. Assign particles to Partitions

2. Assign particles to Subtrees and flush / \ / \
3. Build subtrees top-down . . ‘

ST1 ST2ST3 ST4

4. Hand leaves over to Partitions

Partition 1 Part. 2

Subtree 1 | Subtree 2

Partition 3

Subtree 3 | Subtree 4

Fig. 4: Demonstration of the steps to decompose a spatial domain
with the Partitions-Subtrees model: explicit steps (top left), a sample
partition assignment of a region of space (bottom left), a sample
subtree assignment (bottom right), and a picture of the associated
global tree (top right).

Core 0 Core 1
| Subtree 2 | Subtree 3
[""@"I-“I"ﬂ
‘ Partition 4 | Partition 5 Partition 6
Core 0 Core 1 Core 1

Fig. 5: A Partitions-Subtrees decomposition at the border of cores
0 and 1. The second bucket (thick) contains particles that span two
Partitions. Partitions 4 and 5 each create a local bucket (thin) to
accommodate for this.

1) Implementation: During the decomposition phase, Par-
titions are decomposed according to the decomposition type
and Subtrees are decomposed in a manner consistent with the
chosen tree type. The library first finds both sets of splitters,
marks particles according to Partition assignment, and then
forwards particles to their assigned Subtrees. Subtrees perform
their usual tree build and cache initialization step. Next is the
leaf-sharing step: Subtrees share their leaf pointers with local
Partitions by following the particles’ Partition assignments.
These steps are visualized in Figure 4. Buckets whose particles
are mapped to multiple Partitions will be split into local
buckets as shown in Figure 5. Because particles are generally
assigned to Partitions spatially and there are many buckets
to a Partition, only a few buckets will need to be split this
way. Subtrees whose leaves have particles belonging to remote
Partitions will serialize those leaves and send them. In practice,
this leaf sharing step takes only 0.1-0.4% of the total iteration
time. ParaTreeT optimizes for the case when both sets of
splitters are the same by binding Partitions and Subtrees by

location. In this case, buckets are never split up and each
particle’s Partition and Subtree are on the same process.

D. Building ParaTreeT Applications

1) Using Charm++ runtime services: ParaTreeT builds
on Charm++ [18] for its adaptive runtime system (RTS),
implicitly migratable objects, and inherent asynchrony. A
Charm++ program is specified in terms of interacting col-
lection of objects, called chares. Each chare encapsulates a
coarse-grained unit of work and associated data. Messages
are addressed to specific chares, not to the processors. Chares
are placed on processors and nodes of the system under the
control of its RTS, and message delivery is under the control
of Charm++ location management service. To leverage the
Charm++ paragdigm, we divide the particle set into more
partitions than processors, each partition implemented as a
chare object. Since chares are implicitly migratable, ParaTreeT
can easily redistribute work between iterations to balance
loads. Charm++ has prewritten load balancing schemes and a
simple interface for new schemes that offer users a clear path
to achieving scale [19]. In addition, ParaTreeT rebuilds and
reassigns partitions during a “flush” step if load ever becomes
irreparably imbalanced.

2) Coding, configuring and running the application: To de-
velop an application, a programmer customizes the data struc-
tures by defining appropriate subclasses. Within each iteration,
the user customizes ParaTreeT’s behavior by implementing
traversal () and postTraversal (). The post-iteration
function lets the user do work unrelated to the traversal but
needed for the simulation, such as colliding particles together
in planet formation or calculating kernel-weighted quantities
in smoothed-particle hydrodynamics. To conduct a simulation
with ParaTreeT, the user first defines a configuration object
for initialization. With this object the user specifies various
run and performance parameters. These include input file
name, number of iterations, load balancing period, minimum
number of Subtrees and Partitions, decomposition type, tree
type, among others. Users can also tune other performance-
specific hyperparameters: number of nodes fetched per request,
number of branch nodes shared across all processors, and load
balancing frequency.

3) Gravity Example: To illustrate further how applications
are built on top of the ParaTreeT framework, we provide as
an example our Barnes-Hut gravity code. Barnes-Hut [1] is an
algorithm for calculating mutual gravitational forces among a
collection of N particles in order N log(N) time by approxi-
mating the force from distant particles by grouping them into
nodes of a tree. Here gravApprox and gravExact are the
user’s helper functions that perform Newton force calculations.
In our Barnes-Hut gravity application, we devise a moment
accumulator called CentroidData that implements the Data
interface. We provide a simplified example of this code in
Figure 6. Our more sophisticated gravity solver tracks higher
order multipole expansions here as well [4]. The tree kernels
that compute distances and call the gravity helper functions are
shown in Figure 7. Those kernels are invoked by the library’s
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struct CentroidData {
Vector3D moment;
double sum_mass;
Vector3D centroid() const {return moment / sum_mass;}

Vi

CentroidData (
moment = (0
sum_mass =

) {
0, 0);
0;
}
CentroidData (Particle* particles, int n_particles) {
for (int i = 0; i < n_particles; i++) {}
moment += particles[i].mass * particles[i].position;
sum_mass += particles[i].mass;
}
}
CentroidData& operator+=(const Data& child_data) {
moment += child_data.moment;
sum_mass += child_data.sum_mass;
return xthis;

}

Fig. 6: Example tree Data implementation that stores in each tree
node a centroid, used for computing gravitational interactions.

struct GravityVisitor {
bool open(const SpatialNode<CentroidData>& source,
SpatialNode<CentroidData>& target) {
Sphere sphere {source.data.centroid, source.data.rsq};
return Space::intersect (target.data.box, sphere);
}
void node (const SpatialNode<CentroidDataé& source,
SpatialNode<CentroidData>& target) {
for (int i = 0; 1 < target.n_particles; i++) {
auto accel = gravApprox(source, target.particles[i]);
target.applyAcceleration (i, accel);
}
}
void leaf (const SpatialNode<CentroidData>& source,
SpatialNode<CentroidData>& target) {
for (int 1 = 0; 1 < target.n_particles; i++) {
auto accel = gravExact (source, target.particles[i]);
target.applyAcceleration (i, accel);
}
}
}i

Fig. 7: Example tree Visitor implementation that uses centroid dis-
tances and helper functions to compute gravitational forces between
tree nodes built on CentroidData.

tree traverser when it processes a node interaction. These codes
are used statically through templates by the application driver,
which is initialized, registered, and launched by the code in
Figure 8.

Note that except for a few simple sequential functions
encoding the numerics, and some elisions for simplicity, the
code in these figures is the entirety of the code needed to
define a full-fledged code for gravitational evolution! In total
it is only 135 lines long.

III. EVALUATION

We first focus the evaluation of our models and abstractions
on the cosmology domain. Cosmology is an exemplar domain
for several reasons. Firstly, it requires a large dynamic range
in spatial scales to go from star formation distances (sub-
parsec) to the size of the observable Universe (gigaparsecs), so
an adaptive hierarchical data structure is necessary. Similarly,
the range in timescales runs from thousands of years to the
age of the Universe. Secondly, a variety of algorithms are
used in the computation and analysis of cosmological datasets,

767

class GravityMain
{
using namespace paratreet;
virtual void configure (Configuration& conf) {
conf.input_file ="...";
conf.num_iterations 10;
conf.tree_type = TreeType::eOct;
conf.decomp_type = DecompType::eSfc;
}
virtual void traversal (int iter) {
partitions () .startDown<GravityVisitor>();
}
virtual void postTraversal (int iter) {
partitions () .outputParticleAccelerations|();
}
}i

: public paratreet::Driver<CentroidData>

Fig. 8: Example Barnes-Hut gravity application Driver that uses
CentroidData and GravityVisitor as class templates to perform N-
body simulations.

including gravity, k-nearest neighbors, and n-point correlation
functions. Lastly, the sheer size of these datasets demands
peak performance. A general framework that can address these
challenges is likely to be successful in many other domains.
We demonstrate ParaTreeT’s performance on three different
architectures to explore a variety of parallel configurations.
Their relevant characteristics are shown in Table I. Our work is
targeted at scalable distributed memory parallelization of tree
codes and the challenges encountered in that pursuit. Work
used to accelerate local kernels via GPU is orthogonal, and
has been addressed in past literature [9], [20], [21]. For that
reason, we have chosen CPU architectures for this evaluation.

TABLE I: Relevant characteristics of supercomputers used.

Name ‘ Cores/N ‘ CPU Type ‘ Clock Freq ‘ Comm. Layer

Summit 42 POWER9 3.1 GHz Ucx
Stampede2 48 Skylake 2.1 GHz MPI
Bridges2 128 EPYC 7742 2.25 GHz Infiniband

A. Barnes-Hut Gravity

Before demonstrating the performance of our gravity traver-
sal we profile its work at a macro scale during the largest por-
tion of runtime. In Figure 9 we show the time spent in several
functions of our parallel tree traversal for Barnes-Hut gravity.
Utilization remains high until the traversals finish toward the
end of the iteration. The first step, distributing the root and a
few levels below, is the low utilization block at the beginning.
Then, local traversals can begin, which take up a large fraction
of the work because all subtrees on the process are local with
the shared-memory cache. Throughout the traversal, remote
requests are made, which are handled by cache requests and
received by cache insertions. Then, those paused traversals are
resumed and their metadata fetched in traversal resumptions,
which will kick off the actual remote traversal. At this scale of
1536 cores, ParaTreeT’s built-in load re-balancers can reduce
this simulation’s total runtime by 26%, either by mapping
measured load to the space-filling curve and redistributing it in
chunks, or by aggregating load and assigning it recursively in
3D space. Since the comparison applications have different
load re-balancing strategies available to them, an apples-to-
apples comparison is difficult. Thus load re-balancing is turned
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Fig. 9: Time profile of CPU utilization during parallel tree traversal for Barnes-Hut gravity collected on Stampede2 with 1536 CPUs using
Projections. Labeled are the actions a group of processors is taking during each time interval. Due to node-wide tree aggregation and spatial
decomposition, the bulk of time is spent in node-local traversals. The remaining time is spent fetching remote nodes by making cache

requests, subsequent insertions, and resuming traversal.

off in our experiments, and only the first ten iterations are
studied.
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Fig. 10: Comparison of ChaNGa’s and ParaTreeT’s average iteration
times for monopole Barnes-Hut gravity with SFC decompositions and
octrees. To show the benefits of greater cache efficiency, ParaTreeT
was also modified to use the standard DFS traversal style, here plotted
as "BasicTrav.” This was executed on Summit’s POWERY nodes for
80 million particles.

First, we benchmark the gravity application against
ChaNGa’s state-of-the-art distributed gravity solver [16].
ChaNGa is an n-body simulation library with a large commu-
nity of users across a number of spatial applications. Studies
on its excellent performance have been published in past
computer science literature [8], [16], [22]. ParaTreeT can out-
perform ChaNGa both on a single node and at scale. Figure 10

shows a set of performance comparisons conducted on Summit
at Oak Ridge National Laboratory using only CPU resources
and 2-way SMT. The application here is Barnes-Hut gravity
for 80 million particles in a uniform particle distribution
representing a volume of the present-day Universe. ParaTreeT
and ChaNGa return identical solutions and share the same
computational work. ParaTreeT performs iterations 2-3x faster
from 1 to 256 nodes, where there are 84 workers per node.
At 256 nodes both applications stop strong scaling efficiently,
but compared to 128, ParaTreeT’s runtime improves slightly
while ChaNGa’s gets worse. ParaTreeT finds its improvements
from reducing idle time: on a single node by reducing cache
communication, and on multiple nodes by reducing inter-node
communication as well.

ParaTreeT achieves higher sequential throughput by limiting
the working set size and adopting the GPU style of traversal,
also known as a locality-enhancing loop transformation. The
Data abstraction drives a compact working set for each tree
node, which provides most of the benefit between the two
applications. Loop transformation offers ParaTreeT further
improved cache efficiency: instead of traversing the tree for
each bucket, it processes each bucket for each tree node [23].
This transposition works well on the GPU given its expensive
global memory fetches and warp-level parallelism that can be
used as thread-per-bucket [21]. While SIMT does not apply
to multicore architectures, sequential tree traversal’s pointer-
chasing workload can be throttled by memory bandwidth.
ParaTreeT adopts this transformation to achieve greater CPU
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TABLE II: Comparison of ParaTreeT and ChaNGa’s cache utilization statistics at the three levels of data cache storage for a gravity traversal
of 100k particles. This was profiled on one of Stampede2’s SKX nodes, where the L1D, L2, and L3 caches have capacities 32KB, 1024KB,

and 33MB, respectively.

(ParaTreeT/ChaNGa) | Cache Accesses (billion) Load Miss Rate (%) Store Miss Rate (%)
CPUs | Runtime (s) | L1D Load | LID Store LID L2 L3 (L1D & L2) L3

1 92/16 27147 9.0/ 21 34/15 | 19/35 | 19/9.2 | 0.036/0.020 | 62/26

2 52780 24 /38 67/15 | 38/19 | 1.0/3.0 | 32/8.1 | 0.050/0.030 | 48/ 19

4 28743 20736 41712 44/21 | 1.5/29 | 44/19 | 0.12 /0.046 | 55/35

8 16/25 18 /32 32/11 | 44/23 | 21/37 | 32718 | 024 /0.091 | 43/29

16 1.1/1.6 18730 3.0/10 37/25 | 36/46 | 26/22 | 033 / 0.13 | 43/32
cache efficiency through temporal locality. This is reflected in Gadget2 - -A-- ParaTreeT - -O- -
the cache utilization statistics in Table II. In this experiment a 512
spatial tree representing 100k uniformly distributed particles B 2564-.. N
is traversed by multiple CPUs on the same process. The set of § 128 | el .
buckets in a Partition fits in the L2 cache and the tree traversed E 64 | RN
for that set fits in the L3 cache. ParaTreeT sees lower runtime 5 324 A
due to fewer cache accesses by not walking the tree once per e 16F o el ‘A
bucket. This does yield higher miss rates for all cache levels £ gl o AL
and access types except L2 loads as expected. ParaTreeT’s % 4l e o.. A
Traverser interface is exposed to the user so that they can write g 5 | Te.
their own additional optimizations. < 1 , ) ) ) O-- -

When running at scale, ParaTreeT has smaller communi- 48 96 192 384 768 1536 3072

cation overheads than those of ChaNGa due to its shared- Cores

memory cache and Partitions-Subtrees model, improving the
traversal and tree build respectively. During traversal, ChaNGa
often makes the same remote fetch for multiple worker threads
within the same process. The costs of these extra requests
and responses are especially noticeable on wider multicore
chips and with SMT enabled. During tree build, because this
simulation uses SFC decomposition for an octree, the data
aggregation step requires merging many non-local ancestors.
The Partitions-Subtrees model reduces the synchronization
cost of this action and thus improves the tree build time.

B. Smoothed-Particle Hydrodynamics

Smoothed-particle hydrodynamics (SPH) is a Lagrangian
method for astrophysical fluid simulations that also leverages
spatial tree traversal. The basic idea of SPH is to construct
a continuous field using the properties of nearby particles as
discrete tracers [24], [25]. For many astrophysical applications,
the density, internal energy and pressure fields are calculated
and evolved. Gradients in the latter field produce a net force
on the surrounding fluid.

Each iteration of SPH starts with a k-nearest neighbors
traversal for each particle to find its principal contributors of
density. Each neighbor’s mass and distance is summed and
weighted with a smoothing kernel to determine the density of
the target. This neighbor list is then used to model the pressure
field surrounding each particle. A pressure force, which is
determined by the gradient of this field, is then applied to
pairs of particles [26], [27].

In Figure 11 we compare ParaTreeT’s performance to that of
Gadget-2 [28], a well-established gravity and SPH application.
Here we are just performing SPH computations without grav-
ity. On Stampede2’s SKX nodes, ParaTreeT yields a ~10x

Fig. 11: Comparison of Gadget2’s and ParaTreeT’s average iteration
times for smoothed particle hydrodynamics with octrees. This was
executed on Stampede2’s SKX nodes for a cosmological volume of
33 million particles.

speedup from 48 to 3072 cores, where both applications are
doing the same SPH computations on an octree with SFC
decomposition. While both are built on the MPI layer, Gadget-
2 relies on the Message Passing Interface entirely, and does
not leverage shared memory. ParaTreeT achieves most of this
speedup by fetching a fixed number of neighbors using the
k-nearest neighbors algorithm, as opposed to Gadget-2’s more
parallelizable but less efficient algorithm of converging on
a smoothing length for each particle by doing a number of
fixed-ball searches. ParaTreeT is able to implement this more
efficient algorithm within its abstractions.

C. Programmer Productivity

ParaTreeT’s powerful abstractions and simple interface
combine to achieve next-generation productivity in spatial
tree simulations. Our gravity application, shown above to
outperform state-of-the-art code, uses only 135 lines of user
code including the numerical calculations. (Our smoothed
particle hydrodynamics code is a bit longer at 250 lines of
user code.) For comparison, the code specific to the Barnes-
Hut application in ChaNGa totals roughly 4500 lines of
code. Table III provides a breakdown of our code below. A
simplified version of CentroidData.h was shown in Figure 6,
Gravity Visitor.h in Figure 7, and GravityMain.C in Figure 8.

Beyond the number of lines of code, which is just one
simple metric for code complexity, the productivity benefits
of ParaTreeT accrue mainly from the separation of concerns
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TABLE III: Line counts of user code in ParaTreeT gravity applica-
tion.

Filename ‘ Line count | Use
CentroidData.h 50 lines Define optimized Data functions
Gravity Visitor.h 45 lines Define Visitor functions
GravityMain.C 40 lines Specify config, define traversal

it affords. A computational cosmologist can focus on spec-
ifying the numerical and algorithmic aspects of their model,
while leaving the tedium of coding traversals, communication,
memory management, caching of remote data, load balancing,
and so on to ParaTreeT.

IV. CASE STUDY: PLANET-FORMING DISKS

While the previous applications dealt only with cosmo-
logical simulations, here we demonstrate a simulation of
planet formation at unprecedented resolution. Protoplanetary
simulations represent a different spatial layout (mostly 2D)
and a different algorithm (collision detection) from traditional
applications. This makes for an interesting case study of
ParaTreeT’s adaptibility and performance, especially when
compared to ChaNGa.

A. Collisions Between Planetesimals

In this simulation, a disk of 10 million planetesimals and
a Jupiter-sized planet orbits a star to mimic the conditions of
the early Solar System. At only 50 km in size, the particles
here represent actual individual planetesimals, rather than
collections of bodies. Gravitational interactions are tracked
between all particles. Additionally, the planetesimals are mod-
eled as solid objects with a finite radius and are tested for
collisions at each step. In regions of the disk where the
orbital period matches an integer ratio of Jupiter’s orbit (a
resonance), strong nonlinear perturbations occur, making this
an interesting problem to study with N-body methods.

Using the regular memory partition on the Pittsburgh Super-
computing Center’s Bridges2, we evolved the disk for 2,000
years, which corresponds to roughly 150 orbits of the perturb-
ing planet. Because the dynamical effects of the resonances
cannot be built into the initial conditions, no collisions were
recorded for the first 1,200 years of the simulation. This
time interval corresponds to the libration period of the 2:1
resonance, located near the midpoint of the disk, and allows
the phase space distribution of bodies to reach equilibrium.

In Figure 12, we show the resulting planetesimal collision
profile as a function of both orbital period and distance from
the central star. Here, the orbital period associated with a
collision corresponds to the orbital period of one of the two
bodies at the moment of impact. Gravitational perturbations
from the planet are visible as gaps in the disk. In the collision
profiles, the 3:1, 2:1 and 5:3 resonances (from left to right) are
marked with vertical dashed lines. In total, 258 collisions were
recorded, most of which are associated with high eccentricity
particles near the 2:1 resonance at 3.27 AU.

Dust generated by these collisions in planet-forming disks
should be visible through sub-millimeter observations and
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Fig. 12: For a planetesimal disk consisting of 10 million particles
evolved with ParaTreeT, the number of planetesimal collisions de-
tected as a function of distance from the star. Collisions as a function
of orbital period about the central star are plotted with a dotted line.
Vertical dashed lines indicate the location of resonances with the
planet. Dust generated by these collisions will follow a profile similar
to the solid curve.

can be used to infer the properties of the perturbing planet
[29]. The solid line of Figure 12 shows the radial profile
of the collisions. Assuming that the dust generated is well-
coupled to any gas that is present, this should closely describe
the sub-millimeter brightness profile of the disk. Although a
comprehensive exploration of the dynamics contributing to the
collision profile seen here is beyond the scope of this work,
we have shown that this problem is thoroughly tractable with
ParaTreeT.

B. Domain Decomposition for Disks

ParaTreeT allows the user to write their own decomposition
type by implementing findSplitters () and their own
tree type by implementing findChildsLastParticle ()
and setting the branch factor. The customization of these
interfaces offers finer control over how the library dissects
the particle domain in decomposition and tree build. This
is especially useful for this simulation because the planetary
space is a mostly two-dimensional disk. Dissecting all three
dimensions equally makes for useless tree branching and poor
decomposition, yielding weaker performance and scalability.
A longest-dimension tree solves this problem by branching at
the median but always in the longest dimension of the current
subspace.

In Figure 13 we compare the average iteration time when
using the longest-dimension tree and decomposition schemes
against when using basic octree. The iteration step includes
tree building, calculating gravitional forces, and detecting
collisions. We also use this opportunity to compare Para-
TreeT’s performance to ChaNGa’s on a different application
and supercomputer than previously shown. This was conducted
with Stampede2’s SKX partition, for a planetesimal disk of 50
million particles. With octree decomposition, load imbalance
towards nodes around the disk is significant enough to cancel
the benefits of scaling for unfortunate configurations, like at
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Fig. 13: Comparison of average iteration time for longest-dimension
tree and decomposition against that of ParaTreeT and ChaNGa’s
octree implementations in simulating evolution of a protoplanetary
disk. This was executed on Stampede2’s SKX nodes for 50 million
particles.

192 cores. The longest-dimension tree has better load balance
and can achieve greater performance, especially at scale. A
further improvement on this decomposition might be to divide
the disk radially into sectors. With ParaTreeT’s customizable
modules, users can develop performant codes for even highly
irregular applications.

V. RELATED WORK

The performance and productivity demonstrated here is
enabled by the abstractions implemented in ParaTreeT which
is in turn built on the Charm++ runtime system. Since
ChaNGa is another publicly available tree-based application
built on Charm++, we were able to easily adopt some of
its techniques. Both ChaNGa and ParaTreeT take advantage
of overdecomposition for communication/computation overlap
and load balancing [30]. More specific to tree algorithms,
we adopt ChaNGa’s use of a space-filling curve-based load
balancing scheme that maps particles to their positions along a
space-filling curve but weights them according to their current
load as measured by the Charm++ runtime. Weighted sections
of this curve can be used to remap processor assignments to
achieve better load balance. Additionally, ChaNGa’s process-
wide local data aggregation step prior to traversal was an
important first step in the development of the shared-memory
cache [16]. We also adopted many of the mathematical kernels
at the heart of gravity, hydrodynamics, and collision detec-
tion. While it satisfies performance benchmarks, ChaNGa is
primarily an astrophysical simulation code, and the published
development effort has been mainly focused on the implemen-
tation of astrophysics modules. These are all built around an
octree data structure, and extending ChaNGa to explore new
algorithms would be difficult.

There have been several past efforts to generalize the spatial
tree domain for the purposes of productivity. One such project,
called the Framework for Developing Particle Simulators
(FDPS) [31], offers sufficient generality in the steps of tree-
based simulations, but relies too heavily on particle-particle

relationships. The abstractions therein are based on those rela-
tionships instead of particle-to-tree and tree-to-traversal. Trees
are still built on each process in FDPS but their use is only
in the creation of interaction lists, which are then shared back
to the requesting process. These lists are then processed with
SIMD or SIMT to achieve some further parallelism. These
bulk steps of collecting and processing interaction lists re-
quires more synchronization and larger communication bursts
[32]. The approach of traversing the global tree iteratively
through remote requests prevents these issues. Furthermore,
with rapidly increasing problem sizes, sharing and maintaining
these large sets of interaction lists can put a strain on pinned
and virtual memory resources.

The SPIRIT library [22] is a more recent effort in the
direction of generality. SPIRIT targets tree-based computing in
the general case and is not spatially-driven. It offers pipeline
parallelism for tree traversals using a scheduling system that
targets temporal locality. It enforces tree-based decomposition
of particles, relying on adaptive load balancing to accommo-
date load imbalance, and lacks in simulation infrastructure for
N-body simulations. SPIRIT has proven itself for a number
of tree-based algorithms, including two-point correlation and
ray tracing. Unfortunately, it struggles at scale on spatial
applications because of a focus on tree-based computations
instead of bucket-based computations which offer more natural
parallelism. Pipeline parallelism also requires heavily front-
loading or back-loading work as distributed tree computations
launch and complete.

VI. CONCLUSION

This work presents evidence that the standardization of tree-
based algorithms is both feasible and advantageous for spatial
domain applications. Creative solutions for the general case
can yield greater improvements than overspecialization and
incremental refinement for a particular case. We demonstrated
such improvements by adopting strategies that favor newer
computer architectures. As the shift towards higher thread
counts continues (i.e., wider multicore chips and SMT/SIMT),
the benefits of our shared-memory cache will become increas-
ingly pronounced. Rapidly growing problem sizes demand
greater scalability in the form of smarter decomposition strate-
gies and load-adaptive techniques [33]. Only through produc-
tive experimentation will these enhancements be discovered,
enabling previously infeasible simulations and analyses.

We have extended ParaTreeT to a variety of unique spatial
applications, and will continue to expand its usability. Our
underlying abstractions capture the nuances of tree building
and traversal with minimal user direction. With ParaTreeT,
scientists can focus their efforts on asking and answering
scientific questions without a floor-to-ceiling redesign each
time. This lowers the barrier of entry to conducting ground-
breaking research in astrophysical simulations, and maintains
momentum in the direction of progress. This paper did not
focus on issues of dynamic load balancing, which is es-
pecially important for long-running applications. We intend
to further develop scalable strategies that are specialized to
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ParaTreeT and our Partitions-Subtrees model. Through our
commitment to delivering excellent performance, we hope
that standardization through ParaTreeT will concentrate the
scientific community’s effort on the frontier of tree-based
simulations.
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