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Abstract—Tree-based algorithms for spatial domain applica-
tions scale poorly in the distributed setting without extensive
experimentation and optimization. Reusability via well-designed
parallel abstractions supported by efficient parallel algorithms is
therefore desirable. We present ParaTreeT, a parallel tree toolkit
for state-of-the-art performance and programmer productivity.
ParaTreeT leverages a novel shared-memory software cache
to reduce communication volume and idle time throughout
traversal. By dividing particles and subtrees across processors
independently, it improves decomposition and limits synchro-
nization during tree build. Tree-node states are extracted from
the particle set with the Data abstraction, and traversal work
and pruning are defined by the Visitor abstraction. ParaTreeT
provides built-in trees, decompositions, and traversals that offer
application-specific customization. We demonstrate ParaTreeT’s
improved computational performance over even specialized codes
with multiple applications on CPUs. We evaluate how several
applications derive benefit from ParaTreeT’s models while pro-
viding new insights to these workloads through experimentation.

Index Terms—N-body simulation, Tree traversals, Shared-
memory models

I. INTRODUCTION

Sophisticated tree-based algorithms are effective in reducing

the complexity of many science applications from an unre-

alistic O(N2) to O(N logN) or lower. Prominent examples

include tree-based N-body gravity calculations [1], [2] and k-

nearest neighbor searches [3]. However, parallelization of such

tree codes is a complex task, especially when combined with

a modern mix of sophisticated algorithms, e.g., the Fast Multi-

pole Method (FMM) [4], [5] and heterogeneous hardware, e.g.,

many-core shared memory nodes and GPGPU architectures.

Nevertheless, significant success at scaling tree codes has

been made starting from the time massively parallel machines

became readily available [6]. More recently, pure tree codes

successfully scaled, with appropriately large problem sizes, to

hundreds of thousands of compute cores [7], [8]. GPGPUs

have been used effectively at scale [9]; The FMM method

was implemented on GPGPU nodes [10], efficiently scaling

to thousands of nodes for very large (more than a trillion

particles) problems.

These successes were achieved through expertise in both

domain science and computer science. This level of knowledge

is widely considered necessary to extend these benefits to other

problems amenable to tree-based solutions. However, the use

of good abstractions can significantly ease the implementation

of algorithms. This is particularly true for parallel implemen-

tations where a fairly trivial algorithmic component requires

significant implementation effort, e.g., visiting the next ele-

ment in a tree structure might require communication with the

processor on which it is located. For linear data structures like

arrays or regular grids, parallel languages such as UPC [11],

Chapel, [12] and Co-array Fortran [13] have demonstrated

increased programmer productivity without sacrificing parallel

performance. Tree-based algorithms could be implemented in

these languages by linearizing the data structures, but only

at the expense of code complexity, efficiency, and effort

for the programmer, particularly for more sophisticated tree-

based algorithms. Here we explore the use of abstractions

specifically designed for tree algorithms with the same aim

of increasing programmer productivity with minimal loss of

parallel performance. We focus on spatial trees because of

their wide applicability to physical science problems.

Spatial trees consist of a collection of nodes where each

node represents a contiguous region of space and the particles

within that region. The root node contains all the particles in

the simulation “universe”, and represents the region defined

by a bounding box that contains all particles. Child nodes are

defined by recursively subdividing this region along with the

contained particles. The recursion finishes when a child node

contains less than a specified number of particles. Such nodes

are referred to as “leaf nodes” and their contained particles are

referred to as a “bucket” of particles. Tree types are defined by

the strategy used to subdivide the spatial regions. For example,

in 3D simulations octrees are created by subdividing each node

into eight regions of equal volume. On the other hand, k-d

trees are created by subdividing each node along its longest

dimension into two subregions such that each of the child

nodes contains half the particles of the parent. The preferred

tree type depends on the particle distribution and application.

For example, octrees can become significantly imbalanced

in representing highly non-uniform particle distributions, but

each node always has a bounding box with an aspect ratio near

one. On the other hand kd-trees are guaranteed to be balanced,

but nodes can have very different aspect ratios.

Tree algorithms offer computational efficiencies when the

traversal of a particular node’s descendants can be replaced

by an approximation based on the properties of the node.
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evaluating local nodes before remote nodes. A second type

of traversal, called up-and-down, does a top-down traversal

iteratively from each node on the path from the leaf to the root.

This traversal is usually reserved for pruning criteria that can

change during the traversal, as with k-nearest neighbors. Users

may implement their own traversal types using the Traverser

interface, such as a priority-driven traversal for ray tracing.

The Visitor abstraction helps the user perform actions

at each step of the traversal, including telling the library

when to prune and stop traversing. Following the traditional

terminology in the field, “opening” a node during traversal

means deciding to continue the traversal underneath it. Not

opening a node means the traversal will use the summary

information attached to it instead. The user defines the boolean

function open() to decide whether to traverse the source

node’s children. If not, the library invokes node(). When

the traversal reaches a leaf, it invokes leaf(). This flow is

shown in Figure 1. ParaTreeT separates out the open and leaf

functions so that compilers can freely generate vectorized in-

structions in node() without restriction from the control flow

in leaf(). Dual-tree traversals [15] require an additional

function cell() to decide, when evaluating the interaction

of two nodes with B children, whether to open both target

and source (B2 interactions), or keep the target and open the

source (B interactions).

3) Performance with Generality: ParaTreeT is able to offer

generality with no cost to performance by leveraging C++

techniques and building on its well-designed layers. The tree

algorithms are not required to be shoe-horned into some

inefficient general structure provided by the library. Rather,

ParaTreeT exposes decisions each step of the way to help

the user tune the program according to their application’s

needs. The more complex decisions, like finding splitters to

recursively decompose the particle domain, are exposed via

abstract classes that users can implement in addition to the

prepackaged ones. The smaller decisions, like how to evaluate

the interaction of two nodes, are exposed via class templates.

Users write a class that defines a few member functions, and

then those decisions can be compiled into the traversal code it-

self. Housing the frequently called functions in class templates

eliminates the cost of virtualization. These static interfaces are

tightly crafted so that users cannot easily add inefficiencies to

the overarching tree algorithms. The program state is well-

protected through read-only semantics enforced on functions

executed in parallel to prevent the user from introducing race

conditions. The large set of static and dynamic interfaces offers

users a modular approach to development that lends itself to

customization. These techniques limit the performance loss

due to abstraction.

B. Shared-Memory Cache Model for Tree Data

Because spatial tree traversals comprise many simultaneous

singular traversals, e.g. each particle can concurrently engage

in a traversal to calculate the forces on it, a large number

of tree nodes and particles must be communicated across

processes each iteration. Caching these received remote data

reduces the total communication volume, but the best design of

this software cache remains an open problem. Past distributed

tree traversal libraries have implemented the cache as a table

of tree-node data hashed by tree-node key [6], [16]. Unfortu-

nately, hash tables do not extend well to shared memory to

take advantage of today’s wider multicore chips. Because the

software cache is constantly being updated as remote requests

are filled, its parallel accesses by threads on the process must

be thread-safe, which is a challenge for hash tables of dynamic

size. One approach is to use a lock-free, no-delete hash table.

In practice however, allocating a large enough table prior to

traversal is impractical since the number of nodes traversed

on a process is highly variable. A second approach is to

flush thread-local hash tables to a process-wide hash table by

locking. But this requires extra work, extra synchronization,

and extra space for the thread-local hash tables.

ParaTreeT introduces a new shared-memory software cache

model for the global tree that is wait-free (lock-free) and

supports parallel reads and writes. We implement our software

cache as a single tree per process, as opposed to a hash

table over a collection of pointers, leveraging the intrinsically

safe nature of the tree data structure to avoid locking. We

extend beyond prior insights that threads need only contend

on individual tree nodes, and remove contention entirely [17].

Parallel writing to the software cache can accelerate the

tree traversal step, particularly towards the end. We insert into

the cache directly so that other threads on the process can

access previously received remote data without doing extra

work to find them, i.e. as if local. Parallel cache writing

can significantly reduce the length of a communication-bound

critical path by enabling parallelism to cache insertions after

remote request receipts. This is as opposed to assigning

all cache inserts to a single thread, which is simpler than

designing thread-safe cache insertions. ParaTreeT’s shared-

memory model permits multiple simultaneous readers and

writers by using atomics with relaxed memory order load

and store operations. We reduce the critical path by assigning

remote request fill messages to the currently least busy worker

thread on the process.

1) Implementation: The software cache setup begins during

the tree build step. Pointers to the roots of the local subtrees are

inserted into a process-level hash table, which uses locks for

these inserts but not during the traversal step. This hash table is

shown in the bottom left of Figure 2, where it is used in Step 3.

Afterwards, the global root and a user-specified number of its

descendants are shared with each process. Placeholder nodes

represent remote data and are given an atomic flag indicating

if they have been requested yet. When a traversal reaches a

remote node (node 5), not yet requested, its thread sends a

request to that node’s home process (Step 0) and continues

handling other nodes. Then the requested node and a user-

specified number of its descendants, along with particles for

any leaves, are serialized and sent to the requesting process

(Step 1). The least busy worker on the requesting process

will convert this collapsed array into Node objects and wire

together the parent and child pointers (Step 2). In Step 3, it will
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struct CentroidData {

Vector3D moment;

double sum_mass;

Vector3D centroid() const {return moment / sum_mass;}

};

CentroidData() {

moment = (0, 0, 0);

sum_mass = 0;

}

CentroidData(Particle* particles, int n_particles) {

for (int i = 0; i < n_particles; i++) {}

moment += particles[i].mass * particles[i].position;

sum_mass += particles[i].mass;

}

}

CentroidData& operator+=(const Data& child_data) {

moment += child_data.moment;

sum_mass += child_data.sum_mass;

return *this;

}

Fig. 6: Example tree Data implementation that stores in each tree
node a centroid, used for computing gravitational interactions.

struct GravityVisitor {

bool open(const SpatialNode<CentroidData>& source,

SpatialNode<CentroidData>& target) {

Sphere sphere {source.data.centroid, source.data.rsq};

return Space::intersect(target.data.box, sphere);

}

void node(const SpatialNode<CentroidData& source,

SpatialNode<CentroidData>& target) {

for (int i = 0; i < target.n_particles; i++) {

auto accel = gravApprox(source, target.particles[i]);

target.applyAcceleration(i, accel);

}

}

void leaf(const SpatialNode<CentroidData>& source,

SpatialNode<CentroidData>& target) {

for (int i = 0; i < target.n_particles; i++) {

auto accel = gravExact(source, target.particles[i]);

target.applyAcceleration(i, accel);

}

}

};

Fig. 7: Example tree Visitor implementation that uses centroid dis-
tances and helper functions to compute gravitational forces between
tree nodes built on CentroidData.

tree traverser when it processes a node interaction. These codes

are used statically through templates by the application driver,

which is initialized, registered, and launched by the code in

Figure 8.

Note that except for a few simple sequential functions

encoding the numerics, and some elisions for simplicity, the

code in these figures is the entirety of the code needed to

define a full-fledged code for gravitational evolution! In total

it is only 135 lines long.

III. EVALUATION

We first focus the evaluation of our models and abstractions

on the cosmology domain. Cosmology is an exemplar domain

for several reasons. Firstly, it requires a large dynamic range

in spatial scales to go from star formation distances (sub-

parsec) to the size of the observable Universe (gigaparsecs), so

an adaptive hierarchical data structure is necessary. Similarly,

the range in timescales runs from thousands of years to the

age of the Universe. Secondly, a variety of algorithms are

used in the computation and analysis of cosmological datasets,

class GravityMain : public paratreet::Driver<CentroidData>

{

using namespace paratreet;

virtual void configure(Configuration& conf) {

conf.input_file = "...";

conf.num_iterations = 10;

conf.tree_type = TreeType::eOct;

conf.decomp_type = DecompType::eSfc;

}

virtual void traversal(int iter) {

partitions().startDown<GravityVisitor>();

}

virtual void postTraversal(int iter) {

partitions().outputParticleAccelerations();

}

};

Fig. 8: Example Barnes-Hut gravity application Driver that uses
CentroidData and GravityVisitor as class templates to perform N-
body simulations.

including gravity, k-nearest neighbors, and n-point correlation

functions. Lastly, the sheer size of these datasets demands

peak performance. A general framework that can address these

challenges is likely to be successful in many other domains.

We demonstrate ParaTreeT’s performance on three different

architectures to explore a variety of parallel configurations.

Their relevant characteristics are shown in Table I. Our work is

targeted at scalable distributed memory parallelization of tree

codes and the challenges encountered in that pursuit. Work

used to accelerate local kernels via GPU is orthogonal, and

has been addressed in past literature [9], [20], [21]. For that

reason, we have chosen CPU architectures for this evaluation.

TABLE I: Relevant characteristics of supercomputers used.

Name Cores/N CPU Type Clock Freq Comm. Layer

Summit 42 POWER9 3.1 GHz UCX

Stampede2 48 Skylake 2.1 GHz MPI

Bridges2 128 EPYC 7742 2.25 GHz Infiniband

A. Barnes-Hut Gravity

Before demonstrating the performance of our gravity traver-

sal we profile its work at a macro scale during the largest por-

tion of runtime. In Figure 9 we show the time spent in several

functions of our parallel tree traversal for Barnes-Hut gravity.

Utilization remains high until the traversals finish toward the

end of the iteration. The first step, distributing the root and a

few levels below, is the low utilization block at the beginning.

Then, local traversals can begin, which take up a large fraction

of the work because all subtrees on the process are local with

the shared-memory cache. Throughout the traversal, remote

requests are made, which are handled by cache requests and

received by cache insertions. Then, those paused traversals are

resumed and their metadata fetched in traversal resumptions,

which will kick off the actual remote traversal. At this scale of

1536 cores, ParaTreeT’s built-in load re-balancers can reduce

this simulation’s total runtime by 26%, either by mapping

measured load to the space-filling curve and redistributing it in

chunks, or by aggregating load and assigning it recursively in

3D space. Since the comparison applications have different

load re-balancing strategies available to them, an apples-to-

apples comparison is difficult. Thus load re-balancing is turned
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ParaTreeT and our Partitions-Subtrees model. Through our

commitment to delivering excellent performance, we hope

that standardization through ParaTreeT will concentrate the

scientific community’s effort on the frontier of tree-based

simulations.
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