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Herein, through tailoting the local environments, including H/D composition and
local H;0O" and H,O content, we studied the furfural reduction on Pb electrodes
under acid conditions and elucidated the pathways toward three key products:
furfuryl alcohol (FA), 2-methylfuran (MF), and hydrofuroin. By combining
isotopic labeling and incorporation studies, we revealed that the source of protons (H.O and HsO") plays a critical role in the
hydrogenation and hydrogenolysis pathways toward FA and MF, respectively. In particular, the product-selective kinetic isotopic
effect of H/D and the sutface-property-dependent hydrogenation/deuteration pathway strongly impacted the generation of FA but

Pb electrode

not MF, owing to their different rate-determining steps. Electrokinetic studies further suggested Langmuir—Hinshelwood and Eley—
Rideal pathways in the formation of FA and MF, respectively. Through modifying the double layer by cations with large radii, we
further correlated the product selectivity (FA and MF) with interfacial environments (local H;O™ and H,O contents, interfacial
electric field, and differential capacitances). Finally, experimental and computational investigations suggested competitive pathways
toward hydrofuroin and FA: hydrofuroin is favorably produced in the electrolyte through the self-coupling of ketyl radicals, which
are formed from outer-sphere, single-electron transfer, while FA is generated from hydrogenation of the adsorbed furfural/ketyl
radical on the electrode surface.
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Electrocatalytic hydrogenation (ECH) provides a sustainable
and environmentally friendly approach to produce chemicals
and biofuels by operating under mild conditions with “clean”
electrons as the reducing agents, instead of dealing with fossil-
derived H, at elevated temperature/pressure.'=> ECH of
biomass-derived compounds, such as furfural and 5-hydrox-
ymethylfurfural (HMF), is regarded as an attractive approach
to produce valuable chemicals and fuels.*> Specifically, furfural
as a platform aldehyde chemical has already exceeded a
productivity of 400 ktons per year.! Its hydrogenation
products, furfuryl alcohol (FA) and 2-methylfuran (MF),
have wide applications in polymer and biofuel industries.®” Its
C—C bond dimerization product, hydrofuroin, holds great
promise to produce fuel precursors.??

In the past few years, research efforts have been dedicated to
exploring electrocatalysts and/or processes to improve the
selectivity toward a target product and increase its energy
efficiency.”~!3 However, mechanistic understanding of electro-
chemistry in aldehyde transformation, through ECH of furfural
as a model reaction, remains insufficient. Our previous study
has distinguished the ECH pathway toward alcohol/alkyl (i.c.,
FA/MF) and the direct outet-sphere pathway toward dimeric
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(i.e., hydrofuroin) products on Cu electrodes'* and highlighted
the vital role of adsorption of hydrogen in their production
rates and selectivity. However, it still lacks molecular-level
mechanistic information on the changes in product selectivity
at the electrode/electrolyte interface with sophisticated
chemical and physical properties. Specific questions remaining
unclear so far include: Are both furfural and hydrogen
chemically bonded to the catalyst surface during the formation
of FA and MF? What is the crucial difference governing the
hydrogenation and hydrogenolysis pathways toward these two
products, and how do the local chemical and physical
environments influence the reductive pathways? In addition,
most studies have been empirical and given inconsistent
explanations on the formation of hydrofuroin, which needs to
be cleatly elucidated. Some works suggested that hydrofuroin
is formed via electron tunneling'+!®> with neither reactant nor
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product adsorbed'® and thus is independent of the types of
electrodes and insensitive to their surface properties, while
other studies contended that hydrofuroin and FA might share a
common intermediateqgketyl radicals,”!” and the formation of
hydrofuroin is a complete surface reaction through C—C
coupling of these radical adsorbates on the electrode.'®
However, no direct experimental or theoretical evidence has
yet been provided. Therefore, the true reduction pathway
toward hydrofuroin, whether it is a complete surface reaction, a
fully outer-sphere (nonsurface) step, or a combined process, is
still under debate. The relation between the formation of
hydrofuroin and other products (i.e., FA) has also been largely
uninvestigated. All of these questions have motivated a deeper
study in this work to systematically understand the reaction
mechanisms using furfural as a model compound.

Since understanding the mechanisms of ECH of furfural (a
C5 organic compound) is challenging due to numerous
sensitive and influential selectivity-determining factors and
multiple transformation pathways, as well as the complexity of
the electrode/electrolyte interface,’” combining scientific
methods and research tools is needed to examine the reaction
mechanisms, rather than through investigating a single chosen
parameter (e.g., half-cell potentials, electrolyte pH). For
instance, incorporating isotopes into unsaturated bonds is
able to help acquire new understandings of electrochemical
reactions,?’ such as CO; reduction,?' ~24 water oxidation,”> O
reduction,’ and N reduction.?’ In addition, through tailoring
the electrode double layer and varying its chemical or physical
properties, such as thickness and differential capacitance,?®*
local pH,*"—3? interfacial electric field,?*** or binding of certain
intermediate species,®* the reaction activity and product
selectivity are altered, and therefore, the mechanistic
information at the electrode—electrolyte interface could be
obtained. Howevet, these methods/techniques were rarely
reported to elucidate the electrochemical reaction mechanisms
of biomass-derived molecules.

Herein, we seck to unravel sophisticated electrochemistry
associated with furfural reduction under acidic conditions by
tailoring the interfacial environments. Electrochemical studies
were conducted on Pb electrodes based on their observed
potential-dependent pathways toward four key products: FA,
MF, hydrofuroin (Scheme 1), and H; (produced from

Scheme 1. Key Products from Electroreduction of Furfural
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hydrogen evolution reaction, HER). H/D kinetic isotopic
effect (KIE) and isotopic incorporation studies were used first
to distinguish different roles of protons (from H;O" and H,O)
in the rate-determining step (RDS) for the formation of FA
and MF. Specifically, the pathway toward FA showed a strong
KIE in its production rate, as well as incorporation-selective
and surface-property-dependent H/D additions. In contrast,
the formation of MF did not show such notable H/D
preferences. Combining with electrokinetic studies, we found
that FA is formed through surface reactions following the

Langmuir—Hinshelwood (L—H) mechanism, while MF is
generated via an interfacial Eley—Rideal (E—R) route.
Furthermore, through tailoring the electrochemical double
layer using a series of quaternary alkyl ammonium cations, the
relationship between the microenvironments at the interfacial
regions and the product selectivity was established. Finally,
electron paramagnetic resonance (EPR) spectroscopy and
density functional theory (DFT) calculations suggested that
hydrofuroin is formed via the radical—radical self-coupling in
the solution, in which the radical is likely generated from an
outer-sphere process. The acquired mechanistic insights and
methods from this work on electrochemical reduction of the
aldehyde group in furfural to alcohol, alkyl, and dimer species
could be extended to other organic compounds with carbonyl
groups, such as 5-hydromethylfurfural (HMF) and benzalde-
hyde.

I RESULTS AND DISCUSSION

Potential-Dependent Selectivity on Pb with Product-
Selective KIE. Pb eclectrodes are known with large binding
energy differences among different adsorbates (including
reactants, intermediates, products), particularly aldehyde and
hydrogen.!*!® This suggested that a large overpotential
difference is required to perform ECH and HER, with
potential-dependent selectivity to the major products (i.e.,
FA, MF, hydrofuroin, and Hy), which can help decouple the
key parameters for separately investigating reaction pathways.
We first performed linear sweep voltammetry (LSV) in the
electrolyte (0.5 M HzSOs4 in 1:3 (v/v) CH3CN/H,O
cosolvent) with and without furfural. As shown in Figure 1a,
with the addition of 50 mM furfural (blue curve), the onset
potential (defined as the potential at —1 mA cm ™) on Pb foil
was positively shifted around 150 mV to —0.55 Vrug (Vrue/V
vs RHE, hereinafter), as compared to the result without
furfural (red curve). In the potential region of —0.75 to —0.85
Vrue on the blue curve, a flat current density was observed,
suggesting that greater adsorption energy was required to
adsorb certain furanic intermediates. At potentials <—0.85
VrHuE, the current density of HER (red curve) outperformed
that of furfural reduction (blue curve), indicating that the
addition of furfural suppresses the activities of both ECH and
HER. These results suggested the competitive adsorption
between aldehyde and H on the Pb surface, particulatly at hich
current densities with gradually saturated active sites. A
Nyquist plot obtained from EIS further supported this
competing adsorption relation on the Pb surface (Figure S2).
Since large binding energy differences among different
adsorbates and various pathways exist on the Pb electrode, a
potential-dependent selectivity toward the major products (FA,
MF, hydrofuroin, and Hj) would be expected. Indeed, 1 h
chronoamperometry (CA) tests (Figure 1b) clearly showed
hydrofuroin as the dominant product (~30% FE) in the less
negative potential region from —0.55 to —0.85 Vgpg, with
small amounts of FA and MF (FE: <5%). In contrast, at
potentials more negative than —1.00 Vrug, an opposite product
distribution was observed. In particular, the formation of MF,
FA, and H; dominated at —1.20 Vgpg, resulting in their FE of
18.5, 29.0, and 15.9%, respectively, with hydrofuroin
minimized to 7.1%. The increase in FE of FA and MF is in
line with the increase of H» when negatively shifting the
potential from —0.65 Vgug, which agreed well with our prior
studies that ECH and HER on Cu electrodes shared the
common intermediate Hyqs, and its high coverage is necessary
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Figure 1. ECH of furfural under acid conditions on Pb electrodes. (a) LSV curves on Pb foil with (blue curve) or without (red curve) 50 mM
furfural. (b) Faradaic efficiency of ECH at different applied potentials for 1 h electrolysis with 20 mM furfural. Furfural was dissolved in 1:3 (v/v)
CH3CN/H,O cosolvent with 0.5 M HzSO4. (c) LSV cutves on Pb foil in four solutions with varied compositions. (d) Mass spectra of MF and FA
produced from 1 h electrolysis on Pb foil at —1.20 Vrur in H-only and D-only electrolytes. (¢) Production rate of FA and MF for 1 h electrolysis on
Pb foil at —1.20 Vypg in three electrolytes with varying H/D compositions. H-only, D-only, and 1H1D electrolyte represent 20 mM furfural in 1:3
(v/v) CH3CN/HO with 0.5 M H,SOs, in 1:3 (v/v) CD3CN/D;O with 0.5 M D,SOs, and their mixtures with a volumetric ratio of 1:1,
respectively. The geometric area of the electrode was 6 cm? for —0.55 and —0.65 Vrup and 2 cm? for all other conditions.

for both ECH and HER products.'* Note that the unbalanced
charge from CA measurements likely resulted from side
reactions to large molecular oligomers (e.g., humins) or
decomposition products during electrolysis in the acidic
electrolyte,'®3¢ and our observed charge balance is consistent
with previous studies under similar conditions.!*37 In
addition, furfural reduction to FA and MF on Pb electrodes
followed a parallel pathway, supported by the negligible MF
formation through the electrolysis of FA at —1.20 Vgpg for 3h
(Figure S3), which is in line with our previous work.!* This
indicated that once FA (from furfural reduction) is desorbed
from the surface, it does not undergo further reduction. In
other words, FA is not an intermediate to MF.

The impact of water on furfural reduction was first analyzed
by LSV by considering alternative CH3CN-based solutions
with varied proton contents. Figure Ic shows that a
considerable current density was only observed in the presence
of sufficient H,O. The m/z signal (Figure 1d) from gas
chromatography—mass spectrometry (GC-MS) in the range of
80 to 84 and 95 to 99 corresponds to the fragment pattern of
MF and FA, respectively. Through 1 h electrolysis of 20 mM
furfural at —1.20 Vrpg, when the electrolyte was switched from
H-only [ie, 05 M HySO4 in 1:3 (v/v) CH;CN/HO
cosolvent, hereinafter] to D-only [ie., 0.5 M D,SO4 in 1:3
(v/v) CD3CN/D;O cosolvent, heteinafter], the predominant
ion peaks of FA and MF all shifted to highet m/z values,
indicating that the concentration of protons is critical to the
furfural reduction. Control expetiments under various H/D

14074

compositions of electrolytes have excluded the proton sources
from CH3CN (Tables S1—S5). It is worth noting that it is hard
to experimentally differentiate proton sources from water or
acid using isotopes because of the fast equilibrium between
acid and water protons. Nuclear magnetic resonance (NMR)
results agreed well with GC-MS to exclude CH3CN as the
proton soutce; meanwhile, it identified the H/D positions in
the products (details shown in Figures S5—513). Based on the
"H-NMR test results in Figures S5—S12, FA is formed by
adding one H/D to the hydroxyl group and the other to the
carbonyl carbon. MF is produced by adding both H/D to the
alkyl group followed by C-O scission to remove one H;O/D,0O
molecule (Figure S13).

Besides tracking proton sources from isotopic labeling, the
H/D kinetic isotope effect (KIE) study is a vital tool to
investigate reaction mechanisms when there is a proton or H
involved in the bond breaking via the change of the zero-point
energy of the ground vibrational state.’ Herein, we conducted
1 h CA measurements in the electrolyte of H-only, D-only, and
H-D mixture with a volumetric ratio of 1:1 (denoted as 1H1D,
hereinafter) on Pb foil. We kept the same acidity (the same
concentration of 0.5 M HzSO4 or D>SOy) but with varying H/
D ratios in the electrolytes. The LSV and current density—time
profiles (Figure S14a) showed a decreased reaction rate when
the electrolyte was gradually deuterated, suggesting a decrease
in the furfural reduction activity. The LSV profiles of HER
(Figure S14c) showed a similar decrease trend as the gradual
change of electrolyte composition, which indicated that ECH
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for 1 h. The electrolyte was prepared in 0.5 M HzSO4 with 1:3 (v/v) CH;CN/H2O cosolvent and 20 mM furfural. 3H1D, 1H1D, and 3D1H
electrolytes represent the volumettic ratios between hydrogenated and deuterated solutions ate 3:1, 1:1, and 1:3, tespectively. (c) H/D distribution

in the products and their theoretical values on different Pb-based electrodes. The electrolysis was performed in TH1D electrolyte at

—1.20 VRHE fOt

1 h. The inset showed the SEM images of these four Pb-based electrodes.

and HER shared the common Volmer steps. Through
analyzing product distributions for furfural reduction, as
shown in Figure le, the production rate of FA was gradually
decreased from 70.8 to 26.5 ymol h™' (~2.7 times lower) by
continuously increasing the ratio of D in the electrolyte; in
contrast, MF was maintained from 38.5 to 45.0 pmolh™
(~1.2 times higher). That is, with a controlled acidity, a
product-selective KIE was only observed in the formation of
FA: A more favorable pathway toward FA was obtained in the
electrolyte with a higher ratio of H/D, whereas the H/D
isotope effect did not influence furfural-to-MF conversion.
This product-selective KIE suggests ossibl different rolesof

H,O d h d MF
przodl?cnt?ozcsl lﬁq(l CF}&I ?ognl]r:}lttio% nvo Ve&A the proton or

hydrogen transfer in the RDS, while the transfer of protons
in the bulk electrolyte was not a part of the RDS in the
hydrogenolysis pathway for MF generation.
Hydrogen/Deuterium Isotopic Incorporations for

Distinguishing FA and MF Pathways. If the above-
observed product-selective KIE is due to transport effects,
e.g., lower flux of deuterium (relative to hydrogen) from the
bulk solution to the Pb electrode surface, or lower surface
diffusion of deuterium to the adjacent regions of adsorbed
furfural, isotopic incorporation can provide molecular-level
information on how H/D atoms ate selectively added to the
unsaturated bonds without dealing with these transport issues.

Furfural reduction on Pb foil was conducted at —1.20 Vyyg for

14075

1 h with varying H/D ratios of 1:3, 1:1, and 3:1, denoted as
1H3D, 1HI1D, and 3HI1D, respectively. The isotope
composition, specifically the fraction of D (f p) and H (f 1)
in the products, was calculated by solving the following two
binary linear equations quantitatively obtained from GC-MS,
with details shown in Supporting information note 2.

Su= X S + £, X Spa

Sb=fH>< SHb-I-fDX Sob

whete S, and Sy, tepresent the relative abundance of MS signals
oyl 2 e o e and B respesdvly, Yl
abundance of products at the same m/z ratios after electrolysis
of H-only and D-only electrolyte with 20 mM furfural,
respectively.

As shown in Figure 2a, the fi1 in FA is 0.81, 0.62, and 0.33 in
the electrolyte of 3H1D, 1HI1D, and 3D1H, respectively,
consistently higher than the theoretical values of 0.75, 0.50,
and 0.25. In contrast, the respective f 1 values in MF, i.e., 0.76,
0.26, and 0.51, are close to the correspondingly theoretical
values. Regatdless of electrolyte pH (H2SO4/D2SO4 concen-
tration from 0.25 to 0.75 M, Figure S152) and cathodic
potentials (from —1.10 to —1.30 Vrug, Figure S15b), the large
difference of f u between FA and MF and the consistently
higher f 1 in FA than theoretical values (i.e., 0.5, in the 1HID
electrolyte) are maintained. A series of control experiments
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Figure 3. Electrokinetic studies for ECH of furfural on Pb foil. (a) Dependence of partial current density of FA on H2O concentration. (b)
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0.5 M, different ratios of HoSO4/NaxSOy4 were used. Dependence of partial current densities of (c) FA and (d) MF on furfural concentration. The
electrolysis was performed on Pb foil at —1.20 Vspg with the applied charge of 60 C.

have excluded the H—D exchange between reactant/products
and solvents (water and acetonitrile) and acid-catalyzed
Cannizzaro-type disproportionation reactions (as no furoic
acid was detected) during the 1 h tests (Supporting
information note 2).

Further analysis of the H/D distribution in MF and FA was
obtained by substitution of fy and fp to binomial distribution
equations, with details shown in Supporting information note
2. Figure 2b shows that the H/D distribution in MF
approached the theoretical values of 0.25, 0.50, and 0.25 for
(H, H), (H, D), and (D, D) products, respectively. Owing to
the large f 11 in FA, H/D distributions in FA appeared largely
deviated from that in MF and the corresponding theoretical
values. As such, a higher fraction of (H, H) product (0.38) and
a lower fraction of (D, D) product (0.14) were observed, as
compared to their theoretical value of 0.25. Similar large
deviations were also observed in the electrolytes with other H/
D ratios (i.e., 3H1D, 3D1H, Figure S16).

Then, we modified the surface of Pb electrodes and carried
outisotopic labeling tests on them. Four Pb-based electrodes
were prepared from different methods, denoted as follows: (i)
drop-coated micrometer-sized Pb, (ii) electrodeposited Pb,
and oxide-derived Pb prepared (iii) in strong acid (OD-Pb-1)
and (iv) in base (OD-Pb-2). Various characterizations,
including SEM images, double-layer capacitance, and XRD,
confirmed their differences in morphologies, active surface
areas, and Pb phases, respectively (see igures S17—20 for
details). The isotopic experiments were then conducted in the
1H1D electrolyte at —1.20 Vrug for 1 h. As shown in Figure
2c, a large difference in fu in FA, ranging from 0.34 to 0.59,
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was observed on these four Pb electrodes, significantly
deviating from the constant value of 0.62 on Pb foil at the
same test condition. In contrast, the f close to the theoretical
value (i.e., ~0.5) was kept nearly constant in MF on all four
Pb-based electrodes, consisting with the value on Pb foil.

Based on isotopic incorporation results on different Pb-
based electrodes, we proposed that the H/D disttibution
difference in FA and MF could be attributed to their different
RDS for H/D additions. For example, the RDS for FA
formations could be the proton/deutetium reduction to
adsorbed H/D on the surface; the higher f i in FA is because
the adsorption of H is more favored than D at identical
potential and vice versa, resulting from their different binding
enetgy ot kinetic isotopic effects of H/D.!” These different
preferences for H/D bindings depend on the structures and/or
the electronic properties of the electrode surface. In contrast,
the formation of MF does not exhibit any KIE since proton
transfer followed by the hydrogenolysis of the C—O bond did
not participate in the RDS. As such, when the ratio of H in the
electrolyte is fixed, its fraction in the product MF should
remain constant (as we observed experimentally). Despite how
catalyst structures govern the selective formation of FA is
worth further studies, isotopic results suggested that protons
indeed play different roles in the formation of FA and MF,
which are unlikely to share the same selectivity-determining
intermediates. The following section further investigated
detailed differences between furfural reductive pathways
toward FA and MF.

Electrokinetics in Elucidating FA and MF Pathways.
Electrokinetic studies were employed to further study the
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critical role of protons in the reduction pathways toward FA
and MF. Electrokinetic fittings were all determined from CA at
—1.20 V at the SHE scale (—1.20 Vsug) with the same amount
of charge (i.e., 60 C) supplied. The reaction order dependence
was obtained by fitting the partial current density against the
concentration of each substrate on a log—log scale.

As shown in Figure 3a, by varying the volume percentage of
H,O in the cosolvent from 25 to 87.5% (i.e., the molar
concentration of HyO in the range of 13.6—48.6 M), it is
interesting to observe a slope of 1.09, suggesting a first-order
dependence of the furfural-to-FA reaction and emphasizing
that the H2O content is critical to produce FA. In the same
range, a negative reaction order (i.e., —0.28, Figure S21a) was
observed for the furfural-to-MF reaction, suggesting that MF is
suppressed with increased H2O content, which could be due to
the increased FA production occupied some of the active sites
that were expected to be used for MF. It is noted that the
solvent CH3CN has been confirmed nonreactive to provide the
proton source for ECH of furfural in our conditions, so the
water content can be adjusted by changing the cosolvent ratio.
In comparison, the furfural-to-MF reaction is highly dependent
on the acidity of the electrolyte. Figure 3b shows a reaction
order of 0.91 via adjusting the H30" concentration from 0.02
to 1 M. In contrast, a declining tendency to FA (i.e., reaction
order of —0.32, Figure S21b) was obtained. That is, in the pH
range of 0—1.7, an opposite trend of FA and MF was observed.
Apparently, the pathway toward MF is energetically more
favorable in the more acidic electrolyte, which suggested that
furfural would be protonated, or hydronium is involved in the
MF formation pathway because Bronsted or Lewis acids are
well known to interact with oxygen moieties in the C—O
bonds of many substrates to lower their activation barriers for
subsequent C—O scission.?®~4 The slightly decreased partial
current density toward FA indicated that hydronium is not
directly involved in the reaction pathway until after the rate-
determining step (RDS).

In a similar way, proton-involved C—O cleavage can be
extended to other furan-based aldehyde compounds, i.e., HMF
and 5-methylfurfural (5-MF), in the strongly acidic solution
(0.5 M H2S0O4). The hydrogenolysis of HMF was observed on
the Ag electrode (Figure S22) that led to the formation of 5-
methylfurfural (5-MF) and 2,5-dimethylfuran (DMF). With 5-
MF as the reactant under identical electrolytic conditions,
DMF was also obtained as a dominant product. In addition,
the H3;O" concentration-dependent hydrogenolysis rates for
HMF and 5-MF are maintained and agreed with the furfural-
to-MF reaction (Figure S22). Similar to the relationship
between FA and MF from furfural reduction, the opposite
trend between alcohol product 2,5-bis(hydroxymethyl)furan
(BHMF) and alkyl product DMF was also observed from
HMF electroreduction by varying H3O" concentration.

We further decreased H3;O™" concentration and performed
LSV and CA tests for ECH of furfural in pH 3—11 buffer

pebirey, digura Bedkmes guRssdr PHduvRsedRclangsE

more negative potentials). These electrokinetic results

FA and MF formation pathways. The different pH dependence
between FA and MF formations in the SHE scales suggested

separately studied the different roles of H>O and H;O%in
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with the adsorbed furfural. In comparison, the highly selective
production of FA in solutions with sufficient H>O is consistent
with the product-selective KIE, which suggested a different
RDS for FA generation, such as the dissociation of H>O for the
following adsorption of H on the surface.

Based on the above understanding of the role of protons
involved in the FA and MF formation pathways, it enables the
optimization of the electrolyte composition, achieving the FA
selectivity of 89% without MF production on Pb foil in pH 7
electrolyte (Figure S23). If we substitute Pb foil with a high-
surface-area  OD-Pb-2 electrode (Figure S24), the FA
selectivity can be further increased to >99% with the same
electrolyte composition. It is worth noting that the FE of FA
and H» consistently increased by negatively shifting the
cathodic potentials, indicating that ECH and HER shared
the same Volmer step.

To further test how H;O and H;O" are involved in their
distinct reduction pathways, the reaction order dependence of
FA and MF on furfural concentration was analyzed. When we
varied furfural concentration in a wide range (Figure 3c), the
ECH rate to FA initially exhibited a reaction order of 0.78 in its
lower concentrations (from 0.02 to 0.1 M), followed by a
slightly negative order at high concentrations (>0.1 M). This
result suggests that the furfural or H at their high coverage (at
strongly negative potentials lower than —1.20 Vsyg) might
compete for the active sites. In contrast, furfural-to-MF
conversion (Figure 3d) in the same two regions followed
positive reaction orders (i.c., 0.93 and 0.31). We derived rate
expressions for possible reaction mechanisms and related them
to the kinetic results (detailed derivations are shown in the
Supporting information note 3).*! The switch of reaction order
from positive to negative for the furfural-to-FA reaction
suggests an L—H mechanism with competitive adsorption of
furfural and H. In comparison, both positive orders for the
furfural-to-MF reaction in these two concentration regions
further suggested an E—R mechanism, which requires the
adsorbed furfural to couple with protons at the near-surface
electrolyte. That is, under acidic conditions and strongly
negative potentials, the E—R mechanism suggested that the
kinetics for MF formation is largely limited by furfural, not H
coverage on the surface.!=# A simplified scheme is described
in Figure S25 to distinguish these two pathways. It should note
that the reaction order dropped to 0.31 (not being kept at 1)
for MF in the high furfural concentration region may be due to
the saturation of active sites for furfural adsorption (internal
mass transport limitation), the diffusion limitation of protons
to the near-surface electrolyte (external mass transfer
limitation), or not all four protons participated into the E—R
route for MF formation.

Tafel slopes (Figure S21c,d) of 160 (for FA) and 175 (for
MF) mV dec”' corresponded to an empirical transfer
coefficient [a@ = 2.303RT/F X d log(j)/dE] of 0.37 and 0.34,
respectively, strongly suggesting that their kinetics is limited by
dondaitithyongsslsetip e eive hss g slaraalipalc fimdiss
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Figure 4. Tailoring the electrochemical double layer of Pb electrode by quaternary alkyl ammonium cations. (a) Faradaic efficiency (left y-axis) and
passed charges (right y-axis) and (b) double-layer capacitance of ECH with different types and concentrations of quaternary alkyl ammonium
cations. The inset in panel (a) shows the chemical structure of quaternary alkyl ammonium cations of methylyN+ (C4), ethylyN+ (C8), propylsN+
(C12), and butylyN+ (C16). The tick labels on the x-axis in panels (a) and (b) showed vatious types of cations from C4 to C16, and the values in
the bracket are their concentrations. The inset in panel (b) shows the equivalent circuit of the double layer and the formula of double-layer
capacitance. (c) Proposed intetrfacial structure changes after being modified by cationic surfactants at the electrode/electrolyte double layer. The
half-hour electrolysis and EIS were performed on Pb foil (2 cm?) at —1.20 Viryp.

concentration of corresponding substrates. It is noteworthy
that our kinetic fittings are unlikely to be limited by the
external mass transport of furfural for its surface adsorption*
because excessive furfural was used in the electrolyte than the
estimated saturated surface coverage of furfural (Supporting
information note 3), and relatively low furfural conversions
(<50%) were obtained in all measutements. These above
kinetic differences agreed well with the hypothesis that was
proposed from the isotopic studies and supported the possible
different reaction pathways for FA and MF.

In summary of the electrokinetic studies, the furfural-to-FA
conversion followed an L—H pathway, which required the
adsorbed furfural to couple with the adsorbed H. The RDS in
this pathway is the proton-coupled electron transfer (PCET)
step. In contrast, the furfural-to-MF conversion followed an E—
R pathway, with adsorbed furfural directly coupled with the
adjacent protons in the electrolyte, which required strongly
acidic conditions for C—O scission. Its formation included the
RDS of first-electron transfer (ET) followed by the direct
proton transfer.

Tailoring the Electrode—Electrolyte Interface with
Cations and Correlating with Microenvironments. To
further investigate the above-observed different roles of H,O
and H;O" at the interfacial regions, we tailored the
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microenvironments using quaternary alkyl ammonium cations.
These cationic species with their tunable hydrophobic alkyl
chains occupy the negatively charged electrode interface
(either randomly or regularly) within the outer Helmholtz
plane (OHP) due to electrostatic attraction,**> thus altering
the electron-transfer dynamics via concurrently modified
interfacial enviroments,* including local chemical (e.g., local
pH and H>O) and physical (e.g., capacitance and electric filed)
properties. Herein, we used a series of quaternary alkyl
ammonium cations with symmetric carbon chains, namely,
methyLN* (C4), ethylN™ (C8), propyLN® (C12), and
butylyN™ (C16). These cationic surfactants can systematically
manipulate interfacial properties, benefiting from their tunable
radius with varying alkyl chain lengths,”® minimized
interactions with reactants/products,?*#” and excellent
stability without structure changes under electrolysis con-
ditions.>> The restructuring of local environments was
monitored through electrochemical characterizations (i.e., EIS)
combined with mathematical modeling.

We conducted half-hour electrolysis at —1.20 Vgpg in the
presence of cationic surfactants with varied chain lengths (from
C4 to C16, Figure 4a region 2) and cationic concentrations
(from 50 to 1000 mM, Figure 4a region 3) in the furfural
containing electrolytes. The passed charges (right y-axis) were

https://doi.org/10.1021/acscatal.2c03163
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continuously decreased from 58.0 to 10.8C in the three regions
of Figure 4a, which can be attributed to the site-blocking
effects. That is, the presence of cationic surfactants in the
electrolyte hindered the external mass transport of furfural and
protons to the electrode surface for their subsequent
adsorption. Interestingly, the FE of FA gradually increased
from 14.2 to 25.5% in regions 1 and 2, followed by a
continuous decline to 5.3% in region 3. In contrast, the FE of
MF constantly dropped from 14.7 to 0.7% in regions 1 and 2.
By further increasing the C16 concentration in region 3, MF
was no longer produced. Over the whole regions, the FE of H
steadily decreased from 27.5 t0 6.8%.

We then probed local ion distributions by EIS to
quantitively relate product distribution to the modified
electrode/electrolyte intetface. EIS was cartied out at the
same potential of —1.20 Vgur and other conditions to keep
identical to the CA tests (Figure 4b). Double-layer capacitance
(.e., Ca) represents a quantitative parameter to probe any
changes at the interface. Interestingly, the trend of Cg is
consistent with that of FE of FA, showing an initial downward
trend (regions 1 and 2) followed by an upward trend (region
3), with a minimum value of 32.53 UF c¢m™2 obtained at 50
mM C16-containing electrolytes. We then related the product
distribution to the local concentration of H,O and H;O™ at the
electrode/electrolyte interface based on the formula of Cg
(inset of Figure 4b). As shown in Figure 4c, the decreased Ca
in the presence of cationic surfactants was due to the lowered
diclectric constant (€) resulting from their organic hydro-
phobic chains, as compared to the background ions in the
aqueous electrolyte (region 1).>%*” By further increasing the
chain length from C4 to C16 in region 2, a continuous
decrease in Cq was observed as a tresult of the increased
double-layer distance (d). This is because the cations with
gradually enlarged molecular size arrange at the negatively
biased electrode interface and replace positively charged H;O"
ions (thereby increasing local pH) with smaller size. As such, a
sharp decrease in FE of MF was observed in region 2,
highlighting the role of interfacial H3O" in the furfural-to-MF
pathway. Finally, when further increasing the concentration of
C16 (region 3), a more compact cationic layer with a
subsequently elevated Cq is obsetved. From the Helmholtz
model and Gouy—Chapman theory, as the electrolyte becomes
more concentrated, there would be a more compressed diffuse
layer (decreased d) and a consequent increase in capacitance.*s
Therefore, the intensively organized, large-sized cations with
organic hydrophobic chains and high concentrations created a
compact hydrophobic layer at the interface,?® leading to the
displaced and decreased local H>O content. The disrupted
interfacial water led to a gradual decrease in FE of FA in region
3, agreeing well with our expectations that H>O is critical in the
furfural-to-FA pathway. It also suggested that the formation of
FA requires sufficient adsorbed H that sources from neatby
water for the generation of FA through an L—H pathway. The
unaffected FE of hydrofuoin in regions 1—2 and a gradual
increase in its FE in region 3 can be attributed to the outer-
sphere feature of hydrofuroin formation, which is independent
of the inner sphere route for FA and MF generations. As a
general rule of thumb, double-layer capacitance is largely
independent on the nature of the electrode surface and the
type of ions in solution.*® Some control experiments were
performed to exclude other possible interferences, including
surface morphology (Figure S26a,b), roughnessof the

electrode (Figure S26¢,e), and cationic structures and anion
types of those surfactants (Figure S27).

We further quantitively estimated local pH changes that tune
selectivity. The FE of product as a function of H;O"
concentration (bulk pH) without cationic surfactants was
first examined by half-hour electrolysis at —1.20 Vrug. The
electrolyte was kept at a constant ionic strength (total
concentration of H3;O" and Na* of 0.5 M) with varied bulk
pH by adjusting the relative ratio of H3O" and Na". As shown
in Figure 5a, a systematic decrease in the percentage of MF
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Figure 5. Faradaic efficiency (FE) percentage of MEF/(MF + FA) at
different pHs in estimating local pH and its correlation with product
selectivity through tailoring the double layer. The results shown in
orange dots and the black line were performed at the electrolytes
without cationic sutfactants. To adjust electrolyte pH while
maintaining a constant ionic strength at 0.5 M, we used different
ratios of H,SO4/NaySOy. The four dots on the black curve with
different colors are the FE percentage for four cationic surfactant-
containing electrolytes, calculated from Figure 4a region 2. 50 mM
cationic surfactants were added to the electrolyte with 0.5 M H,SO4
and 1:3 (v/v) CH3CN/H;O as cosolvent (H—only electrolyte). ApH
is calculated from the pH change as compared to the electrolysis
results with or without cationic surfactants. Electrolysis was
conducted on Pb foil for 0.5 h at —1.20 Vyyug.

[MF%, defined as the FE percentage of MF/(MF+FA) in %
was observed with the increase in bulk pH. The corresponding
FE—pH curve shows that MF% decreased exponentially from
55.50 to 2.11 as the bulk pH increased from ~0 to 1.7 (H;O"
concentration decreasing from 0.5 to 0.02 M), in agreement
with the pH sensitivity in furfural-to-MF conversion. If we
assume the addition of those cations displaced local positively
charged H;O" %4950 which mainly contributed to the changes
in MF selectivity, we can then estimate the local pH change
(ApH) in the presence of cationic surfactants based on the
varied MF%. With the addition of C4-C16 to the pH 0
electrolyte (the experimentally tested bulk pH of around 0
maintained), the local ApH was calculated to be varied from
0.79—1.67. This means that at the same bulk pH of 0, after
local pH elevation of 1.67 (Figure 5 purple dot), the MF% has
drastically decreased from 55.50% to only 2.56% (over 20
times decrease), highlighting the dramatic influence of
interfacial pH on the MF formation pathway. Additionally,
based on the local ApH estimation, we further used a model
based on the Gouy—Chapman—Stern (GCS) theory and built
the local ApH—electtic field— product selectivity relationships
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—0.79 Vrue. The electrolysis was performed on Pb foil in pH 5 buffer solution with 20 mM futfural dissolved in 1:3 (v/v)
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—0.79 and —1.20 Vrug, respectively.

gdfésiiled in the Supporting information note 4 and Figure

Taken all together, through tailoring the double layer, we
have related product selectivity to local pH or interfacial
electric field and acquired deeper insights into the influence of
local proton concentration at the electrode—electrolyte
interface, instead of that in the bulk electrolyte regions.
These results further suggested that microenvironments (e.g.,
H;0" and H,O content) are indeed critical in the ECH
pathways toward MF and FA.

Mechanism of Hydrofuroin Formation. Hydrofuroin as
a dimeric product was suggested to be generated from two
possible processes in previous works: a complete surface
reaction of self-coupling of two adsorbed ketyl radicals!® and a
fully outer-sphere route in the solution phase that is
independent of the surface properties.!* The ketyl radicals
were identified as the critical intermediate in either pathway,
but no direct evidence has indicated its generation on the
surface or in the solution so far. Here, we combined
experimental and computational tools to elucidate its detailed
formation mechanism.

We implemented EPR spectroscopy and oxygen inhibition
reaction (OIR) for capturing free radicals (i.e., furan radicals)
in the electrolyte. Because of the transient presence of free
radicals in the electrolyte, 5,5-dimethyl-1-pyrroline N-oxide
(DMPO) was added to react with free radicals to form spin
adducts that can be detected by EPR.>! To increase EPR
intensity, the electrolysis was conducted in a pH 5 buffer
solution at —0.79 Vgug for 1 h to ensure a high hydrofuroin
selectivity (Figure S23). DMPO was added to the electrolyte
after 5 min of the reaction was initiated. The obtained EPR
signal with six peaks agreed well with the simulated spectra of
the desired spin adduct "‘DMPO—CsH;50; (Figure 6a), which
indeed suggested the existence of furan radicals in the

electrolyte during furfural reduction. The addmon of DMPO
was believed not to alter the dynamlcs osz R radical

formation routes, as a similar approach of detectmg free
radicals has been adopted in other electrochemical trans-
formations, such as nitrate reduction®® and chain reactions
among furan derivatives.>® Furthermore, OIR experiments
using O3 provide another proof in the presence of free radicals
in the electrolyte. Molecular O with two unpaired electronsin
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its separate orbitals can react Wlth the free radicals (C H O )
to form peroxyl radicals (CH O °
and thus, the self—

combination of two CsHsO»" in the formation of dimeric
hydrofuroin would be inhibited. Indeed, Figure 6b shows that
the production rate of hydrofuroin appreciably decreased from
94.3 + 1.2 to 44.1 + 0.6 ymole h™', after changing the purging
gas from Ar to O, (100 mI. min~") during 1 h electrolysis at
pH 5. It should be noted that we have detected the O,
concentration of 0.92 mM by the Winkler method,*' which
was sufficient to combine with free radicals in the electrolyte,
with detailed quantification and analysis shown in Supporting
Information methods. These results suggested that the free
radicals were indeed formed and diffused to the bulk
electrolyte for their transient presence and self-coupling,
which also explained the absence of signal for coupled C—C
surface intermediate from in situ FTIR in previous work.'® The
obtained dimer formation mechanisms by self-coupling of two
free radicals could be extended to similar compounds with
aldehyde groups, such as HMF'%% and benzaldehyde.!”

Although free radicals were experimentally detected in the
electrolyte, it is still unable to determine whether theyare
formed by the first H addition on the surface (forming furfural-
H*) followed by their desorption or they are directly generated
in the solution phase. In addition, in a wide pH range (3—11,
Figure S23), we have observed an inverse trend between
hydrofuroin and FA formations and an unfavorable furfural-to-
hydrofuroin conversion at more negative potentials, suggesting
the possible competitive pathways between hydrofuroin and
FA. However, it is still unclear whether the production routes
of hydrofuroin and FA are bifurcated from a common
adsorbate intermediate (e.g., furfural-H*) or they are
completely independent pathways.

DFT Computations. To address the above questions, we
petformed density functional theory (DFT) calculations in

ASP>7%8 A\W P{} 2900 DFT-D3,°! see Su ortm§
ormation r details) to explore ke¥ mechan nSight
proposed by our experiments. We evaluated the potentlal—
dependents® Gibbs free energies (AG) of elementary steps,
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additionally calculating activation free energies (AG,.) for
selected key steps; energetics are provided in Figure 7and
Table S13 and S14. We present our DFT calculations based on
representative experimental conditions of pH = 0 and U =
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Figure 7. Calculated reaction energetics for furfural hydrogenation on Pb(111) at —0.55 Vrug. For each elementary step, AG, (activation free
energy, eV) is marked red and AG (reaction free energy, eV) is marked black. In species naming, FUR denotes the furan ring, and * denotes an
adsorbed species. Atoms are colored as follows: O (red), C (gray), H (white), Pb (dark gray). Electrochemical steps (those involving a H* /e~
transfer) are shown with green arrows; nonelectrochemical steps are shown with black arrows.

—0.55 VRrug, assuming that H;O"is the proton source for the
reaction. Although we do not explicitly calculate any barriers of
H;0" dissociation, we note that previous work®? has shown it
is negligible (E, ~ 0.08 eV) relative to the other calculated
barriers and therefore believe our implicit treatment of these
effects is appropriate.”* We chose the Pb(111) surface as a
catalyst model given our experimental evidence that Pb is in its
metallic state (Figure S17). We note that the (111) facet was
selected in lieu of a detailed study of possible active facets,
which may include other surface types. We have not explicitly
accounted for solvent effects, contributions from counterions
and the electrical double layer, surface charge effects, or
coverage effects (including effects of adsorbed ions or surface
solvation by water®) in our surface calculations. While we
acknowledge this may impact our conclusions, we note that
recent work suggests some of these (e.g., charge gradient) may
not affect the qualitative nature of our conclusions.®® Our
experimental results (Figure 3) suggest that the coverage by
furfural and hydrogen is very small at our potential of interest
(—0.55 Vgug) though we note that these coverages may
become more significant as potential becomes more negative
(approaching —1.20 Vgug in our experiments). Our results
show that at low surface coverage, interactions between H*
and other reaction intermediates may have negligible impacts
on reaction-free energies (Table S15). The most stable
adsorption geometries of all reaction intermediates are
provided in Figure S29; these are consistent with previous
literature.®” We focus our analysis on (1) the formation of the
critical ketyl radical species, which our computations suggest
occurs as an outer-sphere electrochemical process; (2) the
formation of hydrofuroin, which our computations suggest
occurs via solution-phase coupling of ketyl radicals; and (3)
the Pb(111) surface’s favorability for FA formation relative to
the formation of the ketyl radical or hydrofuroin.

Furfural adsorption is energetically uphill on the Pb(111)
surface (AG = 0.16 €V relative to a gas-phase furfural
reference). Once adsorbed, we considered two possible
additions of proton—electron pairs to furfural, one on either
side of the bond (Figure 7). Our calculations showed
that H* addition on the C of adsorbed furfural is significantly
morte favorable (AG, = 0.21, AG = —0.68 eV at —0.55 Vgrug)
than the cotresponding addition to O (AG,. = 0.52, AG =
0.04 eV). This suggests that the formation of the ketyl radical,
a key intermediate identified experimentally, from surface-

bound furfural is relatively unfavorable. We evaluated the
solution-phase reaction energetics (using Gaussian 09,0870
detailed in Supporting Information) to explore the possibility
of direct formation of the ketyl radical from furfural in solution
(Table S15). We calculated a AG of 0.23 eV for this process at
—0.55 VraE, noting that the corresponding addition of H to
the C atom (which is more favorable on the surface) had an
unfavorable AG of 1.15 eV (Table S15). Together, these
results suggest the likelihood of the ketyl radical forming in
solution (i.e., as an outer-sphere step) rather than on the
surface. We note a slight inconsistency in the thermodynamic
cycle for the listed solution-phase elementary steps due to the
direct comparison of solution-phase energetics (G09) with
surface-mediated pathways utilizing gas-phase references
(VASP). We anticipate that the true adsorption energies for
furfural/radical adsorption are overestimated by out gas-phase
reference (i.e., a solution-phase reference will be more stable,
in accordance with recent work’-”?), lending additional
difficulty to furfural adsorption and hydrogenation relative to
outer-sphere hydrogenation.

We additionally evaluated energetics for hydrofuroin
formation from the ketyl radical (Figure 7). The direct
coupling of ketyl radicals to form hydrofuroin is favorable (AG
= —1.49 ¢V in gas phase/VASP, —1.55 ¢V in implicit solution/
G09). We did not explicitly evaluate the activation energy of
this process due to the relative complexity of obtaining a
representative value in solution. The primary challenge with
the solution-phase coupling is anticipated to be the collision
frequency at the correct orientation in the three-dimensional
context (in contrast with the two-dimensional surface). We
also considered a surface-based coupling of ketyl radicals,
particulatly considering their adsorption (AG = —0.03 eV) is
more favorable than that of furfural (AG = 0.16 €V). The
surface coupling has a AG,. of 0.48 eV (AG of —1.23 ¢V).
While this barrier is not insurmountable at room temperature,
its relative difficulty makes it more likely that solution-phase
coupling carries the majority of the reaction flux to form
hydrofuroin.

Finally, our calculations suggest two possible surface
mechanisms for the formation of FA. The ketyl radical
identified previously as a key intermediate has a preference for
the formation of FA (AG,« = 0.37 eV, AG = —1.31 €V) in
comparison with HF (AG, = 0.48 eV, AG = —1.23 eV); FA

becomes more favored as the reaction potential becomes more
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Scheme 2. Summarized Reaction Pathways for Furfural Reduction toward Three Key Products: FA, MF, and Hydrofuroin’
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"This scheme summarizes the new insights acquired from this work, including the FA and MF formation pathways from expetiments and the

hydrofuroin formation pathways from both experiments and computation.

negative, as HF formation from the radical is not an
electrochemical process. Additionally, as mentioned previously,
the formation of a ketyl radical from adsorbed furfural (AG,e: =
0.52, AG = 0.04 ¢V) is unfavorable in compatison with the
hydrogenation of the carbonyl’s C atom (AG,« = 0.21, AG =
—0.68 ¢V). This suggests that any surface reactions of
adsorbed furfural are funneled preferentially to FA. We are
unable to elucidate the fine details of the potential-dependent
product distribution in Figure 1b using our methodology
discussed here, inferring that other complex factors such as
solution-phase kinetics, potential-dependent coverage effects,
or advanced mechanisms not considered here (e.g., proton
shuttling) limit our ability to describe this behavior with our
relatively simple model. Based on the understanding of the
outer-sphere pathway for hydrofuroin production, we
proposed to use a relatively inert cathode (i.e., catbon cloth)
to suppress ECH and favor dimer formation pathways, because
the outer-sphere route is independent of the surface property
of the electrode. Indeed, as shown in Figure S30, we observed
the hydrofuroin selectivity of 76% with a minimization of FA

on hydrophilic carbon cloth at —0.80 Vg
| concLusions

In summary, we have acquired deep understanding of the
electrochemical reduction pathways of furfural toward the key
products, ie., FA, MF, and hydrofuroin, on Pb surfaces via
tailoring the local environments (Scheme 2). H/D isotopic
labeling and incorporation studies suggested that the product-
selective and surface-property-dependent KIE was only
exhibited for the formation of FA, but not MF, indicating
the different RDS of hydrogen additions. Combined with
electrokinetic studies, we have confirmed the critical roles of
H>0 and H3;O" in the generation of FA and MF, respectively,
and suggested the PCET and ET as the RDS for their
respective production. Electrokinetic reaction order fittings
further suggested L—H and E—R mechanisms for FA and MF
productions, respectively. Through modifying the doublelayer
by cations with large radii, we have correlated their selective
pathways with the local chemical and physical properties.
Finally, as suggested by EPR, OIR, and DFT calculations,
hydrofuroin is formed through the outer-sphere generation of
ketyl radicals followed by their self-coupling in the solution
phase, independent of the surface properties of electrodes. The
mechanistic insights obtained in our work can potentially be
extended to a wide range of intriguing organic compounds
with the aldehyde group (e.g., HMF and benzaldehyde). Apart
from designing electrode materials or developing teactors to

alter reaction pathways and increase reaction kinetics, our work
provided additional reaction dimensions in adjusting the local
environments to optimize the electrochemical transformations.
The experimental methods herein are transferable to other
electrochemical reactions (electroreduction of water, COy,
nitrate, etc.) and will provide complementary information
when combined with in situ surface characterization techniques
to elucidate the reaction mechanisms in future studies.
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