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Abstract— This paper presents an approach for generating
simplified secondary circuit models with limited SCADA and PV
micro-inverter measurement data. The proposed method is
computationally efficient and can be utilized with typically
available measurement data. The method is applied to models of
three real U.S. utility feeders with PV micro-inverter
measurements. The proposed simplified secondary circuit
modeling approach decreases the PV voltage simulation errors
in all the three feeders compared to using generic secondary
circuit models. This paper also presents approaches for
improving the feeder voltage regulating device model set points
by utilizing the PV voltage measurements.

Index Terms—Load Modeling, Power Distribution, Power

System Measurements, Smart Grids

I. INTRODUCTION

To analyze and operate distribution systems with growing
amounts of PV and other distributed energy resources (DER),
more accurate distribution system models are required. Since
many DERSs are located in secondary (low-voltage) circuits, it
is becoming important to include the secondary circuits into
the distribution models. This is particularly important since the
low-voltage secondary circuits have higher per unit
impedances, which result in a large share of the feeder per unit
voltage drop as well as some losses [1]. Well-modelled
secondary systems will allow for high penetrations of DERs
through such things as improved hosting capacity analysis and
more accurate optimization and control. However, the vast
majority of existing utility feeder models do not include the
secondary circuits at all. When modeled, they are represented
with limited detail.

Simultaneously, the on-going extensive roll-out of smart
meters and growing number of PV micro-inverters [2] and
other modern distribution system sensors rapidly increase the
available measurement data along the distribution feeders.
This new data can be leveraged to calibrate existing utility
feeder models. However, automated methods are needed in
order to achieve this in a cost-effective way.

The Big Data from AMI and other emerging sensors has
raised the interest in new methods for distribution system
parameter estimation (DSPE) [3]-[5]. In our past work, we
have presented methods to estimate secondary circuit topology
and parameters when a dense grid of smart meter
measurements is available [6]-[8]. In this paper, we extend the
parameter estimation methodology to the case when only a
limited number of PV micro-inverter or similar measurements
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are available. In particular, this paper further develops the
approach that we have shown in [7] for generating simplified
distribution system secondary models with limited PV
measurement data. This paper also presents parameter
estimation results for three real U.S. utility feeders with micro-
inverter measurements. The significance of the results is
discussed and challenges related to secondary circuit
parameter estimation on real utility feeder models are
highlighted.

This paper has the following structure. Section II briefly
presents the simplified secondary circuit parameter estimation
method. Section III presents the utility feeder models and
discusses some of the challenges related to modeling the
voltage regulating devices with limited data. Section IV
presents the parameter estimation results by first validating the
methodology with test data set and then by applying the
method to PV inverter measurements. Section IV also shows
parameter estimation impact on PV location feeder hosting
capacity. Section V discusses the results and the challenges
related to parameter estimation with limited data. Finally,
Section VI concludes the paper.

II. SECONDARY CIRCUIT PARAMETER ESTIMATION

The objective of distribution system secondary circuit
parameter estimation (DSPE) is to find the most likely values
of resistance (R) and reactance (X) parameters of a secondary
circuit. DSPE with a dense network of smart meters has been
discussed in [6], [7]. If some smart meters do not report
voltages, the secondary circuit parameters can be estimated
with a modified DSPE algorithm shown in [6]. This paper
addresses the common case when a utility does not have a
dense network of smart meters (or other sensors) in the
secondary circuits. This paper assumes that no (or very
limited) AMI measurements are available but historical PV
system measurements are available. Given this data, this paper
utilizes the simplified secondary circuit parameter estimation
algorithm (SDSPE) proposed in [7] to create simplified
secondary circuit models shown in Figure 1 and to estimate
their parameters. The objective is to improve the PV (or other
sensor) voltage simulation accuracy.

The simplified secondary circuit has one or more
customers with a PV system. The discussion here focuses on
one customer with a PV system in each secondary circuit, but
generalization to multiple PV systems is trivial. The customer
with the PV system is assumed to be connected to the service
transformer secondary over a service line with a known line
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type (i.e. known per-unit-length resistance and reactance) but
unknown line length. The secondary system also has other
customers with loads connected to the service transformer
with potentially several service lines. Although Figure 1 does
not represent all possible circuit topologies, it is the best
assumption given the limited available measurements and that
the topology is unknown.

The PV system is assumed to measure its active power
output Ppy, and voltage Vp; shown in blue in Figure 1. The
secondary circuit loads P;, Py shown in green in Figure 1 are
estimated from feeder SCADA active power measurements
with load allocation. The reactive power loads @y, Qy shown
in green in Figure 1 are estimated from the active power loads
Py, Py with a constant power factor. The active (and reactive)
power measurements can be utilized for customers that have
smart meters (if any). Moreover, if feeder SCADA reactive
power measurements and feeder capacitor states are available,
the reactive power loads Q;, Q, can be estimated from the sum
of feeder reactive power load and the capacitor reactive power
generation.

The feeder primary (medium-voltage) system, including
the voltage regulation device operation and the service
transformer connection, is assumed to be well-modeled. Thus,
transformer primary side voltage referred to the low-voltage
side, V,, can be estimated with time-series power flow
simulation. However, in practice, due to primary circuit
modeling inconsistencies and the simplifications of load
allocation, the simulated voltages may not be very accurate.
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Figure 1. Simplified secondary circuit model with a PV system: available
measurements are in blue, values that can be roughly estimated are in green,
and unknown values and parameters are in red

For the portion of the secondary circuit without voltage
measurements, it is not possible to estimate the impedances
R,,X,, ..., Ry, Xy or topology. Moreover, since the substation
reactive power measurements are estimated from the
substation active power measurements (Q; = aP;, Qp = aPy

where @ = /1/(PF)? — 1), and PV systems typically operate
at unity power factor (Qpy = 0), only one of the each

parameters in parameter pairs Ry, X, and R, X; can be
estimated [7]. Therefore, the load P,, Q, can be lumped to the
service transformer secondary. If the line per-unit-length
resistance 77 and reactance x; and the transformer X/R-ratio
(X/R), are assumed to be known, the transformer resistance,
R, and the line length, L;, can be estimated utilizing M
measurements with the linear model (bold indicate vectors or
matrices)

Vo—=Vpy = Ro X+ L1 X; +€ (D

where € represents the model and measurement error, the
predictors are given by

Xo = Ipo + (X/R)olx0, @

Xy =rlp; +x10x,, @)
and Ipg, Ixo, gy, Ix1 are given by

Ip=P/V=I+PFandIy = Q/V =1J1— (PF)2. (4

The predictors X, X; are linearly independent provided that
Ppy #0. Once R, and L; have been estimated, the
transformer reactance can be calculated with X, = Ry(X/R),
and the line impedances with Ry + jX; = L (r; + jx;). As a
result, the circuit in Figure 1 can be simplified to the circuit
shown in Figure 2.
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Figure 2. SDSPE simplified secondary circuit with a PV system:
available measurements are in blue, values that can be roughly estimated are
in green, and unknown values and parameters are in red

If the secondary circuit has N > 1 PV systems (model (1)
is used for secondary circuits with only one PV system), the
line parameters are first estimated with linear model

y=XB+e, ©)
where € represents the model and measurement error, the

response variable y is given by

T
y= [VPV1,1r o Vovams s Veyn o oons VPVN,M] > (©)

the unknown parameter vector is given by

T
B = [Viz1 - Viz Ri X1, oo, Ry X 7

and the design matrix X € RMN*M+2N) i ojven by

I [Irx —Ixi] - 0
X = : : , (®)
I 0 [Irny —Ixn]
where 1€ R™*M are identity matrices, Ip; Ix; € RM*1,i €

{1, ..., N} are the branch current measurements, and the zero
submatrices have suitable sizes. It should be noted that as long
as Ip; # Iy;Vi € {1,...,N}, the columns of X are linearly
independent. After the line parameters have been estimated,
the service transformer parameters are estimated with

VO_V12=RIR+XI)(+€. (9)

There are various ways to estimate the parameters from the
linear models (1), (5) and (9). In this paper, the parameters
were estimated with (ordinary least squares) linear regression.
If linear regression resulted in negative (or too small)
parameters, linearly constrained least squares algorithm was
used, instead [6].
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Figure 3. Topologies of the full circuit models of feeder QL1 (left), DC1 (middle), and DC2 (right)

III. UTILITY FEEDER MODELING

The SDSPE algorithm was applied to models of three real
California utility feeders shown in Figure 3. This section
introduces the feeder models and discusses some of the
challenges related to the modeling of the feeder voltage
regulating device operation. The feeder models, each of which
consists of thousands of buses, lines, and loads, as well as
hundreds of transformers, were reduced using the approach
shown in [9]. Specifically, the secondary circuits without PV
systems were reduced to fixed-current loads at the service
transformer primary. The secondary circuits with PV
system(s) were converted to the simplified secondary circuit
format illustrated in Figure 2 for one PV system. It should be
noted that the original feeder models included only generic
secondary circuit models consisting of a service transformer
with typical parameters and a triplex cable feeding each load.
Service line types were selected so that the lines had sufficient
capacity to serve the loads. This is a common utility practice
to model the secondary circuits. TABLE I lists the key feeder
model characteristics.

TABLE I. FULL AND REDUCED UTILITY FEEDER MODEL DETAILS

Feeder QL1 DC1 DC2
Feeder Type suburban urban rural
Voltage Level [kV] 20.78 12 12
# Customers 3500 3700 1200
Feeder Peak Load [MW] 18.63 8.08 3.6
Farthest 3-Phase Bus [km] 12.6 6.7 17.9
# PV Systems 44 36 31
LTC Set Point 120 123 121
# Capacitors — Control Mode I-fixed 2-fixed | 1-voltage
6-temperature
# Voltage Regulators 1 0 1
i i MW, MVAr
AValla[‘:}:;::i‘:]:’l?nfSCADA phasé current,s MW MW

Since the historical LTC primary voltages, secondary
voltages, and taps were not available for the feeders, sub
transmission was simply modeled as a constant Thevenin
equivalent in all the three models. Moreover, the LTC voltage
control set point were not known with a high confidence for
any of the feeders. The LTC set points were selected to
provide consistent results regarding positive average
secondary circuit voltage drops with the smallest average
differences between simulated PV voltages and measured PV
voltages. Without substation voltage measurements, it was not

possible to verify the accuracy of the simulated LTC medium-
voltages.

Feeders QL1 and DC2 have controlled capacitors that have
a significant impact on the feeder voltage profile. Since the
historical capacitor states were not available, it was necessary
to estimate the capacitor states. Feeder QL1 capacitor states
were estimated with the available SCADA feeder reactive
power measurements. First, the total feeder reactive power
load Qjpgq,0r Was estimated with load allocation from the
feeder active power measurements using a constant power
factor. Then, the total capacitor generated reactive power
Qcap,tor Was estimated by subtracting Qjoqq,t0r from the
measured feeder reactive power consumption Qfeegermeas-
Reactive power losses were neglected. When simulating the
feeder voltages, the capacitors were turned on until simulated
capacitor reactive power generation was close to the estimated
capacitor reactive power generation. The capacitors were
switched in a priority switching order, which was determined
based on the capacitor temperature control set points.

Since the feeder reactive power measurements were not
reliable for feeder DC2, the feeder capacitor state was
estimated utilizing the PV voltage measurements. The
capacitor has a significant impact on the PV voltages as shown
in Figure 4 on the left. The average absolute change in the
simulated PV voltages was 7.45 volts when the capacitor
switched on. Similar (but opposite) changes were observed in
the simulated PV voltages when the capacitor was turned off.
Figure 4 on the right shows a histogram of the average
absolute change (from one sample to the next) in the measured
PV voltages in feeder DC2. Since there were no changes even
close to the level of 7.45 volts, it was assumed that the
capacitor state did not change during the entire month. It
should be noted that no PV measurements were available
during the night time and it is possible that the capacitor state
changed during the nigh-time. However, without feeder
reactive power measurements (or PV night-time voltage
measurements), it was impossible to determine if there were
capacitor state changes or not.

IV. PARAMETER ESTIMATION RESULTS

This section presents the parameter estimation results for
the three feeder models. First, the parameter estimation
algorithm and implementation is validated by estimating the
parameters with simulated PV voltages and service
transformer medium-voltage. Then, the results for parameter
estimation with PV voltage measurements are shown.
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Figure 4. Feeder DC2 capacitor state impact on the PV voltages

A. Parameter Estimation Validation with Simulated Voltages

First, the simplified secondary circuit parameters of the three
feeder models were estimated with 8928 samples (one month
of 5-min samples) of simulated PV and service transformer
voltages. The PV voltages and service transformer medium-
voltages were simulated with time-series power flow with
measured PV powers and load powers modeled with load
allocation. The parameter estimation results with simulated
voltages are summarized in TABLE II. All parameters were
estimated with linear regression very close to the original
parameters. The linearly constrained least squares algorithm
was not needed to force the parameters to be positive. The
minimum R-squared value of the parameter estimation linear
regression problems was above 0.9999 indicating that all the
linear regression models provided an excellent fit to the data.

TABLE II. PARAMETER ESTIMATION ACCURACY WITH THE SIMULATED PV
VOLTAGES AND SERVICE TRANSFORMER MEDIUM-VOLTAGES

Average Absolute of Max. Absolute of
Feeder (Rest - Rorig) (Xest - Xorig) (Rest - Rorig) (Xest - Xorig)
Rorig Xorig Rorig Xorig
QL1 0.26 0.25 0.96 0.96
DC1 0.30 0.33 3.57 3.57
DC2 0.33 0.34 1.25 1.25

B. Parameter Estimation With PV Voltage Measurements

Next, the simplified secondary circuit parameters of the
three feeders were estimated with 8928 samples (one month of
5-min samples) of actual PV voltage measurements. The
transformer medium-voltages were simulated with time series
power flow utilizing the measured PV generation and load-
allocated loads. Figure 5 shows absolute average differences
between the measured and the simulated PV voltages.
Simulating the PV voltages with the estimated parameters (as
opposed to the original generic feeder parameters) effectively
reduces the average absolute voltage simulation errors on
average by 0.57 Volts (19.3% reduction), 1.64 Volts (71.5%
reduction), and 0.40 Volts (22.5% reduction), for feeders QLI,
DC1, and DC2, respectively.

C. Application of Parameter Estimation in Hosting Capacity

Correctly modelling the unknown secondary system
impedance parameters can improve integration of DER
through such things as improved hosting capacity analysis and
more accurate optimization and control. For example, the
amount of PV that can be interconnected at a customer
location is highly dependent on the impedance to the location
that causes voltage rise. In order to demonstrate the
differences, the PV locational hosting capacity analysis

method from [10] has been applied to each of the secondary
systems estimated in the previous section. As seen in Figure 6,
the hosting capacity changes significantly (+90%) by using
estimated parameters instead of generic standard impedances.
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Figure 5. Feeder QLI (top), DC1 (middle), and DC2 (bottom) absolute
average voltage error for each PV system simulated with the original (in
blue) and estimated (in yellow) parameters
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Figure 6. Change in PV hosting capacity with secondary system models
improved with parameter estimation.

V. DISCUSSION

PV measurement data can be effectively utilized to
improve feeder voltage simulation accuracy by validating
feeder voltage regulating device modeling and by performing
secondary circuit parameter estimation. Next, some of the key
findings from parameter estimation on the three feeder models
are highlighted.

Figure 7 shows the boxplots of the PV voltage simulation
errors for the feeder DC2. Parameter estimation is unable to
reduce the variance in the voltage simulation errors, which
results from the modeling inaccuracies and simplifications. In
some cases, these inaccuracies and simplifications resulted in
unrealistic parameters such as extremely long service line
lengths as shown in Figure 8 for feeder QL1. The two main
sources of error for the analyzed feeders seemed to be
inaccuracies in the medium-voltage level modeling and
modeling loads through load allocation.

Parameter estimation is much more sensitive to voltage
measurement error than power/current measurement error [6].
Therefore, when utilizing simulated voltages to estimate, e.g.,
service transformer impedances, the voltages must be
accurately simulated. For the analyzed feeders, it turned out to
be very challenging to identify the capacitor and LTC states
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with limited data. In order to reach good accuracy in
parameter estimation regression models that utilize simulated
voltages, it is necessary to correctly model the voltage-
regulating device operation. Otherwise, one can observe
negative or unrealistically high simulated voltage drops over
the secondary circuits that the parameter estimation is trying to
model by adjusting the impedance parameters.

Load allocation simplifies true load behavior and can lead
to significant modeling errors especially at the secondary
circuit level close to the loads [1]. A load modeled with load
allocation has much smoother profile than the load has in
reality resulting in underestimated voltage drops, losses, etc.
In parameter estimation, load allocation was observed to result
in very poor fits for regression problems of form (9), whose
response value is calculated as a difference of very smooth
voltages simulated with smooth allocated load profiles and
highly variable PV voltage measurements. For some such
regression problems, the predictors (calculated based on
allocated loads) are unable to explain almost any of the
variation in the response variable (calculated as a difference of
simulated and PV measured voltage).

sim,orig ~ meas

| -
o .o

[FL I I

[Volts]

-10

limited number of PVs, the errors either remained constant or
were slightly increased. This is likely explained by the
inconsistencies in feeder modeling that resulted in highly
uncorrelated parameter estimation regression model response
and predictor variables.

The simplified secondary circuit parameter estimation with
limited data had two major challenges. First, it turned out to be
challenging to accurately model the medium-voltage circuit.
In particular, it was very challenging to accurately identify
historical feeder voltage regulating device operation. Second
and the leading problem was modeling loads with substation
load allocation. Load allocation results in smooth load profiles
that may be highly uncorrelated with true individual loads at
the secondary circuit level. This was particularly problematic
in parameter estimation regression problems whose response
variable is calculated as a difference of measured voltages
(typically high variability) and voltages simulated with loads
modeled with load allocation (typically low variability). AMI
data seems to be mandatory to perform accurate distribution
system secondary circuit parameter estimation. Future work
should study parameter estimation accuracy in the common
case when smart meter active power measurements are
available for many loads but only a limited number of voltage
measurements are available from PV micro-inverters.
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