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Abstract— This paper presents an approach for generating 
simplified secondary circuit models with limited SCADA and PV 
micro-inverter measurement data. The proposed method is 
computationally efficient and can be utilized with typically 
available measurement data. The method is applied to models of 
three real U.S. utility feeders with PV micro-inverter 
measurements. The proposed simplified secondary circuit 
modeling approach decreases the PV voltage simulation errors 
in all the three feeders compared to using generic secondary 
circuit models. This paper also presents approaches for 
improving the feeder voltage regulating device model set points 
by utilizing the PV voltage measurements. 

Index Terms—Load Modeling, Power Distribution, Power 
System Measurements, Smart Grids 

I. INTRODUCTION 

To analyze and operate distribution systems with growing 
amounts of PV and other distributed energy resources (DER), 
more accurate distribution system models are required. Since 
many DERs are located in secondary (low-voltage) circuits, it 
is becoming important to include the secondary circuits into 
the distribution models. This is particularly important since the 
low-voltage secondary circuits have higher per unit 
impedances, which result in a large share of the feeder per unit 
voltage drop as well as some losses [1]. Well-modelled 
secondary systems will allow for high penetrations of DERs 
through such things as improved hosting capacity analysis and 
more accurate optimization and control. However, the vast 
majority of existing utility feeder models do not include the 
secondary circuits at all. When modeled, they are represented 
with limited detail. 

Simultaneously, the on-going extensive roll-out of smart 
meters and growing number of PV micro-inverters [2] and 
other modern distribution system sensors rapidly increase the 
available measurement data along the distribution feeders. 
This new data can be leveraged to calibrate existing utility 
feeder models. However, automated methods are needed in 
order to achieve this in a cost-effective way. 

The Big Data from AMI and other emerging sensors has 
raised the interest in new methods for distribution system 
parameter estimation (DSPE) [3]–[5]. In our past work, we 
have presented methods to estimate secondary circuit topology 
and parameters when a dense grid of smart meter 
measurements is available [6]–[8]. In this paper, we extend the 
parameter estimation methodology to the case when only a 
limited number of PV micro-inverter or similar measurements 

are available. In particular, this paper further develops the 
approach that we have shown in [7] for generating simplified 
distribution system secondary models with limited PV 
measurement data. This paper also presents parameter 
estimation results for three real U.S. utility feeders with micro-
inverter measurements. The significance of the results is 
discussed and challenges related to secondary circuit 
parameter estimation on real utility feeder models are 
highlighted. 

This paper has the following structure. Section II briefly 
presents the simplified secondary circuit parameter estimation 
method. Section III presents the utility feeder models and 
discusses some of the challenges related to modeling the 
voltage regulating devices with limited data. Section IV 
presents the parameter estimation results by first validating the 
methodology with test data set and then by applying the 
method to PV inverter measurements. Section IV also shows 
parameter estimation impact on PV location feeder hosting 
capacity. Section V discusses the results and the challenges 
related to parameter estimation with limited data. Finally, 
Section VI concludes the paper. 

II. SECONDARY CIRCUIT PARAMETER ESTIMATION 

The objective of distribution system secondary circuit 
parameter estimation (DSPE) is to find the most likely values 
of resistance (ܴ) and reactance (ܺ) parameters of a secondary 
circuit. DSPE with a dense network of smart meters has been 
discussed in [6], [7]. If some smart meters do not report 
voltages, the secondary circuit parameters can be estimated 
with a modified DSPE algorithm shown in [6]. This paper 
addresses the common case when a utility does not have a 
dense network of smart meters (or other sensors) in the 
secondary circuits. This paper assumes that no (or very 
limited) AMI measurements are available but historical PV 
system measurements are available. Given this data, this paper 
utilizes the simplified secondary circuit parameter estimation 
algorithm (SDSPE) proposed in [7] to create simplified 
secondary circuit models shown in Figure 1 and to estimate 
their parameters. The objective is to improve the PV (or other 
sensor) voltage simulation accuracy. 

The simplified secondary circuit has one or more 
customers with a PV system. The discussion here focuses on 
one customer with a PV system in each secondary circuit, but 
generalization to multiple PV systems is trivial. The customer 
with the PV system is assumed to be connected to the service 
transformer secondary over a service line with a known line 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 04,2022 at 21:40:18 UTC from IEEE Xplore.  Restrictions apply. 



type (i.e. known per-unit-length resistance and reactance) but 
unknown line length. The secondary system also has other 
customers with loads connected to the service transformer 
with potentially several service lines. Although Figure 1 does 
not represent all possible circuit topologies, it is the best 
assumption given the limited available measurements and that 
the topology is unknown. 

The PV system is assumed to measure its active power 
output 	 ௉ܲ௏ and voltage ௉ܸ௏ shown in blue in Figure 1. The 
secondary circuit loads ଵܲ, ଴ܲ shown in green in Figure 1 are 
estimated from feeder SCADA active power measurements 
with load allocation. The reactive power loads ଵܳ, ܳ଴ shown 
in green in Figure 1 are estimated from the active power loads ଵܲ, ଴ܲ with a constant power factor. The active (and reactive) 
power measurements can be utilized for customers that have 
smart meters (if any). Moreover, if feeder SCADA reactive 
power measurements and feeder capacitor states are available, 
the reactive power loads ଵܳ, ܳ଴ can be estimated from the sum 
of feeder reactive power load and the capacitor reactive power 
generation. 

The feeder primary (medium-voltage) system, including 
the voltage regulation device operation and the service 
transformer connection, is assumed to be well-modeled. Thus, 
transformer primary side voltage referred to the low-voltage 
side, ଴ܸ, can be estimated with time-series power flow 
simulation. However, in practice, due to primary circuit 
modeling inconsistencies and the simplifications of load 
allocation, the simulated voltages may not be very accurate. 

 
Figure 1. Simplified secondary circuit model with a PV system: available 

measurements are in blue, values that can be roughly estimated are in green, 
and unknown values and parameters are in red 

 

For the portion of the secondary circuit without voltage 
measurements, it is not possible to estimate the impedances ܴଶ, ܺଶ, … , ܴே, ܺே or topology. Moreover, since the substation 
reactive power measurements are estimated from the 
substation active power measurements ( ଵܳ = ߙ ଵܲ, ܳை = ߙ ைܲ  
where ߙ = ඥ1 ⁄ଶ(ܨܲ) − 1), and PV systems typically operate 
at unity power factor (ܳ௉௏ = 0), only one of the each 
parameters in parameter pairs ܴ଴, ܺ଴ and ܴଵ, ଵܺ can be 
estimated [7]. Therefore, the load ைܲ , ܳை can be lumped to the 
service transformer secondary. If the line per-unit-length 
resistance ݎଵ and reactance ݔଵ and the transformer X/R-ratio (ܺ ܴ⁄ )଴ are assumed to be known, the transformer resistance, ܴ଴ and the line length, ܮଵ, can be estimated utilizing ܯ 
measurements with the linear model (bold indicate vectors or 
matrices) 

଴ࢂ  − ௉௏ࢂ = ܴ଴ढ଴ + ଵढଵܮ + ࣕ, (1) 

where ࣕ represents the model and measurement error, the 
predictors are given by 

 ढ଴ = ோ଴ࡵ + (ܺ ܴ⁄ )଴ࡵ௑଴, (2) 

 ढଵ = ோଵࡵଵݎ +  ௑ଵ, (3)ࡵଵݔ

and ࡵோ଴, ,௑଴ࡵ ,ோଵࡵ  ௑ଵ are given byࡵ

ோࡵ  = ࡼ ⁄ࢂ = ࡵ ∗ ௑ࡵ and ܨܲ = ࡽ ⁄ࢂ = ඥ1ࡵ −  ଶ. (4)(ܨܲ)

The predictors ढ଴,ढଵ are linearly independent provided that ࡼ௉௏ ≢ 0. Once ܴ଴ and ܮଵ have been estimated, the 
transformer reactance can be calculated with ܺ଴ = ܴ଴(ܺ ܴ⁄ )଴ 
and the line impedances with ܴଵ + ݆ ଵܺ = ଵݎ)ଵܮ +  ଵ). As aݔ݆
result, the circuit in Figure 1 can be simplified to the circuit 
shown in Figure 2. 

 
Figure 2. SDSPE simplified secondary circuit with a PV system: 

available measurements are in blue, values that can be roughly estimated are 
in green, and unknown values and parameters are in red 

 

If the secondary circuit has ܰ > 1 PV systems (model (1) 
is used for secondary circuits with only one PV system), the 
line parameters are first estimated with linear model 

 ࢟ = ढࢼ+ ࣕ, (5) 

where ࣕ represents the model and measurement error, the 
response variable ࢟ is given by 

 ࢟ = ൣ ௉ܸ௏ଵ,ଵ, … , ௉ܸ௏ଵ,ெ, … , ௉ܸ௏ே,ଵ, … , ௉ܸ௏ே,ெ൧୘, (6) 

the unknown parameter vector is given by 

ࢼ  = ൣ ଵܸଶ,ଵ, … , ଵܸଶ,ெ, ܴଵ, ଵܺ, … , ܴே, ܺே൧୘, (7) 

and the design matrix ढ ∈ ℝ(ெே)×(ெାଶே) is given by 

 ढ = ൥I ሾ−ࡵோ,ଵ ௑,ଵሿࡵ− ⋯ ૙⋮ ⋮ ⋱ ⋮I ૙ ⋯ ሾ−ࡵோ,ே  ௑,ேሿ൩, (8)ࡵ−

where I ∈ ℝெ×ெ are identity matrices, ࡵோ,௜, ௑,௜ࡵ ∈ ℝெ×ଵ, ݅ ∈{1, … , ܰ} are the branch current measurements, and the zero 
submatrices have suitable sizes. It should be noted that as long 
as ࡵோ,௜ ≠ ݅∀௑,௜ࡵ ∈ {1, … , ܰ}, the columns of ढ are linearly 
independent. After the line parameters have been estimated, 
the service transformer parameters are estimated with 

଴ࢂ  − ଵଶࢂ = ோࡵܴ + ௑ࡵܺ + ࣕ. (9) 

There are various ways to estimate the parameters from the 
linear models (1), (5) and (9). In this paper, the parameters 
were estimated with (ordinary least squares) linear regression. 
If linear regression resulted in negative (or too small) 
parameters, linearly constrained least squares algorithm was 
used, instead [6]. 
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Figure 3. Topologies of the full circuit models of feeder QL1 (left), DC1 (middle), and DC2 (right) 

 

III. UTILITY FEEDER MODELING 

The SDSPE algorithm was applied to models of three real 
California utility feeders shown in Figure 3. This section 
introduces the feeder models and discusses some of the 
challenges related to the modeling of the feeder voltage 
regulating device operation. The feeder models, each of which 
consists of thousands of buses, lines, and loads, as well as 
hundreds of transformers, were reduced using the approach 
shown in [9]. Specifically, the secondary circuits without PV 
systems were reduced to fixed-current loads at the service 
transformer primary. The secondary circuits with PV 
system(s) were converted to the simplified secondary circuit 
format illustrated in Figure 2 for one PV system. It should be 
noted that the original feeder models included only generic 
secondary circuit models consisting of a service transformer 
with typical parameters and a triplex cable feeding each load. 
Service line types were selected so that the lines had sufficient 
capacity to serve the loads. This is a common utility practice 
to model the secondary circuits. TABLE I lists the key feeder 
model characteristics. 

TABLE I. FULL AND REDUCED UTILITY FEEDER MODEL DETAILS 

Feeder QL1 DC1 DC2 
Feeder Type suburban urban rural 

Voltage Level [kV] 20.78 12 12 
# Customers 3500 3700 1200 

Feeder Peak Load [MW] 18.63 8.08 3.6 
Farthest 3-Phase Bus [km] 12.6 6.7 17.9 

# PV Systems 44 36 31 
LTC Set Point 120 123 121 

# Capacitors – Control Mode 
1-fixed 

6-temperature 
2-fixed 1-voltage 

# Voltage Regulators 1 0 1 
Available Reliable SCADA 

measurements 
MW, MVAr, 
phase currents 

MW MW 

 

Since the historical LTC primary voltages, secondary 
voltages, and taps were not available for the feeders, sub 
transmission was simply modeled as a constant Thevenin 
equivalent in all the three models. Moreover, the LTC voltage 
control set point were not known with a high confidence for 
any of the feeders. The LTC set points were selected to 
provide consistent results regarding positive average 
secondary circuit voltage drops with the smallest average 
differences between simulated PV voltages and measured PV 
voltages. Without substation voltage measurements, it was not 

possible to verify the accuracy of the simulated LTC medium-
voltages. 

Feeders QL1 and DC2 have controlled capacitors that have 
a significant impact on the feeder voltage profile. Since the 
historical capacitor states were not available, it was necessary 
to estimate the capacitor states. Feeder QL1 capacitor states 
were estimated with the available SCADA feeder reactive 
power measurements. First, the total feeder reactive power 
load ௟ܳ௢௔ௗ,௧௢௧ was estimated with load allocation from the 
feeder active power measurements using a constant power 
factor. Then, the total capacitor generated reactive power ܳ௖௔௣,௧௢௧ was estimated by subtracting ௟ܳ௢௔ௗ,௧௢௧ from the 
measured feeder reactive power consumption ܳ௙௘௘ௗ௘௥,௠௘௔௦. 
Reactive power losses were neglected. When simulating the 
feeder voltages, the capacitors were turned on until simulated 
capacitor reactive power generation was close to the estimated 
capacitor reactive power generation. The capacitors were 
switched in a priority switching order, which was determined 
based on the capacitor temperature control set points. 

Since the feeder reactive power measurements were not 
reliable for feeder DC2, the feeder capacitor state was 
estimated utilizing the PV voltage measurements. The 
capacitor has a significant impact on the PV voltages as shown 
in Figure 4 on the left. The average absolute change in the 
simulated PV voltages was 7.45 volts when the capacitor 
switched on. Similar (but opposite) changes were observed in 
the simulated PV voltages when the capacitor was turned off. 
Figure 4 on the right shows a histogram of the average 
absolute change (from one sample to the next) in the measured 
PV voltages in feeder DC2. Since there were no changes even 
close to the level of 7.45 volts, it was assumed that the 
capacitor state did not change during the entire month. It 
should be noted that no PV measurements were available 
during the night time and it is possible that the capacitor state 
changed during the nigh-time. However, without feeder 
reactive power measurements (or PV night-time voltage 
measurements), it was impossible to determine if there were 
capacitor state changes or not. 

IV. PARAMETER ESTIMATION RESULTS 

This section presents the parameter estimation results for 
the three feeder models. First, the parameter estimation 
algorithm and implementation is validated by estimating the 
parameters with simulated PV voltages and service 
transformer medium-voltage. Then, the results for parameter 
estimation with PV voltage measurements are shown. 

DC1QL1 DC2

Substation
PV PCC
Booster
LTC/VREG
Fixed Capacitor

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 04,2022 at 21:40:18 UTC from IEEE Xplore.  Restrictions apply. 



 
Figure 4. Feeder DC2 capacitor state impact on the PV voltages 

A. Parameter Estimation Validation with Simulated Voltages 

First, the simplified secondary circuit parameters of the three 
feeder models were estimated with 8928 samples (one month 
of 5-min samples) of simulated PV and service transformer 
voltages. The PV voltages and service transformer medium-
voltages were simulated with time-series power flow with 
measured PV powers and load powers modeled with load 
allocation. The parameter estimation results with simulated 
voltages are summarized in TABLE II. All parameters were 
estimated with linear regression very close to the original 
parameters. The linearly constrained least squares algorithm 
was not needed to force the parameters to be positive. The 
minimum R-squared value of the parameter estimation linear 
regression problems was above 0.9999 indicating that all the 
linear regression models provided an excellent fit to the data. 

TABLE II. PARAMETER ESTIMATION ACCURACY WITH THE SIMULATED PV 

VOLTAGES AND SERVICE TRANSFORMER MEDIUM-VOLTAGES 

Feeder 
Average Absolute of Max. Absolute of (ܴ௘௦௧ − ܴ௢௥௜௚)ܴ௢௥௜௚  

(ܺ௘௦௧ − ܺ௢௥௜௚)ܺ௢௥௜௚  
(ܴ௘௦௧ − ܴ௢௥௜௚)ܴ௢௥௜௚  

(ܺ௘௦௧ − ܺ௢௥௜௚)ܺ௢௥௜௚  

QL1 0.26 0.25 0.96 0.96 
DC1 0.30 0.33 3.57 3.57 
DC2 0.33 0.34 1.25 1.25 

 

B. Parameter Estimation With PV Voltage Measurements 

Next, the simplified secondary circuit parameters of the 
three feeders were estimated with 8928 samples (one month of 
5-min samples) of actual PV voltage measurements. The 
transformer medium-voltages were simulated with time series 
power flow utilizing the measured PV generation and load-
allocated loads. Figure 5 shows absolute average differences 
between the measured and the simulated PV voltages. 
Simulating the PV voltages with the estimated parameters (as 
opposed to the original generic feeder parameters) effectively 
reduces the average absolute voltage simulation errors on 
average by 0.57 Volts (19.3% reduction), 1.64 Volts (71.5% 
reduction), and 0.40 Volts (22.5% reduction), for feeders QL1, 
DC1, and DC2, respectively. 

C. Application of Parameter Estimation in Hosting Capacity 

Correctly modelling the unknown secondary system 
impedance parameters can improve integration of DER 
through such things as improved hosting capacity analysis and 
more accurate optimization and control. For example, the 
amount of PV that can be interconnected at a customer 
location is highly dependent on the impedance to the location 
that causes voltage rise. In order to demonstrate the 
differences, the PV locational hosting capacity analysis 

method from [10] has been applied to each of the secondary 
systems estimated in the previous section. As seen in Figure 6, 
the hosting capacity changes significantly (±90%) by using 
estimated parameters instead of generic standard impedances. 

 
Figure 5. Feeder QL1 (top), DC1 (middle), and DC2 (bottom) absolute 

average voltage error for each PV system simulated with the original (in 
blue) and estimated (in yellow) parameters 

 

 

Figure 6. Change in PV hosting capacity with secondary system models 
improved with parameter estimation. 

V. DISCUSSION 

PV measurement data can be effectively utilized to 
improve feeder voltage simulation accuracy by validating 
feeder voltage regulating device modeling and by performing 
secondary circuit parameter estimation. Next, some of the key 
findings from parameter estimation on the three feeder models 
are highlighted. 

Figure 7 shows the boxplots of the PV voltage simulation 
errors for the feeder DC2. Parameter estimation is unable to 
reduce the variance in the voltage simulation errors, which 
results from the modeling inaccuracies and simplifications. In 
some cases, these inaccuracies and simplifications resulted in 
unrealistic parameters such as extremely long service line 
lengths as shown in Figure 8 for feeder QL1. The two main 
sources of error for the analyzed feeders seemed to be 
inaccuracies in the medium-voltage level modeling and 
modeling loads through load allocation. 

Parameter estimation is much more sensitive to voltage 
measurement error than power/current measurement error [6]. 
Therefore, when utilizing simulated voltages to estimate, e.g., 
service transformer impedances, the voltages must be 
accurately simulated. For the analyzed feeders, it turned out to 
be very challenging to identify the capacitor and LTC states 
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with limited data. In order to reach good accuracy in 
parameter estimation regression models that utilize simulated 
voltages, it is necessary to correctly model the voltage-
regulating device operation. Otherwise, one can observe 
negative or unrealistically high simulated voltage drops over 
the secondary circuits that the parameter estimation is trying to 
model by adjusting the impedance parameters. 

Load allocation simplifies true load behavior and can lead 
to significant modeling errors especially at the secondary 
circuit level close to the loads [1]. A load modeled with load 
allocation has much smoother profile than the load has in 
reality resulting in underestimated voltage drops, losses, etc. 
In parameter estimation, load allocation was observed to result 
in very poor fits for regression problems of form (9), whose 
response value is calculated as a difference of very smooth 
voltages simulated with smooth allocated load profiles and 
highly variable PV voltage measurements. For some such 
regression problems, the predictors (calculated based on 
allocated loads) are unable to explain almost any of the 
variation in the response variable (calculated as a difference of 
simulated and PV measured voltage). 

 
Figure 7. Feeder DC2 error of PV bus voltages simulated with the 

original (top) and estimated (bottom) parameters 
 

 
Figure 8. Original (in blue) and estimated (in yellow) service line lengths 

for the feeder QL1 

VI. CONCLUSIONS 

This paper presents an approach for generating simplified 
secondary circuit models with limited substation SCADA and 
PV micro-inverter measurements. The method is applied to 
models of three real U.S. utility feeders with PV micro-
inverter measurements. Compared to the base case of utilizing 
generic secondary circuit models, using the proposed 
simplified secondary circuit models with estimated parameters 
reduced the absolute average PV voltage simulation errors in 
the three feeder models on average by 0.57 Volts (19.3% 
reduction), 1.64 Volts (71.5% reduction), and 0.40 Volts 
(22.5% reduction). The errors were reduced for most of the 
PVs but for some PVs the error reduction was minor. For 

limited number of PVs, the errors either remained constant or 
were slightly increased. This is likely explained by the 
inconsistencies in feeder modeling that resulted in highly 
uncorrelated parameter estimation regression model response 
and predictor variables. 

The simplified secondary circuit parameter estimation with 
limited data had two major challenges. First, it turned out to be 
challenging to accurately model the medium-voltage circuit. 
In particular, it was very challenging to accurately identify 
historical feeder voltage regulating device operation. Second 
and the leading problem was modeling loads with substation 
load allocation. Load allocation results in smooth load profiles 
that may be highly uncorrelated with true individual loads at 
the secondary circuit level. This was particularly problematic 
in parameter estimation regression problems whose response 
variable is calculated as a difference of measured voltages 
(typically high variability) and voltages simulated with loads 
modeled with load allocation (typically low variability). AMI 
data seems to be mandatory to perform accurate distribution 
system secondary circuit parameter estimation. Future work 
should study parameter estimation accuracy in the common 
case when smart meter active power measurements are 
available for many loads but only a limited number of voltage 
measurements are available from PV micro-inverters. 
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