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Abstract—The increasing penetration of variable energy 
sources, plug-in electric vehicles (PEV) and storage in the 
distribution system generates the need for load forecasting at a 
more granular level than at the substations. Load forecasting at 
the distribution transformer level can provide an estimate of how 
the load is distributed in the distribution network rather than a 
substation total estimate. It opens possibilities for various 
applications and use cases including better demand-response 
management, resource scheduling, enhanced losses minimization, 
and more accurate management of distribution transformer 
loading. In order to achieve higher accuracy of transformer 
loading forecasting, distribution transformer meters or 
equivalent aggregation of the transformer served load based on 
smart meters is required. This paper presents two linear models 
for computationally efficient short-term load forecasting on 
distribution transformers. The first model uses an aggregate load 
and the second uses an average load approach. The average load 
method exhibits prediction accuracy superior to the aggregate 
load approach. The proposed models are tested on smart grid 
community data provided by Pecan Street. 
 

Index Terms—Short-Term Load Forecasting, Distribution 
Transformer Load Forecasting, Linear Regression Models. 

I. INTRODUCTION 

OAD forecasting is a critical function and activity in power 
system operations and planning for both transmission and 
distribution. Utilities need accurate load forecasting 

models for a variety of business processes including 
generation and transmission planning, distribution planning, 
energy procurement, real-time operation and dispatch, demand 
side management (DSM) and demand response, and financial 
planning [10]. From regulated utilities to deregulated 
environments such as [4], load prediction models are utilized 
every day. 

The increasing deployment of distributed energy resources, 
electric vehicles and demand response programs pose 
important challenges for distribution system operations. 
Reliable operation of emerging distribution systems requires 
more advanced load forecasting. In particular, load forecasting 
in smaller scales, such as distribution transformers, microgrids 
and the customer becomes more highly desirable. Deployment 
of advanced metering infrastructure (AMI) has resulted in 
opportunities to collect load data from individual homes and 
commercial buildings, and to determine aggregates of those 
load quantities at the distribution transformer level, and feeder 
level, for a variety of applications. 

In this paper we propose two computationally efficient 
models for distribution load forecasting and develop a 
comparison of them to illustrate their advantages. The rest of 
this paper is structured as follows. Section II presents 
classification of methods for load forecasting and the state of 

the art in linear methods. In section III, we propose our 
disaggregated approach. In section IV, analysis and results are 
illustrated while in section V a conclusion is provided. 

II.  BACKGROUND 

A. Classification of Load Forecasting Methods 

Load forecasting methods can be grouped in various ways. 
According to the prediction horizon, [10] proposes four 
categories: 

1) Very-short-term (1 day ahead, update: few minutes),  
2) Short-term (2 weeks ahead, update every 1 day),  
3) Medium-term (3 years ahead, update every 1 month)  
4) Long-term (30 years ahead, update every 1 year).  
The load forecasting models can also be classified 

according to the type of load they predict: base load models or 
peak load models. Finally, various human activities, calendar 
events, meteorological data, spatial information or price 
variations [13] can modify the purpose of the model and 
classify it accordingly. 

Regarding the mathematical model use in load forecasting, 
the problem can be classified in two ways: 1) statistical 
methods, such as regression analysis [14] and time series 
analysis [15] and 2) artificial intelligence methods, such as 
artificial neural networks (ANN) [2, 16] , fuzzy logic [11], and 
support vector machines (SVM) [3,1717]. Combinations of 
those methods have also been proposed [12].  

B. Aggregate and Average Load Forecasting  

  Aggregate load and average load forecasting methods have 
both been proposed in the past using one of the two 
approaches mentioned before. See [7], [8] and [25]. The 
aggregation of a daily load of a number of users has the 
advantage of smoothing the spikes in demand caused by the 
consumption profile of different devices, as explained in [5]. 
An example of such a device is the PEV (random-high spikes). 

C. Advantages of Linear Modelling Techniques  

Multiple regression analysis has several advantages 
including modelling of different parameters that affect the 
load, i.e. holidays can be modeled as binary variables, 
different days of the week can have a different error variance 
assigned (heteroskedasticity) and reducing the effect of 
outliers, especially in the case of large load forecast errors, as 
mentioned in [14]. In this paper we use linear regression 
models because they are the simplest to develop and the 
easiest to fully interpret. However, any attempt of predicting a 
single user’s load with a linear regression model (i.e. using 
panel data structures in Mixed Linear Models proposed in 
statistics publications like [22]) would lack accuracy because 
the model would be highly driven by the spikes in a single 
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user’s consumption rather than the baseline load. Thus, we 
present an aggregate and an average linear load forecasting 
model applied to distribution transformers.  

III. PROPOSED METHOD 

A. Disaggregated Approach 

The increasing penetration of variable sources (mostly PV) 
and storage (PEV or batteries for PV) in the distribution 
system requires distribution transformer load forecasting 
models to enable energy management [28]. Moreover, 
congestion issues that might arise in heavily loaded elements 
or subnetworks can be in general improved with such a 
forecast model. Power losses that occur by transferring the 
power away from the generation point for consumption can 
also be reduced. Overloading of distribution transformers can 
be avoided. Optimal PEV charging periods could be planned.  

Recent literature has made limited attempts to integrate 
frameworks for more disaggregated load forecasting methods 
to address some of the previous issues and benefit from the 
advantages of distributed generation. [26] describes the need 
for separate short-term forecast models in geographically 
distributed loads but only focuses on the substation level. It 
also proposes an optimal region selection technique based on 
load and weather forecast variation. [27] proposes learning-
based distributed load forecasting on subnetworks of the 
system which are, however, not explicitly defined. In this 
paper, we fully define a distinct way to forecast disaggregated 
load. This is performed on distribution transformers, as shown 
in Fig. 1. 

 

 
Fig 1. Distribution transformer load forecasting 

 
We use two linear, short-term load forecasting models for 

the Customer Baseline Load on aggregate and on average 
distribution transformers data. Only total consumption values 

were used because most installed smart meters in homes only 
provide total consumption data, rather than data from 
individual appliances. Even if there are smart meters installed 
on appliances, we consciously decide to discard these signals 
from this study to ensure real-time computational tractability. 
The authors in [1], propose an approach to model each 
household device by using the aggregate power signal and 
Hidden Markov Models (EDHMM-Diff). These models can 
be used for smart house applications on the house level. 
However, when forecasting load on a network bus, detailed 
models of all the appliances of all the houses connected to that 
node would convert the problem to a prohibitively very 
complex one. Thus, appliance models are not used here. 
 This study takes into consideration only weather data and 
the total houses area. Weather data are easily accessible and 
very accurate for the day ahead prediction (temperature and 
humidity). This study does not take into account price data 
because there is no unified price environment in the USA. [21] 
proposes a two-step, substation level, linear regression model 
with adaptation based on weather conditions but does not take 
into account the total area of the house while ours does. [18] 
provides a study for the STLF of the peak load based only on 
weather data. Others, like [20] use ANN to model the 
nonlinear relationship between the weather variables and the 
load. However, ANN are difficult to interpret (cannot define 
confidence intervals) and more complex computationally. In 
[19] the nonlinearity between the weather variables and the 
load is assessed with a nonlinear transformation for the 
purpose of peak STLF. Last, [21] gives a nonparametric 
approach using probability density functions that does not 
require weather data.  

B. Model Implementation 

The methodology proposed to generate the two STLF 
models and extract the forecast is summarized in Fig. 2 below: 

 

 
 

Fig 2. Modelling process and forecast extraction 
 

 The modelling process is explained in Fig. 3. Initially all 
predictors are standardized individually to be fairly treated by 
the AIC later, during model selection (Akaike’s Information 
Criterion penalizes for large variance and large values). For 
example, temperature and temperature square are both 
standardized instead of standardizing the temperature and then 
squaring it. This standardization technique is proposed in [23] 
to reduce the multicollinearity between the predictors. In 
addition, the consumption data was log-transformed to 
become more linear and comply with the linearity assumption 
of linear regression theory. Subsampling without replacement 
is then applied on the standardized raw data to generate the 
training set. For the aggregate model we have the following: T 
is the size of the training set (in our case 60 houses), k is the 
number of random sets generated by the random subsampling 
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Fig 4. Use forecast of a distribution transformer 

(in our case k=50 was a good number to achieve statistical 
convergence) and n is the number of houses in each randomly 
generated set (in our case n=12). Each random set of 12 
houses of the distribution transformer was used to generate a 
linear model according to: 

 ܻ௞෢ ൌ ଴௞෢ߚ ൅ ∑ ప෡ߚ ௞ ௜ܺ௞ே௜ୀଵ         (1) 
 
where N: number of predictors used. In the case of the average 
model: T=99 homes (initial full set), k=100 (number of 
training nodes randomly generated from the 99 homes) and 
n=12 (houses in each randomly generated node of the training 
set). An (1) linear model was used for average modelling. 
 

 
(a)                          (b) 
 

Fig 3. Model Extraction: (a) Aggregate model, (b) Average model 

IV. ANALYSIS & RESULTS 

A. Explanatory Data Analysis 

The concise selection of an initial data set is crucial for the 
statistical analysis because an excessive number of predictors 
and data points in linear regression can lead to an overfitted 
model with poor prediction ability. The initial raw data set 
contains hourly total consumption data of 99 houses, 
temperature, and humidity values for the year 2014. In a first 
explanatory data analysis, different categorical and numerical 
variables were tested for statistical significance: the total area 
of all the houses connected to the same distribution 
transformer, multiple powers of temperature and humidity, 
past values of temperature and humidity, months of the year 
and time of the day. In the two different models proposed, 
some of these predictors were proved significant (using p-
value of t-test) and others not. The coefficients for one of the 
distribution transformers are given in Table I. The time of the 
day was grouped in four different groups (morning, midday, 
evening and night) and represented by categorical variables to 
reduce the number of variables in the problem, as shown in 
Table I. 

B. Variable Selection 

1) Aggregate Model 
The AIC criterion, provided the significant predictors for 

each fitted model. We decided to keep the predictors that 
appeared more than 80% times in the total of 50 fitted models. 
The coefficient values of the final model are shown in table I. 
2) Average Model 

AIC was used to choose the categorical variables of the 
model and LASSO was used to choose the numerical variables 
of the model. In LASSO method, we calculated the optimal 
shrinkage parameter by choosing the fraction that allows for 
the optimal subset through the Cross Validation. The optimal 
parameter s was automatically chosen by LARS package (R 
software) to be equal to 1, as an attempt to minimize the least 
squares. This means that it failed to minimize the least squares 
before it became s=1 and thus no predictor was excluded from 
the model. The shrinkage selection procedure is described in 
literature in [24]. As more variables were added to the model 
we calculated AIC and multiple R squared until multiple R 
squared slightly changed. We defined a threshold for the 
procedure to be terminated. When the next multiple R squared 
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differed by less than 0.0001 from the previous multiple R 
squared we terminated the procedure and extracted the 
corresponding s which was 0.68. No predictor was excluded at 
this value of s from LASSO. However, to find the coefficients 
of categorical and numerical variables, linear regression was 
run because the coefficients calculated from LASSO are not as 
accurate as the ones from linear regression. The average 
model coefficients are shown in table I. 

C. Model Validation 

To validate the performance of the models, out-of-sample 
testing is performed. The results are shown in Fig. 4. We 
observe that the average model has less yearly MAPE. The 
errors are shown in Table II. 

 
TABLE I 

MODEL COEFFICIENTS FOR ONE DISTRIBUTION TRANSFORMER 
Predictor Aggregate Model 

Coefficient Value 
Average Model 

Coefficient Value 
Intercept -7.582 -0.496 
Temperature T 2.776 0.195 
Lagged T(t-1) -4.125 -0.385 
Lagged T(t-2) 4.859 0.437 
T2 4.641 0.235 
T3 1.941 0.015 
Humidity 0.908 0.100 
Lagged H (t-1) - -0.024 
Lagged H (t-2) -1.108 -0.081 
H2 -0.625 -0.042 
Aggregate/Average Area 0.001 0.0004 
Midday (11am - 6pm) 2.199 0.120 
Evening (7pm - 10pm) 4.601 0.328 
Night (11pm - 4am) 0.017 -0.011 
January 1.293 0.099 
February 0.274 0.013 
March 0.245 -0.023 
May 0.879 0.115 
June 2.746 0.307 
July 2.732 0.335 
August 3.707 0.407 
September 3.131 0.343 
October 1.668 0.201 
November 0.587 0.036 
December 1.777 0.124 

 
TABLE II 

FORECAST ERRORS FOR THE SAME DISTRIBUTION TRANSFORMER 

Forecast Model MAPE RMSE 

Aggregate 
Average 

0.31 
0.22 

0.52 
0.51 

 
The total area of the house, is a statistically significant 

predictor mainly because it is proportional to the house 
volume and thus proportional to the air-conditioning 
consumption levels. Air-conditioning is one of the devices that 
form the CBL profile as shown in Fig 4. 

All the statistical assumptions of linear regression theory 
are satisfied, verifying the correctness of the modelling 
process. The predictors of are statistically independent. The 
log-transformation has cleared most of the nonlinearity 
between the consumption and the predictors (especially 
temperature). The residuals follow a normal distribution and 
their variance is constant. The previous assumptions are 
validated through residual analysis in Fig. 5 and Fig. 6.  

Fig 5. Aggregate model residual analysis 

Fig 6. Average model residual analysis 

V. CONCLUSION 

The distribution transformer load forecast in this paper is 
performed based on aggregate or average data. A safe 
comparison of the two methods is offered because the two 
methods were tested on the same data set and training nodes. 
For comparison purposes, the output of the average model was 
scaled (multiplied by the number of customers connected to 
this distribution transformer).  

The size of the prediction error is justified by the choice of 
a linear model representation and by the lack of weather 
independent variables except for the total house area (for 
simplicity and computational tractability). The CBL is 
affected by the air-conditioning devices but not only. The 
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choice of the predictors is able to capture the load profile of 
other devices as well. Special events or holidays were not 
taken into consideration which also contributed towards an 
imperfect prediction. The only term which partially captures 
other factors, is the intercept. However, the forecast errors are 
low. Other models in literature with similar errors have been 
proposed for substation level forecast which has smoother 
load profiles and thus more accurate prediction. 

The linear models proposed, satisfy linear regression theory 
assumptions and can be used to predict the CBL. On top of 
these, other models, mentioned in the introduction, can be 
used to predict the load spikes and profile individualities. 
These peak values would then be added to the output of the 
models proposed. 
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