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Abstract—The increasing penetration of variable energy
sources, plug-in electric vehicles (PEV) and storage in the
distribution system generates the need for load forecasting at a
more granular level than at the substations. Load forecasting at
the distribution transformer level can provide an estimate of how
the load is distributed in the distribution network rather than a
substation total estimate. It opens possibilities for various
applications and use cases including better demand-response
management, resource scheduling, enhanced losses minimization,
and more accurate management of distribution transformer
loading. In order to achieve higher accuracy of transformer
loading forecasting, distribution transformer meters or
equivalent aggregation of the transformer served load based on
smart meters is required. This paper presents two linear models
for computationally efficient short-term load forecasting on
distribution transformers. The first model uses an aggregate load
and the second uses an average load approach. The average load
method exhibits prediction accuracy superior to the aggregate
load approach. The proposed models are tested on smart grid
community data provided by Pecan Street.

Index Terms—Short-Term Load Forecasting, Distribution
Transformer Load Forecasting, Linear Regression Models.

1. INTRODUCTION

OAD forecasting is a critical function and activity in power

system operations and planning for both transmission and

distribution. Utilities need accurate load forecasting
models for a variety of business processes including
generation and transmission planning, distribution planning,
energy procurement, real-time operation and dispatch, demand
side management (DSM) and demand response, and financial
planning [10]. From regulated utilities to deregulated
environments such as [4], load prediction models are utilized
every day.

The increasing deployment of distributed energy resources,
electric vehicles and demand response programs pose
important challenges for distribution system operations.
Reliable operation of emerging distribution systems requires
more advanced load forecasting. In particular, load forecasting
in smaller scales, such as distribution transformers, microgrids
and the customer becomes more highly desirable. Deployment
of advanced metering infrastructure (AMI) has resulted in
opportunities to collect load data from individual homes and
commercial buildings, and to determine aggregates of those
load quantities at the distribution transformer level, and feeder
level, for a variety of applications.

In this paper we propose two computationally efficient
models for distribution load forecasting and develop a
comparison of them to illustrate their advantages. The rest of
this paper is structured as follows. Section II presents
classification of methods for load forecasting and the state of
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the art in linear methods. In section III, we propose our
disaggregated approach. In section IV, analysis and results are
illustrated while in section V a conclusion is provided.

II. BACKGROUND

A. Classification of Load Forecasting Methods

Load forecasting methods can be grouped in various ways.
According to the prediction horizon, [10] proposes four
categories:

1) Very-short-term (1 day ahead, update: few minutes),

2) Short-term (2 weeks ahead, update every 1 day),

3) Medium-term (3 years ahead, update every 1 month)

4) Long-term (30 years ahead, update every 1 year).

The load forecasting models can also be classified
according to the type of load they predict: base load models or
peak load models. Finally, various human activities, calendar
events, meteorological data, spatial information or price
variations [13] can modify the purpose of the model and
classify it accordingly.

Regarding the mathematical model use in load forecasting,
the problem can be classified in two ways: 1) statistical
methods, such as regression analysis [14] and time series
analysis [15] and 2) artificial intelligence methods, such as
artificial neural networks (ANN) [2, 16] , fuzzy logic [11], and
support vector machines (SVM) [3,1717]. Combinations of
those methods have also been proposed [12].

B. Aggregate and Average Load Forecasting

Aggregate load and average load forecasting methods have
both been proposed in the past using one of the two
approaches mentioned before. See [7], [8] and [25]. The
aggregation of a daily load of a number of users has the
advantage of smoothing the spikes in demand caused by the
consumption profile of different devices, as explained in [5].
An example of such a device is the PEV (random-high spikes).

C. Advantages of Linear Modelling Techniques

Multiple regression analysis has several advantages
including modelling of different parameters that affect the
load, i.e. holidays can be modeled as binary variables,
different days of the week can have a different error variance
assigned (heteroskedasticity) and reducing the effect of
outliers, especially in the case of large load forecast errors, as
mentioned in [14]. In this paper we use linear regression
models because they are the simplest to develop and the
easiest to fully interpret. However, any attempt of predicting a
single user’s load with a linear regression model (i.e. using
panel data structures in Mixed Linear Models proposed in
statistics publications like [22]) would lack accuracy because
the model would be highly driven by the spikes in a single
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user’s consumption rather than the baseline load. Thus, we
present an aggregate and an average linear load forecasting
model applied to distribution transformers.

III. PROPOSED METHOD

A. Disaggregated Approach

The increasing penetration of variable sources (mostly PV)
and storage (PEV or batteries for PV) in the distribution
system requires distribution transformer load forecasting
models to enable energy management [28]. Moreover,
congestion issues that might arise in heavily loaded elements
or subnetworks can be in general improved with such a
forecast model. Power losses that occur by transferring the
power away from the generation point for consumption can
also be reduced. Overloading of distribution transformers can
be avoided. Optimal PEV charging periods could be planned.

Recent literature has made limited attempts to integrate
frameworks for more disaggregated load forecasting methods
to address some of the previous issues and benefit from the
advantages of distributed generation. [26] describes the need
for separate short-term forecast models in geographically
distributed loads but only focuses on the substation level. It
also proposes an optimal region selection technique based on
load and weather forecast variation. [27] proposes learning-
based distributed load forecasting on subnetworks of the
system which are, however, not explicitly defined. In this
paper, we fully define a distinct way to forecast disaggregated
load. This is performed on distribution transformers, as shown
in Fig. 1.
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Fig 1. Distribution transformer load forecasting

We use two linear, short-term load forecasting models for
the Customer Baseline Load on aggregate and on average
distribution transformers data. Only total consumption values
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were used because most installed smart meters in homes only
provide total consumption data, rather than data from
individual appliances. Even if there are smart meters installed
on appliances, we consciously decide to discard these signals
from this study to ensure real-time computational tractability.
The authors in [1], propose an approach to model each
household device by using the aggregate power signal and
Hidden Markov Models (EDHMM-Diff). These models can
be used for smart house applications on the house level.
However, when forecasting load on a network bus, detailed
models of all the appliances of all the houses connected to that
node would convert the problem to a prohibitively very
complex one. Thus, appliance models are not used here.

This study takes into consideration only weather data and
the total houses area. Weather data are easily accessible and
very accurate for the day ahead prediction (temperature and
humidity). This study does not take into account price data
because there is no unified price environment in the USA. [21]
proposes a two-step, substation level, linear regression model
with adaptation based on weather conditions but does not take
into account the total area of the house while ours does. [18]
provides a study for the STLF of the peak load based only on
weather data. Others, like [20] use ANN to model the
nonlinear relationship between the weather variables and the
load. However, ANN are difficult to interpret (cannot define
confidence intervals) and more complex computationally. In
[19] the nonlinearity between the weather variables and the
load is assessed with a nonlinear transformation for the
purpose of peak STLF. Last, [21] gives a nonparametric
approach using probability density functions that does not
require weather data.

B. Model Implementation

The methodology proposed to generate the two STLF
models and extract the forecast is summarized in Fig. 2 below:

Weather
History
Load Load
History Forecast
Generation
House Weather
Area Forecast
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Fig 2. Modelling process and forecast extraction
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The modelling process is explained in Fig. 3. Initially all
predictors are standardized individually to be fairly treated by
the AIC later, during model selection (Akaike’s Information
Criterion penalizes for large variance and large values). For
example, temperature and temperature square are both
standardized instead of standardizing the temperature and then
squaring it. This standardization technique is proposed in [23]
to reduce the multicollinearity between the predictors. In
addition, the consumption data was log-transformed to
become more linear and comply with the linearity assumption
of linear regression theory. Subsampling without replacement
is then applied on the standardized raw data to generate the
training set. For the aggregate model we have the following: T
is the size of the training set (in our case 60 houses), k is the
number of random sets generated by the random subsampling
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Fig 4. Use forecast of a distribution transformer

(in our case k=50 was a good number to achieve statistical
convergence) and n is the number of houses in each randomly
generated set (in our case n=12). Each random set of 12
houses of the distribution transformer was used to generate a
linear model according to:

— = =k

Yk = Bg + Nili B X M
where N: number of predictors used. In the case of the average
model: 7=99 homes (initial full set), k=100 (number of
training nodes randomly generated from the 99 homes) and

n=12 (houses in each randomly generated node of the training
set). An (1) linear model was used for average modelling.
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Fig 3. Model Extraction: (a) Aggregate model, (b) Average model
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IV. ANALYSIS & RESULTS

A. Explanatory Data Analysis

The concise selection of an initial data set is crucial for the
statistical analysis because an excessive number of predictors
and data points in linear regression can lead to an overfitted
model with poor prediction ability. The initial raw data set
contains hourly total consumption data of 99 houses,
temperature, and humidity values for the year 2014. In a first
explanatory data analysis, different categorical and numerical
variables were tested for statistical significance: the total area
of all the houses connected to the same distribution
transformer, multiple powers of temperature and humidity,
past values of temperature and humidity, months of the year
and time of the day. In the two different models proposed,
some of these predictors were proved significant (using p-
value of t-test) and others not. The coefficients for one of the
distribution transformers are given in Table I. The time of the
day was grouped in four different groups (morning, midday,
evening and night) and represented by categorical variables to
reduce the number of variables in the problem, as shown in
Table 1.

B. Variable Selection

1) Aggregate Model

The AIC criterion, provided the significant predictors for
each fitted model. We decided to keep the predictors that
appeared more than 80% times in the total of 50 fitted models.
The coefficient values of the final model are shown in table 1.
2) Average Model

AIC was used to choose the categorical variables of the
model and LASSO was used to choose the numerical variables
of the model. In LASSO method, we calculated the optimal
shrinkage parameter by choosing the fraction that allows for
the optimal subset through the Cross Validation. The optimal
parameter s was automatically chosen by LARS package (R
software) to be equal to 1, as an attempt to minimize the least
squares. This means that it failed to minimize the least squares
before it became s=1 and thus no predictor was excluded from
the model. The shrinkage selection procedure is described in
literature in [24]. As more variables were added to the model
we calculated AIC and multiple R squared until multiple R
squared slightly changed. We defined a threshold for the
procedure to be terminated. When the next multiple R squared
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differed by less than 0.0001 from the previous multiple R
squared we terminated the procedure and extracted the
corresponding s which was 0.68. No predictor was excluded at
this value of s from LASSO. However, to find the coefficients
of categorical and numerical variables, linear regression was
run because the coefficients calculated from LASSO are not as
accurate as the ones from linear regression. The average
model coefficients are shown in table I.

C. Model Validation

To validate the performance of the models, out-of-sample
testing is performed. The results are shown in Fig. 4. We
observe that the average model has less yearly MAPE. The
errors are shown in Table II.

TABLEI

MODEL COEFFICIENTS FOR ONE DISTRIBUTION TRANSFORMER

Predictor Aggregate Model Average Model
Coefficient Value Coefficient Value
Intercept -7.582 -0.496
Temperature T 2.776 0.195
Lagged T(t-1) -4.125 -0.385
Lagged T(t-2) 4.859 0.437
T 4.641 0.235
T 1.941 0.015
Humidity 0.908 0.100
Lagged H (t-1) - -0.024
Lagged H (t-2) -1.108 -0.081
138 -0.625 -0.042
Aggregate/Average Area 0.001 0.0004
Midday (11am - 6pm) 2.199 0.120
Evening (7pm - 10pm) 4.601 0.328
Night (11pm - 4am) 0.017 -0.011
January 1.293 0.099
February 0.274 0.013
March 0.245 -0.023
May 0.879 0.115
June 2.746 0.307
July 2.732 0.335
August 3.707 0.407
September 3.131 0.343
October 1.668 0.201
November 0.587 0.036
December 1.777 0.124
TABLE I
FORECAST ERRORS FOR THE SAME DISTRIBUTION TRANSFORMER
Forecast Model MAPE RMSE
Aggregate 0.31 0.52
Average 0.22 0.51

The total area of the house, is a statistically significant
predictor mainly because it is proportional to the house
volume and thus proportional to the air-conditioning
consumption levels. Air-conditioning is one of the devices that
form the CBL profile as shown in Fig 4.

All the statistical assumptions of linear regression theory
are satisfied, verifying the correctness of the modelling
process. The predictors of are statistically independent. The
log-transformation has cleared most of the nonlinearity
between the consumption and the predictors (especially
temperature). The residuals follow a normal distribution and
their variance is constant. The previous assumptions are
validated through residual analysis in Fig. 5 and Fig. 6.
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Fig 6. Average model residual analysis

V. CONCLUSION

The distribution transformer load forecast in this paper is
performed based on aggregate or average data. A safe
comparison of the two methods is offered because the two
methods were tested on the same data set and training nodes.
For comparison purposes, the output of the average model was
scaled (multiplied by the number of customers connected to
this distribution transformer).

The size of the prediction error is justified by the choice of
a linear model representation and by the lack of weather
independent variables except for the total house area (for
simplicity and computational tractability). The CBL is
affected by the air-conditioning devices but not only. The
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choice of the predictors is able to capture the load profile of
other devices as well. Special events or holidays were not
taken into consideration which also contributed towards an
imperfect prediction. The only term which partially captures
other factors, is the intercept. However, the forecast errors are
low. Other models in literature with similar errors have been
proposed for substation level forecast which has smoother
load profiles and thus more accurate prediction.

The linear models proposed, satisfy linear regression theory
assumptions and can be used to predict the CBL. On top of
these, other models, mentioned in the introduction, can be
used to predict the load spikes and profile individualities.
These peak values would then be added to the output of the
models proposed.
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