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A B S T R A C T   

This paper presents an AI-guided approach to automatically discover low-carbon cost-effective ultra-high per
formance concrete (UHPC). The presented approach automates data augmentation, machine learning model 
generation, and mixture selection by integrating advanced techniques of generative modeling, automated ma
chine learning, and many-objective optimization. New data are synthesized by generative modeling and semi- 
supervised learning to enlarge datasets for training machine learning models that are automatically generated 
to predict the compressive strength, flexural strength, mini-slump spread, and porosity of UHPC. The proposed 
approach was used to explore new UHPC mixtures in two design scenarios with different objectives. The first 
scenario maximizes the compressive and flexural strengths and minimizes porosity while retaining self- 
consolidation. The second scenario minimizes the life-cycle carbon footprint, embodied energy, and material 
cost, besides the objectives of the first scenario. The life-cycle carbon footprint, embodied energy, and material 
cost of the UHPC in the second scenario are respectively reduced by 73%, 71%, and 80%, compared with the 
UHPC in the first scenario. This research advances the capability of developing cementitious composites using AI- 
guided approaches.   

1. Introduction 

Ultra-high performance concrete (UHPC) is a family of advanced 
cementitious composites featuring self-consolidation, superior me
chanical properties, and long-term durability (Meng and Khayat, 2018). 
The 28-day compressive strength of UHPC exceeds 120 MPa under 
standard curing conditions (Du et al., 2021; Meng et al., 2018). The high 
strength is associated with the dense microstructure due to high particle 
packing density and low porosity. UHPC also has high tensile and flex
ural strengths due to the use of chopped fibers dispersed in the cemen
titious matrix, and the fibers provide crack-bridging effects (Karim and 
Shafei, 2021). Given the dense microstructure and discontinuous pore 
network, UHPC possesses exceptional durability (Ahlborn et al., 2008; 
Lu et al., 2021). Due to the extraordinary properties, UHPC attracted 
increasing attention in the past decade. UHPC has been successfully used 
in new construction (Gaudillière et al., 2018; Muttoni et al., 2013) and 
rehabilitation of existing civil engineering structures (Aaleti et al., 2013; 
Doiron, 2016; Hain et al., 2019; Kennedy et al., 2015). 

A main drawback that hinders wider acceptance of UHPC in engi
neering practices is the high material cost and carbon footprint, due to 

use of costly and high-carbon raw materials such as steel fibers, cement, 
and organic admixtures. Many studies were conducted to develop low- 
carbon cost-effective UHPC mixtures by using alternative materials. 
For example, Meng et al. (2018) developed four UHPC mixtures using 
local river sand, masonry sand, and supplementary cementitious mate
rials (SCMs) such as fly ash and slag. Test results showed that the 
developed UHPC mixtures delivered high mechanical properties and low 
cost as well as low carbon footprint and low embodied energy. Consis
tent test results of UHPC were obtained in other studies (Meng et al., 
2016; Mosaberpanah et al., 2019; Wille et al., 2011). The tests were 
designed based on extensive experimental efforts and long time for those 
experiments that involved necessary time for curing concrete. 
trial-and-error experiments of UHPC mixtures are usually 
time-consuming for two reasons. First, the standard tests of mechanical 
properties such as the compressive strength and the flexural properties 
are performed after the UHPC specimens are cured for 28 days according 
to ASTM C109 and ASTM C1609. The durability tests such as external 
sulfate attack test can take more than 6 months according to ASTM 
C1012. Second, there are many mixture design variables such as the 
water-to-binder ratio and the sand-to-binder ratio. Those variables have 
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significant effects on the key properties such as the fresh and the me
chanical properties of UHPC. It is time-consuming to test the effects of 
those variables on the different properties. There will be more experi
ments required when the coupling effects between different variables 
are considered. Considering tradeoffs between different properties and 
material cost, developing new UHPC is relevant in engineering projects 
with different desired properties, while the low efficiency and high cost 
of developing new UHPC based on intensive experiments have stalled 
their adoption in engineering applications. 

An alternative approach to develop UHPC is to use data-driven ma
chine learning models that are trained to predict UHPC properties based 
on calibrated relationship between design variables and properties 
(Mahjoubi et al., 2022; Sun et al., 2021). With the predictive model, an 
optimization algorithm can be incorporated to optimize the design 
variables such as the water-to-cement and sand-to-binder ratios (Mah
joubi et al., 2021). A few studies have been conducted to develop UHPC 
based on machine learning. Fan et al. (2021a) trained a second-order 
polynomial regression model using 19 experimental data to predict 
the packing density of UHPC. Ghafari et al. (2015) trained artificial 
neural networks using 53 experimental data to predict the compressive 
strength and flowability of UHPC. Abellán-García and Guzmán-Guzmán 
(2021) trained two random forest models using 600 experimental data 
to predict the energy absorption capacity and ultimate strain capacity of 
UHPC. Sadrossadat et al. (2021) trained artificial neural networks using 
53 experimental data to predict the compressive and flowability of 
UHPC. Fan et al. (2020, 2021b) trained an artificial neural network to 
predict the particle packing density, compressive strength, and flexural 
strength of UHPC. The dataset had 80 experimental data in reference 
(Fan et al., 2021b) and 26 experimental data in reference (Fan et al., 
2020). A concrete mixture was designed using the Modified Andreasen 
and Andersen dry particle packing model (Funk and Dinger, 2013) and 
the least-square method (Björck, 1990). The limestone powder content 
of the UHPC mixture was optimized, aiming to maximize the particle 
packing density. 

Previous research showed that data-driven models were promising to 
predict properties, and optimization algorithms minimized the material 
cost of UHPC and other types of concrete. Four major limitations were 
identified from previous studies: (1) There is lack of data for training 
machine learning models. This is a common challenge for AI-guided 
material discovery. The dilemma is that (i) when the dataset is small, 
machine learning models have low accuracy and generalizability; and 
(ii) when the dataset is large, meaning that development of the material 
is mature, the significance of machine learning-based new material 

discovery becomes limited. (2) Simple machine learning models were 
used to regress high-dimensional relations of different types of concrete 
with many variables. Each model considered limited types of variables, 
making the model inapplicable to other cases with different raw mate
rials and variables. (3) It is difficult for people who do not have expertise 
in machine learning to generate a machine learning model with good 
performance. The tasks, such as data preprocessing, model selection, 
and hyperparameter tuning, of developing a machine learning model 
requires special knowledge in machine learning. (4) Most existing efforts 
of optimizing UHPC focused on maximizing the mechanical properties 
or minimizing the material cost of UHPC by optimizing one or two 
mixture design variables while the other variables were kept constant. It 
is unclear how to discover low-carbon low-cost UHPC mixtures while 
retaining the desired mechanical properties, workability, and durability. 
These limitations represent major technical challenges of machine 
learning methods for prediction of concrete properties. 

This study intends to address these limitations by developing an 
approach that integrates machine intelligence and evolutionary many- 
objective optimization for auto-discovery of UHPC. There are four 
main research objectives: (1) to establish a framework to automatically 
optimize the mechanical, flowability, durability, economic, and 
ecological properties; (2) to develop a data synthesis method based on 
generative modeling and semi-supervised learning to enlarge datasets 
for improving accuracy and generalizability. Semi-supervised learning is 
involved to derive output variables by regression models instead of 
generative models. (3) to develop high-fidelity machine learning models 
to predict the compressive strength, flexural strength, mini-slump 
spread, and porosity of UHPC; and (4) to automatically discover new 
UHPC mixtures with desired properties for many objectives. 

This research is novel in four aspects: (1) An automated machine 
learning (AutoML) approach is presented based on the Microsoft Azure 
Copeland et al., 2015; Fusi et al., 2018) which performs data pre
processing, model selection, hyperparameter tuning, automatically. ((2) 
An approach is developed to synthesize artificial, yet reasonable data 
based on a conditional generative adversarial network (Mirza and 
Osindero, 2014; Xu et al., 2019), Copula generative adversarial network 
(Kamthe et al., 2021), Gaussian Copula (Patki et al., 2016), and varia
tional autoencoder (Kingma and Welling, 2013). The synthetic data are 
used to supplement test data and boost the accuracy and generalizability 
of predictive models. (3) Key mechanical properties (i.e., 28-day 
compressive strength and tensile strength), workability (i.e., 
mini-slump spread), and porosity were considered in the AI-guided 
design process of UHPC. (4) The predictive models are integrated with 

Fig. 1. Flowchart of the proposed method for auto-discovery of low-carbon cost-effective UHPC.  
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a many-objective optimization method, namely Adaptive Geometry 
Estimation-based Many-Objective Evolutionary Algorithm (AGE-MOEA) 
(Panichella, 2019), and a decision-making approach, called Pareto 
optimal solutions using the Technique for Order of Preference by Simi
larity to Ideal Solution (TOPSIS) (Hwang and Yoon, 1981), for 
many-objective optimization in two design scenarios of UHPC. This 
research advances the capability for efficient discovery of new UHPC. 

2. Methodology 

Fig. 1 shows the flowchart of the framework. There are eight main 
steps: (1) Four datasets are established using experimental data of 
compressive strength, flexural strength, porosity, and mini-slump spread 
of UHPC. Each dataset is divided into training and test sets as elaborated 
in Section 2.1. (2) Automated machine learning generates predictive 
models for the four datasets, as shown in Section 2.2. (3) Generative 
techniques synthesize artificial data to enlarge the training datasets, as 
discussed in Section 2.3. (4) The predictive models are re-trained using 
the enlarged datasets composed of experimental data and synthetic data, 
and compared against eight state-of-the-art methods, as elaborated in 
Section 2.4. (5) Six objective functions along with design constraints are 
formulated to optimize the mechanical properties, eco-efficiency, and 
cost-efficiency of UHPC, as elaborated in Section 2.5. (6) Mixture opti
mization problems of UHPC are defined, as elaborated in Section 2.6. (7) 
An evolutionary many-objective optimization algorithm (AGE-MOEA) is 
utilized to solve the optimization problems, as elaborated in 2.7. (8) A 
decision-making method is applied to select the most preferable optimal 
solutions, as elaborated in Section 2.8. 

2.1. Dataset 

Four datasets with 785 experimental data from 49 references were 
established (Abbas et al., 2015; Ahmed et al., 2021; Ashkezari et al., 
2020; Bonneau et al., 2000; Chan and Chu, 2004; Charron et al., 2007; 
Chu and Kwan, 2019; Corinaldesi, 2012; Corinaldesi and Moriconi, 
2012; Gesoglu et al., 2016; Ghafari et al., 2014, 2016; Graybeal, 2007; 
Graybeal and Hartmann, 2003;(Guo et al., 2021); Guvensoy et al., 2004; 
Habel et al., 2006; Hassan et al., 2012; Hassan, 2013; Huang et al., 2017; 

Jiang et al., 2015; Kang et al., 2018; Li et al., 2020; Liu and Guo, 2018; 
Liu et al., 2018; Ma et al., 2002; Mo et al., 2020; Pourbaba et al., 2018; 
Prem et al., 2015; Rajasekar et al., 2019; Richard and Cheyrezy, 1995; 
Roberti et al., 2021; Sadrmomtazi et al., 2018; ̌Seps et al., al.; Song et al., 
2018a, 2018b; Staquet and Espion, 2004; Tafraoui et al., 2009; Voo Yen 
et al., 2010; Wang et al., 2012; Wu et al., 2017a, 2017b, 2016a; Wu 
et al., 2016b; Yang et al., 2009; Yu et al., 2017, 2014a, (Yu et al., 2014b), 
2015a, (Yu et al., 2015b)). The datasets included the compressive 
strength, flexural strength, and porosity of UHPC at 28 days, as well as 
the mini-slump spread. The number of test data for these four properties 
was 379, 146, 152, and 108, respectively. In total, 481 unique UHPC 
mixtures were considered in the datasets. Those mixtures adopted Class 
F fly ash, ordinary Portland cement, and straight steel fibers. Standard 
curing was applied to the specimens used in evaluating the mechanical 
properties and porosity of UHPC at 28 days. The compressive strengths 
were evaluated using cubic specimens according to code ASTM C109. 
The flexural strengths were evaluated using beam specimens through 
three-point bending tests according to ASTM C1609. 

Each dataset was divided into training and test sets, with 80% data 
randomly selected for the training set and 20% data for the test set. In 
the datasets, 16 design variables were considered for compressive 
strength and flexural strength, and 15 design variables were considered 
for the porosity and mini-slump spread. Tables 1 to 4 list design vari
ables and statistics of the mean, range, skewness, and kurtosis. 

In Tables 1 to 4, all the ratios are by mass. Although the compressive 
strength of UHPC should be greater than 120 MPa, several mixture de
signs are involved in the developed dataset with compressive strength 
lower than the specified value. The reason is that some studies investi
gated the effects of the mixture design variables such as the water-to- 
cement ratio and the fiber content on the compressive strength. In 
those studies, some mixture designs reached 120 MPa, but some mixture 
designs did not reach 120 MPa. 

Skewness reflects the asymmetry of distribution (Cain et al., 2017). 
Kurtosis indicates the outlier-prone extent of distribution. According to 
reference (Mallery and George, 2000), when the skewness and the 
kurtosis of a distribution are in the range of -2 to 2, the distribution is 
considered as a normal distribution. Most of the variables did not follow 

Table 1 
Summary statistics of the variables corresponding to the compressive strength 
dataset.  

Number Variable Unit Range Mean Skew.1 Kurt.2 

1 Cement-to-cm3,4 1 0.17–1 0.76 -1.02 1.12 
2 Cement type MPa 42.5, 

52.5 
48.1 -0.23 -1.96 

3 Fly ash-to-cm 1 0–0.55 0.05 2.07 3.60 
4 Slag-to-cm 1 0–0.70 0.04 2.92 9.00 
5 Silica fume-to-cm 1 0–0.25 0.13 -0.24 -1.38 
6 Metakaolin-to-cm 1 0–0.29 0.01 4.19 19.37 
7 Nano silica-to-cm 1 0–0.17 0.01 3.53 20.24 
8 Limestone-to-cm 1 0–2.64 0.08 6.40 63.39 
9 Quartz powder-to- 

cm 
1 0–0.46 0.06 1.49 1.10 

10 Sand-to-cm 1 0–2.90 1.18 0.90 1.83 
11 Maximum aggregate 

size 
mm 0.10–5 1.76 1.28 1.49 

12 Water-to-cm 1 0.12–0.5 0.20 2.19 6.95 
13 Superplasticizer-to- 

cm 
1 0–0.15 0.04 2.31 5.61 

14 Steel fiber volume % 0–6.2 1.84 2.14 6.55 
15 Aspect ratio of fibers 1 30–83 39 -0.30 -1.75 
16 Size of specimen mm 40–110 55 1.28 -0.02 
17 28-day compressive 

strength 
MPa 57–180 125 -0.36 -0.44  

1 “Skew.” stands for skewness. 
2 “Kurt.” stands for kurtosis. 
3 “cm” stands for cementitious materials. 
4 ratios are by weight. 

Table 2 
Summary statistics of the variables corresponding to the flexural strength 
dataset.  

Number Variable Unit Range Mean Skew.1 Kurt.2 

1 Cement-to-cm3,4 1 0.24–1 0.77 -1.01 0.60 
2 Cement type MPa 42.5, 52.5 48.04 -0.22 -1.98 
3 Fly ash-to-cm 1 0–0.55 0.07 1.67 1.79 
4 Slag-to-cm 1 0–0.45 0.03 3.04 7.92 
5 Silica fume-to-cm 1 0–0.25 0.11 0.24 -1.52 
6 Metakaolin-to-cm 1 0–0.286 0.02 3.34 11.99 
7 Nano silica-to-cm 1 0–0.062 0.01 1.56 0.87 
8 Limestone -to-cm 1 0–0.6 0.07 2.09 2.77 
9 Quartz powder-to- 

cm 
1 0–0.4 0.04 2.48 4.97 

10 Sand-to-cm 1 0–2.897 1.24 0.71 1.94 
11 Maximum 

aggregate size 
mm 0.1–5 1.79 1.25 1.61 

12 Water-to-cm 1 0.125–0.4 0.21 1.64 2.69 
13 Superplasticizer- 

to-cm 
1 0–0.1 0.03 1.28 1.25 

14 Steel fiber volume % 0–6.2 1.65 2.79 11.17 
15 Aspect ratio of 

fibers 
1 30–81.25 35.78 -0.14 -1.91 

16 Length of 
specimen 

mm 100–500 172.32 3.47 14.57 

17 28-day flexural 
strength 

MPa 6.6–39.4 21.83 0.35 -0.58  

1 “Skew.” stands for skewness. 
2 “Kurt.” stands for kurtosis. 
3 “cm” stands for cementitious materials. 
4 ratios are by weight. 

S. Mahjoubi et al.                                                                                                                                                                                                                               



Resources, Conservation & Recycling 189 (2023) 106741

4

normal distributions. 2.2. Automated machine learning 

To address the challenges of high-dimensional regression and model 
configuration, this study proposes to use Azure AutoML to automate the 

Table 3 
Summary statistics of the variables corresponding to the mini-slump spread dataset.  

Number Variable Unit Range Mean Skew.1 Kurt.2 

1 Cement-to-cm3,4 1 0.2–1.0 0.72 -0.58 -0.23 
2 Cement type MPa 42.5, 52.5 49.34 -0.80 -1.38 
3 Fly ash-to-cm 1 0–0.6 0.07 1.72 2.63 
4 Slag-to-cm 1 0–0.5 0.07 1.90 2.46 
5 Silica fume-to-cm 1 0–0.3 0.12 -0.02 -1.61 
6 Metakaolin-to-cm 1 0–0.3 0.01 6.70 49.00 
7 Nano silica-to-cm 1 0–0.1 0.01 1.36 0.39 
8 Limestone-to-cm 1 0–0.6 0.10 1.55 1.01 
9 Quartz powder-to-cm 1 0–0.4 0.05 2.04 3.47 
10 Sand-to-cm 1 0–2.9 1.16 0.75 1.75 
11 Maximum aggregate size mm 0.1–4.8 1.48 1.39 3.22 
12 Water-to-cm 1 0.2–0.4 0.21 1.80 3.16 
13 Superplasticizer-to-cm 1 0–0.2 0.05 1.80 3.10 
14 Steel fiber volume % 0–6.2 1.35 1.50 3.61 
15 Aspect ratio of fibers 1 30–75.0 38.67 -0.43 -1.78 
16 Mini-slump spread mm 100.8–353.6 231.61 -0.11 -0.85  

1 “Skew.” stands for skewness. 
2 “Kurt.” stands for kurtosis. 
3 “cm” stands for cementitious materials. 
4 ratios are by weight. 

Table 4 
Summary statistics of the variables corresponding to the porosity dataset.  

Number Variable Unit Range Mean Skew.1 Kurt.2 

1 Cement-to-cm3,4 1 0.67–1.00 0.72 -0.58 -0.23 
2 Cement type MPa 42.50–52.50 49.34 -0.80 -1.38 
3 Fly ash-to-cm 1 0–0.22 0.07 1.72 2.63 
4 Slag-to-cm 1 0–0.30 0.07 1.90 2.46 
5 Silica fume-to-cm 1 0–0.19 0.12 -0.02 -1.61 
6 Metakaolin-to-cm 1 0–0.29 0.01 6.70 49.00 
7 Nano silica-to-cm 1 0–0.06 0.01 1.36 0.39 
8 Limestone-to-cm 1 0–3.56 0.10 1.55 1.01 
9 Quartz powder-to-cm 1 0–0.40 0.05 2.04 3.47 
10 Sand-to-cm 1 0–3.71 1.16 0.75 1.75 
11 Maximum aggregate size mm 0.50–2.00 1.48 1.39 3.22 
12 Water-to-cm 1 0.13–0.4 0.21 1.80 3.16 
13 Superplasticizer-to-cm 1 0.01–0.10 0.05 1.80 3.10 
14 Steel fiber volume % 0–6.2 1.35 1.50 3.61 
15 Aspect ratio of fibers 1 30–60 231.61 -0.11 -0.85 
16 28-day porosity % 4.53–17 10.69 -0.01 2.24  

1 “Skew.” stands for skewness. 
2 “Kurt.” stands for kurtosis. 
3 “cm” stands for cementitious materials. 
4 ratios are by weight. 

Fig. 2. The flowcharts for the ensemble learning: (a) stacking and (b) voting ensemble methods.  
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efforts of data preprocessing, model configuration, and hyperparameter 
tuning (Copeland et al., 2015; Mukunthu and Gillett, 2018). Azure 
AutoML automatically designs the optimal machine learning pipeline, 
which is a sequence of steps from data preprocessing to property pre
diction, based on probabilistic matrix factorization (Lawrence and 
Urtasun, 2009), Bayesian optimization, and ensemble learning (Fusi 
et al., 2018). Probabilistic matrix factorization explores 
high-performance machine learning models by leveraging prior knowl
edge obtained by training more than 1000 machine learning pipelines 
with various datasets. Probabilistic matrix factorization embeds 
different pipelines in a latent space based on their performance across 
various datasets (Fusi et al., 2018). The idea is that if the performance of 
a few pipelines is similar for two datasets, the performance of the 
remaining pipelines is perhaps similar for the two datasets. A set of 
pipelines are selected based on predicted performance and tested using 
the given dataset. 

The performance of the machine learning models during the training 
process is assessed using k-fold cross-validation. This process continues 
until the target accuracy of probabilistic matrix factorization is ach
ieved. Bayesian optimization is then performed to optimize hyper
parameters of the selected pipelines. Finally, the predictive models 
determined by the designed pipelines are combined using voting and 
stacking ensemble methods to improve the accuracy (Lawrence and 
Urtasun, 2009). A voting ensemble model predicts based on the 
weighted average of predictions made by heterogeneous models. 
Stacking trains a meta-model based on the predictions of individual 
models, as shown in Fig. 2. 

2.3. Generative modeling 

Synthetic data, as implied by its name, are artificial data, but they are 
not random data. Synthetic data are generated using generative models 
trained using real test data, and they are used to supplement the test data 
because machine learning models are prone to overfitting issues when 
the models are trained using a small dataset. 

Generative models have been widely used in computer vision tasks 
for image augmentation, aiming to circumvent the problem of over
fitting (Xue et al., 2021). This study tailored the generative models, 
which were developed for synthesizing images in computer vision tasks, 
to synthesize tabular data based on semi-supervised learning (Li et al., 
2018). The input mixture design variables of UHPC were synthesized 
using generative models trained using real test data, and the properties 
of UHPC mixtures were determined using the predictive models trained 
in Section 2.2. The synthetic data and real experimental data comprise 
the new training set. 

Four generative approaches were used to synthesize the data: (1) 
GM1: conditional generative adversarial network Mirza and Osindero, 
2014; Xu et al., 2019), ((2) GM2: Copula generative adversarial network 
(Kamthe et al., 2021), (3) GM3: Gaussian Copula (Patki et al., 2016), and 
(4) GM4: variational autoencoder (Kingma and Welling, 2013). The 
quality of the synthetic data was assessed by the machine learning ef
ficacy (Xu and Veeramachaneni, 2018), the correlation preservation 
(Xu and Veeramachaneni, 2018), and the diversity index (Zhang et al., 
2022), while the number of synthetic data was kept the same as that of 
the real training set. Machine learning efficacy evaluates the represen
tation degree of synthetic data against real data. Machine learning 
models were trained using the synthetic data and real data, respectively. 
Machine learning efficacy was calculated as RMSES/RMSER, denoting 
the ratio of the root mean square errors (RMSE) of models trained using 
the synthetic data and real data, respectively. Correlation preservation 
(CP) assesses the difference between the correlation coefficients of input 
and output variables from the real dataset and the correlation co
efficients of variables from the synthetic dataset: 

CP(CS, CR) =
1
n

∑n

i=1

⃒
⃒Rs,i − Rr,i

⃒
⃒ (1)  

where CS and CR are two arrays containing the Pearson correlation co
efficients for the synthetic and real data, respectively; Rs,i and Rr,i are the 
Pearson correlation coefficients of the i th input variable and derived by 
real and synthetic data, respectively; and n is the number of input var
iables. Pearson correlation coefficient (R) between two variables x and y 
can be calculated as: 

R(x, y) =

∑φ
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑φ

i=1(xi − x)
2∑φ

i=1(yi − y)
2

√ (2)  

where xi is the i th value of x; x is the mean of x; yi is the i th value of y; 
and y is the mean of y; φ is the number of data instances; R is in the range 
of -1 to 1: value -1 means a total negative linear relation; zero means no 
correlation; and 1 means a total positive relation. 

The diversity index quantifies the diversity between the synthetic 
data and real data. The diversity index (DI) is the average of Euclidean 
distance between real and synthetic data instances: 

DI(XS, XR) =
1
φ

∑φ

i=1
E

(
xs,i, XR

)
(3a)  

E
(
xs,i, DR

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

(
si,j − rj

)2

√
√
√
√ (3b)  

where XS and XR are the synthetic and real datasets; φ is the number of 
data instances; xs,i is the i th synthetic data instance; E(xs,i, DR) is the 
minimum Euclidean distance between the i th synthetic data instance 
and real data instances; N is the number of variables; si,j is the j-th var
iable of the i th synthetic data instance; rj is the j-th variable of the real 
data instances with minimum Euclidean distance from the i th synthetic 
data instance. 

The optimal number of added synthetic data was obtained by a 
parametric study. Augmentation ratio is defined as the ratio of the 
number of synthetic data to the number of real data. In the parametric 
study, the augmentation ratio was changed from 0 to 200%. The 
augmentation ratio that led to minimum RMSE was selected as an 
optimal augmentation ratio. 

2.4. Comparison of regression models 

With the new training data, nine predictive models were trained 
based on different methods, including (i) two linear regression methods, 
which are ridge (Hoerl and Kennard, 1970) and passive aggressive 
(Crammer et al., 2006), (ii) a deep neural network, which is multi-layer 
perceptron, (iii) a nonlinear machine learning method, which is support 
vector machine (Cortes and Vapnik, 1995), (iv) a cross decomposition 
method, which is partial least squares (Geladi and Kowalski, 1986), (v) 
two ensemble learning methods, which are random forest methods 
(Breiman, 2001), (vi) a light gradient boosting machine (Ke et al., 2017), 
and (vii) a model obtained using the proposed method based on Azure 
AutoML, as listed in Table 5. The nine models were compared in term of 
five metrics, which are the RMSE, mean absolute error (MAE), mean 

Table 5 
The investigated regression methods.  

Number Method Category 

1 Ridge Linear 
2 Passive aggressive Linear 
3 Multi-layer perceptron Artificial neural network 
4 Support vector machine Nonlinear 
5 Partial least squares Cross decomposition 
6 Random forest Ensemble 
7 Light gradient boosting machine Ensemble 
8 Azure AutoML Ensemble 
9 The proposed method Ensemble  
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absolute percentage error (MAPE), mean absolute deviation (MAD), and 
R2: 

MAE(P, A) =
1
φ

∑φ

i=1
|pi − ai| (4a)  

MAPE(P, A) =
1
φ

∑φ

i=1

⃒
⃒
⃒
⃒
pi − ai

ai

⃒
⃒
⃒
⃒ (4b)  

MAD(P, A)= median(|p1 − a1|, |p2 − a2|, …,|pn − an|) (4c)  

R2(P, A)= 1 −

∑φ
i=1(pi − ai)

2

∑φ
i=1[ai−mean(ai)]

2 (4d)  

2.5. Objective functions 

To achieve desired properties of UHPC, six objective functions are 
considered: (1) maximization of the compressive strength, (2) maximi
zation of the flexural strength, (3) minimization of the porosity, (4) 
minimization of the carbon footprint (CF), (5) minimization of the 
embodied energy (EE), and (6) minimization of the material cost (MC), 
calculated as: 

CF =
∑n

i=0
mi×CO2 − −eqi (5a)  

EE =
∑n

i=0
mi × eei (5b)  

MC =
∑n

i=0
mi × ci (5c)  

where n is the number of raw materials; mi is the mass of i th raw ma
terial in a unit mass of UHPC; CO2 − −eqi is the carbon dioxide equiv
alent of a unit mass of the i th raw material; eei is the amount of 
embodied energy of a unit mass of the i th raw material; ci is the unit 
price of the i th raw material. 

Table 6 lists the inventory for the unit carbon footprint, embodied 
energy, and unit price of the raw materials of UHPC. Six types of SCMs 
were considered, which are Portland cement, fly ash, slag, silica fume, 
metakaolin, and nano silica. Two different types of fillers were consid
ered, which are limestone powder and quartz powder. 

2.6. Design problems 

Table 7 lists two design scenarios, designated as DS1 and DS2: DS1 is 
a three-objective optimization problem for the compressive strength, 
flexural strength, and porosity. DS2 is a six-objective optimization 
problem for all the six objectives. DS2 is a many-objective optimization 
problem as it has more than three objectives (Ishibuchi et al., 2008). 
Two design constraints are imposed. First, the mini-slump spread is in 
the range of 260 mm to 300 mm to ensure adequate flowability and fiber 
dispersion according to reference (Liu et al., 2020). The mini-slump 
spread is predicted using the developed machine learning model. Sec
ond, the total ratio of cementitious materials is equal to 1, expressed as: 
(
s−280)

2
− 202 < ε1 (6a)  

(
∑6

i=1
ri−1

)2

< ε2 (6b)  

where s is the mini-slump spread; ε1 and ε2 are tolerance levels, which 
are set to 1 and 0.01, respectively; and ri is the ratio of the i th cemen
titious material. 

2.7. Evolutionary optimization 

This study adopts the AGE-MOEA (Panichella, 2019) to solve the 
optimization problems formulated in Section 2.6. AGE-MOEA aims to 
determine the optimal solutions that are non-dominated to each other 
but are superior to the rest of solutions. The objectives of non-dominated 
solutions cannot be improved without compromising the other objec
tives. The projection of actual non-dominated solutions is known as 
Pareto front. AGE-MOEA estimates the Pareto front to ensure diversity 
and proximity of non-dominated solutions. AGE-MOEA was compared 
with three other evolutionary algorithms: Two-Archive Evolutionary 

Table 6 
Inventory of the raw materials of UHPC.  

Number Material Specific gravity(unitless) Carbon footprint(kg CO2-eq/kg) Embodied energy(MJ/kg) Material cost(USD/kg) 

1 Portland cement 3.14 (Meng et al., 2018) 0.83 (Long et al., 2015) 5.8 (Müller et al., 2014) 0.082 (Alsalman et al., 
2020) 

2 Fly ash 2.70 (Meng et al., 2018) 0.027 (Vincent et al., 2021) 0.83 (Long et al., 2015) 0.04 (Alsalman et al., 
2020) 

3 Slag 2.90 (Yalçınkaya and Yazıcı, 
2017) 

0.052 (Vincent et al., 2021) 1.59 (Long et al., 2015) 0.1 (Alsalman et al., 2020) 

4 Silica fume 2.20 (Meng et al., 2018) 0.0039 (Ghavami et al., 2021) 0.036 (Kathirvel and Sreekumaran, 
2021) 

0.8 (Alsalman et al., 2020) 

5 Metakaolin 2.62 (Alharbi et al., 2021) 0.4 (Long et al., 2015) 3.48 (Long et al., 2015) 0.5 (Alsalman et al., 2020) 
6 Nano silica 2.30 (Alharbi et al., 2021) 1.69 (Ghavami et al., 2021) 71.36 (Ghavami et al., 2021) 2.5 (Adamu et al., 2018) 
7 Limestone 

powder 
2.73 (Abellán-García, 2020) 0.019 (Chiaia et al., 2014) 0.76 (Chiaia et al., 2014) 0.12 (Alsalman et al., 

2020) 
8 Quartz powder 2.67 (Vaitkevičius et al., 2014) 0.023 (Kathirvel and Sreekumaran, 

2021) 
0.85 (Kathirvel and Sreekumaran, 
2021) 

0.8 (Alsalman et al., 2020) 

9 Fine sand 2.64 (Meng et al., 2018) 0.01 (Shi et al., 2019) 0.11 (Müller et al., 2014) 0.025 (Zhang et al., 2020) 
10 Tap water 1.00 (Meng et al., 2018) 0.0003 (Long et al., 2015) 0.006 (Long et al., 2015) 0.001 (Adamu et al., 

2018) 
11 Superplasticizer 1.05 (Meng et al., 2018) 0.72 (Chiaia et al., 2014) 18.3 (Chiaia et al., 2014) 3.4 (Alsalman et al., 2020) 
12 Steel fiber 7.80 (Meng et al., 2018) 1.50 (Chiaia et al., 2014) 20.56 (Chiaia et al., 2014) 5.0 (Alsalman et al., 2020)  

Table 7 
The objectives of the two investigated design optimization problems.  

Design objective Design scenario 
DS1 DS2 

Compressive strength Included Included 
Flexural strength Included Included 
Porosity Included Included 
Carbon footprint Excluded Included 
Embodied energy Excluded Included 
Material cost Excluded Included  
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Algorithm for Constrained Multi-objective Optimization (C-TAEA) (Li 
et al., 2019), Non-dominated Sorting Genetic Algorithm II (NSGA-II), 
and Unified non-dominated Sorting Genetic Algorithm III (UNSGA-III) 
(Seada and Deb, 2014). The number of generations and population size 
for the algorithms were set to 300 and 100, respectively. The hyper
volume indicator was used to evaluate the quality of solutions (Zitzler 
and Thiele, 1998). The reference point for the two design scenarios is set 
based on the minimum values of compressive strength, flexural strength, 
mini-slump spread, and porosity, and maximum values of carbon foot
print, embodied energy, and material cost. The hypervolume indicator 
was normalized by the maximum of hypervolume. 

2.8. Multi-criteria decision-making 

Multi-criteria decision-making is a type of decision-making that 
explicitly considers multiple conflicting criteria. This study adopts 
multi-criteria decision-making to select the most preferable mixture 
design solutions according to the conflicting design objectives, as dis
cussed in Section 2.5. When there are six or more objectives, the multi- 
objective optimization problems are called many-objective optimization 
problems. With the multiple solutions obtained from AGE-MOEA in 
Section 2.7, a multi-criteria decision-making method called TOPSIS was 
utilized to select the ultimate optimal solutions based (Hwang and 
Yoon, 1981; Mahjoubi et al., 2021). The main idea of TOPSIS is that a 
preferable solution among all the determined solutions is the one that 
has the least distance to the ideal solution and the most distance from the 
nadir solution in the objective space. The ideal solution is the combi
nation of the best values for the objective functions, while the nadir 
solution is the combination of the worst values for the objective func
tions. The objective space is a multi-dimensional space where each 
dimension indicates the magnitude of an objective function. TOPSIS 
incorporates relative weights of criterion importance according to the 
design preference. Therefore, new UHPC mixtures are discovered 
automatically for different applications with various design preferences. 
In this study, the relative weight for each criterion is set to 1. 

3. Results and discussion 

Section 3 presents the results including the machine learning pipe
line and hyperparameters of machine learning models designed by 
Azure AutoML (Section 3.1), performance evaluation of the synthetic 
data (Section 3.2), comparison of predictive models obtained by the 
proposed method and other regression methods (Section 3.3), and the 
discovered low-carbon UHPC mixtures (Section 3.4). 

3.1. Machine learning pipeline 

Fig. 3 shows the machine learning pipeline automatically designed 
by Azure AutoML using the compressive strength dataset. The machine 
learning pipeline consists of three main modules, which are data 

preprocessing, prediction, and voting ensemble. In data preprocessing, 
two scaler transforms were applied, which were standard scaler (z1) and 
maximum absolute scaler (z2), defined as: 

z1 =
x − m

σ (7)  

z2 =
x − m

max(x)
(8)  

where x is an input variable; m and σ are the average and standard de
viation of x; and max(x) is the maximum value of x. 

In the prediction module, three models were employed for predic
tion, which are an XGBoost (Chen and Guestrin, 2016) and two extra 
trees (Geurts et al., 2006). Their hyperparameters were determined by 
Azure AutoML (Table 8). In the voting ensemble, predictions from the 
models were combined with assigned weights 0.364, 0.545, and 0.091, 
respectively, to obtain the final prediction. 

3.2. Evaluation of synthetic data 

To evaluate the effect of the semi-supervised learning method, syn
thetic data are generated in two ways: (1) Type I: Synthetic data are 

Fig. 3. The machine learning pipeline designed by the proposed automated machine learning.  

Table 8 
The optimal hyperparameters of the predictive models.  

Predictive 
models 

Hyperparameters Optimal results 

XGBoost Grow policy Loss guide 
L1 regularization parameter (α) 0 
L2 regularization parameter (λ) 0.625 
Learning rate 0.2 
Loss function squared error 
Maximum depth 7 
Maximum number of bins 1023 
Maximum number of leaves 31 
Minimum split loss 0 
Number of estimators 100 
Subsample ratio 0.7 
Tree construction algorithm Histogram-based 

Extra trees 1 Bootstrapping False 
Fraction of variables at each split 0.8 
Loss function Mean squared 

error 
Minimum number of samples in each 
leaf 

4 

Number of estimators 10 
Extra trees 2 Bootstrapping True 

Fraction of variables at each split 0.7 
Loss function Mean squared 

error 
Minimum number of samples in each 
leaf 

3 

Number of estimators 25  
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generated by semi-supervised learning and generative modeling. The 
input variables are obtained by generative models, and the output var
iables are predicted by the trained models. (2) Type II: Both the input 
and output variables of synthetic data are generated by generative 
models. Fig. 4 shows the RMSE of compressive strength predicted by 
models trained using the two types of synthetic data. The RMSE of Type I 
models are lower than that of Type II models, indicating the benefits of 
the proposed semi-supervised learning method. The predictive model 
trained using the synthetic data from GM3 achieved the highest 
accuracy. 

Table 9 lists the metrics of the synthetic datasets. The synthetic data 
determined by GM3 has the best performance among the investigated 
generative models. The quality of synthetic data is further evaluated in 
Appendix A based on the differences between the Pearson correlation 
coefficients calculated by the real and synthetic data, and the Euclidean 
distances between real and synthetic data instances. Kernel density 
estimation, which is a non-parametric approach to estimate the proba
bility density function of a variable [115], is utilized to study the dis
tribution of variables. In addition, the cumulative sum of differences and 
Euclidean distances are investigated in Appendix A. The results show 
that the range of differences is the smallest for the synthetic data 
generated by GM3, and GM3 generates the most diverse synthetic data. 
It can be concluded from the results that GM3 is superior among other 
investigated generative models. 

To investigate the effect of the relative number of synthetic data, an 
augmentation ratio is defined as the ratio of the number of synthetic data 
to the number of real data. As the augmentation ratio varies from 0 to 
200%, the RMSE of the trained predictive models evaluated using the 
test set are plotted in Fig. 5. The optimal augmentation ratios that 
achieve the minimum RMSE values for the compressive strength, flex
ural strength, mini-slump spread, and porosity datasets are 20%, 20%, 
85%, and 110%, respectively, which correspond to 268, 168, 159, and 

Fig. 4. The performance of machine learning models trained with the synthetic 
data obtained by different generative models; vertical axis shows the RMSE of 
the developed machine learning models trained by the synthetic data obtained 
by the four generative models on the real test set. 

Table 9 
Evaluation results of the synthetic data.  

Metric Goal Generative model 
GM1 GM2 GM3 GM4 

Machine learning efficacy Minimize 1.48 1.34 1.11 1.14 
Correlation preservation Minimize 0.11 0.10 0.09 0.08 
Diversity index Maximize 13.4 10.7 14.0 4.27  

Fig. 5. The effect of augmentation ratio on the performance of machine learning models to predict (a) compressive strength, (b) flexural strength, (c) mini-slump 
spread, and (d) porosity of UHPC; each dot represent a machine learning model trained with the combination of real training data and synthetic data, while each 
dashed line shows the minimum of RMSE. 
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102 data instances in the compressive strength, flexural strength, mini- 
slump spread, and porosity datasets. The ranges of the synthetic data 
were within the range of real data, as elaborated in Appendix C. 

3.3. Predictive performance 

Fig. 6 compares the prediction results against the actual values in the 
test datasets. The test datasets are unseen to the predictive models. 
These plots show that the predictions are in a good agreement with the 
actual experimental observations. The R2 values of the predictive 
models on the test datasets are higher than 0.92. The results indicate 
that the predictive models have high prediction accuracy and general
ization performance. The distributions of the residual errors are inves
tigated to demonstrate the robustness of predictions made by the four 
models (Appendix B). 

Fig. 7 shows the Taylor diagrams (Taylor et al., 2012) for the pre
dictions made by the proposed method and the state-of-the-art regres
sion methods in Section 2.7. A Taylor diagram provides a visual 
representation of the comparison between predictions and observed 
data. Each dot represents a predictive model. The model closest to the 
experimental data (observed) shows the highest prediction accuracy. 

Fig. 7 shows that the proposed method has the highest prediction 
accuracy and precision. Both the RMSE and Pearson correlation coeffi
cient are improved by the incorporation of the synthetic data. The RMSE 
values of the compressive strength, flexural strength, mini-slump spread, 
and porosity models are reduced by 31%, 7%, 3%, and 73%, respec
tively. The proposed approach improves the prediction performance, 
especially when the dataset is small, such as the porosity dataset with 

only about 100 data instances. 
The performance metrics defined in Section 2.6 are calculated for the 

trained models to predict the compressive strength, flexural strength, 
mini-slump spread, and porosity, as listed in Table 10. The R2 values of 
the predictive models evaluated using the test datasets are higher than 
0.92, indicating that the predictive models have satisfactory accuracy 
and generalizability, ensuring that the data-driven models can be uti
lized to design UHPC mixtures. 

3.4. Many-objective optimization 

Fig. 8(a) and Fig 8 (b) show the normalized hypervolume indicator of 
the solutions obtained for DS1 and DS2 by the four investigated methods 
during the optimization process. The normalized hypervolume indicator 
value increases with the number of iterations, indicating that the algo
rithms iteratively improve their solutions. Regarding DS1, the normal
ized hypervolume indicators of the solutions obtained by the proposed 
optimization methods at the last iteration process are comparable with 
each other. On the contrary, the normalized hypervolume indicator of 
the solutions determined for DS2 by AGE-MOEA during the optimization 
process is significantly higher than that of the other methods. Noted that 
DS1 is a multi-objective optimization problem with three objectives, 
while DS2 is a many-objective optimization problem with six objectives. 
Therefore, it can be said that the four evolutionary optimization 
methods have comparable performance for multi-objective optimization 
problems, but AGE-MOEA has better performance for many-objective 
optimization problems. 

Table 11 lists two UHPC mixtures discovered using the proposed 

Fig. 6. Actual experimental results versus the predicted results for (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity of UHPC.  
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approach for the two design scenarios and compares the two mixtures 
with three representative cost-effective UHPC mixtures that were 
developed through step-by-step experimental tests. The mixture 
discovered for DS1 has higher mechanical properties than the mixture 
discovered for DS2. The mixture discovered for DS2 has low carbon 
footprint, embodied energy, and material cost while satisfying the re
quirements of mechanical properties, workability, and porosity. The 
compressive strength and flexural strength of the UHPC mixture for DS1 
are 22% and 40% higher than those of the UHPC mixture for DS2. The 
carbon footprint, embodied energy, and material cost of the UHPC 
mixture for DS2 are 73%, 71%, and 80% lower than those of DS1. 

Compared with three UHPC mixtures, which are designated as FAC60 
(Meng et al., 2016), UHPC-2 (Wille and Boisvert-Cotulio, 2015), and 
UHPFRC (Yu et al., 2017) developed through experiments, the discov
ered UHPC mixture for DS2 has comparable mechanical properties, 
workability, and porosity while highly reducing the carbon footprint, 
embodied energy, and material cost. 

In addition to the two UHPC mixtures, more non-dominated solu
tions were obtained by AGE-MOEA. The other solutions are listed in a 
table as Supplementary Data. Although the other solutions are not 
selected based on the two design scenarios, they are possibly the optimal 
solutions in other design scenarios. 

With the UHPC mixtures designed for DS1 and DS2, the roles of 
different ingredients (see the code from Table 6) on the carbon footprint, 
embodied energy, and material cost of UHPC can be quantitatively 
evaluated, as shown in Fig. 9. These rectangular treemaps show the 
share of each ingredient of the UHPC mixtures. 

In Fig. 9(a), the cement is responsible for more than 58% the carbon 
footprint of the UHPC mixture for DS1, followed by steel fibers which 
are responsible for more than 37% the carbon footprint. In Fig. 9(b), 
cement is responsible for more than 74% the carbon footprint of the 
UHPC mixture for DS2, followed by limestone powder which is 
responsible for about 5% of the carbon footprint. The UHPC mixture for 
DS2 utilizes higher volumes of low-carbon raw materials such as lime
stone powder and slag while minimizes the volumes of high-carbon raw 
materials, thus achieving the low carbon footprint. In Fig. 9(c), the steel 
fibers are responsible for about 50% of the embodied energy of the 
UHPC mixture for DS1, followed by cement which is responsible for 

Fig. 7. Taylor diagrams of the machine learning models for: (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity. The labels are 
defined in Table 5. Both the horizontal and vertical axes show the magnitude of standard deviation. 

Table 10 
Performance metrics of the predictive models for UHPC properties.  

Dataset Metric Compressive 
strength 

Flexural 
strength 

Mini-slump 
spread 

Porosity 

Training MAE 0.35 0.18 1.34 0.17 
MAPE 0.00 0.01 0.02 0.01 
MAD 0.22 0.08 0.75 0.02 
RMSE 0.51 0.35 2.15 0.30 
R2 0.99 0.99 0.99 0.97 

Test MAE 5.00 1.61 12.56 0.17 
MAPE 0.04 0.09 0.04 0.02 
MAD 3.50 0.94 7.65 0.22 
RMSE 6.40 1.89 9.62 0.16 
R2 0.95 0.92 0.94 0.97  
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more than 38% of the embodied energy. In Fig. 9(d), cement is 
responsible for more than 46% of the embodied energy of the UHPC 
mixture for DS2, followed by limestone powder which is responsible for 

about 18% of the embodied energy. In Fig. 9(e), the steel fibers are 
responsible for about 70% of the material cost of the UHPC mixture for 
DS1, followed by quartz powder which is responsible for 15% the 

Fig. 8. Evolution of the normalized hypervolume of the optimal solutions for (a) DS1 and (b) DS2.  

Table 11 
UHPC mixtures discovered for different design scenarios.  

Number Design variable Unit Discovered mixtures Existing mixtures 
DS1 DS2 FAC60 UHPC-2 UHPFRC 

1 Cement-to-cm 1 0.74 0.31 0.47 0.67 0.82 
2 Cement type MPa 52.50 52.50 52.5 52.5 52.5 
3 Fly ash-to-cm 1 0.00 0.14 0.53 0.16 0.18 
4 Slag-to-cm 1 0.22 0.29 0 0 0 
5 Silica fume-to-cm 1 0.11 0.17 0 0.17 0 
6 Metakaolin-to-cm 1 0.00 0.04 0 0 0 
7 Nano silica-to-cm 1 0.00 0.00 0 0 0 
8 Limestone-to-cm 1 0.24 0.95 0 0 0 
9 Quartz powder-to-cm 1 0.37 0.01 0 0 0 
10 Sand-to-cm 1 0.86 1.47 1.07 1.00 1.18 
11 Maximum aggregate size mm 0.43 0.41 4.75 1.20 2 
12 Water-to-cm 1 0.19 0.15 0.18 0.15 0.21 
13 Superplasticizer-to-cm 1 0.02 0.02 0.01 0.02 0.04 
14 Steel fiber volume % 2.98 0.05 2 0 2.5 
15 Aspect ratio of fiber 1 40.5 74.2 65 N/A 65 
Number UHPC property Unit Discovered mixtures Existing mixtures 

DS1 DS2 FAC60 UHPC-2 UHPFRC 
1 Compressive strength MPa 171.82 133.3 120 166 160 
2 Flexural strength MPa 32.24 19.22 20.1 18.5 20.0 
3 Mini-slump spread mm 260.2 271.9 285 265 283 
4 Porosity % 8.88 12.13 13.9 9.64 14.0 
5 Carbon footprint kg CO2-eq/m3 922.5 247.1 673 652 984 
6 Embodied energy MJ/m3 9631 2750 6819 5014 9507 
7 Material cost $/m3 1664 329.1 905 472 1203  
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material cost. In Fig. 9(f), silica fume is responsible for about 29% of the 
material cost of the UHPC mixture for DS2, followed by limestone 
powder which is responsible for more than 24% of the material cost. The 
UHPC mixture for DS2 utilizes higher volumes of low-energy low-cost 
raw materials and minimizes the volumes of energy-intensive costly raw 
materials, thus achieving the low embodied energy and material cost. 

4. Conclusions 

This study develops an AI-guided method to automatically discover 
low-carbon cost-effective UHPC. The presented approach integrates 
advanced techniques of generative modeling, automated machine 
learning, and many-objective optimization, aiming to automate data 
augmentation, machine learning model generation, and UHPC mixture 
selection. Artificial yet sound data were synthesized to supplement 
experimental data for training four machine learning models used to 
predict compressive strength, flexural strength, mini-slump spread, and 
porosity of UHPC. The quality of synthetic data is assessed using ma
chine learning efficacy, diversity, and correlation preservation. Based on 
the predictive models and specified objectives, two UHPC mixtures were 
discovered for two design scenarios. Based on the above investigations, 
the following conclusions are drawn:  

• The developed approach is effective for auto-discovery of low-carbon 
cost-effective UHPC mixtures in specified design scenarios with 
particular objectives. The two discovered UHPC mixtures achieved 
desired compressive and flexural strengths, workability, and 
porosity. The carbon footprint, embodied energy, and cost of the 

UHPC mixture discovered in the second scenario are respectively 
reduced by 73%, 71%, and 80%, compared with those of the first 
scenario. The carbon footprint, embodied energy, and cost of the 
discovered UHPC mixtures are lower than those of existing UHPC 
mixtures with comparable mechanical properties.  

• The presented method for synthesis of data is effective in augmenting 
training data for new material discovery problems where there is 
lack of sufficient data. The incorporation of the semi-supervised 
learning technique into the generative modeling improves the per
formance of the synthetic data in terms of efficacy. The improvement 
is likely because semi-supervised learning integrates information 
embodied in experimental data.  

• The automated machine learning method processes the training data, 
determines the machine learning pipeline, and performs hyper
parameter tuning for machine learning models without human 
intervention. The generated machine learning models achieve high 
accuracy and generalization performance in predicting the four 
considered material properties of UHPC.  

• The proposed methods for many-objective optimization problems 
based on AGE-MOEA and TOPSIS demonstrate excellent perfor
mance. The adopted evolutionary optimization method achieves a 
higher hypervolume indicator than the other state-of-the-art opti
mization methods. The optimal UHPC mixture designs selected by 
TOPSIS are consistent with the defined objectives and design 
constraints. 

The proposed approach provides an alternative solution for efficient 
development of low-carbon cost-effective UHPC in different 

Fig. 9. Depiction of the share of raw materials: (a) carbon footprint of DS1; (b) carbon footprint of DS2; (c) embodied energy of DS1; (d) embodied energy of DS2; (e) 
material cost of DS1; and (f) material cost of DS2. The labels 1 to 12 of the raw materials are defined in Table 6. 
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applications. The proposed methods for data synthesis, automated ma
chine learning, and many-objective optimization are promising for 
development of other types of materials with minimal human inter
vention. It is envisioned that different objectives and relative weights 
can be assigned to tailor the proposed approach for different design 
scenarios. Further research can be performed to experimentally test the 
proposed approach in different applications. 

Data availability 

The datasets are available online at: www.doi.org/10.17632/dd6 
2d5hyzr.3 (Mahjoubi and Bao, 2022). 

CRediT authorship contribution statement 

Soroush Mahjoubi: Data curation, Formal analysis, Investigation, 

Software, Validation, Visualization, Writing – original draft. Rojyar 
Barhemat: Data curation, Software, Writing – review & editing. Weina 
Meng: Conceptualization, Funding acquisition, Methodology, Re
sources, Writing – review & editing. Yi Bao: Conceptualization, Funding 
acquisition, Methodology, Project administration, Supervision, Writing 
– review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

We have shared the link to our data in the revised manuscript. 

Fig. A.1. An investigation on correlation preservation and diversity of synthetic data: (a) kernel density estimation of the differences between the correlation co
efficients derived by real and synthetic data; (b) cumulative summation of differences between correlation coefficients derived by real and synthetic data; (c) kernel 
density estimation of Euclidean distances of synthetic data; and (d) cumulative sum of eulicidean distances. 

Fig. B.1. Residual errors versus the experimental results for (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity of UHPC.  
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Appendix A 

Fig. A.1 shows the investigation on the correlation preservation and diversity of the synthetic data. Fig. A.1(a) shows the kernel density estimation 
and cumulative sum of the difference between the Pearson correlation coefficients obtained by the real dataset. Fig. A.1(b) shows the Pearson cor
relation coefficients obtained by the synthetic data. The range of differences is the narrowest for the synthetic data obtained by GM3. The total sum of 
difference is the greatest for GM3. The total sum of difference for GM4 is the lowest. 

Fig. A.1(c) and Fig. A.1(d) show the kernel density estimation and cumulative sum of the Euclidean distances between synthetic data instances and 
real data instances. The probability density function of the distances for GM4 has a right-skewed distribution. The total Euclidean distance for GM3 is 
the largest. The total Euclidean distance for GM4 is the smallest. The data instances obtained by GM3 are more diverse than the data instances 
determined by the other generative models. 

Fig. B.2. Histogram of residual errors in predicting (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity of UHPC.  

Fig. C.1. Box plots indicating the range of variables of the synthetic data generated for the (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and 
(d) porosity datasets; variable numbers are defined in Tables 1-4; each dot represents a synthetic data point; in vertical axis, 0 and 1 represent the maximum and 
minimum values of the variables for the data points in the real dataset. 
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Appendix B 

Fig. B.1 shows the distribution of residual errors. The residuals are scattered around the zero-error line. There is no apparent indication of a 
nonlinear relationship between the observed and predicted values. Fig. B.2 shows the histogram of residuals corresponding to the predictions made by 
the four developed models. The distributions of residuals are approximately symmetrical and centered at zero. It can be concluded that the predictions 
made by the four data-driven models are accurate over the entire range of output variables. 

Appendix C 

Fig. C.1 shows the range of the variables for the synthetic data. To facilitate the comparison of the range of synthetic data with that of the real data, 
the values of variables are normalized using Eq. (C.1): 

zn,i =
xn,i−min(Xi)

max(Xi) − min(Xi)
(C.1)  

where zn,i and xn,i are the normalized and the original values of the i th variable of the n-th data point; and Xi is an array containing the values of the i th 
variable for all the data points in the real dataset. Fig. C.1 indicates that the ranges of the variables of the synthetic data are within the ranges of the real 
data. 
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addition on flowability, strength and transport properties of ultra high performance 
concrete. Mater. Des. 59, 1–9. 

Ghafari, E., Ghahari, S.A., Costa, H., Júlio, E., Portugal, A., Durães, L., 2016. Effect of 
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