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This paper presents an Al-guided approach to automatically discover low-carbon cost-effective ultra-high per-
formance concrete (UHPC). The presented approach automates data augmentation, machine learning model
generation, and mixture selection by integrating advanced techniques of generative modeling, automated ma-
chine learning, and many-objective optimization. New data are synthesized by generative modeling and semi-
supervised learning to enlarge datasets for training machine learning models that are automatically generated
to predict the compressive strength, flexural strength, mini-slump spread, and porosity of UHPC. The proposed
approach was used to explore new UHPC mixtures in two design scenarios with different objectives. The first
scenario maximizes the compressive and flexural strengths and minimizes porosity while retaining self-
consolidation. The second scenario minimizes the life-cycle carbon footprint, embodied energy, and material
cost, besides the objectives of the first scenario. The life-cycle carbon footprint, embodied energy, and material
cost of the UHPC in the second scenario are respectively reduced by 73%, 71%, and 80%, compared with the
UHPC in the first scenario. This research advances the capability of developing cementitious composites using Al-

guided approaches.

1. Introduction

Ultra-high performance concrete (UHPC) is a family of advanced
cementitious composites featuring self-consolidation, superior me-
chanical properties, and long-term durability (Meng and Khayat, 2018).
The 28-day compressive strength of UHPC exceeds 120 MPa under
standard curing conditions (Du et al., 2021; Meng et al., 2018). The high
strength is associated with the dense microstructure due to high particle
packing density and low porosity. UHPC also has high tensile and flex-
ural strengths due to the use of chopped fibers dispersed in the cemen-
titious matrix, and the fibers provide crack-bridging effects (Karim and
Shafei, 2021). Given the dense microstructure and discontinuous pore
network, UHPC possesses exceptional durability (Ahlborn et al., 2008;
Lu et al., 2021). Due to the extraordinary properties, UHPC attracted
increasing attention in the past decade. UHPC has been successfully used
in new construction (Gaudilliere et al., 2018; Muttoni et al., 2013) and
rehabilitation of existing civil engineering structures (Aaleti et al., 2013;
Doiron, 2016; Hain et al., 2019; Kennedy et al., 2015).

A main drawback that hinders wider acceptance of UHPC in engi-
neering practices is the high material cost and carbon footprint, due to
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use of costly and high-carbon raw materials such as steel fibers, cement,
and organic admixtures. Many studies were conducted to develop low-
carbon cost-effective UHPC mixtures by using alternative materials.
For example, Meng et al. (2018) developed four UHPC mixtures using
local river sand, masonry sand, and supplementary cementitious mate-
rials (SCMs) such as fly ash and slag. Test results showed that the
developed UHPC mixtures delivered high mechanical properties and low
cost as well as low carbon footprint and low embodied energy. Consis-
tent test results of UHPC were obtained in other studies (Meng et al.,
2016; Mosaberpanah et al., 2019; Wille et al., 2011). The tests were
designed based on extensive experimental efforts and long time for those
experiments that involved necessary time for curing concrete.
trial-and-error  experiments of UHPC mixtures are usually
time-consuming for two reasons. First, the standard tests of mechanical
properties such as the compressive strength and the flexural properties
are performed after the UHPC specimens are cured for 28 days according
to ASTM C109 and ASTM C1609. The durability tests such as external
sulfate attack test can take more than 6 months according to ASTM
C1012. Second, there are many mixture design variables such as the
water-to-binder ratio and the sand-to-binder ratio. Those variables have
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Fig. 1. Flowchart of the proposed method for auto-discovery of low-carbon cost-effective UHPC.

significant effects on the key properties such as the fresh and the me-
chanical properties of UHPC. It is time-consuming to test the effects of
those variables on the different properties. There will be more experi-
ments required when the coupling effects between different variables
are considered. Considering tradeoffs between different properties and
material cost, developing new UHPC is relevant in engineering projects
with different desired properties, while the low efficiency and high cost
of developing new UHPC based on intensive experiments have stalled
their adoption in engineering applications.

An alternative approach to develop UHPC is to use data-driven ma-
chine learning models that are trained to predict UHPC properties based
on calibrated relationship between design variables and properties
(Mahjoubi et al., 2022; Sun et al., 2021). With the predictive model, an
optimization algorithm can be incorporated to optimize the design
variables such as the water-to-cement and sand-to-binder ratios (Mah-
joubi et al., 2021). A few studies have been conducted to develop UHPC
based on machine learning. Fan et al. (2021a) trained a second-order
polynomial regression model using 19 experimental data to predict
the packing density of UHPC. Ghafari et al. (2015) trained artificial
neural networks using 53 experimental data to predict the compressive
strength and flowability of UHPC. Abellan-Garcia and Guzman-Guzman
(2021) trained two random forest models using 600 experimental data
to predict the energy absorption capacity and ultimate strain capacity of
UHPC. Sadrossadat et al. (2021) trained artificial neural networks using
53 experimental data to predict the compressive and flowability of
UHPC. Fan et al. (2020, 2021b) trained an artificial neural network to
predict the particle packing density, compressive strength, and flexural
strength of UHPC. The dataset had 80 experimental data in reference
(Fan et al., 2021b) and 26 experimental data in reference (Fan et al.,
2020). A concrete mixture was designed using the Modified Andreasen
and Andersen dry particle packing model (Funk and Dinger, 2013) and
the least-square method (Bjorck, 1990). The limestone powder content
of the UHPC mixture was optimized, aiming to maximize the particle
packing density.

Previous research showed that data-driven models were promising to
predict properties, and optimization algorithms minimized the material
cost of UHPC and other types of concrete. Four major limitations were
identified from previous studies: (1) There is lack of data for training
machine learning models. This is a common challenge for Al-guided
material discovery. The dilemma is that (i) when the dataset is small,
machine learning models have low accuracy and generalizability; and
(ii) when the dataset is large, meaning that development of the material
is mature, the significance of machine learning-based new material

discovery becomes limited. (2) Simple machine learning models were
used to regress high-dimensional relations of different types of concrete
with many variables. Each model considered limited types of variables,
making the model inapplicable to other cases with different raw mate-
rials and variables. (3) It is difficult for people who do not have expertise
in machine learning to generate a machine learning model with good
performance. The tasks, such as data preprocessing, model selection,
and hyperparameter tuning, of developing a machine learning model
requires special knowledge in machine learning. (4) Most existing efforts
of optimizing UHPC focused on maximizing the mechanical properties
or minimizing the material cost of UHPC by optimizing one or two
mixture design variables while the other variables were kept constant. It
is unclear how to discover low-carbon low-cost UHPC mixtures while
retaining the desired mechanical properties, workability, and durability.
These limitations represent major technical challenges of machine
learning methods for prediction of concrete properties.

This study intends to address these limitations by developing an
approach that integrates machine intelligence and evolutionary many-
objective optimization for auto-discovery of UHPC. There are four
main research objectives: (1) to establish a framework to automatically
optimize the mechanical, flowability, durability, economic, and
ecological properties; (2) to develop a data synthesis method based on
generative modeling and semi-supervised learning to enlarge datasets
for improving accuracy and generalizability. Semi-supervised learning is
involved to derive output variables by regression models instead of
generative models. (3) to develop high-fidelity machine learning models
to predict the compressive strength, flexural strength, mini-slump
spread, and porosity of UHPC; and (4) to automatically discover new
UHPC mixtures with desired properties for many objectives.

This research is novel in four aspects: (1) An automated machine
learning (AutoML) approach is presented based on the Microsoft Azure
Copeland et al., 2015; Fusi et al., 2018) which performs data pre-
processing, model selection, hyperparameter tuning, automatically. ((2)
An approach is developed to synthesize artificial, yet reasonable data
based on a conditional generative adversarial network (Mirza and
Osindero, 2014; Xu et al., 2019), Copula generative adversarial network
(Kamthe et al., 2021), Gaussian Copula (Patki et al., 2016), and varia-
tional autoencoder (Kingma and Welling, 2013). The synthetic data are
used to supplement test data and boost the accuracy and generalizability
of predictive models. (3) Key mechanical properties (i.e., 28-day
compressive strength and tensile strength), workability (.e.,
mini-slump spread), and porosity were considered in the Al-guided
design process of UHPC. (4) The predictive models are integrated with
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Table 1
Summary statistics of the variables corresponding to the compressive strength
dataset.
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Table 2
Summary statistics of the variables corresponding to the flexural strength
dataset.

Number  Variable Unit  Range Mean  Skew.'  Kurt.” Number  Variable Unit  Range Mean Skew.!  Kurt.”
1 Cement-to-cm™” 1 0.17-1 076  -1.02 1.12 1 Cement-to-cm™” 1 0.24-1 0.77 -1.01 0.60
2 Cement type MPa  42.5, 48.1 -0.23 -1.96 2 Cement type MPa  42.5,52.5 48.04 -0.22 -1.98
52.5 3 Fly ash-to-cm 1 0-0.55 0.07 1.67 1.79

3 Fly ash-to-cm 1 0-0.55 0.05 2.07 3.60 4 Slag-to-cm 1 0-0.45 0.03 3.04 7.92
4 Slag-to-cm 1 0-0.70 0.04 2.92 9.00 5 Silica fume-to-cm 1 0-0.25 0.11 0.24 -1.52
5 Silica fume-to-cm 1 0-0.25 0.13 -0.24 -1.38 6 Metakaolin-to-cm 1 0-0.286 0.02 3.34 11.99
6 Metakaolin-to-cm 1 0-0.29 0.01 4.19 19.37 7 Nano silica-to-cm 1 0-0.062 0.01 1.56 0.87
7 Nano silica-to-cm 1 0-0.17 0.01 3.53 20.24 8 Limestone -to-cm 1 0-0.6 0.07 2.09 2.77
8 Limestone-to-cm 1 0-2.64 0.08 6.40 63.39 9 Quartz powder-to- 1 0-0.4 0.04 2.48 4.97
9 Quartz powder-to- 1 0-0.46 0.06 1.49 1.10 cm

cm 10 Sand-to-cm 1 0-2.897 1.24 0.71 1.94
10 Sand-to-cm 1 0-2.90 1.18 0.90 1.83 11 Maximum mm 0.1-5 1.79 1.25 1.61
11 Maximum aggregate ~ mm 0.10-5 1.76 1.28 1.49 aggregate size

size 12 Water-to-cm 1 0.125-0.4 0.21 1.64 2.69
12 Water-to-cm 1 0.12-0.5 0.20 2.19 6.95 13 Superplasticizer- 1 0-0.1 0.03 1.28 1.25
13 Superplasticizer-to- 1 0-0.15 0.04 231 5.61 to-cm

cm 14 Steel fiber volume % 0-6.2 1.65 2.79 11.17
14 Steel fiber volume % 0-6.2 1.84 2.14 6.55 15 Aspect ratio of 1 30-81.25 35.78 -0.14 -1.91
15 Aspect ratio of fibers 1 30-83 39 -0.30 -1.75 fibers
16 Size of specimen mm 40-110 55 1.28 -0.02 16 Length of mm 100-500 172.32  3.47 14.57
17 28-day compressive MPa  57-180 125 -0.36 -0.44 specimen

strength 17 28-day flexural MPa  6.6-39.4 21.83 0.35 -0.58
1 strength

“Skew.” stands for skewness.
2 “Kurt.” stands for kurtosis. 1 “Skew.” stands for skewness.
3 “cm” stands for cementitious materials. 2 “Kurt.” stands for kurtosis.
4 ratios are by weight. 3 “cm” stands for cementitious materials.
4

a many-objective optimization method, namely Adaptive Geometry
Estimation-based Many-Objective Evolutionary Algorithm (AGE-MOEA)
(Panichella, 2019), and a decision-making approach, called Pareto
optimal solutions using the Technique for Order of Preference by Simi-
larity to Ideal Solution (TOPSIS) (Hwang and Yoon, 1981), for
many-objective optimization in two design scenarios of UHPC. This
research advances the capability for efficient discovery of new UHPC.

2. Methodology

Fig. 1 shows the flowchart of the framework. There are eight main
steps: (1) Four datasets are established using experimental data of
compressive strength, flexural strength, porosity, and mini-slump spread
of UHPC. Each dataset is divided into training and test sets as elaborated
in Section 2.1. (2) Automated machine learning generates predictive
models for the four datasets, as shown in Section 2.2. (3) Generative
techniques synthesize artificial data to enlarge the training datasets, as
discussed in Section 2.3. (4) The predictive models are re-trained using
the enlarged datasets composed of experimental data and synthetic data,
and compared against eight state-of-the-art methods, as elaborated in
Section 2.4. (5) Six objective functions along with design constraints are
formulated to optimize the mechanical properties, eco-efficiency, and
cost-efficiency of UHPC, as elaborated in Section 2.5. (6) Mixture opti-
mization problems of UHPC are defined, as elaborated in Section 2.6. (7)
An evolutionary many-objective optimization algorithm (AGE-MOEA) is
utilized to solve the optimization problems, as elaborated in 2.7. (8) A
decision-making method is applied to select the most preferable optimal
solutions, as elaborated in Section 2.8.

2.1. Dataset

Four datasets with 785 experimental data from 49 references were
established (Abbas et al., 2015; Ahmed et al., 2021; Ashkezari et al.,
2020; Bonneau et al., 2000; Chan and Chu, 2004; Charron et al., 2007;
Chu and Kwan, 2019; Corinaldesi, 2012; Corinaldesi and Moriconi,
2012; Gesoglu et al., 2016; Ghafari et al., 2014, 2016; Graybeal, 2007;
Graybeal and Hartmann, 2003;(Guo et al., 2021); Guvensoy et al., 2004;
Habel et al., 2006; Hassan et al., 2012; Hassan, 2013; Huang et al., 2017;

ratios are by weight.

Jiang et al., 2015; Kang et al., 2018; Li et al., 2020; Liu and Guo, 2018;
Liu et al., 2018; Ma et al., 2002; Mo et al., 2020; Pourbaba et al., 2018;
Prem et al., 2015; Rajasekar et al., 2019; Richard and Cheyrezy, 1995;
Roberti et al., 2021; Sadrmomtazi et al., 2018; Seps et al., al.; Song et al.,
2018a, 2018b; Staquet and Espion, 2004; Tafraoui et al., 2009; Voo Yen
et al.,, 2010; Wang et al., 2012; Wu et al., 2017a, 2017b, 2016a; Wu
etal., 2016b; Yang et al., 2009; Yu et al., 2017, 2014a, (Yu et al., 2014b),
2015a, (Yu et al., 2015b)). The datasets included the compressive
strength, flexural strength, and porosity of UHPC at 28 days, as well as
the mini-slump spread. The number of test data for these four properties
was 379, 146, 152, and 108, respectively. In total, 481 unique UHPC
mixtures were considered in the datasets. Those mixtures adopted Class
F fly ash, ordinary Portland cement, and straight steel fibers. Standard
curing was applied to the specimens used in evaluating the mechanical
properties and porosity of UHPC at 28 days. The compressive strengths
were evaluated using cubic specimens according to code ASTM C109.
The flexural strengths were evaluated using beam specimens through
three-point bending tests according to ASTM C1609.

Each dataset was divided into training and test sets, with 80% data
randomly selected for the training set and 20% data for the test set. In
the datasets, 16 design variables were considered for compressive
strength and flexural strength, and 15 design variables were considered
for the porosity and mini-slump spread. Tables 1 to 4 list design vari-
ables and statistics of the mean, range, skewness, and kurtosis.

In Tables 1 to 4, all the ratios are by mass. Although the compressive
strength of UHPC should be greater than 120 MPa, several mixture de-
signs are involved in the developed dataset with compressive strength
lower than the specified value. The reason is that some studies investi-
gated the effects of the mixture design variables such as the water-to-
cement ratio and the fiber content on the compressive strength. In
those studies, some mixture designs reached 120 MPa, but some mixture
designs did not reach 120 MPa.

Skewness reflects the asymmetry of distribution (Cain et al., 2017).
Kurtosis indicates the outlier-prone extent of distribution. According to
reference (Mallery and George, 2000), when the skewness and the
kurtosis of a distribution are in the range of -2 to 2, the distribution is
considered as a normal distribution. Most of the variables did not follow



S. Mahjoubi et al. Resources, Conservation & Recycling 189 (2023) 106741

Table 3

Summary statistics of the variables corresponding to the mini-slump spread dataset.
Number Variable Unit Range Mean Skew.' Kurt.”
1 Cement-to-cm™"* 1 0.2-1.0 0.72 -0.58 -0.23
2 Cement type MPa 42.5, 52.5 49.34 -0.80 -1.38
3 Fly ash-to-cm 1 0-0.6 0.07 1.72 2.63
4 Slag-to-cm 1 0-0.5 0.07 1.90 2.46
5 Silica fume-to-cm 1 0-0.3 0.12 -0.02 -1.61
6 Metakaolin-to-cm 1 0-0.3 0.01 6.70 49.00
7 Nano silica-to-cm 1 0-0.1 0.01 1.36 0.39
8 Limestone-to-cm 1 0-0.6 0.10 1.55 1.01
9 Quartz powder-to-cm 1 0-0.4 0.05 2.04 3.47
10 Sand-to-cm 1 0-2.9 1.16 0.75 1.75
11 Maximum aggregate size mm 0.1-4.8 1.48 1.39 3.22
12 Water-to-cm 1 0.2-0.4 0.21 1.80 3.16
13 Superplasticizer-to-cm 1 0-0.2 0.05 1.80 3.10
14 Steel fiber volume % 0-6.2 1.35 1.50 3.61
15 Aspect ratio of fibers 1 30-75.0 38.67 -0.43 -1.78
16 Mini-slump spread mm 100.8-353.6 231.61 -0.11 -0.85
1 “Skew.” stands for skewness.
2 “Kurt.” stands for kurtosis.
8 “cm” stands for cementitious materials.
4 ratios are by weight.

Table 4

Summary statistics of the variables corresponding to the porosity dataset.
Number Variable Unit Range Mean Skew.' Kurt.”
1 Cement-to-cm™” 1 0.67-1.00 0.72 -0.58 -0.23
2 Cement type MPa 42.50-52.50 49.34 -0.80 -1.38
3 Fly ash-to-cm 1 0-0.22 0.07 1.72 2.63
4 Slag-to-cm 1 0-0.30 0.07 1.90 2.46
5 Silica fume-to-cm 1 0-0.19 0.12 -0.02 -1.61
6 Metakaolin-to-cm 1 0-0.29 0.01 6.70 49.00
7 Nano silica-to-cm 1 0-0.06 0.01 1.36 0.39
8 Limestone-to-cm 1 0-3.56 0.10 1.55 1.01
9 Quartz powder-to-cm 1 0-0.40 0.05 2.04 3.47
10 Sand-to-cm 1 0-3.71 1.16 0.75 1.75
11 Maximum aggregate size mm 0.50-2.00 1.48 1.39 3.22
12 Water-to-cm 1 0.13-0.4 0.21 1.80 3.16
13 Superplasticizer-to-cm 1 0.01-0.10 0.05 1.80 3.10
14 Steel fiber volume % 0-6.2 1.35 1.50 3.61
15 Aspect ratio of fibers 1 30-60 231.61 -0.11 -0.85
16 28-day porosity % 4.53-17 10.69 -0.01 2.24
1 “Skew.” stands for skewness.
2 “Kurt.” stands for kurtosis.
3 “cm” stands for cementitious materials.
4 ratios are by weight.

normal distributions. 2.2. Automated machine learning

To address the challenges of high-dimensional regression and model
configuration, this study proposes to use Azure AutoML to automate the
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Fig. 2. The flowcharts for the ensemble learning: (a) stacking and (b) voting ensemble methods.
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efforts of data preprocessing, model configuration, and hyperparameter
tuning (Copeland et al., 2015; Mukunthu and Gillett, 2018). Azure
AutoML automatically designs the optimal machine learning pipeline,
which is a sequence of steps from data preprocessing to property pre-
diction, based on probabilistic matrix factorization (Lawrence and
Urtasun, 2009), Bayesian optimization, and ensemble learning (Fusi
et al, 2018). Probabilistic matrix factorization explores
high-performance machine learning models by leveraging prior knowl-
edge obtained by training more than 1000 machine learning pipelines
with various datasets. Probabilistic matrix factorization embeds
different pipelines in a latent space based on their performance across
various datasets (Fusi et al., 2018). The idea is that if the performance of
a few pipelines is similar for two datasets, the performance of the
remaining pipelines is perhaps similar for the two datasets. A set of
pipelines are selected based on predicted performance and tested using
the given dataset.

The performance of the machine learning models during the training
process is assessed using k-fold cross-validation. This process continues
until the target accuracy of probabilistic matrix factorization is ach-
ieved. Bayesian optimization is then performed to optimize hyper-
parameters of the selected pipelines. Finally, the predictive models
determined by the designed pipelines are combined using voting and
stacking ensemble methods to improve the accuracy (Lawrence and
Urtasun, 2009). A voting ensemble model predicts based on the
weighted average of predictions made by heterogeneous models.
Stacking trains a meta-model based on the predictions of individual
models, as shown in Fig. 2.

2.3. Generative modeling

Synthetic data, as implied by its name, are artificial data, but they are
not random data. Synthetic data are generated using generative models
trained using real test data, and they are used to supplement the test data
because machine learning models are prone to overfitting issues when
the models are trained using a small dataset.

Generative models have been widely used in computer vision tasks
for image augmentation, aiming to circumvent the problem of over-
fitting (Xue et al., 2021). This study tailored the generative models,
which were developed for synthesizing images in computer vision tasks,
to synthesize tabular data based on semi-supervised learning (Li et al.,
2018). The input mixture design variables of UHPC were synthesized
using generative models trained using real test data, and the properties
of UHPC mixtures were determined using the predictive models trained
in Section 2.2. The synthetic data and real experimental data comprise
the new training set.

Four generative approaches were used to synthesize the data: (1)
GM1: conditional generative adversarial network Mirza and Osindero,
2014; Xu et al., 2019), ((2) GM2: Copula generative adversarial network
(Kamthe et al., 2021), (3) GM3: Gaussian Copula (Patki et al., 2016), and
(4) GM4: variational autoencoder (Kingma and Welling, 2013). The
quality of the synthetic data was assessed by the machine learning ef-
ficacy (Xu and Veeramachaneni, 2018), the correlation preservation
(Xu and Veeramachaneni, 2018), and the diversity index (Zhang et al.,
2022), while the number of synthetic data was kept the same as that of
the real training set. Machine learning efficacy evaluates the represen-
tation degree of synthetic data against real data. Machine learning
models were trained using the synthetic data and real data, respectively.
Machine learning efficacy was calculated as RMSEg/RMSEg, denoting
the ratio of the root mean square errors (RMSE) of models trained using
the synthetic data and real data, respectively. Correlation preservation
(CP) assesses the difference between the correlation coefficients of input
and output variables from the real dataset and the correlation co-
efficients of variables from the synthetic dataset:

Z|R517 rl (1)

CP(Cs,Cg) =
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Table 5
The investigated regression methods.
Number Method Category
1 Ridge Linear
2 Passive aggressive Linear
3 Multi-layer perceptron Artificial neural network
4 Support vector machine Nonlinear
5 Partial least squares Cross decomposition
6 Random forest Ensemble
7 Light gradient boosting machine Ensemble
8 Azure AutoML Ensemble
9 The proposed method Ensemble

where Cs and Cg are two arrays containing the Pearson correlation co-
efficients for the synthetic and real data, respectively; R;; and R, ; are the
Pearson correlation coefficients of the i th input variable and derived by
real and synthetic data, respectively; and n is the number of input var-
iables. Pearson correlation coefficient (R) between two variables x and y
can be calculated as:
R(x, y) _ 1/ 1( _)()’i—y)
VI 2 - 97

@

where X; is the i th value of x; X is the mean of x; y; is the i th value of y;
and y is the mean of y; ¢ is the number of data instances; R is in the range
of -1 to 1: value -1 means a total negative linear relation; zero means no
correlation; and 1 means a total positive relation.

The diversity index quantifies the diversity between the synthetic
data and real data. The diversity index (DI) is the average of Euclidean
distance between real and synthetic data instances:

[

1
DI(Xs, Xz) = " > E(x. Xx) (3a)

(3b)

where X5 and Xy are the synthetic and real datasets; ¢ is the number of
data instances; x;; is the i th synthetic data instance; E(x;;,Dg) is the
minimum Euclidean distance between the i th synthetic data instance
and real data instances; N is the number of variables; s;; is the j-th var-
iable of the i th synthetic data instance; r; is the j-th variable of the real
data instances with minimum Euclidean distance from the i th synthetic
data instance.

The optimal number of added synthetic data was obtained by a
parametric study. Augmentation ratio is defined as the ratio of the
number of synthetic data to the number of real data. In the parametric
study, the augmentation ratio was changed from O to 200%. The
augmentation ratio that led to minimum RMSE was selected as an
optimal augmentation ratio.

2.4. Comparison of regression models

With the new training data, nine predictive models were trained
based on different methods, including (i) two linear regression methods,
which are ridge (Hoerl and Kennard, 1970) and passive aggressive
(Crammer et al., 2006), (ii) a deep neural network, which is multi-layer
perceptron, (iii) a nonlinear machine learning method, which is support
vector machine (Cortes and Vapnik, 1995), (iv) a cross decomposition
method, which is partial least squares (Geladi and Kowalski, 1986), (v)
two ensemble learning methods, which are random forest methods
(Breiman, 2001), (vi) a light gradient boosting machine (Ke et al., 2017),
and (vii) a model obtained using the proposed method based on Azure
AutoML, as listed in Table 5. The nine models were compared in term of
five metrics, which are the RMSE, mean absolute error (MAE), mean
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Table 6

Inventory of the raw materials of UHPC.

Resources, Conservation & Recycling 189 (2023) 106741

Number  Material Specific gravity(unitless) Carbon footprint(kg CO2-eq/kg) Embodied energy(MJ/kg) Material cost(USD/kg)

1 Portland cement 3.14 (Meng et al., 2018) 0.83 (Long et al., 2015) 5.8 (Miiller et al., 2014) 0.082 (Alsalman et al.,
2020)

2 Fly ash 2.70 (Meng et al., 2018) 0.027 (Vincent et al., 2021) 0.83 (Long et al., 2015) 0.04 (Alsalman et al.,
2020)

3 Slag 2.90 (Yalcinkaya and Yazici, 0.052 (Vincent et al., 2021) 1.59 (Long et al., 2015) 0.1 (Alsalman et al., 2020)

2017)
4 Silica fume 2.20 (Meng et al., 2018) 0.0039 (Ghavami et al., 2021) 0.036 (Kathirvel and Sreekumaran, 0.8 (Alsalman et al., 2020)
2021)

5 Metakaolin 2.62 (Alharbi et al., 2021) 0.4 (Long et al., 2015) 3.48 (Long et al., 2015) 0.5 (Alsalman et al., 2020)

6 Nano silica 2.30 (Alharbi et al., 2021) 1.69 (Ghavami et al., 2021) 71.36 (Ghavami et al., 2021) 2.5 (Adamu et al., 2018)

7 Limestone 2.73 (Abellan-Garcia, 2020) 0.019 (Chiaia et al., 2014) 0.76 (Chiaia et al., 2014) 0.12 (Alsalman et al.,

powder 2020)
8 Quartz powder 2.67 (Vaitkevicius et al., 2014) 0.023 (Kathirvel and Sreekumaran, 0.85 (Kathirvel and Sreekumaran, 0.8 (Alsalman et al., 2020)
2021) 2021)
Fine sand 2.64 (Meng et al., 2018) 0.01 (Shi et al., 2019) 0.11 (Miiller et al., 2014) 0.025 (Zhang et al., 2020)

10 Tap water 1.00 (Meng et al., 2018) 0.0003 (Long et al., 2015) 0.006 (Long et al., 2015) 0.001 (Adamu et al.,
2018)

11 Superplasticizer 1.05 (Meng et al., 2018) 0.72 (Chiaia et al., 2014) 18.3 (Chiaia et al., 2014) 3.4 (Alsalman et al., 2020)

12 Steel fiber 7.80 (Meng et al., 2018) 1.50 (Chiaia et al., 2014) 20.56 (Chiaia et al., 2014) 5.0 (Alsalman et al., 2020)

absolute percentage error (MAPE), mean absolute deviation (MAD), and
R%

1 &
MAE(P,A) = |p; —a (42)
=
1 ¢ pi — ai
MAPE(P,A) = - Y [P -
Y=l i
MAD(P, A)= median(|p, —ai|, |p, — @[, -..,|p, — an|) (40)
» PRy
R2(P,A)= 1 — i P &) .

7, [a—mean(a, )
2.5. Objective functions

To achieve desired properties of UHPC, six objective functions are
considered: (1) maximization of the compressive strength, (2) maximi-
zation of the flexural strength, (3) minimization of the porosity, (4)
minimization of the carbon footprint (CF), (5) minimization of the
embodied energy (EE), and (6) minimization of the material cost (MC),
calculated as:

CF= m;xCO, — —egq; (5a)
=0

EE= Zm,- X ee; (5b)
i=0

MC= Y "mxc (5¢)

i=0

where n is the number of raw materials; m; is the mass of i th raw ma-
terial in a unit mass of UHPC; CO, — —egq; is the carbon dioxide equiv-
alent of a unit mass of the i th raw material; ee; is the amount of
embodied energy of a unit mass of the i th raw material; ¢; is the unit
price of the i th raw material.

Table 6 lists the inventory for the unit carbon footprint, embodied
energy, and unit price of the raw materials of UHPC. Six types of SCMs
were considered, which are Portland cement, fly ash, slag, silica fume,
metakaolin, and nano silica. Two different types of fillers were consid-
ered, which are limestone powder and quartz powder.

Table 7
The objectives of the two investigated design optimization problems.

Design objective Design scenario

DS1 DS2
Compressive strength Included Included
Flexural strength Included Included
Porosity Included Included
Carbon footprint Excluded Included
Embodied energy Excluded Included
Material cost Excluded Included

2.6. Design problems

Table 7 lists two design scenarios, designated as DS1 and DS2: DS1 is
a three-objective optimization problem for the compressive strength,
flexural strength, and porosity. DS2 is a six-objective optimization
problem for all the six objectives. DS2 is a many-objective optimization
problem as it has more than three objectives (Ishibuchi et al., 2008).
Two design constraints are imposed. First, the mini-slump spread is in
the range of 260 mm to 300 mm to ensure adequate flowability and fiber
dispersion according to reference (Liu et al., 2020). The mini-slump
spread is predicted using the developed machine learning model. Sec-
ond, the total ratio of cementitious materials is equal to 1, expressed as:

(s—280)* — 20° < ¢ (6a)

6 2
(Zr,—l) < & (6b)
i=1

where s is the mini-slump spread; ¢; and ¢, are tolerance levels, which
are set to 1 and 0.01, respectively; and r; is the ratio of the i th cemen-
titious material.

2.7. Evolutionary optimization

This study adopts the AGE-MOEA (Panichella, 2019) to solve the
optimization problems formulated in Section 2.6. AGE-MOEA aims to
determine the optimal solutions that are non-dominated to each other
but are superior to the rest of solutions. The objectives of non-dominated
solutions cannot be improved without compromising the other objec-
tives. The projection of actual non-dominated solutions is known as
Pareto front. AGE-MOEA estimates the Pareto front to ensure diversity
and proximity of non-dominated solutions. AGE-MOEA was compared
with three other evolutionary algorithms: Two-Archive Evolutionary
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Fig. 3. The machine learning pipeline designed by the proposed automated machine learning.

Algorithm for Constrained Multi-objective Optimization (C-TAEA) (Li
et al., 2019), Non-dominated Sorting Genetic Algorithm II (NSGA-II),
and Unified non-dominated Sorting Genetic Algorithm III (UNSGA-III)
(Seada and Deb, 2014). The number of generations and population size
for the algorithms were set to 300 and 100, respectively. The hyper-
volume indicator was used to evaluate the quality of solutions (Zitzler
and Thiele, 1998). The reference point for the two design scenarios is set
based on the minimum values of compressive strength, flexural strength,
mini-slump spread, and porosity, and maximum values of carbon foot-
print, embodied energy, and material cost. The hypervolume indicator
was normalized by the maximum of hypervolume.

2.8. Multi-criteria decision-making

Multi-criteria decision-making is a type of decision-making that
explicitly considers multiple conflicting criteria. This study adopts
multi-criteria decision-making to select the most preferable mixture
design solutions according to the conflicting design objectives, as dis-
cussed in Section 2.5. When there are six or more objectives, the multi-
objective optimization problems are called many-objective optimization
problems. With the multiple solutions obtained from AGE-MOEA in
Section 2.7, a multi-criteria decision-making method called TOPSIS was
utilized to select the ultimate optimal solutions based (Hwang and
Yoon, 1981; Mahjoubi et al., 2021). The main idea of TOPSIS is that a
preferable solution among all the determined solutions is the one that
has the least distance to the ideal solution and the most distance from the
nadir solution in the objective space. The ideal solution is the combi-
nation of the best values for the objective functions, while the nadir
solution is the combination of the worst values for the objective func-
tions. The objective space is a multi-dimensional space where each
dimension indicates the magnitude of an objective function. TOPSIS
incorporates relative weights of criterion importance according to the
design preference. Therefore, new UHPC mixtures are discovered
automatically for different applications with various design preferences.
In this study, the relative weight for each criterion is set to 1.

3. Results and discussion

Section 3 presents the results including the machine learning pipe-
line and hyperparameters of machine learning models designed by
Azure AutoML (Section 3.1), performance evaluation of the synthetic
data (Section 3.2), comparison of predictive models obtained by the
proposed method and other regression methods (Section 3.3), and the
discovered low-carbon UHPC mixtures (Section 3.4).

3.1. Machine learning pipeline

Fig. 3 shows the machine learning pipeline automatically designed
by Azure AutoML using the compressive strength dataset. The machine
learning pipeline consists of three main modules, which are data

Table 8

The optimal hyperparameters of the predictive models.

Predictive Hyperparameters Optimal results
models
XGBoost Grow policy Loss guide
L1 regularization parameter («) 0
L2 regularization parameter (1) 0.625
Learning rate 0.2
Loss function squared error
Maximum depth 7
Maximum number of bins 1023
Maximum number of leaves 31
Minimum split loss 0
Number of estimators 100
Subsample ratio 0.7

Extra trees 1

Tree construction algorithm
Bootstrapping

Histogram-based
False

Fraction of variables at each split 0.8

Loss function Mean squared
error

Minimum number of samples in each 4

leaf

Number of estimators 10

Extra trees 2 Bootstrapping True

Fraction of variables at each split 0.7

Loss function Mean squared
error

Minimum number of samples in each 3

leaf

Number of estimators 25

preprocessing, prediction, and voting ensemble. In data preprocessing,
two scaler transforms were applied, which were standard scaler (z;) and
maximum absolute scaler (z5), defined as:

=0 @)
c
x—m
2= max (x) ®)

where x is an input variable; m and ¢ are the average and standard de-
viation of x; and max(x) is the maximum value of x.

In the prediction module, three models were employed for predic-
tion, which are an XGBoost (Chen and Guestrin, 2016) and two extra
trees (Geurts et al., 2006). Their hyperparameters were determined by
Azure AutoML (Table 8). In the voting ensemble, predictions from the
models were combined with assigned weights 0.364, 0.545, and 0.091,
respectively, to obtain the final prediction.

3.2. Evaluation of synthetic data

To evaluate the effect of the semi-supervised learning method, syn-
thetic data are generated in two ways: (1) Type I: Synthetic data are
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Table 9
Evaluation results of the synthetic data.

Generative model
GM1 GM2 GM3 GM4

Metric Goal

Machine learning efficacy Minimize 1.48 1.34 1.11 1.14
Correlation preservation Minimize 0.11 0.10 0.09 0.08
Diversity index Maximize 13.4 10.7 14.0 4.27
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generated by semi-supervised learning and generative modeling. The
input variables are obtained by generative models, and the output var-
iables are predicted by the trained models. (2) Type II: Both the input
and output variables of synthetic data are generated by generative
models. Fig. 4 shows the RMSE of compressive strength predicted by
models trained using the two types of synthetic data. The RMSE of Type [
models are lower than that of Type II models, indicating the benefits of
the proposed semi-supervised learning method. The predictive model
trained using the synthetic data from GMS3 achieved the highest
accuracy.

Table 9 lists the metrics of the synthetic datasets. The synthetic data
determined by GM3 has the best performance among the investigated
generative models. The quality of synthetic data is further evaluated in
Appendix A based on the differences between the Pearson correlation
coefficients calculated by the real and synthetic data, and the Euclidean
distances between real and synthetic data instances. Kernel density
estimation, which is a non-parametric approach to estimate the proba-
bility density function of a variable [115], is utilized to study the dis-
tribution of variables. In addition, the cumulative sum of differences and
Euclidean distances are investigated in Appendix A. The results show
that the range of differences is the smallest for the synthetic data
generated by GM3, and GM3 generates the most diverse synthetic data.
It can be concluded from the results that GM3 is superior among other
investigated generative models.

To investigate the effect of the relative number of synthetic data, an
augmentation ratio is defined as the ratio of the number of synthetic data
to the number of real data. As the augmentation ratio varies from 0 to
200%, the RMSE of the trained predictive models evaluated using the
test set are plotted in Fig. 5. The optimal augmentation ratios that
achieve the minimum RMSE values for the compressive strength, flex-
ural strength, mini-slump spread, and porosity datasets are 20%, 20%,
85%, and 110%, respectively, which correspond to 268, 168, 159, and

5 1 | 1
e GMI o GM2 + GM3 o GM4
< 4f 1
[a W)
=
3
w
2 ol
RMSE(20%)=1.89 MPa
Lo 30 700 750 300
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(b)
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(d)

Fig. 5. The effect of augmentation ratio on the performance of machine learning models to predict (a) compressive strength, (b) flexural strength, (c) mini-slump
spread, and (d) porosity of UHPC; each dot represent a machine learning model trained with the combination of real training data and synthetic data, while each

dashed line shows the minimum of RMSE.
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Fig. 6. Actual experimental results versus the predicted results for (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity of UHPC.

102 data instances in the compressive strength, flexural strength, mini-
slump spread, and porosity datasets. The ranges of the synthetic data
were within the range of real data, as elaborated in Appendix C.

3.3. Predictive performance

Fig. 6 compares the prediction results against the actual values in the
test datasets. The test datasets are unseen to the predictive models.
These plots show that the predictions are in a good agreement with the
actual experimental observations. The R? values of the predictive
models on the test datasets are higher than 0.92. The results indicate
that the predictive models have high prediction accuracy and general-
ization performance. The distributions of the residual errors are inves-
tigated to demonstrate the robustness of predictions made by the four
models (Appendix B).

Fig. 7 shows the Taylor diagrams (Taylor et al., 2012) for the pre-
dictions made by the proposed method and the state-of-the-art regres-
sion methods in Section 2.7. A Taylor diagram provides a visual
representation of the comparison between predictions and observed
data. Each dot represents a predictive model. The model closest to the
experimental data (observed) shows the highest prediction accuracy.

Fig. 7 shows that the proposed method has the highest prediction
accuracy and precision. Both the RMSE and Pearson correlation coeffi-
cient are improved by the incorporation of the synthetic data. The RMSE
values of the compressive strength, flexural strength, mini-slump spread,
and porosity models are reduced by 31%, 7%, 3%, and 73%, respec-
tively. The proposed approach improves the prediction performance,
especially when the dataset is small, such as the porosity dataset with

only about 100 data instances.

The performance metrics defined in Section 2.6 are calculated for the
trained models to predict the compressive strength, flexural strength,
mini-slump spread, and porosity, as listed in Table 10. The R? values of
the predictive models evaluated using the test datasets are higher than
0.92, indicating that the predictive models have satisfactory accuracy
and generalizability, ensuring that the data-driven models can be uti-
lized to design UHPC mixtures.

3.4. Many-objective optimization

Fig. 8(a) and Fig 8 (b) show the normalized hypervolume indicator of
the solutions obtained for DS1 and DS2 by the four investigated methods
during the optimization process. The normalized hypervolume indicator
value increases with the number of iterations, indicating that the algo-
rithms iteratively improve their solutions. Regarding DS1, the normal-
ized hypervolume indicators of the solutions obtained by the proposed
optimization methods at the last iteration process are comparable with
each other. On the contrary, the normalized hypervolume indicator of
the solutions determined for DS2 by AGE-MOEA during the optimization
process is significantly higher than that of the other methods. Noted that
DS1 is a multi-objective optimization problem with three objectives,
while DS2 is a many-objective optimization problem with six objectives.
Therefore, it can be said that the four evolutionary optimization
methods have comparable performance for multi-objective optimization
problems, but AGE-MOEA has better performance for many-objective
optimization problems.

Table 11 lists two UHPC mixtures discovered using the proposed
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Fig. 7. Taylor diagrams of the machine learning models for: (a) compressive strength, (b) flexural strength, (c) mini-slump spread, and (d) porosity. The labels are
defined in Table 5. Both the horizontal and vertical axes show the magnitude of standard deviation.

Table 10
Performance metrics of the predictive models for UHPC properties.
Dataset Metric ~ Compressive Flexural Mini-slump Porosity
strength strength spread
Training  MAE 0.35 0.18 1.34 0.17
MAPE 0.00 0.01 0.02 0.01
MAD 0.22 0.08 0.75 0.02
RMSE 0.51 0.35 2.15 0.30
R? 0.99 0.99 0.99 0.97
Test MAE 5.00 1.61 12.56 0.17
MAPE 0.04 0.09 0.04 0.02
MAD 3.50 0.94 7.65 0.22
RMSE 6.40 1.89 9.62 0.16
R? 0.95 0.92 0.94 0.97

approach for the two design scenarios and compares the two mixtures
with three representative cost-effective UHPC mixtures that were
developed through step-by-step experimental tests. The mixture
discovered for DS1 has higher mechanical properties than the mixture
discovered for DS2. The mixture discovered for DS2 has low carbon
footprint, embodied energy, and material cost while satisfying the re-
quirements of mechanical properties, workability, and porosity. The
compressive strength and flexural strength of the UHPC mixture for DS1
are 22% and 40% higher than those of the UHPC mixture for DS2. The
carbon footprint, embodied energy, and material cost of the UHPC
mixture for DS2 are 73%, 71%, and 80% lower than those of DS1.

10

Compared with three UHPC mixtures, which are designated as FAC60
(Meng et al., 2016), UHPC-2 (Wille and Boisvert-Cotulio, 2015), and
UHPFRC (Yu et al., 2017) developed through experiments, the discov-
ered UHPC mixture for DS2 has comparable mechanical properties,
workability, and porosity while highly reducing the carbon footprint,
embodied energy, and material cost.

In addition to the two UHPC mixtures, more non-dominated solu-
tions were obtained by AGE-MOEA. The other solutions are listed in a
table as Supplementary Data. Although the other solutions are not
selected based on the two design scenarios, they are possibly the optimal
solutions in other design scenarios.

With the UHPC mixtures designed for DS1 and DS2, the roles of
different ingredients (see the code from Table 6) on the carbon footprint,
embodied energy, and material cost of UHPC can be quantitatively
evaluated, as shown in Fig. 9. These rectangular treemaps show the
share of each ingredient of the UHPC mixtures.

In Fig. 9(a), the cement is responsible for more than 58% the carbon
footprint of the UHPC mixture for DS1, followed by steel fibers which
are responsible for more than 37% the carbon footprint. In Fig. 9(b),
cement is responsible for more than 74% the carbon footprint of the
UHPC mixture for DS2, followed by limestone powder which is
responsible for about 5% of the carbon footprint. The UHPC mixture for
DS2 utilizes higher volumes of low-carbon raw materials such as lime-
stone powder and slag while minimizes the volumes of high-carbon raw
materials, thus achieving the low carbon footprint. In Fig. 9(c), the steel
fibers are responsible for about 50% of the embodied energy of the
UHPC mixture for DS1, followed by cement which is responsible for
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Fig. 8. Evolution of the normalized hypervolume of the optimal solutions for (a) DS1 and (b) DS2.

Table 11

UHPC mixtures discovered for different design scenarios.
Number Design variable Unit Discovered mixtures Existing mixtures

DS1 DS2 FAC60 UHPC-2 UHPFRC
1 Cement-to-cm 1 0.74 0.31 0.47 0.67 0.82
2 Cement type MPa 52.50 52.50 52.5 52.5 52.5
3 Fly ash-to-cm 1 0.00 0.14 0.53 0.16 0.18
4 Slag-to-cm 1 0.22 0.29 0 0 0
5 Silica fume-to-cm 1 0.11 0.17 0 0.17 0
6 Metakaolin-to-cm 1 0.00 0.04 0 0 0
7 Nano silica-to-cm 1 0.00 0.00 0 0 0
8 Limestone-to-cm 1 0.24 0.95 0 0 0
9 Quartz powder-to-cm 1 0.37 0.01 0 0 0
10 Sand-to-cm 1 0.86 1.47 1.07 1.00 1.18
11 Maximum aggregate size mm 0.43 0.41 4.75 1.20 2
12 Water-to-cm 1 0.19 0.15 0.18 0.15 0.21
13 Superplasticizer-to-cm 1 0.02 0.02 0.01 0.02 0.04
14 Steel fiber volume % 2.98 0.05 2 0 2.5
15 Aspect ratio of fiber 1 40.5 74.2 65 N/A 65
Number UHPC property Unit Discovered mixtures Existing mixtures
DS1 DS2 FAC60 UHPC-2 UHPFRC

1 Compressive strength MPa 171.82 133.3 120 166 160
2 Flexural strength MPa 32.24 19.22 20.1 18.5 20.0
3 Mini-slump spread mm 260.2 271.9 285 265 283
4 Porosity % 8.88 12.13 13.9 9.64 14.0
5 Carbon footprint kg COy-eq/m* 922.5 247.1 673 652 984
6 Embodied energy MJ/m? 9631 2750 6819 5014 9507
7 Material cost $/m> 1664 329.1 905 472 1203

more than 38% of the embodied energy. In Fig. 9(d), cement is about 18% of the embodied energy. In Fig. 9(e), the steel fibers are
responsible for more than 46% of the embodied energy of the UHPC responsible for about 70% of the material cost of the UHPC mixture for
mixture for DS2, followed by limestone powder which is responsible for DS1, followed by quartz powder which is responsible for 15% the

11
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Fig. 9. Depiction of the share of raw materials: (a) carbon footprint of DS1; (b) carbon footprint of DS2; (c) embodied energy of DS1; (d) embodied energy of DS2; (e)
material cost of DS1; and (f) material cost of DS2. The labels 1 to 12 of the raw materials are defined in Table 6.

material cost. In Fig. 9(f), silica fume is responsible for about 29% of the
material cost of the UHPC mixture for DS2, followed by limestone
powder which is responsible for more than 24% of the material cost. The
UHPC mixture for DS2 utilizes higher volumes of low-energy low-cost
raw materials and minimizes the volumes of energy-intensive costly raw
materials, thus achieving the low embodied energy and material cost.

4. Conclusions

This study develops an Al-guided method to automatically discover
low-carbon cost-effective UHPC. The presented approach integrates
advanced techniques of generative modeling, automated machine
learning, and many-objective optimization, aiming to automate data
augmentation, machine learning model generation, and UHPC mixture
selection. Artificial yet sound data were synthesized to supplement
experimental data for training four machine learning models used to
predict compressive strength, flexural strength, mini-slump spread, and
porosity of UHPC. The quality of synthetic data is assessed using ma-
chine learning efficacy, diversity, and correlation preservation. Based on
the predictive models and specified objectives, two UHPC mixtures were
discovered for two design scenarios. Based on the above investigations,
the following conclusions are drawn:

e The developed approach is effective for auto-discovery of low-carbon
cost-effective UHPC mixtures in specified design scenarios with
particular objectives. The two discovered UHPC mixtures achieved
desired compressive and flexural strengths, workability, and
porosity. The carbon footprint, embodied energy, and cost of the
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UHPC mixture discovered in the second scenario are respectively
reduced by 73%, 71%, and 80%, compared with those of the first
scenario. The carbon footprint, embodied energy, and cost of the
discovered UHPC mixtures are lower than those of existing UHPC
mixtures with comparable mechanical properties.
The presented method for synthesis of data is effective in augmenting
training data for new material discovery problems where there is
lack of sufficient data. The incorporation of the semi-supervised
learning technique into the generative modeling improves the per-
formance of the synthetic data in terms of efficacy. The improvement
is likely because semi-supervised learning integrates information
embodied in experimental data.

e The automated machine learning method processes the training data,
determines the machine learning pipeline, and performs hyper-
parameter tuning for machine learning models without human
intervention. The generated machine learning models achieve high
accuracy and generalization performance in predicting the four
considered material properties of UHPC.

e The proposed methods for many-objective optimization problems
based on AGE-MOEA and TOPSIS demonstrate excellent perfor-
mance. The adopted evolutionary optimization method achieves a
higher hypervolume indicator than the other state-of-the-art opti-
mization methods. The optimal UHPC mixture designs selected by
TOPSIS are consistent with the defined objectives and design
constraints.

The proposed approach provides an alternative solution for efficient
development of low-carbon cost-effective UHPC in different
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Fig. B.1. Residual errors versus the experimental results for (a) compressive strength, (b) flexural strength, (¢) mini-slump spread, and (d) porosity of UHPC.

applications. The proposed methods for data synthesis, automated ma-
chine learning, and many-objective optimization are promising for
development of other types of materials with minimal human inter-
vention. It is envisioned that different objectives and relative weights
can be assigned to tailor the proposed approach for different design
scenarios. Further research can be performed to experimentally test the
proposed approach in different applications.
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Appendix A

Fig. A.1 shows the investigation on the correlation preservation and diversity of the synthetic data. Fig. A.1(a) shows the kernel density estimation
and cumulative sum of the difference between the Pearson correlation coefficients obtained by the real dataset. Fig. A.1(b) shows the Pearson cor-
relation coefficients obtained by the synthetic data. The range of differences is the narrowest for the synthetic data obtained by GM3. The total sum of
difference is the greatest for GM3. The total sum of difference for GM4 is the lowest.

Fig. A.1(c) and Fig. A.1(d) show the kernel density estimation and cumulative sum of the Euclidean distances between synthetic data instances and
real data instances. The probability density function of the distances for GM4 has a right-skewed distribution. The total Euclidean distance for GM3 is
the largest. The total Euclidean distance for GM4 is the smallest. The data instances obtained by GM3 are more diverse than the data instances
determined by the other generative models.
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Appendix B

Fig. B.1 shows the distribution of residual errors. The residuals are scattered around the zero-error line. There is no apparent indication of a
nonlinear relationship between the observed and predicted values. Fig. B.2 shows the histogram of residuals corresponding to the predictions made by
the four developed models. The distributions of residuals are approximately symmetrical and centered at zero. It can be concluded that the predictions
made by the four data-driven models are accurate over the entire range of output variables.

Appendix C

Fig. C.1 shows the range of the variables for the synthetic data. To facilitate the comparison of the range of synthetic data with that of the real data,
the values of variables are normalized using Eq. (C.1):
Xp;—min(X;)

Zni = m (C.l)

where 2, ; and X, ; are the normalized and the original values of the i th variable of the n-th data point; and X; is an array containing the values of the i th
variable for all the data points in the real dataset. Fig. C.1 indicates that the ranges of the variables of the synthetic data are within the ranges of the real
data.
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