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A B S T R A C T   

This paper presents an intelligent photo interpretation approach to automatically monitor and characterize dense 
interconnected microcracks in strain-hardening cementitious composite (SHCC) featuring unique crack patterns 
in terms of crack number and crack width. The presented approach employs a stereo vision system that integrates 
binocular and monocular cameras for automatic detection, ranging, and quantification of cracks as well as 
characterization of crack patterns. The presented approach was implemented into evaluation of SHCC in flexural 
tests and direct tension tests. Dense microcracks were detected and ranged by the stereo vision system, 
segmented by an encoder-decoder approach, and quantified by an efficient computer vision approach. Evolution 
of the cracks was traced throughout the loading process until failure, and a statistical analysis revealed that the 
crack width was retained while the crack number monotonically increased. The interpretation time was shorter 
than 0.4 s for each photo, making the approach promising for monitoring of SHCC. The proposed system can be 
deployed for automated assessment of cementitious composites with complex crack patterns in material research 
and engineering structures.   

1. Introduction 

Civil infrastructure in the United States is aging and compromises 
economic wealth and public safety. Many structures were built several 
decades ago and have shown poor conditions. According to the Amer
ica’s Infrastructure Report in 2021, the overall rate of civil infrastructure 
is C- [1]. The aging infrastructure poses a significant challenge and in
creases the financial burden for inspection, maintenance, and repair of 
infrastructure. It was projected that annual infrastructure maintenance 
need an additional $206 billion to close a funding gap of two trillion US 
dollars for 10 years [1]. The funding gap takes “a toll on families’ 
disposable household income” and impacts “the quality and quantity of 
jobs in the U.S.” – resulting in a loss of $4 trillion in GDP, 2.5 million 
jobs, and $3400 in annual disposable income for each household in the 
U.S [2]. The large funding gap drives the prioritization of critical 
structures for timely treatment so as to minimize catastrophic conse
quences associated with structural failure. Condition assessment and 
health monitoring of civil infrastructure play significant roles in decision 
making for asset management. Among various types of anomalies, crack 
is an important type of damage that may significantly compromise the 
load-carrying capacity and durability of engineering structures [3]. 

Timely and reliable assessment of cracks may effectively prevent cata
strophic consequences and enable efficient structural repair at an early 
age of deterioration. 

In current practices, visual inspection via bare eyes is still a widely 
used approach by many engineers in crack inspection, and a crack meter 
or scope is often employed to measure the crack opening width after a 
crack is located [4]. This approach is well accepted historically, but it 
has limitations: (1) The reliability is limited. The inspection results 
highly depend on the experience and performance of the inspector. 
There is lack of effective methods to judge reliability of different projects 
[5]. (2) Visual inspection is costly and time-consuming [6]. It often takes 
weeks for a crew of multiple structural engineers to inspect one struc
ture, such as a bridge, a building, or a tunnel. (3) It is difficult to inspect 
structures in harsh environment and extreme weather, such as extreme 
temperature and precipitation, while extreme weather is projected to 
increase in frequency and magnitude due to climate change. Distributed 
fiber optic sensors were proposed to monitor cracks in cementitious 
composites [4,5] and automatically detect, locate, quantify, and visu
alize of cracks in prestressed concrete girder [7], pavement [4], and 
bridge deck [8]. 

Alternatively, computer vision approaches attracted increasing 
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interests in assessing cracks using photos or videos [9]. Different ap
proaches have been proposed to detect, segment, and quantify cracks. 
Those approaches are categorized into: (1) two-stage detectors [10], and 
(2) one-stage detectors. Representative two-stage detectors include 
region-based convolutional neural network (R–CNN) [11], Faster-RCNN 
[12], Mask-RCNN [6,13], and Cascade-RCNN [14], which were mainly 
developed on convolutional neural network (CNN) [15]. Representative 
one-stage detectors include YOLO [16,17] and single shot detector (SSD) 
[18]. Two-stage detectors feature high accuracy, and one-stage de
tectors feature high efficiency [19]. YOLOv5 achieved a rate of 150 
images per second [20]. In addition to the capability of detection, cracks 
were segmented and quantified using photos. Instance segmentation 
approaches were proposed to segment cracks [21–23]. Representative 
approaches include fully convolutional network (FCN) [24], U-shaped 
fully convolutional network (U-net) [9], and SegNet [25]. The seg
mentation accuracy and efficiency are dependent on the segmentation 
architecture [26]. A sophisticated architecture may improve the accu
racy but compromise the efficiency. With segmented images, cracks 
were quantified by the pixels of cracks in photos [27]. Previous research 
demonstrated that ranging was essential for crack quantification. Laser 
radars or lidars are popular ranging devices [28], which are however 
costly. Binocular stereo vision approaches are promising to utilize 
cost-effective binocular cameras [29]. 

Table 1 compares representative approaches for crack assessment 
based on computer vision and deep learning. Limitations were identified 
from the previous research: (1) Automatic ranging was not incorporated 
into crack assessment. Ranging and crack assessment were often per
formed separately. In many cases, ranging was performed manually. (2) 
There is a tradeoff between the assessment accuracy and the efficiency. 
The time for crack identification and quantification was about 10 s or 
longer [30], which is too long in many applications. (3) The execution of 
existing methods involved human intervention and was not automati
cally conducted. (4) Most previous research focused on conventional 
concrete with relatively simple crack patterns in terms of crack 

interconnectivity and spacing. There is lack of research on densely 
distributed microcracks, which are typical in strain-hardening cemen
titious composite (SHCC). 

SHCC are a family of advanced concrete featuring high mechanical 
properties such as high tensile strengths, ductility, and toughness 
[38–40]. After cracks are produced in SHCC, SHCC is able to carry 
higher loads, similar to the strain-hardening behavior of low-carbon 
steel [41,42]. An interesting observation of SHCC has unique crack 
patterns that are different from conventional concrete [43,44]. In 
cracked SHCC, the crack widths are limited while the crack number 
increases with the external load until failure when localized cracks are 
widened [45,46]. The unique crack patterns of SHCC pose challenges to 
the previous approaches developed based on conventional concrete 
[47]. A recent research has shown feasibility of assessing dense micro
cracks in SHCC using computer vision approaches [30,48]. However, the 
crack assessment efficiency was limited. Assessment of cracks took 11.2 
s per photo, which is too long in many applications. 

This research presents an intelligent interpretation system to achieve 
real-time monitoring and automatic characterization of cracks in SHCC. 
Compared with existing approaches used to detect cracks, the proposed 
system tackles unique cracks in SHCC by utilizing a stereo vision system 
that integrates binocular and monocular cameras for automatic detec
tion, ranging, and quantification of cracks as well as characterization of 
crack patterns for SHCC. The presented approach was implemented into 
automatic evaluation of SHCC plates in direct tension tests. The pro
posed system will be deployed for automated assessment of cementitious 
composites with complex crack patterns in material research and engi
neering structures. 

2. Methodology 

2.1. Overview 

The stereo vision system has a binocular camera and a high- 

Table 1 
Summary of representative methods reported in existing publications.  

Year Reference Method Auto-ranging Crack detection Crack segmentation Crack quantification Human intervention 

2017 [31] CrackNet No No Yes No Yes 
2018 [27] FCN No No Yes Yes Yes 
2019 [9] U-net No No Yes No Yes 
2019 [6] Mask-RCNN No Yes Yes Yes Yes 
2020 [32] SCHNet No No Yes No Yes 
2020 [33] FCN No No Yes No Yes 
2020 [34] Faster-RCNN No Yes No No Yes 
2020 [35] YOLOv3 + U-net Yes Yes No No Yes 
2020 [23] U-net No No Yes No Yes 
2020 [36] Faster-RCNN No Yes Yes No Yes 
2020 [37] DeepLabv3+ No No Yes Yes Yes 
2020 [11] Faster-RCNN No Yes No No Yes 
2020 [25] SegNet No No Yes No Yes 
2022 [30] Mask-RCNN + U-net No Yes Yes Yes Yes  

Fig. 1. The proposed smart vision system with a binocular camera and a high-resolution camera.  
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resolution monocular camera, as depicted in Fig. 1. Both the binocular 
camera (resolution: 960 × 720 pixels) and the high-resolution monoc
ular camera (resolution: 2436 × 1125 pixels) were used to take photos of 
inspected objects. In this research, the high-resolution monocular cam
era and the binocular camera were connected to a laptop via USB cables 
or Bluetooth. Python codes were written to synchronize the cameras in 
acquiring data which was a video. The video was uploaded to a laptop, 
and Python codes were executed to analyze the frames of the videos. The 
data from binocular camera were used to measure the distance between 
the concrete surface and the camera lens via stereo vision. The high- 
resolution images were used to detect and quantify the cracks based 
on the deep learning approach. Fig. 1 shows the layout of the stereo 
vision system and the concept of using the vision system for assessing 
cracks in SHCC. 

2.2. Crack detection 

YOLOv5 is the latest generation of YOLO object detection model, and 
it is known to have the highest detection efficiency while retaining high 
accuracy. A YOLOv5 model has three main modules: backbone, neck, 
and prediction [49]. The backbone module consists of a focus layer, 
convolutional (conv) blocks, C3 layers, and a spatial pyramid pooling 
(SPP) layer. The focus layer is used to preprocess the image and accel
erate the first convolution operations. The convolutional blocks are used 
to extract features (e.g., color and texture of cracks) from images. A 
convolutional block is composed of convolutional neural network, batch 
normalization, and SiLU activation function [50], and batch 

normalization is used to improve the accuracy and efficiency [51]. The 
C3 layer is a type of CSPNet (Cross Stage Partial Network), which en
hances the learning capability, maintains detection accuracy, and re
duces the detection time of CNN [52]. The SPP layer is used to integrate 
pooling features of different receptive fields and improve the detection 
accuracy of CNN [53]. The neck module is a combination of feature 
pyramid network and path aggregation network, and consists of multi
ple convolutional blocks and C3 layers, in order to utilize the features 
extracted by the backbone. The prediction module utilizes three 
different sizes of feature maps generated from the neck module to detect 
cracks and generate detection boxes on cracks. 

This research investigates four YOLOv5 models, which are YOLO5s, 
YOLO5m, YOLO5l, and YOLO5x. The four models have different depths 
of C3 layers and different numbers of convolutional kernels, which 
characterize the sizes of the models. YOLO5s has the smallest size, 
YOLO5m has a medium size, YOLO5l has a large size, and YOLO5x has 
the largest size. The depth ratio and width ratio of the four different 
YOLOv5 models are shown in Table 2. 

2.3. Crack segmentation 

An encoder-decoder structure is used to generate binary images, as 
depicted in Fig. 2. In the down-sampling process, the input image is 
passed through the encoder, which extracts features of cracks and 
compress the size of feature map. In the up-sampling process, the 
decoder recovers the size of the feature map. Finally, the original image 
is converted into a binary image, where the pixels of cracks and concrete 
are shown in white color and black color, respectively. 

Different encoders and decoders were investigated to optimize the 
segmentation efficiency and accuracy. The investigated encoders 
include ResNet 18 [54], ResNet 50 [54], ResNet 152 [54], DenseNet 
[55], VGG 19 [26], MobileNetV2 [56], and InceptionV4 [26]. The 
investigated decoders include U-shaped fully convolutional network 
(UNet) [57], Pyramid Scene Parsing Network (PSPNet) [58], 

Table 2 
Difference between four YOLOv5 models.   

YOLO5s YOLO5m YOLO5l YOLO5x 

Depth ratio 0.33 0.67 1.00 1.33 
Width ratio 0.50 0.75 1.00 1.25  

Fig. 2. Architecture of the encoder-decoder structure [26]. Conv is convolutional block used to extract features and compress data. Dconv is deconvolutional block 
used to recover the image. 

Fig. 3. Calibration of binocular camera using a checkboard with black and white squares. “Left camera” and “right camera” refer to the left and the right telescopes 
of the binocular camera. 
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DeepLabV3+ [59], LinkNet [60], and Pyramid Attention Network (PAN) 
[61]. 

2.4. Ranging through binocular stereo vision 

The proposed ranging method includes the calibration of cameras, 
distortion correction of lens, stereo correction, stereo matching and 
disparity calculation, denoising using filters, and determination of the 
distance. These steps are elaborated in the following subsections. 

2.4.1. Camera calibration 
Camera calibration was performed using the stereo camera calibra

tion toolbox in MATLAB to determine the intrinsic parameters of the 
cameras, the external parameters, the radial distortion coefficient, and 
the tangent distortion coefficient for the binocular camera [62]. This 
research proposes to use a 7 × 10 checkerboard with intermediate black 
and white squares, as shown in Fig. 3. Each of the square area measures 
25 mm by 25 mm in area. 

2.4.2. Distortion correction 
Light is distorted when it propagates in the optical system of a 

camera. There are two forms of distortion, which are radial distortion 
and tangent distortion. Radial distortion is related to the shapes of lens. 
Tangent distortion is caused when the lens and image surface are not 
parallel. The radial distortion and tangent distortion are corrected to 
improve accuracy. In this research, radial distortion coefficient and 
tangent distortion coefficient are obtained through the camera calibra
tion process and used to eliminate the distortion effects [63]. 

2.4.3. Stereo correction 
Photos obtained from binocular cameras are generated by light 

projected on imaging planes, different from the real planes. Stereo 
correction was performed to transform the photos from the imaging 
planes to rectified coplanar planes (see Fig. 4). The transformation was 
performed based on the triangulation principle, which was used to 
calculate the distance [63]. 

2.4.4. Stereo matching and disparity calculation 
The stereo images obtained from the left and right cameras of the 

binocular camera are correlated but have binocular disparity. Stereo 
matching was performed to correlate the pixel points of the images 
obtained from the left and the right cameras, and disparity calculation 
was performed to eliminate the binocular disparity. In this research, 
stereo matching and disparity calculation were conducted using semi- 

global-block-matching (SGBM) package of OpenCV to achieve high- 
speed stereo matching. A disparity map was plotted based on the 
disparity values. 

2.4.5. Filtering and determination of distance 
Typically, the disparity map has many noise points that compromise 

the accuracy. This research employed a median filter to remove the 
noise points from the disparity map. The distance (Z) between the object 
and the optical center of the camera were calculated using the disparity 
values, focal length, and baseline, as shown in Fig. 5. 

2.5. Focal length of monocular high-resolution camera 

The focal length of the monocular high-resolution camera was 
calculated based on the similar triangle theorem. This research used a 
coin measuring 24 mm in diameter to obtain the focal length, as illus
trated in Fig. 6. The distance between the monocular camera and the 
coin was the same as the distance between the binocular camera and 
coin. The pixel number of the coin was determined by Hough circle 
transform [65]. The focal length was calculated using the actual diam
eter 24 mm of coin, distance, and pixel number (red color) of the coin. 

2.6. Crack quantification 

With the binary images obtained from segmentation, the crack was 
quantified based on the similar triangle theorem, as shown in Fig. 7. The 
pixels of a crack was turned into crack dimensions, given the focal length 
of camera and the distance between the object and camera. 

Fig. 8 depicts the method for determining the pixels corresponding to 
cracks. In general, a crack has an arbitrary geometry in the binary image. 
Both the crack width and orientation may change along the crack. This 
research proposes two methods to handle the change of crack width and 
orientation, respectively. For the change of crack width, the image is 
segmented into thin strips, and, within each strip, the crack width is 
considered to be unchanged. 

When the strips are thin, each strip has a constant width and orien
tation, so a parallelogram is used to characterize the crack in the strip. 
According to the pixel value, which is either 0 or 255 in the segmented 
images, the coordinates of the critical points of the parallelogram are 

Fig. 4. Illustration of distortion correction. πP is the rectified coplanar plane; πo 
is the imaging plane; mp is projected point on the rectified plane; mo is pro
jected point on imaging plane; w is point in the real world; and baseline is the 
spacing between the left and right cameras. Fig. 5. Calculation of the distance [64]. P is a point in real world; f is the focal 

length; OL and OR are respectively the optical centers of the left and right 
camera; B is the baseline, which is the spacing between OL and OR; Z is the 
distance between the object and the optical center of the camera. πL and πR are 
the left and right projection planes; PL and PR are the projected points on the 
left and right projection planes; XL is the distance between PL and πL; and XR is 
the distance between PR and πR. The disparity value is equal to XL - XR. 
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determined: (x1, y1), (x2, y2), and (x3, y3). Then, the crack width 
denoted by δ is described by the pixels. For the varying crack orienta
tion, the slope (k) of the crack in the strip is utilized to consider the 
orientation. The slope is defined as: 

k =

⃒
⃒
⃒
⃒
y2 − y3

x2 − x3

⃒
⃒
⃒
⃒ (1) 

Based on the crack slope, the strip orientation is adaptive to the crack 
orientation that is changing along the length of the crack. The strip is 
applied to ensure the angle between the strip and crack is not less than 
45◦. The angle ensures an adequate parallelogram to improve the 
calculation accuracy of crack width. 

Then, the following formulae are used to calculate the crack width 
(δ) in each of the strips: 

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x3)
2

+ (y2 − y3)
22

√

(2)  

cosα = H/L (3)  

W =

{
|y1 − y2|, k ≤ 1
|x1 − x2|, k > 1 (4)  

δ = W⋅ cosα = (H ⋅ W)/L (5)  

where L, D, and H are the side lengths of the triangle, and W is the side 
length of the parallelogram along the edge of the strip. 

The length ratio of an image to the real specimen is known as the 
scale factor, which indicates that the number of pixels of the image is 
proportional to the length of the real specimen. Therefore, the crack 
width is calculated by: 

Δ =
( δ

W

)
ΔPicture (6)  

where Δ is the crack width; and ΔPicture is the width of the object shown 
in the picture. 

Fig. 6. Focal length calculation: (a) a photo of a coin; (b) an image after Hough circle detection.  

Fig. 7. The similar triangle theorem for crack quantification. F is the focal length of camera; Wimg is the number of pixels for object in image; and Wobj is the actual 
width of object. 

Fig. 8. Quantification of an arbitrary crack with changing width and orientation along the crack.  
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3. Implementation and performance evaluation 

3.1. Dataset preparation 

Two different datasets were built to train the deep learning models 
for crack detection and segmentation, respectively. The dataset for crack 
detection had 1500 images, and the dataset for crack segmentation had 
1000 images. All images were resized into 512 × 512 pixels before they 
were labelled. The images in the two datasets were labelled in different 
ways. Fig. 9 shows the labels of two representative images. Regarding 
crack detection, the labels of each image were saved in a text file that 
only had four coordinates describing a rectangular box. Regarding crack 
segmentation, the labels of each image were saved in a text file that had 
many coordinates describing crack contours plotted as a binary image. 
Each of the two datasets were divided into training (80% data) and 
validation (20% data) sets. 

Multiple strategies were applied to increase the sizes of the dataset 
because the sizes of the datasets significantly influence the accuracy and 
the generalizability of the trained models. The adopted data augmen
tation methods included flipping, translation, shearing, scaling, and 
mosaic, as illustrated in Table 3. The different data augmentation 
methods were randomly executed to increase the dataset sizes. 

3.2. Crack measurement 

The width of each crack was measured using a high-precision crack 
scope (model: CS-100; magnification: 25X; precision: 50 μm). The 
measurement of crack width is used as the ground truth that is utilized to 
evaluate the accuracy of the presented computer vision method based on 
deep learning. 

3.3. Performance metrics 

The performance of deep learning models can be evaluated using 
different metrics, such as precision, recall, dice coefficient (F1 score), 
intersection over union (IOU), mean average precision (mAP), and co
efficient of determination (R2). The precision, recall, and dice coefficient 
are defined using four parameters, which are the true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). TP is an 
outcome when the model correctly recognizes the positive class (i.e., 
cracks). TN is an outcome when the model correctly recognizes the 
negative class (i.e., uncracked concrete). FP is an outcome when the 
model recognizes uncracked concrete as crack. FN is an outcome when 
the model recognizes crack as uncracked concrete. 

The precision is the proportion of correctly classified cracks to the 
total recognized cracks, as shown in Eq. (7): 

Precision =
TP

TP + FP
(7) 

The recall is the proportion of correctly classified cracks to the total 
cracks: 

Recall =
TP

TP + FN
(8) 

Dice coefficient is defined in Eq. (9): 

F1 =
2TP

2TP + FP + FN
(9) 

Precision and recall are used to evaluate crack detection accuracy. 
Dice coefficient is used to evaluate crack segmentation accuracy. Their 
values are in the range of 0–1, and 1 means the highest accuracy. In 
addition to dice coefficient, IOU is also used to evaluate the segmenta
tion accuracy, as defined in Eq. (10). Typically, IOU higher than 0.5 
represents a high accuracy. 

IOU =
Predicted ​ results ​ ∩ ​ Ground ​ truth
Predicted ​ results ​ ∪ ​ Ground ​ truth

(10) 

The area under a precision-recall curve represents the average pre
cision (AP), and mAP is equal to the AP value for each class divided by 
the number of classes. For example, mAP@0.5 represents the mAP value 
under the IOU higher than 0.5, as shown in Eq. (11). 

mAP@0.5 =

∑n
i=1APi

n
(IOU > 0.5) (11)  

where n is the number of class; and i is a certain class. mAP@0.5:0.95 
denotes the average of mAP values corresponding to IOU from 0.5 to 

Fig. 9. Labels of the representative images for: (a) crack detection, and (b) crack segmentation. 3.2. Data augmentation.  

Table 3 
Illustration of the data augmentation methods. 
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0.95 at an interval of 0.05, as shown in Eq. (12): 

mAP@0.5 : 0.95 =
{mAP(IOU > 0.5) : ​ mAP ​ (IOU > 0.95)}@0.05

10
(12) 

Coefficient of determination (R2) is used to evaluate the crack 
quantification accuracy: 

R2 =

∑n
i=1(ΔA − ΔM)

∑n
i=1(ΔM − ΔM)

(13)  

where n is the number of data instances; ΔA is the analysis result of crack 
width; ΔM is the measurement of crack width from the crack scope; and 
ΔM is the mean value of the measurement of crack width from the crack 
scope. 

4. Results and discussion 

4.1. Crack detection 

Fig. 10 shows the validation accuracy of the YOLOv5 models trained 
in 300 epochs. In the first 20 epochs, the accuracy rapidly increases with 
the epoch number. As the epoch number is further increased, the ac
curacy is stabilized. In the training of each model, the parameters which 
provide the highest mAP@0.5 are applied to the model. The YOLO5s 
model has the lowest mAP@0.5 and mAP@0.5:0.95, indicating the 
lowest validation accuracy of detection, which is attributed to the simple 
architecture of YOLO5s. Overall, comparable accuracy is shown by the 
YOLO5m, YOLO5l, and YOLO5x models. This is because crack is the only 
class of object to be detected. Thus, the accuracy is not significantly 
increased by using a large architecture. 

The trained YOLOv5 models are then used to detect cracks in 60 
photos of cracked SHCC specimens. The 60 photos are not used in 

Fig. 10. Validation accuracy of the YOLOv5 models: (a) mAP@0.5, and (b) mAP@0.5:0.95.  

Fig. 11. Representative results of crack detection using the four trained YOLOv5 models.  
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training the models, so they represent new unseen data for the trained 
models. Fig. 11 shows some representative crack detection results. The 
results showed that all cracks in the photos are recognized by the four 
models, regardless of the different crack patterns in conventional con
crete and SHCC. 

Table 4 lists the statistics of accuracy based on validation data, total 
time, and average time for the YOLO models. The adopted computer had 
a single RTX 3090 GPU, Intel i9-11900F CPU, and 64 GB memory. The 
machine learning models were coded based on Python 3.8.8 and Pytorch 
1.7.1. The YOLO5x model has the highest mAP@0.5 and mAP 
@0.5:0.95, indicating the highest accuracy. The implementation of 
time analysis is based on 60 unlabeled photos. The total time is the time 
used to detect cracks in the 60 images. The results of the total time of the 
YOLO5s, YOLO5m, YOLO5l, and YOLO5x models are 0.52 s, 0.65 s, 0.86 
s, and 1.08 s, respectively. The results of average time per image for the 
YOLO5s, YOLO5m, YOLO5l, and YOLO5x models are 0.008 s, 0.010 s, 
0.013 s, and 0.016 s, respectively. The different models do not show a 
significant difference in terms of the assessment efficiency. The YOLO5x 
model is selected for further tests. 

4.2. Crack segmentation 

Each segmentation model is trained for 30 epochs. The model with 
the highest IOU for validation set is used to segment 60 images that are 
not used in the training. The total time and average time used to segment 
60 images are analyzed. Table 5 shows the total time, average speed, and 
accuracy of different decoders. With the same encoder (ResNet50), 
LinkNet has the highest accuracy and the second shortest running time. 
The IOU and F1 score of LinkNet are 0.987 and 0.993, respectively. 

Fig. 12 shows representative segmentation results from the different 
decoders. Compared with the ground truth obtained from visual in
spection, LinkNet provides reasonable segmentation results for different 
types of concrete with different crack patterns. All the five models 
showed good segmentation accuracy for the photo with a single wide 
crack, but the models based on DeeplabV3+, PSPNet, UNet, and PAN 
show errors for segmentation of complex crack patterns. For example, 
the models based on DeeplabV3+, PSPNet, and PAN fail to segment 
intersections of cracks at some spots. LinkNet is selected as the decoder 
for crack segmentation. 

Table 6 shows the running time, speed per image, and validation 
accuracy of segmentation using different encoders. With a same decoder 
structure (LinkNet), ResNet50 and Inception v4 have the highest seg
mentation accuracy. MobileNet v2 model has the shortest time. The IOU 
and F1 score of ResNet50 and Inception v4 are 0.987 and 0.993, 
respectively. 

Fig. 13 shows representative segmentation results from the different 

Table 4 
Comparison of performance for four YOLO models.  

Model mAP @0.5 mAP @0.5:0.95 Total time (s) Average time (s) 

YOLO5s 0.89 0.67 0.52 0.008 
YOLO5m 0.91 0.71 0.65 0.010 
YOLO5l 0.91 0.73 0.86 0.013 
YOLO5x 0.92 0.74 1.08 0.016  

Table 5 
Comparison of performance for different decoders tested on 60 images.  

Encoder Decoder Total time 
(s) 

Speed (s/ 
image) 

IOU 
(0.5) 

F1 
score 

ResNet50 PAN 2.58 0.042 0.976 0.989 
ResNet50 UNet 2.41 0.040 0.986 0.993 
ResNet50 PSPNet 1.71 0.028 0.971 0.988 
ResNet50 LinkNet 2.18 0.035 0.987 0.993 
ResNet50 DeeplabV3+ 2.38 0.039 0.984 0.992  

Fig. 12. Representative results of crack segmentation using the different decoder structures.  

Table 6 
Comparison of performance for different encoders.  

Decoder Encoder Run time 
(s) 

Speed (s/ 
image) 

IOU 
(0.5) 

F1 
score 

LinkNet ResNet18 1.80 0.030 0.979 0.990 
LinkNet ResNet50 2.20 0.036 0.987 0.993 
LinkNet ResNet152 3.04 0.051 0.985 0.992 
LinkNet VGG19 4.16 0.069 0.985 0.993 
LinkNet Inception v4 4.03 0.072 0.987 0.993 
LinkNet MobileNet v2 1.74 0.029 0.974 0.989 
LinkNet DenseNet161 4.44 0.074 0.985 0.993  
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encoders. Compared with the ground truth, ResNet50 and Inception v4 
provided reasonable segmentation results, but Inception v4 had longer 
running time. Therefore, ResNet50 was selected as the decoder for crack 
segmentation in this research. 

4.3. Distance measurement 

4.3.1. Camera calibration for binocular camera 
Camera calibration is performed to determine the intrinsic matrices, 

external parameters (rotation matrix and translation vector), and 
distortion coefficients of the binocular camara. The calibration results 
are listed in Table 7. 

The focal length and baseline used for calculation of distance are 
703.97 (from IL) and 60.895 (from T), respectively. The distortion vector 
consists of three radial distortion coefficients and two tangential 
distortion coefficients. The rotation matrix represents the rotation of the 
right camera relative to the left camera. Translation vector is the 
translation relationship of the right camera relative to the left camera. 

4.3.2. Distortion and stereo correction of binocular images 
The images obtained from the left and the right cameras are shown in 

Fig. 14(a) and 14(b), respectively. The rectified images for the left and 
the right cameras are shown in Fig. 14(c) and (d), respectively. The 
images after distortion and stereo correction are coplanar. The points of 
the left and the right images are located on the same line, as shown in 
Fig. 14(e). 

4.3.3. Disparity map and denoising 
Stereo matching and disparity calculation are performed and 

generate a gray scale disparity map, as shown in Fig. 15(a). To identify 
disparity, the gray scale image is converted into a RGB colored map, as 
shown in Fig. 15(b). To note, the disparity calculation is more accurate 
for objects near the center of an image. The mean filter is applied to 
reduce the noise in the disparity map. After denoising, the voids of both 
gray and colored images are reduced, as shown in Fig. 15(c) and (d). 

4.3.4. Calculation of distance 
Table 8 lists some representative results of distance measured using 

the binocular stereo vision method in comparison with the distance 
measured using a ruler and denoted as actual distance. The statistics of 
all results show that the R2 value is 0.99, the largest error is 1.1%, and 
the total time is up to 0.24 s, indicating that the ranging method can 
provide reasonable accuracy and desired efficiency. 

4.4. Crack quantification 

With the segmented images and distance, the cracks can be quanti
fied. Fig. 16 shows a representative result of crack quantification. It can 
be seen that the presented method can provide reasonable detection and 
quantification of distributed cracks with a realistic crack pattern in civil 
engineering structures. The cracks have varying orientation and width, 
and one crack may have multiple branches along the crack. In the seg
mentation image, 10 points at the detected cracks are arbitrarily 
selected and used to evaluate the crack quantification accuracy. The 
crack widths at the 10 points were also measured using the crack scope. 

Table 9 compares the results of crack width measured from the 
proposed method and crack scope. The largest absolute discrepancy is 
generated at point 2, which is 365 μm and 9% of the measurement from 
the crack scope. The second largest absolute discrepancy is generated at 
point 3, which is 137 μm and 8% of the measurement from the crack 
scope. 

While the relatively large errors of the wide cracks are related to 
many factors, a main cause is related to the complex crack pattern of 
wide cracks in the crack depth direction, as illustrated in Fig. 17. When 
the crack is vertical to the surface, the edges of the crack can be clearly 
identified. However, when the crack is inclined, because the wide 
opening width allows more light in the crack, some light can be reflected 
by the material inside the crack, which makes it difficult to clearly 
identify the edges of the crack. Such effect can be aggravated when the 

Fig. 13. Representative results of crack segmentation using the different encoder structures.  

Table 7 
Results of camera calibration.   

Left camera Right camera 

Intrinsic 
parameter 

IL =
⎛

⎝
703.97 0 647.29
0 703.16 339.35
0 0 1

⎞

⎠

IR =
⎛

⎝
705.74 0 706.02
0 704.64 343.83
0 0 1

⎞

⎠

Distortion 
vector 

DL = (0.060, 0.016, 0.002, 
−0.002, −1.017) 

DR = (0.053, −0.097, −0.003, 
0.002, 0.095) 

Rotation 
matrix R =

⎛

⎝
0.999 0.002 −0.008
−0.002 1.000 0.004
0.009 −0.004 1.000

⎞

⎠

Translation 
vector 

T = (−60.895, 0.081, −1.423)  
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crack is near the edge of the image. Therefore, point 10 also have a 
relatively high discrepancy for the crack width, and the relative error of 
point 10 is the largest (10%). The statistics of more results show that the 
R2 value of the comparison of the crack width results is 0.98. It was 
found that the execution of the crack quantification codes took about 
0.32 s, and the whole process from photo acquisition to crack 

quantification was completed within 0.4 s. 

4.5. Characterization of crack pattern 

Based on the capabilities of crack detection and quantification, the 
proposed approach was employed to characterize the crack patterns of 

Fig. 14. Distortion and stereo correction: (a) original left image, (b) original right image, (c) rectified left image, (d) rectified right image, and (e) correlation of the 
left and right images. 

Fig. 15. Disparity maps from stereo matching and disparity calculation: (a) gray scale disparity map, (b) colored disparity map, (c) gray scale disparity map after 
denoising, and (d) colored disparity map after denoising. 
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SHCC specimens loaded under direct tension. The test setup is shown in 
Fig. 18(a). A dog-bone specimen made of SHCC was loaded using a load 
frame. The test was performed under displacement control with a con
stant displacement rate at 0.05 mm/min. The applied load was 
measured by a load cell embedded in the load frame, and the elongation 
of the specimen was measured by an extensometer deployed over the 
gauge length of the specimen designed in accordance with reference 
[66]. Fig. 18(b) shows a set of test results of the stress-strain curves. 
After the specimens were cracked, they carried higher tensile loads and 
exhibited dense microcracks, as shown in Fig. 18(c). During the tests, it 
was found that the crack patterns changed with the increase of the 
elongation of the specimens. Three points denoted by A, B, and C are 
used to represent three different damage levels. Point A represents 
minor damage, which occurred shortly after the specimen was cracked; 
point B represents moderate damage; point C represents severe damage; 
and point D represents failure. At each level, the photo of a cracked 
specimen can be processed by the proposed approach. The cracks are 
visualized and quantified, as shown in Fig. 18(d). The colored legend 
represents the crack width. 

In Fig. 18(d), the width of the specimen is divided into 20 equal strips 
by 19 lines in red color. Along each line, the crack number and crack 
width are evaluated. Based on statistics of the results from the 19 lines, 
the crack pattern of the specimen at the specific load level can be 
characterized, as shown in Fig. 19(a). Each column represents the 
average number of cracks with a specific range of crack widths. The 
widths of most cracks are in the range of 61 μm–100 μm when the 
specimen fails with localized cracks. Overall, the distribution of cracks 
satisfies the normal distribution shown by the grey dash line. With the 
same method, the crack pattern of a specimen can be characterized at an 
arbitrary load level in real time. Fig. 19(b) illustrates the evolution of the 
crack pattern. As the load level increased from point A to point B, the 
crack number and crack width increased. As the load level increased 
from point B to point C, the crack number increased while the crack 
width was relatively sustained. As the load level increased from point C 
to point D, the crack number slightly increased, and the crack width was 
significantly increased. Characterization of crack patterns is relevant to 

the mechanical properties and the durability of SHCC which are closely 
related to the crack number and width [67]. It is desired to have narrow 
cracks because presence of microcracks do not highly compromises the 
mechanical properties nor the durability when the crack width is lower 
than 50 μm [66]. More images are shown in Appendix. 

5. Conclusions and prospects 

This research proposes an intelligent interpretation approach for 
automatic assessment and characterization of unique crack patterns in 
SHCC in real time. The proposed approach integrates stereo vision and 
deep leaning for automatic detection, ranging, localization, quantifica
tion, and visualization of cracks. The approach is implemented to 
monitor and characterize the evolution of crack patterns for SHCC. 
Based on the investigations, the following conclusions are drawn:  

• The proposed approach provides detailed information about the 
characteristics of unique cracks in SHCC throughout the loading 
process. The detailed information includes crack number and crack 
width that reflect the damage condition of the SHCC specimen, 
despite the complex crack patterns different from conventional 
concrete. The evolution of the crack patterns can be monitored to 
assess the condition of SHCC. The total assessment time is less than 
0.4 s per photo.  

• The YOLOv5 models show desired accuracy and efficiency in crack 
detection. The mAP@0.5 score is 0.89 for YOLO5s, 0.91 YOLO5m, 
0.91 for YOLO5l, and 0.92 for YOLO5x. The time needed to detect 
cracks in one image is 0.008 s for YOLO5s, 0.010 s for YOLO5m, 
0.013 s for YOLO5l, and 0.016 s for YOLO5x. YOLOv5 is promising 
for real-time automatic crack detection. In the investigated encoders 
and decoders, ResNet50 and LinkNet demonstrated the highest seg
mentation accuracy and high efficiency. With combination of 

Table 8 
Result of distance measurement.  

Range 
(mm) 

Actual distance 
(mm) 

Measured distance 
(mm) 

Error 
(mm) 

Error 
(%) 

0–200 – – – – 
200–300 240 242.1 2.1 0.9 
300–400 319 321.3 2.3 0.7 
400–500 406 403.3 2.7 0.7 
500-1000 980 973.1 6.9 0.7 
1000–3000 2450 2422.6 27.4 1.1  

Fig. 16. Visualization of distributed cracks detected and quantified using the presented method.  

Table 9 
Results of crack width quantification.  

Point Proposed method 
(μm)

Crack scope 
(μm)

Discrepancy 
(μm)

Error 
(%) 

1 936 970 −34 −4% 
2 4465 4100 365 9% 
3 1513 1650 −137 −8% 
4 490 520 −30 −6% 
5 267 280 −13 −5% 
6 444 410 34 8% 
7 222 210 12 6% 
8 271 250 21 8% 
9 333 350 −17 −5% 
10 913 830 83 10%  
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Fig. 17. Effect of crack pattern in the depth direction on the accuracy of detection of cracks: (a) a vertical crack; and (b) an inclined crack.  

Fig. 18. Crack evaluation of SHCC specimens: (a) specimen and test setup (unit: mm), (b) stress-strain curves, (c) photos of a cracked specimen, and (d) crack 
visualization and quantification. 
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ResNet50 and LinkNet, the IOU and F1 score are 0.987 and 0.993, 
respectively, and the assessment time is 0.036 s per photo.  

• The binocular stereo vision approach provides high accuracy and 
efficiency for ranging cracks. The proposed processes integrate the 
camera calibration, distortion and stereo correction, stereo matching 
and disparity calculation, and distance calculation. Regarding the 
ranging accuracy, the R2 value is higher than 0.99, and relative error 
is less than 0.9%. With segmented images and determined distance, 
the widths of cracks can be quantified according to the pixels of 
cracks. The assessment time is 0.32 s per photo. 

Based on the established capabilities of crack assessment, there are 
opportunities to perform further research in the following aspects:  

• The proposed approach has been deployed on a land robotic car to 
automatically perform condition assessment of structures such as 
bridge decks and girders. It is interesting to incorporate the approach 
into drones with stronger accessing capabilities. It is envisioned that 
utilization of the developed approach will help save cost and mini
mize human intervention in crack assessment. Further efforts are 
needed to evaluate the performance of the proposed method in 
different use cases.  

• It is interesting to further improve the efficiency by reducing the total 
running time from 0.4 s to millisecond level for real-time condition 
assessment of engineering structures. It is speculated that multi- 
threaded parallel and distributed computing will further reduce the 
computation time.  

• This research shows that the proposed method provides desired 
performance in assessing cracks in different types of concrete. It is 
interesting to evaluate the performance of the proposed method for 

assessing cracks in other materials such as steel and masonry blocks 
with different textures and crack patterns. It is important to test the 
proposed method in scenarios involving different brightness of 
photos. 
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Appendix 

Fig. A1 shows the change of cracks in a SHCC dog-bone specimen with the load time. These images were extracted from the different frames of a 
video produced using the proposed approach. The change of cracks in the SHCC reflects the fracturing process, as elaborated in Section 4.5. 

Fig. 19. Statistics of crack patterns of a SHCC specimen: (a) crack number versus crack width; and (b) evolution of the crack pattern in the loading process.  
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Fig. A1. Monitoring of the change of cracks in a SHCC specimen under direct tension: (a) the tested specimen; (b) 1 min; (c) 2 min; (d) 3 min; (e) 4 min; (f) 5 min; (g) 
6 min; and (h) 7 min. 
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