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This paper presents an intelligent photo interpretation approach to automatically monitor and characterize dense
interconnected microcracks in strain-hardening cementitious composite (SHCC) featuring unique crack patterns
in terms of crack number and crack width. The presented approach employs a stereo vision system that integrates
binocular and monocular cameras for automatic detection, ranging, and quantification of cracks as well as
characterization of crack patterns. The presented approach was implemented into evaluation of SHCC in flexural
tests and direct tension tests. Dense microcracks were detected and ranged by the stereo vision system,
segmented by an encoder-decoder approach, and quantified by an efficient computer vision approach. Evolution
of the cracks was traced throughout the loading process until failure, and a statistical analysis revealed that the
crack width was retained while the crack number monotonically increased. The interpretation time was shorter
than 0.4 s for each photo, making the approach promising for monitoring of SHCC. The proposed system can be
deployed for automated assessment of cementitious composites with complex crack patterns in material research

and engineering structures.

1. Introduction

Civil infrastructure in the United States is aging and compromises
economic wealth and public safety. Many structures were built several
decades ago and have shown poor conditions. According to the Amer-
ica’s Infrastructure Report in 2021, the overall rate of civil infrastructure
is C- [1]. The aging infrastructure poses a significant challenge and in-
creases the financial burden for inspection, maintenance, and repair of
infrastructure. It was projected that annual infrastructure maintenance
need an additional $206 billion to close a funding gap of two trillion US
dollars for 10 years [1]. The funding gap takes “a toll on families’
disposable household income” and impacts “the quality and quantity of
jobs in the U.S.” - resulting in a loss of $4 trillion in GDP, 2.5 million
jobs, and $3400 in annual disposable income for each household in the
U.S [2]. The large funding gap drives the prioritization of critical
structures for timely treatment so as to minimize catastrophic conse-
quences associated with structural failure. Condition assessment and
health monitoring of civil infrastructure play significant roles in decision
making for asset management. Among various types of anomalies, crack
is an important type of damage that may significantly compromise the
load-carrying capacity and durability of engineering structures [3].
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Timely and reliable assessment of cracks may effectively prevent cata-
strophic consequences and enable efficient structural repair at an early
age of deterioration.

In current practices, visual inspection via bare eyes is still a widely
used approach by many engineers in crack inspection, and a crack meter
or scope is often employed to measure the crack opening width after a
crack is located [4]. This approach is well accepted historically, but it
has limitations: (1) The reliability is limited. The inspection results
highly depend on the experience and performance of the inspector.
There is lack of effective methods to judge reliability of different projects
[5]. (2) Visual inspection is costly and time-consuming [6]. It often takes
weeks for a crew of multiple structural engineers to inspect one struc-
ture, such as a bridge, a building, or a tunnel. (3) It is difficult to inspect
structures in harsh environment and extreme weather, such as extreme
temperature and precipitation, while extreme weather is projected to
increase in frequency and magnitude due to climate change. Distributed
fiber optic sensors were proposed to monitor cracks in cementitious
composites [4,5] and automatically detect, locate, quantify, and visu-
alize of cracks in prestressed concrete girder [7], pavement [4], and
bridge deck [8].

Alternatively, computer vision approaches attracted increasing
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Table 1
Summary of representative methods reported in existing publications.
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Year Reference Method Auto-ranging Crack detection Crack segmentation Crack quantification Human intervention
2017 [31] CrackNet No No Yes No Yes
2018 [27] FCN No No Yes Yes Yes
2019 [9] U-net No No Yes No Yes
2019 [6] Mask-RCNN No Yes Yes Yes Yes
2020 [32] SCHNet No No Yes No Yes
2020 [33] FCN No No Yes No Yes
2020 [34] Faster-RCNN No Yes No No Yes
2020 [35] YOLOV3 + U-net Yes Yes No No Yes
2020 [23] U-net No No Yes No Yes
2020 [36] Faster-RCNN No Yes Yes No Yes
2020 [37] DeepLabv3+ No No Yes Yes Yes
2020 [11] Faster-RCNN No Yes No No Yes
2020 [25] SegNet No No Yes No Yes
2022 [30] Mask-RCNN + U-net No Yes Yes Yes Yes

interests in assessing cracks using photos or videos [9]. Different ap-
proaches have been proposed to detect, segment, and quantify cracks.
Those approaches are categorized into: (1) two-stage detectors [10], and
(2) one-stage detectors. Representative two-stage detectors include
region-based convolutional neural network (R-CNN) [11], Faster-RCNN
[12], Mask-RCNN [6,13], and Cascade-RCNN [14], which were mainly
developed on convolutional neural network (CNN) [15]. Representative
one-stage detectors include YOLO [16,17] and single shot detector (SSD)
[18]. Two-stage detectors feature high accuracy, and one-stage de-
tectors feature high efficiency [19]. YOLOvV5 achieved a rate of 150
images per second [20]. In addition to the capability of detection, cracks
were segmented and quantified using photos. Instance segmentation
approaches were proposed to segment cracks [21-23]. Representative
approaches include fully convolutional network (FCN) [24], U-shaped
fully convolutional network (U-net) [9], and SegNet [25]. The seg-
mentation accuracy and efficiency are dependent on the segmentation
architecture [26]. A sophisticated architecture may improve the accu-
racy but compromise the efficiency. With segmented images, cracks
were quantified by the pixels of cracks in photos [27]. Previous research
demonstrated that ranging was essential for crack quantification. Laser
radars or lidars are popular ranging devices [28], which are however
costly. Binocular stereo vision approaches are promising to utilize
cost-effective binocular cameras [29].

Table 1 compares representative approaches for crack assessment
based on computer vision and deep learning. Limitations were identified
from the previous research: (1) Automatic ranging was not incorporated
into crack assessment. Ranging and crack assessment were often per-
formed separately. In many cases, ranging was performed manually. (2)
There is a tradeoff between the assessment accuracy and the efficiency.
The time for crack identification and quantification was about 10 s or
longer [30], which is too long in many applications. (3) The execution of
existing methods involved human intervention and was not automati-
cally conducted. (4) Most previous research focused on conventional
concrete with relatively simple crack patterns in terms of crack
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interconnectivity and spacing. There is lack of research on densely
distributed microcracks, which are typical in strain-hardening cemen-
titious composite (SHCC).

SHCC are a family of advanced concrete featuring high mechanical
properties such as high tensile strengths, ductility, and toughness
[38-40]. After cracks are produced in SHCC, SHCC is able to carry
higher loads, similar to the strain-hardening behavior of low-carbon
steel [41,42]. An interesting observation of SHCC has unique crack
patterns that are different from conventional concrete [43,44]. In
cracked SHCC, the crack widths are limited while the crack number
increases with the external load until failure when localized cracks are
widened [45,46]. The unique crack patterns of SHCC pose challenges to
the previous approaches developed based on conventional concrete
[47]. A recent research has shown feasibility of assessing dense micro-
cracks in SHCC using computer vision approaches [30,48]. However, the
crack assessment efficiency was limited. Assessment of cracks took 11.2
s per photo, which is too long in many applications.

This research presents an intelligent interpretation system to achieve
real-time monitoring and automatic characterization of cracks in SHCC.
Compared with existing approaches used to detect cracks, the proposed
system tackles unique cracks in SHCC by utilizing a stereo vision system
that integrates binocular and monocular cameras for automatic detec-
tion, ranging, and quantification of cracks as well as characterization of
crack patterns for SHCC. The presented approach was implemented into
automatic evaluation of SHCC plates in direct tension tests. The pro-
posed system will be deployed for automated assessment of cementitious
composites with complex crack patterns in material research and engi-
neering structures.

2. Methodology
2.1. Overview

The stereo vision system has a binocular camera and a high-

Output crack information

Fig. 1. The proposed smart vision system with a binocular camera and a high-resolution camera.
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Table 2
Difference between four YOLOV5 models.
YOLO5s YOLO5m YOLOS1 YOLO5x
Depth ratio 0.33 0.67 1.00 1.33
Width ratio 0.50 0.75 1.00 1.25

resolution monocular camera, as depicted in Fig. 1. Both the binocular
camera (resolution: 960 x 720 pixels) and the high-resolution monoc-
ular camera (resolution: 2436 x 1125 pixels) were used to take photos of
inspected objects. In this research, the high-resolution monocular cam-
era and the binocular camera were connected to a laptop via USB cables
or Bluetooth. Python codes were written to synchronize the cameras in
acquiring data which was a video. The video was uploaded to a laptop,
and Python codes were executed to analyze the frames of the videos. The
data from binocular camera were used to measure the distance between
the concrete surface and the camera lens via stereo vision. The high-
resolution images were used to detect and quantify the cracks based
on the deep learning approach. Fig. 1 shows the layout of the stereo
vision system and the concept of using the vision system for assessing
cracks in SHCC.

2.2. Crack detection

YOLOVS5 is the latest generation of YOLO object detection model, and
it is known to have the highest detection efficiency while retaining high
accuracy. A YOLOV5 model has three main modules: backbone, neck,
and prediction [49]. The backbone module consists of a focus layer,
convolutional (conv) blocks, C3 layers, and a spatial pyramid pooling
(SPP) layer. The focus layer is used to preprocess the image and accel-
erate the first convolution operations. The convolutional blocks are used
to extract features (e.g., color and texture of cracks) from images. A
convolutional block is composed of convolutional neural network, batch
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normalization is used to improve the accuracy and efficiency [51]. The
C3 layer is a type of CSPNet (Cross Stage Partial Network), which en-
hances the learning capability, maintains detection accuracy, and re-
duces the detection time of CNN [52]. The SPP layer is used to integrate
pooling features of different receptive fields and improve the detection
accuracy of CNN [53]. The neck module is a combination of feature
pyramid network and path aggregation network, and consists of multi-
ple convolutional blocks and C3 layers, in order to utilize the features
extracted by the backbone. The prediction module utilizes three
different sizes of feature maps generated from the neck module to detect
cracks and generate detection boxes on cracks.

This research investigates four YOLOv5 models, which are YOLOS5s,
YOLO5m, YOLOS5], and YOLO5x. The four models have different depths
of C3 layers and different numbers of convolutional kernels, which
characterize the sizes of the models. YOLO5s has the smallest size,
YOLO5m has a medium size, YOLO5I has a large size, and YOLO5x has
the largest size. The depth ratio and width ratio of the four different
YOLOV5 models are shown in Table 2.

2.3. Crack segmentation

An encoder-decoder structure is used to generate binary images, as
depicted in Fig. 2. In the down-sampling process, the input image is
passed through the encoder, which extracts features of cracks and
compress the size of feature map. In the up-sampling process, the
decoder recovers the size of the feature map. Finally, the original image
is converted into a binary image, where the pixels of cracks and concrete
are shown in white color and black color, respectively.

Different encoders and decoders were investigated to optimize the
segmentation efficiency and accuracy. The investigated encoders
include ResNet 18 [54], ResNet 50 [54], ResNet 152 [54], DenseNet
[55], VGG 19 [26], MobileNetV2 [56], and InceptionV4 [26]. The
investigated decoders include U-shaped fully convolutional network

normalization, and SiLU activation function [50], and batch (UNet) [57], Pyramid Scene Parsing Network (PSPNet) [58],
PR Concatenate I
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Fig. 2. Architecture of the encoder-decoder structure [26]. Conv is convolutional block used to extract features and compress data. Dconv is deconvolutional block

used to recover the image.

Fig. 3. Calibration of binocular camera using a checkboard with black and white squares. “Left camera” and “right camera” refer to the left and the right telescopes

of the binocular camera.
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Original imaging planer

Fig. 4. Illustration of distortion correction. np is the rectified coplanar plane; =,
is the imaging plane; m,, is projected point on the rectified plane; m, is pro-
jected point on imaging plane; w is point in the real world; and baseline is the
spacing between the left and right cameras.

DeepLabV3+ [59], LinkNet [60], and Pyramid Attention Network (PAN)
[61].

2.4. Ranging through binocular stereo vision

The proposed ranging method includes the calibration of cameras,
distortion correction of lens, stereo correction, stereo matching and
disparity calculation, denoising using filters, and determination of the
distance. These steps are elaborated in the following subsections.

2.4.1. Camera calibration

Camera calibration was performed using the stereo camera calibra-
tion toolbox in MATLAB to determine the intrinsic parameters of the
cameras, the external parameters, the radial distortion coefficient, and
the tangent distortion coefficient for the binocular camera [62]. This
research proposes to use a 7 x 10 checkerboard with intermediate black
and white squares, as shown in Fig. 3. Each of the square area measures
25 mm by 25 mm in area.

2.4.2. Distortion correction

Light is distorted when it propagates in the optical system of a
camera. There are two forms of distortion, which are radial distortion
and tangent distortion. Radial distortion is related to the shapes of lens.
Tangent distortion is caused when the lens and image surface are not
parallel. The radial distortion and tangent distortion are corrected to
improve accuracy. In this research, radial distortion coefficient and
tangent distortion coefficient are obtained through the camera calibra-
tion process and used to eliminate the distortion effects [63].

2.4.3. Stereo correction

Photos obtained from binocular cameras are generated by light
projected on imaging planes, different from the real planes. Stereo
correction was performed to transform the photos from the imaging
planes to rectified coplanar planes (see Fig. 4). The transformation was
performed based on the triangulation principle, which was used to
calculate the distance [63].

2.4.4. Stereo matching and disparity calculation

The stereo images obtained from the left and right cameras of the
binocular camera are correlated but have binocular disparity. Stereo
matching was performed to correlate the pixel points of the images
obtained from the left and the right cameras, and disparity calculation
was performed to eliminate the binocular disparity. In this research,
stereo matching and disparity calculation were conducted using semi-
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Fig. 5. Calculation of the distance [64]. P is a point in real world; f is the focal
length; O, and Og are respectively the optical centers of the left and right
camera; B is the baseline, which is the spacing between Oy, and Og; Z is the
distance between the object and the optical center of the camera. m;, and ng are
the left and right projection planes; P, and Py are the projected points on the
left and right projection planes; X;, is the distance between Py, and n;; and Xg is
the distance between P and ng. The disparity value is equal to Xj, - Xg.

global-block-matching (SGBM) package of OpenCV to achieve high-
speed stereo matching. A disparity map was plotted based on the
disparity values.

2.4.5. Filtering and determination of distance

Typically, the disparity map has many noise points that compromise
the accuracy. This research employed a median filter to remove the
noise points from the disparity map. The distance (Z) between the object
and the optical center of the camera were calculated using the disparity
values, focal length, and baseline, as shown in Fig. 5.

2.5. Focal length of monocular high-resolution camera

The focal length of the monocular high-resolution camera was
calculated based on the similar triangle theorem. This research used a
coin measuring 24 mm in diameter to obtain the focal length, as illus-
trated in Fig. 6. The distance between the monocular camera and the
coin was the same as the distance between the binocular camera and
coin. The pixel number of the coin was determined by Hough circle
transform [65]. The focal length was calculated using the actual diam-
eter 24 mm of coin, distance, and pixel number (red color) of the coin.

2.6. Crack quantification

With the binary images obtained from segmentation, the crack was
quantified based on the similar triangle theorem, as shown in Fig. 7. The
pixels of a crack was turned into crack dimensions, given the focal length
of camera and the distance between the object and camera.

Fig. 8 depicts the method for determining the pixels corresponding to
cracks. In general, a crack has an arbitrary geometry in the binary image.
Both the crack width and orientation may change along the crack. This
research proposes two methods to handle the change of crack width and
orientation, respectively. For the change of crack width, the image is
segmented into thin strips, and, within each strip, the crack width is
considered to be unchanged.

When the strips are thin, each strip has a constant width and orien-
tation, so a parallelogram is used to characterize the crack in the strip.
According to the pixel value, which is either 0 or 255 in the segmented
images, the coordinates of the critical points of the parallelogram are
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(b)

Fig. 6. Focal length calculation: (a) a photo of a coin; (b) an image after Hough circle detection.
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Fig. 7. The similar triangle theorem for crack quantification. F is the focal length of camera; Wing is the number of pixels for object in image; and W,y is the actual

width of object.

Fig. 8. Quantification of an arbitrary crack with changing width and orientation along the crack.

determined: (x1, y1), (X2, ¥2), and (x3, y3). Then, the crack width
denoted by & is described by the pixels. For the varying crack orienta-
tion, the slope (k) of the crack in the strip is utilized to consider the
orientation. The slope is defined as:

Y2 — )3
X2 — X3

@

Based on the crack slope, the strip orientation is adaptive to the crack
orientation that is changing along the length of the crack. The strip is
applied to ensure the angle between the strip and crack is not less than
45°. The angle ensures an adequate parallelogram to improve the
calculation accuracy of crack width.

Then, the following formulae are used to calculate the crack width
(8) in each of the strips:

L=i/(n x5 + (2 - ) @

cosa=H/L 3

H
-
=yl k<1
W_{|x1—x2\, k>1 )
6=W-cosa = (H-W)/L ()

where L, D, and H are the side lengths of the triangle, and W is the side
length of the parallelogram along the edge of the strip.

The length ratio of an image to the real specimen is known as the
scale factor, which indicates that the number of pixels of the image is
proportional to the length of the real specimen. Therefore, the crack
width is calculated by:

1)

A= () Ancae (6)

where A is the crack width; and Apjcryre is the width of the object shown
in the picture.
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(b)

Fig. 9. Labels of the representative images for: (a) crack detection, and (b) crack segmentation. 3.2. Data augmentation.

Table 3
Ilustration of the data augmentation methods.
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3. Implementation and performance evaluation
3.1. Dataset preparation

Two different datasets were built to train the deep learning models
for crack detection and segmentation, respectively. The dataset for crack
detection had 1500 images, and the dataset for crack segmentation had
1000 images. All images were resized into 512 x 512 pixels before they
were labelled. The images in the two datasets were labelled in different
ways. Fig. 9 shows the labels of two representative images. Regarding
crack detection, the labels of each image were saved in a text file that
only had four coordinates describing a rectangular box. Regarding crack
segmentation, the labels of each image were saved in a text file that had
many coordinates describing crack contours plotted as a binary image.
Each of the two datasets were divided into training (80% data) and
validation (20% data) sets.

Multiple strategies were applied to increase the sizes of the dataset
because the sizes of the datasets significantly influence the accuracy and
the generalizability of the trained models. The adopted data augmen-
tation methods included flipping, translation, shearing, scaling, and
mosaic, as illustrated in Table 3. The different data augmentation
methods were randomly executed to increase the dataset sizes.

3.2. Crack measurement

The width of each crack was measured using a high-precision crack
scope (model: CS-100; magnification: 25X; precision: 50 pm). The
measurement of crack width is used as the ground truth that is utilized to
evaluate the accuracy of the presented computer vision method based on
deep learning.

3.3. Performance metrics

The performance of deep learning models can be evaluated using
different metrics, such as precision, recall, dice coefficient (F1 score),
intersection over union (IOU), mean average precision (mAP), and co-
efficient of determination (R?). The precision, recall, and dice coefficient
are defined using four parameters, which are the true positive (TP), true

negative (TN), false positive (FP), and false negative (FN). TP is an
outcome when the model correctly recognizes the positive class (i.e.,
cracks). TN is an outcome when the model correctly recognizes the
negative class (i.e., uncracked concrete). FP is an outcome when the
model recognizes uncracked concrete as crack. FN is an outcome when
the model recognizes crack as uncracked concrete.

The precision is the proportion of correctly classified cracks to the
total recognized cracks, as shown in Eq. (7):

TP

TP + FP )

Precision =

The recall is the proportion of correctly classified cracks to the total
cracks:
TP

Recall = TP-‘,-—FN (8)

Dice coefficient is defined in Eq. (9):

2TP

Fl=— =
2TP + FP + FN

€)]

Precision and recall are used to evaluate crack detection accuracy.
Dice coefficient is used to evaluate crack segmentation accuracy. Their
values are in the range of 0-1, and 1 means the highest accuracy. In
addition to dice coefficient, IOU is also used to evaluate the segmenta-
tion accuracy, as defined in Eq. (10). Typically, IOU higher than 0.5
represents a high accuracy.

_ Predicted results N Ground truth
U Ground truth

j(e]0) 10)

" Predicted results

The area under a precision-recall curve represents the average pre-
cision (AP), and mAP is equal to the AP value for each class divided by
the number of classes. For example, mAP@0.5 represents the mAP value
under the IOU higher than 0.5, as shown in Eq. (11).

mapa0s = 2=14% 1615 o 5 an
n

where n is the number of class; and i is a certain class. mAP@0.5:0.95
denotes the average of mAP values corresponding to IOU from 0.5 to
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Fig. 10. Validation accuracy of the YOLOV5 models: (a) mAP@0.5, and (b) mAP@0.5:0.95.
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Fig. 11. Representative results of crack detection using the four trained YOLOvV5 models.

0.95 at an interval of 0.05, as shown in Eq. (12):

{mAP(IOU > 0.5) : mAP (IOU > 0.95)}@0.05

AP@0.5 : 0.95—
m 10

12)

Coefficient of determination (RZ) is used to evaluate the crack
quantification accuracy:

R = Z?=1(AA - m)

— 13
Yimi(Am — Ay) 2

where n is the number of data instances; A, is the analysis result of crack
width; Ay is the measurement of crack width from the crack scope; and
Ay is the mean value of the measurement of crack width from the crack
scope.

4. Results and discussion
4.1. Crack detection

Fig. 10 shows the validation accuracy of the YOLOv5 models trained
in 300 epochs. In the first 20 epochs, the accuracy rapidly increases with
the epoch number. As the epoch number is further increased, the ac-
curacy is stabilized. In the training of each model, the parameters which
provide the highest mAP@0.5 are applied to the model. The YOLOS5s
model has the lowest mAP@0.5 and mAP@0.5:0.95, indicating the
lowest validation accuracy of detection, which is attributed to the simple
architecture of YOLOS5s. Overall, comparable accuracy is shown by the
YOLO5m, YOLOS5I, and YOLO5x models. This is because crack is the only
class of object to be detected. Thus, the accuracy is not significantly
increased by using a large architecture.

The trained YOLOvV5 models are then used to detect cracks in 60
photos of cracked SHCC specimens. The 60 photos are not used in
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Table 4
Comparison of performance for four YOLO models.

Model mAP @0.5 mAP @0.5:0.95 Total time (s) Average time (s)
YOLOSs 0.89 0.67 0.52 0.008
YOLOSm 0.91 0.71 0.65 0.010
YOLOSI 0.91 0.73 0.86 0.013
YOLO5x 0.92 0.74 1.08 0.016

Table 5

Comparison of performance for different decoders tested on 60 images.
Encoder Decoder Total time Speed (s/ 10U F1

(s) image) (0.5) score

ResNet50 PAN 2.58 0.042 0.976 0.989
ResNet50 UNet 2.41 0.040 0.986 0.993
ResNet50  PSPNet 1.71 0.028 0.971 0.988
ResNet50 LinkNet 2.18 0.035 0.987 0.993
ResNet50 DeeplabV3+ 2.38 0.039 0.984 0.992

training the models, so they represent new unseen data for the trained
models. Fig. 11 shows some representative crack detection results. The
results showed that all cracks in the photos are recognized by the four
models, regardless of the different crack patterns in conventional con-
crete and SHCC.

Table 4 lists the statistics of accuracy based on validation data, total
time, and average time for the YOLO models. The adopted computer had
a single RTX 3090 GPU, Intel i9-11900F CPU, and 64 GB memory. The
machine learning models were coded based on Python 3.8.8 and Pytorch
1.7.1. The YOLO5x model has the highest mAP@0.5 and mAP
@0.5:0.95, indicating the highest accuracy. The implementation of
time analysis is based on 60 unlabeled photos. The total time is the time
used to detect cracks in the 60 images. The results of the total time of the
YOLOS5s, YOLO5m, YOLOSI, and YOLO5x models are 0.52 s, 0.65 s, 0.86
s, and 1.08 s, respectively. The results of average time per image for the
YOLOS5s, YOLO5m, YOLOS5], and YOLO5x models are 0.008 s, 0.010 s,
0.013 s, and 0.016 s, respectively. The different models do not show a
significant difference in terms of the assessment efficiency. The YOLO5x
model is selected for further tests.

Original image  DeeplabV3+ PSPNet

s

UNet
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4.2. Crack segmentation

Each segmentation model is trained for 30 epochs. The model with
the highest IOU for validation set is used to segment 60 images that are
not used in the training. The total time and average time used to segment
60 images are analyzed. Table 5 shows the total time, average speed, and
accuracy of different decoders. With the same encoder (ResNet50),
LinkNet has the highest accuracy and the second shortest running time.
The IOU and F1 score of LinkNet are 0.987 and 0.993, respectively.

Fig. 12 shows representative segmentation results from the different
decoders. Compared with the ground truth obtained from visual in-
spection, LinkNet provides reasonable segmentation results for different
types of concrete with different crack patterns. All the five models
showed good segmentation accuracy for the photo with a single wide
crack, but the models based on DeeplabV3+, PSPNet, UNet, and PAN
show errors for segmentation of complex crack patterns. For example,
the models based on DeeplabV3+, PSPNet, and PAN fail to segment
intersections of cracks at some spots. LinkNet is selected as the decoder
for crack segmentation.

Table 6 shows the running time, speed per image, and validation
accuracy of segmentation using different encoders. With a same decoder
structure (LinkNet), ResNet50 and Inception v4 have the highest seg-
mentation accuracy. MobileNet v2 model has the shortest time. The IOU
and F1 score of ResNet50 and Inception v4 are 0.987 and 0.993,
respectively.

Fig. 13 shows representative segmentation results from the different

Table 6

Comparison of performance for different encoders.
Decoder  Encoder Run time Speed (s/ 10U F1

O] image) (0.5) score
LinkNet ResNet18 1.80 0.030 0.979 0.990
LinkNet ResNet50 2.20 0.036 0.987 0.993
LinkNet ResNet152 3.04 0.051 0.985 0.992
LinkNet VGG19 4.16 0.069 0.985 0.993
LinkNet Inception v4 4.03 0.072 0.987 0.993
LinkNet MobileNet v2 1.74 0.029 0.974 0.989
LinkNet DenseNet161 4.44 0.074 0.985 0.993
LinkNet PAN Ground truth
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Fig. 12. Representative results of crack segmentation using the different decoder structures.
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Fig. 13. Representative results of crack segmentation using the different encoder structures.

Table 7
Results of camera calibration.

Left camera Right camera

Intrinsic I = =
parameter 703.97 0 647.29 705.74 0 706.02
0 703.16 339.35 0 704.64 343.83
( 0 0 1 > ( 0 0 1 )
Distortion Dy, = (0.060, 0.016, 0.002, Dg = (0.053, —0.097, —0.003,
vector —0.002, —1.017) 0.002, 0.095)
Rotation 0999 0.002 —0.008
matrix R= ( —0.002 1.000 0.004 )
0.009 —0.004 1.000
Translation T = (—60.895, 0.081, —1.423)

vector

encoders. Compared with the ground truth, ResNet50 and Inception v4
provided reasonable segmentation results, but Inception v4 had longer
running time. Therefore, ResNet50 was selected as the decoder for crack
segmentation in this research.

4.3. Distance measurement

4.3.1. Camera calibration for binocular camera

Camera calibration is performed to determine the intrinsic matrices,
external parameters (rotation matrix and translation vector), and
distortion coefficients of the binocular camara. The calibration results
are listed in Table 7.

The focal length and baseline used for calculation of distance are
703.97 (from I;) and 60.895 (from T), respectively. The distortion vector
consists of three radial distortion coefficients and two tangential
distortion coefficients. The rotation matrix represents the rotation of the
right camera relative to the left camera. Translation vector is the
translation relationship of the right camera relative to the left camera.

4.3.2. Distortion and stereo correction of binocular images

The images obtained from the left and the right cameras are shown in
Fig. 14(a) and 14(b), respectively. The rectified images for the left and
the right cameras are shown in Fig. 14(c) and (d), respectively. The
images after distortion and stereo correction are coplanar. The points of
the left and the right images are located on the same line, as shown in
Fig. 14(e).

4.3.3. Disparity map and denoising

Stereo matching and disparity calculation are performed and
generate a gray scale disparity map, as shown in Fig. 15(a). To identify
disparity, the gray scale image is converted into a RGB colored map, as
shown in Fig. 15(b). To note, the disparity calculation is more accurate
for objects near the center of an image. The mean filter is applied to
reduce the noise in the disparity map. After denoising, the voids of both
gray and colored images are reduced, as shown in Fig. 15(c) and (d).

4.3.4. Calculation of distance

Table 8 lists some representative results of distance measured using
the binocular stereo vision method in comparison with the distance
measured using a ruler and denoted as actual distance. The statistics of
all results show that the R? value is 0.99, the largest error is 1.1%, and
the total time is up to 0.24 s, indicating that the ranging method can
provide reasonable accuracy and desired efficiency.

4.4. Crack quantification

With the segmented images and distance, the cracks can be quanti-
fied. Fig. 16 shows a representative result of crack quantification. It can
be seen that the presented method can provide reasonable detection and
quantification of distributed cracks with a realistic crack pattern in civil
engineering structures. The cracks have varying orientation and width,
and one crack may have multiple branches along the crack. In the seg-
mentation image, 10 points at the detected cracks are arbitrarily
selected and used to evaluate the crack quantification accuracy. The
crack widths at the 10 points were also measured using the crack scope.

Table 9 compares the results of crack width measured from the
proposed method and crack scope. The largest absolute discrepancy is
generated at point 2, which is 365 pm and 9% of the measurement from
the crack scope. The second largest absolute discrepancy is generated at
point 3, which is 137 pm and 8% of the measurement from the crack
scope.

While the relatively large errors of the wide cracks are related to
many factors, a main cause is related to the complex crack pattern of
wide cracks in the crack depth direction, as illustrated in Fig. 17. When
the crack is vertical to the surface, the edges of the crack can be clearly
identified. However, when the crack is inclined, because the wide
opening width allows more light in the crack, some light can be reflected
by the material inside the crack, which makes it difficult to clearly
identify the edges of the crack. Such effect can be aggravated when the
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Fig. 14. Distortion and stereo correction: (a) original left image, (b) original right image, (c) rectified left image, (d) rectified right image, and (e) correlation of the

left and right images.

Fig. 15. Disparity maps from stereo matching and disparity calculation: (a) gray scale disparity map, (b) colored disparity map, (c) gray scale disparity map after
denoising, and (d) colored disparity map after denoising.

crack is near the edge of the image. Therefore, point 10 also have a quantification was completed within 0.4 s.
relatively high discrepancy for the crack width, and the relative error of
point 10 is the largest (10%). The statistics of more results show that the
R? value of the comparison of the crack width results is 0.98. It was
found that the execution of the crack quantification codes took about
0.32 s, and the whole process from photo acquisition to crack

4.5. Characterization of crack pattern

Based on the capabilities of crack detection and quantification, the
proposed approach was employed to characterize the crack patterns of

10
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Table 8

Result of distance measurement.
Range Actual distance Measured distance Error Error
(mm) (mm) (mm) (mm) (%)
0-200 - - - -
200-300 240 242.1 2.1 0.9
300-400 319 321.3 2.3 0.7
400-500 406 403.3 2.7 0.7
500-1000 980 973.1 6.9 0.7
1000-3000 2450 2422.6 27.4 1.1

SHCC specimens loaded under direct tension. The test setup is shown in
Fig. 18(a). A dog-bone specimen made of SHCC was loaded using a load
frame. The test was performed under displacement control with a con-
stant displacement rate at 0.05 mm/min. The applied load was
measured by a load cell embedded in the load frame, and the elongation
of the specimen was measured by an extensometer deployed over the
gauge length of the specimen designed in accordance with reference
[66]. Fig. 18(b) shows a set of test results of the stress-strain curves.
After the specimens were cracked, they carried higher tensile loads and
exhibited dense microcracks, as shown in Fig. 18(c). During the tests, it
was found that the crack patterns changed with the increase of the
elongation of the specimens. Three points denoted by A, B, and C are
used to represent three different damage levels. Point A represents
minor damage, which occurred shortly after the specimen was cracked;
point B represents moderate damage; point C represents severe damage;
and point D represents failure. At each level, the photo of a cracked
specimen can be processed by the proposed approach. The cracks are
visualized and quantified, as shown in Fig. 18(d). The colored legend
represents the crack width.

In Fig. 18(d), the width of the specimen is divided into 20 equal strips
by 19 lines in red color. Along each line, the crack number and crack
width are evaluated. Based on statistics of the results from the 19 lines,
the crack pattern of the specimen at the specific load level can be
characterized, as shown in Fig. 19(a). Each column represents the
average number of cracks with a specific range of crack widths. The
widths of most cracks are in the range of 61 pm-100 pm when the
specimen fails with localized cracks. Overall, the distribution of cracks
satisfies the normal distribution shown by the grey dash line. With the
same method, the crack pattern of a specimen can be characterized at an
arbitrary load level in real time. Fig. 19(b) illustrates the evolution of the
crack pattern. As the load level increased from point A to point B, the
crack number and crack width increased. As the load level increased
from point B to point C, the crack number increased while the crack
width was relatively sustained. As the load level increased from point C
to point D, the crack number slightly increased, and the crack width was
significantly increased. Characterization of crack patterns is relevant to
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the mechanical properties and the durability of SHCC which are closely
related to the crack number and width [67]. It is desired to have narrow
cracks because presence of microcracks do not highly compromises the
mechanical properties nor the durability when the crack width is lower
than 50 pm [66]. More images are shown in Appendix.

5. Conclusions and prospects

This research proposes an intelligent interpretation approach for
automatic assessment and characterization of unique crack patterns in
SHCC in real time. The proposed approach integrates stereo vision and
deep leaning for automatic detection, ranging, localization, quantifica-
tion, and visualization of cracks. The approach is implemented to
monitor and characterize the evolution of crack patterns for SHCC.
Based on the investigations, the following conclusions are drawn:

e The proposed approach provides detailed information about the
characteristics of unique cracks in SHCC throughout the loading
process. The detailed information includes crack number and crack
width that reflect the damage condition of the SHCC specimen,
despite the complex crack patterns different from conventional
concrete. The evolution of the crack patterns can be monitored to
assess the condition of SHCC. The total assessment time is less than
0.4 s per photo.

e The YOLOvV5 models show desired accuracy and efficiency in crack
detection. The mAP@0.5 score is 0.89 for YOLO5s, 0.91 YOLO5m,
0.91 for YOLOS5I, and 0.92 for YOLO5x. The time needed to detect
cracks in one image is 0.008 s for YOLO5s, 0.010 s for YOLO5m,
0.013 s for YOLOSI, and 0.016 s for YOLO5x. YOLOVS5 is promising
for real-time automatic crack detection. In the investigated encoders
and decoders, ResNet50 and LinkNet demonstrated the highest seg-
mentation accuracy and high efficiency. With combination of

Table 9
Results of crack width quantification.

Point  Proposed method Crack scope Discrepancy Error
(pm) (pm) (pm) (%)
1 936 970 —-34 —4%
2 4465 4100 365 9%
3 1513 1650 —137 —8%
4 490 520 -30 —6%
5 267 280 -13 —5%
6 444 410 34 8%
7 222 210 12 6%
8 271 250 21 8%
9 333 350 -17 —5%
10 913 830 83 10%
Unit: pm
0
k 100
\
l 200
\ 300
400
500
K‘\_ / 600
N\ 700
\
800
900
1000
‘K 2000
A, | 5000

Fig. 16. Visualization of distributed cracks detected and quantified using the presented method.
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Fig. 17. Effect of crack pattern in the depth direction on the accuracy of detection of cracks: (a) a vertical crack; and (b) an inclined crack.
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Fig. 18. Crack evaluation of SHCC specimens: (a) specimen and test setup (unit: mm), (b) stress-strain curves, (c) photos of a cracked specimen, and (d) crack
visualization and quantification.
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Fig. 19. Statistics of crack patterns of a SHCC specimen: (a) crack number versus crack width; and (b) evolution of the crack pattern in the loading process.

ResNet50 and LinkNet, the IOU and F1 score are 0.987 and 0.993, assessing cracks in other materials such as steel and masonry blocks
respectively, and the assessment time is 0.036 s per photo. with different textures and crack patterns. It is important to test the

e The binocular stereo vision approach provides high accuracy and proposed method in scenarios involving different brightness of
efficiency for ranging cracks. The proposed processes integrate the photos.
camera calibration, distortion and stereo correction, stereo matching
and disparity calculation, and distance calculation. Regarding the Author statement
ranging accuracy, the R? value is higher than 0.99, and relative error
is less than 0.9%. With segmented images and determined distance, Pengwei Guo: Investigation; data collection; methodology; soft-
the widths of cracks can be quantified according to the pixels of ware; coding; writing—
cracks. The assessment time is 0.32 s per photo. Original draft preparation.

Xiangjun Meng: Investigation; data collection; methodology;
Based on the established capabilities of crack assessment, there are coding.
opportunities to perform further research in the following aspects: Weina Meng: Conceptualization; supervision; resources; funding
acquisition; writing—review and editing.

e The proposed approach has been deployed on a land robotic car to Yi Bao: Conceptualization; supervision; visualization; funding
automatically perform condition assessment of structures such as acquisition; writing—review and editing; project administration.
bridge decks and girders. It is interesting to incorporate the approach All authors have read and agreed to the published version of the
into drones with stronger accessing capabilities. It is envisioned that manuscript.

utilization of the developed approach will help save cost and mini-
mize human intervention in crack assessment. Further efforts are

needed to evaluate the performance of the proposed method in Declaration of competing interest
different use cases.

e It is interesting to further improve the efficiency by reducing the total The authors declare that they have no known competing financial
running time from 0.4 s to millisecond level for real-time condition interests or personal relationships that could have appeared to influence
assessment of engineering structures. It is speculated that multi- the work reported in this paper.
threaded parallel and distributed computing will further reduce the
computation time. Acknowledgement

e This research shows that the proposed method provides desired
performance in assessing cracks in different types of concrete. It is This research was funded by National Science Foundation of the
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Appendix

Fig. A1 shows the change of cracks in a SHCC dog-bone specimen with the load time. These images were extracted from the different frames of a
video produced using the proposed approach. The change of cracks in the SHCC reflects the fracturing process, as elaborated in Section 4.5.
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Fig. A1. Monitoring of the change of cracks in a SHCC specimen under direct tension: (a) the tested specimen; (b) 1 min; (c) 2 min; (d) 3 min; (e) 4 min; (f) 5 min; (g)
6 min; and (h) 7 min.
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