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Abstract

We prove lower bounds on the complexity of finding ǫ-stationary points (points x

such that ‖∇ f (x)‖ ≤ ǫ) of smooth, high-dimensional, and potentially non-convex

functions f . We consider oracle-based complexity measures, where an algorithm is

given access to the value and all derivatives of f at a query point x . We show that for

any (potentially randomized) algorithm A, there exists a function f with Lipschitz pth

order derivatives such that A requires at least ǫ−(p+1)/p queries to find an ǫ-stationary

point. Our lower bounds are sharp to within constants, and they show that gradient

descent, cubic-regularized Newton’s method, and generalized pth order regularization

are worst-case optimal within their natural function classes.

Keywords Non-convex optimization · Information-based complexity ·
Dimension-free rates · Gradient descent · Cubic regularization of Newton’s method

Mathematics Subject Classification 90C06 · 90C26 · 90C30 · 90C60 · 68Q25

OH was supported by the PACCAR INC fellowship. YC and JCD were partially supported by the

SAIL-Toyota Center for AI Research, NSF-CAREER award 1553086, and a Sloan Foundation Fellowship

in Mathematics. YC was partially supported by the Stanford Graduate Fellowship and the Numerical

Technologies Fellowship.

B Yair Carmon

yairc@stanford.edu

John C. Duchi

jduchi@stanford.edu

Oliver Hinder

ohinder@stanford.edu

Aaron Sidford

sidford@stanford.edu

1 Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

2 Departments of Statistics and Electrical Engineering, Stanford University, Stanford, CA 94305,

USA

3 Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, USA

123



72 Y. Carmon et al.

1 Introduction

Consider the optimization problem

minimize
x∈Rd

f (x)

where f : R
d → R is smooth, but possibly non-convex. In general, it is intractable

to even approximately minimize such f [33,35], so—following an established line

of research—we consider the problem of finding an ǫ-stationary point of f , meaning

some x ∈ R
d such that

‖∇ f (x)‖ ≤ ǫ. (1)

We prove lower bounds on the number of function and derivative evaluations required

for algorithms to find a point x satisfying inequality (1). While for arbitrary smooth

f , a near-stationary point (1) is certainly insufficient for any type of optimality, there

are a number of reasons to study algorithms and complexity for finding stationary

points. In several statistical and engineering problems, including regression models

with non-convex penalties and objectives [30,31], phase retrieval [12,42], and non-

convex (low-rank) reformulations of semidefinite programs and matrix completion

[8,11,27], it is possible to show that all first- or second-order stationary points are

(near) global minima. The strong empirical success of local search strategies for such

problems, as well as for neural networks [28], motivates a growing body of work on

algorithms with strong complexity guarantees for finding stationary points [2,7,13,15,

40]. In contrast to this algorithmic progress, algorithm-independent lower bounds for

finding stationary points are largely unexplored.

Even for non-convex functions f , it is possible to find ǫ-stationary points for which

the number of function and derivative evaluations is polynomial in 1/ǫ and the dimen-

sion d of dom f . Of particular interest are methods for which the number of function

and derivative evaluations does not depend on d, but instead depends on measures

of f ’s regularity. The best-known method with such a dimension-free convergence

guarantee is classical gradient descent: for every (non-convex) function f with L1-

Lipschitz gradient satisfying f (x (0))− infx f (x) ≤ Δ at the initial point x (0), gradient

descent finds an ǫ-stationary point in at most 2L1Δǫ−2 iterations [37]. Under the

additional assumption that f has Lipschitz continuous Hessian, our work [15] and

Agarwal et al. [2] exhibit randomized first-order methods that find an ǫ-stationary

point in time scaling as ǫ−7/4 log d
ǫ

(igoring other problem-dependent constants). In

subsequent work [13], we show a different deterministic accelerated gradient method

that achieves dimension-free complexity ǫ−7/4 log 1
ǫ
, and if f additionally has Lips-

chitz third derivatives, then ǫ−5/3 log 1
ǫ

iterations suffice to find an ǫ-stationary point.

By evaluation of higher order derivatives, such as the Hessian, it is possible to

achieve better ǫ dependence. Nesterov and Polyak’s cubic regularization of Newton’s

method [16,40] guarantees ǫ-stationarity (1) in ǫ−3/2 iterations, but each iteration may

be expensive when the dimension d is large. More generally, pth-order regularization

methods iterate by sequentially minimizing models of f based on order p Taylor
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Lower bounds for finding stationary points I 73

approximations, and Birgin et al. [7] show that these methods converge in ǫ−(p+1)/p

iterations. Each iteration requires finding an approximate stationary point of a high-

dimensional, potentially non-convex, degree p+1 polynomial, which suggests that the

methods will be practically challenging for p > 2. The methods nonetheless provide

fundamental upper complexity bounds.

In this paper and its companion [14], we focus on the converse problem: providing

dimension-free complexity lower bounds for finding ǫ-stationary points. We show

fundamental limits on the best achievable ǫ dependence, as well as dependence on

other problem parameters. Together with known upper bounds, our results shed light

on the optimal rates of convergence for finding stationary points.

1.1 Related lower bounds

In the case of convex optimization, we have a deep understanding of the complexity

of finding ǫ-suboptimal points, that is, x satisfying f (x) ≤ f (x⋆)+ǫ for some ǫ > 0,

where x⋆ ∈ arg minx f (x). Here we review only the dimension-free optimal rates, as

those are most relevant for our results. Given a point x (0) satisfying‖x (0) − x⋆‖ ≤ D <

∞, if f is convex with L1-Lipschitz gradient, Nesterov’s accelerated gradient method

finds an ǫ-suboptimal point in
√

L1 Dǫ−1/2 gradient evaluations, which is optimal even

among randomized, higher-order algorithms [35–37,45].1 For non-smooth problems,

that is, when f is L0-Lipschitz, subgradient methods achieve the optimal rate of

L2
0 D2/ǫ2 subgradient evaluations (cf. [10,35,37]). In Part II of this paper [14], we

consider the impact of convexity on the difficulty of finding stationary points using

first-order methods.

Globally optimizing smooth non-convex functions is of course intractable:

Nemirovski and Yudin [35, §1.6] show that for functions f : R
d → R with Lip-

schitz 1st through pth derivatives, and algorithms receiving all derivatives of f at the

query point x , the worst case complexity of finding ǫ-suboptimal points scales at least

as (1/ǫ)d/p. This exponential scaling in d shows that dimension-free guarantees for

achieving near-optimality in smooth non-convex functions are impossible to obtain.

Less is known about lower bounds for finding stationary points for f : R
d → R.

Nesterov [39] proposes lower bounds for finding stationary points under a box

constraint, but his construction does not extend to the unconstrained case when

f (x (0)) − infx f (x) is bounded. Vavasis [44] considers the complexity of finding

ǫ-stationary points of functions with Lipschitz derivatives in a first-order (gradient

and function-value) oracle model. For such problems, he proves a lower bound of

ǫ−1/2 oracle queries that applies to any deterministic algorithm operating on certain

two-dimensional functions. This appears to be the first algorithm-independent lower

bound for approximating stationary points of non-convex functions, but it is unclear

if the bound is tight, even for functions on R
2.

A related line of work considers algorithm-dependent lower bounds, describing

functions that are challenging for common classes of algorithms, such as Newton’s

1 Higher order methods can yield improvements under additional smoothness: if in addition f has L2-

Lipschitz Hessian and ǫ ≤ L
7/3
1 L

−4/3
2 D2/3, an accelerated Newton method achieves the (optimal) rate

(L2 D3/ǫ)2/7 [4,32].
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74 Y. Carmon et al.

method and gradient descent. In this vein, Jarre [25] shows that the Chebyshev–

Rosenbrock function is difficult to optimize, and that any algorithm that employs line

search to determine the step size will require an exponential (in ǫ) number of iterations

to find an ǫ-suboptimal point, even though the Chebyshev–Rosenbrock function has

only a single stationary point. While this appears to contradict the polynomial com-

plexity guarantees mentioned above, Cartis et al. [19] explain this by showing that the

difficult Chebyshev–Rosenbrock instances have ǫ-stationary point with function value

that is ω(ǫ)-suboptimal. Cartis et al. also develop algorithm-specific lower bounds on

the iteration complexity of finding approximate stationary points. Their works [16,17]

show that the performance guarantees for gradient descent and cubic regularization

of Newton’s method are tight for two-dimensional functions they construct, and they

also extend these results to certain structured classes of methods [18,20].

1.2 The importance of high-dimensional constructions

To tightly characterize the algorithm- and dimension-independent complexity of find-

ing ǫ-stationary points, one must construct hard instances whose domain has dimension

that grows with 1/ǫ. The reason for this is simple: there exist algorithms with complex-

ity that trades dependence on dimension d in favor of better 1/ǫ dependence. Indeed,

Vavasis [44] gives a grid-search method that, for functions with Lipschitz gradient,

finds an ǫ-stationary point in max{2d , ǫ−2d/(d+2)} gradient and function evaluations.

Moreover, Hinder [24] exhibits a cutting-plane method that, for functions with Lips-

chitz first and third derivatives, finds an ǫ-stationary point in d · ǫ−4/3 log 1
ǫ

gradient

and function evaluations.

High-dimensional constructions are similarly unavoidable when developing lower

bounds in convex optimization. There, the center-of-gravity cutting plane method

(cf. [37]) finds an ǫ-suboptimal point in d log 1
ǫ

(sub)gradient evaluations, for any

continuous convex function with bounded distance to optimality. Consequently, proofs

of the dimension-free lower bound for convex optimization (as we cite in the previous

section) all rely on constructions whose dimensionality grows polynomially in 1/ǫ.

Our paper continues this well-established practice, and our lower bounds apply

in the following order of quantifiers: for all ǫ > 0, there exists a dimension d ∈ N

such that for any d ′ ≥ d and algorithm A, there is some f : R
d ′ → R such that A

requires at least T (ǫ) oracle queries to find an ǫ-stationary point of f . Our bounds on

deterministic algorithms require dimension d = 1 + 2T (ǫ), while our bounds on all

randomized algorithms require d = c·T (ǫ)2 log T (ǫ) for a numerical constant c < ∞.

In contrast, the results of Vavasis [44] and Cartis et al. [16–18,20] hold with d = 2

independent of ǫ. Inevitably, they do so at a cost; the lower bound [44] is loose, while

the lower bounds [16–18,20] apply only to certain algorithm classes (based on Taylor

models) that exclude the aforementioned grid-search and cutting-plane algorithms.

1.3 Our contributions

In this paper, we consider the class of all randomized algorithms that access the function

f through an information oracle that returns the function value, gradient, Hessian and
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all higher-order derivatives of f at a queried point x . Our main result (Theorem 2 in

Sect. 5) is as follows. Let p ∈ N and Δ, L p, and ǫ > 0. Then, for any randomized

algorithm A based on the oracle described above, there exists a function f that has

L p-Lipschitz pth derivative, satisfies f (x (0)) − f (x⋆) ≤ Δ, and is such that, with

high probability, A requires at least

cp · ΔL
1/p
p ǫ−(p+1)/p

oracle queries to find an ǫ-stationary point of f , where cp > 0 is a constant decreasing

at most polynomially in p. As explained in the previous section, the domain of the

constructed function f has dimension polynomial in 1/ǫ.

For every p, our lower bound matches (up to a constant) known upper bounds,

thereby characterizing the optimal complexity of finding stationary points. For p = 1,

our results imply that gradient descent [37,39] is optimal among all methods (even

randomized, high-order methods) operating on functions with Lipschitz continuous

gradient and bounded initial sub-optimality. Therefore, to strengthen the guarantees

of gradient descent one must introduce additional assumptions, such as convexity of

f or Lipschitz continuity of ∇2 f . Similarly, in the case p = 2 we establish that cubic

regularization of Newton’s method [16,40] achieves the optimal rate ǫ−3/2, and for

general p we show that pth order Taylor-approximation methods [7] are optimal.

These results say little about the potential of first-order methods on functions with

higher-order Lipschitz derivatives, where first-order methods attain rates better than

ǫ−2 [13]. In Part II of this series [14], we address this issue and show lower bounds for

deterministic algorithms using only first-order information. The lower bounds exhibit

a fundamental gap between first- and second-order methods, and nearly match the

known upper bounds [13].

1.4 Our approach and paper organization

In Sect. 2 we introduce the classes of functions and algorithms we consider as well

as our notion of complexity. Then, in Sect. 3, we present the generic technique we

use to prove lower bound for deterministic algorithms in both this paper and Part II

[14]. While essentially present in previous work, our technique abstracts away and

generalizes the central arguments in many lower bounds [4,34,35,45]. The technique

applies to higher-order methods and provides lower bounds for general optimization

goals, including finding stationary points (our main focus), approximate minimizers,

and second-order stationary points. It is also independent of whether the functions

under consideration are convex, applying to any function class with appropriate rota-

tional invariance [35]. The key building blocks of the technique are Nesterov’s notion

of a “chain-like” function [37], which is difficult for a certain subclass of algorithms,

and a “resisting oracle” [35,37] reduction that turns a lower bound for this subclass

into a lower bound for all deterministic algorithms.

In Sect. 4 we apply this generic method to produce lower bounds for deterministic

methods (Theorem 1). The deterministic results underpin our analysis for randomized

algorithms, which culminates in Theorem 2 in Sect. 5. Following Woodworth and
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Srebro [45], we consider random rotations of our deterministic construction, and show

that for any algorithm such a randomly rotated function is, with high probability,

difficult. For completeness, in Sect. 6 we provide lower bounds on finding stationary

points of functions where ‖x (0) − x⋆‖ is bounded, rather than the function value gap

f (x (0))− f (x⋆); these bounds have the same ǫ dependence as their bounded function

value counterparts.

Notation Before continuing, we provide the conventions we adopt throughout the

paper. For a sequence of vectors, subscripts denote coordinate index, while parenthe-

sized superscripts denote element index, e.g. x
(i)
j is the j th coordinate of the i th entry

in the sequence x (1), x (2), . . .. For any p ≥ 1 and p times continuously differentiable

f : R
d → R, we let ∇ p f (x) denote the tensor of pth order partial derivatives of f at

point x , so ∇ p f (x) is an order p symmetric tensor with entries

[
∇ p f (x)

]
i1,...,i p

= ∇ p
i1,...,i p

f (x) = ∂ p f

∂xi1 · · · ∂xi p

(x) for i j ∈ {1, . . . , d}.

Equivalently, we may write ∇ p f (x) as a multilinear operator ∇ p f (x) : (Rd)p → R,

∇ p f (x)
[
v(1), . . . , v(p)

]

=
d∑

i1=1

· · ·
d∑

i p=1

v
(1)
i1

· · · v(p)

i p

∂ p f

∂xi1 · · · ∂xi p

(x) =
〈
∇ p f (x), v(1) ⊗ · · · ⊗ v(p)

〉
,

where 〈·, ·〉 is the Euclidean inner product on tensors, defined for order k tensors T

and M by 〈T , M〉 =
∑

i1,...,ik
Ti1,...,ik

Mi1,...,ik
, and ⊗ denotes the Kronecker product.

We let ⊗kd denote d × · · · × d, k times, so that T ∈ R
⊗k d denotes an order k tensor.

For a vector v ∈ R
d we let ‖v‖ :=

√
〈v, v〉 denote the Euclidean norm of v. For a

tensor T ∈ R
⊗k d , the Euclidean operator norm of T is

‖T ‖op := sup
v(1),...,v(k)

{
〈T , v(1) ⊗ · · · ⊗ v(k)〉

=
∑

i1,...,ik

Ti1,...,ik
v

(1)
i1

· · · v(k)
ik

| ‖v(i)‖ ≤ 1, i = 1, . . . , k
}
.

If T is a symmetric order k tensor, meaning that Ti1,...,ik
is invariant to permutations

of the indices (for example, ∇k f (x) is always symmetric), then Zhang et al. [47,

Thm. 2.1] show that

‖T ‖op = sup
‖v‖=1

∣∣〈T , v⊗k〉
∣∣, where v⊗k = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸

k times

. (2)

For vectors, the Euclidean and operator norms are identical.

For any n ∈ N, we let [n] := {1, . . . , n} denote the set of positive integers less

than or equal to n. We let C∞ denote the set of infinitely differentiable functions.
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We denote the i th standard basis vector by e(i), and let Id ∈ R
d×d denote the d × d

identity matrix; we drop the subscript d when it is clear from context. For any set S

and functions g, h : S → [0,∞) we write g � h or g = O(h) if there exists c > 0

such that g(s) ≤ c · h(s) for every s ∈ S. We write g = Õ (h) if g � h log(h + 2).

2 Preliminaries

We begin our development with definitions of the classes of functions (Sect. 2.1),

classes of algorithms (Sect. 2.2), and notions of complexity (Sect. 2.3) that we study.

2.1 Function classes

Measures of function regularity are crucial for the design and analysis of optimization

algorithms [9,35,37]. We focus on two types of regularity conditions: Lipschitzian

properties of derivatives and bounds on function value.

We first list a few equivalent definitions of Lipschitz continuity. A function

f : R
d → R has L p-Lipschitz pth order derivatives if it is p times continuously

differentiable, and for every x ∈ R
d and direction v ∈ R

d , ‖v‖ ≤ 1, the directional

projection fx,v(t) := f (x + t · v) of f , defined for t ∈ R, satisfies

∣∣∣ f
(p)
x,v (t) − f

(p)
x,v (t ′)

∣∣∣ ≤ L p

∣∣t − t ′
∣∣

for all t, t ′ ∈ R, where f
(p)
x,v (·) is the pth derivative of t �→ fx,v(t). If f is p +1 times

continuously differentiable, this is equivalent to requiring

∣∣∣ f
(p+1)
x,v (0)

∣∣∣ ≤ L p or

∥∥∥∇ p+1 f (x)

∥∥∥
op

≤ L p

for all x, v ∈ R
d , ‖v‖ ≤ 1. We occasionally refer to a function with Lipschitz pth

order derivatives as pth order smooth.

Complexity guarantees for finding stationary points of non-convex functions f

typically depend on the function value bound f (x (0)) − infx f (x), where x (0) is a

pre-specified point. Without loss of generality, we take the pre-specified point to be 0

for the remainder of the paper. With that in mind, we define the following classes of

functions.

Definition 1 Let p ≥ 1, Δ > 0 and L p > 0. Then the set

Fp(Δ, L p)

denotes the union, over d ∈ N, of the collection of C∞ functions f : R
d → R with

L p-Lipschitz pth derivative and f (0) − infx f (x) ≤ Δ.

The function classes Fp(Δ, L p) include functions on R
d for all d ∈ N, follow-

ing the established study of “dimension free” convergence guarantees [35,37]. As
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explained in Sect. 1.2, we construct explicit functions f : R
d → R that are difficult

to optimize, where the dimension d is finite, but our choice of d grows inversely in

the desired accuracy of the solution.

For our results, we also require the following important invariance notion, proposed

(in the context of optimization) by Nemirovski and Yudin [35, Ch. 7.2].

Definition 2 [Orthogonal invariance] A class of functions F is orthogonally invariant

if for every f ∈ F , f : R
d → R, and every matrix U ∈ R

d ′×d such that U⊤U = Id ,

the function fU : R
d ′ → R defined by fU (x) = f (U⊤x) belongs to F .

Every function class we consider is orthogonally invariant, as f (0) − infx f (x) =
fU (0) − inf x fU (x) and fU has the same Lipschitz constants to all orders as f , as

their collections of associated directional projections are identical.

2.2 Algorithm classes

We also require careful definition of the classes of optimization algorithms we consider.

For any dimension d ∈ N, an algorithm A (also referred to as method) maps functions

f : R
d → R to a sequence of iterates in R

d ; that is, A is defined separately for every

finite d. We let

A[ f ] = {x (t)}∞t=1

denote the sequence x (t) ∈ R
d of iterates that A generates when operating on f .

To model the computational cost of an algorithm, we adopt the information-based

complexity framework, which Nemirovski and Yudin [35] develop (see also [1,10,43]),

and view every every iterate x (t) as a query to an information oracle. Typically, one

places restrictions on the information the oracle returns (e.g. only the function value and

gradient at the query point) and makes certain assumptions on how the algorithm uses

this information (e.g. deterministically). Our approach is syntactically different but

semantically identical: we build the oracle restriction, along with any other assumption,

directly into the structure of the algorithm. To formalize this, we define

∇(0,...,p) f (x) := { f (x),∇ f (x),∇2 f (x), . . . ,∇ p f (x)}

as shorthand for the response of a pth order oracle to a query at point x . When p = ∞
this corresponds to an oracle that reveals all derivatives at x . Our algorithm classes

follow.

Deterministic algorithms For any p ≥ 0, a pth-order deterministic algorithm A

operating on f : R
d → R is one producing iterates of the form

x (i) = A
(i)
(
∇(0,...,p) f (x (1)), . . . ,∇(0,...,p) f (x (i−1))

)
for i ∈ N,

whereA(i) is a measurable mapping to R
d (the dependence on dimension d is implicit).

We denote the class of pth-order deterministic algorithms by A
(p)

det
and let Adet :=

A
(∞)

det
denote the class of all deterministic algorithms based on derivative information.
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As a concrete example, for any p ≥ 1 and L > 0 consider the algorithm REGp,L ∈
A

(p)

det
that produces iterates by minimizing the sum of a pth order Taylor expansion

and an order p + 1 proximal term:

x (k+1) := arg min
x

{
f (x (k)) +

p∑

q=1

〈∇q f (x (k)), x⊗q〉 + L

(p + 1)! ‖x − x (k)‖p+1

}
.

(3)

For p = 1, REGp,L is gradient descent with step-size 1/L , for p = 2 it is cubic-

regularized Newton’s method [40], and for general p it is a simplified form of the

scheme that Birgin et al. [7] propose.

Randomized algorithms (and function-informed processes) A pth-order randomized

algorithm A is a distribution on pth-order deterministic algorithms. We can write

any such algorithm as a deterministic algorithm given access to a random uniform

variable on [0, 1] (i.e. infinitely many random bits). Thus the algorithm operates on f

by drawing ξ ∼ Uni[0, 1] (independently of f ), then producing iterates of the form

x (i) = A
(i)
(
ξ,∇(0,...,p) f (x (1)), . . . ,∇(0,...,p) f (x (i−1))

)
for i ∈ N, (4)

where A(i) are measurable mappings into R
d . In this case, A[ f ] is a random sequence,

and we call a random process {x (t)}t∈N informed by f if it has the same law as A[ f ] for

some randomized algorithm A. We let A
(p)

rand
denote the class of pth-order randomized

algorithms and Arand := A
(∞)

rand
denote the class of randomized algorithms that use

derivative-based information.

Zero-respecting sequences and algorithms While deterministic and randomized algo-

rithms are the natural collections for which we prove lower bounds, it is useful to define

an additional structurally restricted class. This class forms the backbone of our lower

bound strategy (Sect. 3), as it is both ‘small’ enough to uniformly underperform on

a single function, and ‘large’ enough to imply lower bounds on the natural algorithm

classes.

For v ∈ R
d we let supp {v} := {i ∈ [d] | vi �= 0} denote the support (non-zero

indices) of v. We extend this to tensors as follows. Let T ∈ R
⊗k d be an order k

tensor, and for i ∈ {1, . . . , d} let Ti ∈ R
⊗k−1d be the order (k − 1) tensor defined by

[Ti ] j1,..., jk−1
= Ti, j1,..., jk−1

. With this notation, we define

supp {T } := {i ∈ {1, . . . , d} | Ti �= 0}.

Then for p ∈ N and any f : R
d → R, we say that the sequence x (1), x (2), . . . is pth

order zero-respecting with respect to f if

supp
{

x (t)
}
⊆

⋃

q∈[p]

⋃

s<t

supp
{
∇q f (x (s))

}
for each t ∈ N. (5)
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The definition (5) says that x
(t)
i = 0 if all partial derivatives involving the i th coordinate

of f (up to the pth order) are zero. For p = 1, this definition is equivalent to the

requirement that for every t and j ∈ [d], if ∇ j f (x (s)) = 0 for s < t , then x
(t)
j = 0.

The requirement (5) implies that x (1) = 0.

An algorithm A ∈ Arand is pth order zero-respecting if for any f : R
d → R,

the (potentially random) iterate sequence A[ f ] is pth order zero respecting w.r.t.

f . Informally, an algorithm is zero-respecting if it never explores coordinates which

appear not to affect the function. When initialized at the origin, most common first- and

second-order optimization methods are zero-respecting, including gradient descent

(with and without Nesterov acceleration), conjugate gradient [23], BFGS and L-BFGS

[29,41],2 Newton’s method (with and without cubic regularization [40]) and trust-

region methods [22]. We denote the class of pth order zero-respecting algorithms by

A
(p)
zr , and let Azr := A

(∞)
zr .

In the literature on lower bounds for first-order convex optimization, it is common to

assume that methods only query points in the span of the gradients they observe [3,37].

Our notion of zero-respecting algorithms generalizes this assumption to higher-order

methods, but even first-order zero-respecting algorithms are slightly more general. For

example, coordinate descent methods [38] are zero-respecting, but they generally do

not remain in the span of the gradients.

2.3 Complexity measures

With the definitions of function and algorithm class in hand, we turn to formalizing

our notion of complexity: what is the best performance an algorithm in class A can

achieve for all functions in class F? As we consider finding stationary points of f ,

the natural performance measure is the number of iterations (oracle queries) required

to find a point x such that ‖∇ f (x)‖ ≤ ǫ. Thus for a deterministic sequence {x (t)}t∈N

we define

Tǫ

(
{x (t)}t∈N, f

)
:= inf

{
t ∈ N |

∥∥∇ f (x (t))
∥∥ ≤ ǫ

}
,

and refer to it as the complexity of {x (t)}t∈N on f . As we consider randomized algo-

rithms as well, for a random process {x (t)}t∈N with probability distribution P , meaning

for a set A ⊂ (Rd)N the probability that {x (t)}t∈N ∈ A is P(A), we define

Tǫ

(
P, f

)
:= inf

{
t ∈ N | P

(∥∥∇ f (x (s))
∥∥ > ǫ for all s ≤ t

)
≤ 1

2

}
. (6)

The complexity Tǫ

(
P, f

)
is also the median of the random variable Tǫ

(
{x (t)}t∈N, f

)

for {x (t)}t∈N ∼ P . By Markov’s inequality, definition (6) provides a lower bound on

expectation-based alternatives, as

2 If the initial Hessian approximation is a diagonal matrix, as is typical.
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inf
{

t ∈ N | EP

[
‖∇ f (x (t))‖

]
≤ ǫ

}
≥ T2ǫ

(
P, f

)
and EP

[
Tǫ

(
{x (t)}t∈N, f

)]

≥ 1

2
Tǫ

(
P, f

)
.

(Here EP denotes expectation taken according to the distribution P .)

To measure the performance of algorithm A on function f , we evaluate the iterates

it produces from f , and with mild abuse of notation, we define

Tǫ

(
A, f

)
:= Tǫ

(
A[ f ], f

)

as the complexity of A on f . With this setup, we define the complexity of algorithm

class A on function class F as

Tǫ

(
A,F

)
:= inf

A∈A
sup
f ∈F

Tǫ

(
A, f

)
. (7)

Many algorithms guarantee “dimension independent” convergence [37] and thus

provide upper bounds for the quantity (7). A careful tracing of constants in the analysis

of Birgin et al. [7] implies that the generalized regularization scheme REGp,L defined

by the recursion (3) guarantees

Tǫ

(
A

(p)

det
∩ A

(p)
zr ,Fp(Δ, L p)

)
≤ sup

f ∈Fp(Δ,L p)

Tǫ

(
REGp,L p , f

)
�ΔL

1/p
p ǫ−(1+p)/p (8)

for all p ∈ N. In this paper we prove these rates are sharp to within (p-dependent)

constant factors.

While definition (7) is our primary notion of complexity, our proofs provide bounds

on smaller quantities than (7) that also carry meaning. For zero-respecting algorithms,

we exhibit a single function f and bound infA∈Azr
Tǫ

(
A, f

)
from below, in effect

interchanging the inf and sup in (7). This implies that all zero-respecting algorithms

share a common vulnerability. For randomized algorithms, we exhibit a distribution

P supported on functions of a fixed dimension d, and we lower bound the average

infA∈Arand

∫
Tǫ

(
A, f

)
d P( f ), bounding the distributional complexity [10,35], which is

never greater than worst-case complexity (and is equal for randomized and determinis-

tic algorithms). Even randomized algorithms share a common vulnerability: functions

drawn from P .

3 Anatomy of a lower bound

In this section we present a generic approach to proving lower bounds for optimization

algorithms. The basic techniques we use are well-known and applied extensively in

the literature on lower bounds for convex optimization [4,35,37,45]. However, here we

generalize and abstract away these techniques, showing how they apply to high-order

methods, non-convex functions, and various optimization goals (e.g. ǫ-stationarity,

ǫ-optimality).
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3.1 Zero-chains

Nesterov [37, Chapter 2.1.2] proves lower bounds for smooth convex optimization

problems using the “chain-like” quadratic function

f (x) := 1

2
(x1 − 1)2 + 1

2

d−1∑

i=1

(xi − xi+1)
2, (9)

which he calls the “worst function in the world.” The important property of f is that

for every i ∈ [d], ∇i f (x) = 0 whenever xi−1 = xi = xi+1 = 0 (with x0 := 1 and

xd+1 := 0). Thus, if we “know” only the first t − 1 coordinates of f , i.e. are able to

query only vectors x such xt = xt+1 = · · · = xd = 0, then any x we query satisfies

∇s f (x) = 0 for s > t ; we only “discover” a single new coordinate t . We generalize

this chain structure to higher-order derivatives as follows.

Definition 3 For p ∈ N, a function f : R
d → R is a pth-order zero-chain if for every

x ∈ R
d ,

supp {x} ⊆ {1, . . . , i − 1} implies
⋃

q∈[p]
supp

{
∇q f (x)

}
⊆ {1, . . . , i}.

We say f is a zero-chain if it is a pth-order zero-chain for every p ∈ N.

In our terminology, Nesterov’s function (9) is a first-order zero-chain but not a

second-order zero-chain, as supp
{
∇2 f (0)

}
= [d]. Informally, at a point for which

xi−1 = xi = · · · = xd = 0, a zero-chain appears constant in xi , xi+1, . . . , xd .

Zero-chains structurally limit the rate with which zero-respecting algorithms acquire

information from derivatives. We formalize this in the following observation, whose

proof is a straightforward induction; see Table 1 for an illustration.

Observation 1 Let f : R
d → R be a pth order zero-chain and let x (1) = 0, x (2), . . .

be a pth order zero-respecting sequence with respect to f . Then x
(t)
j = 0 for j ≥ t

and all t ≤ d.

Proof We show by induction on k that supp
{

x (t)
}
⊆ [t − 1] for every t ≤ k; the case

k = d is the required result. The case k = 1 holds since x (1) = 0. If the hypothesis

holds for some k < d then by Definition 3 we have ∪q∈[p]supp
{
∇q f (x (t))

}
⊆

{1, . . . , t} for every t ≤ k. Therefore, by the zero-respecting property (5), we

have supp
{

x (k+1)
}

⊆ ∪q∈[p] ∪t<k+1 supp
{
∇q f (x (t))

}
⊆ [k], completing the

induction. ⊓⊔

3.2 A lower bound strategy

The preceding discussion shows that zero-respecting algorithms take many iterations

to “discover” all the coordinates of a zero-chain. In the following observation, we

formalize how finding a suitable zero-chain provides a lower bound on the performance

of zero-respecting algorithms.
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Table 1 Illustration of Observation 1: a zero-respecting algorithm operating on a zero-chain

Iteration Information Coordinate

j = 1

2 3 4 · · · d − 1 d

t = 0 x(0) 0 0 0 0 · · · 0 0

∇ f (x(0)) ∗ 0 0 0 · · · 0 0

t = 1 x(1) ∗ 0 0 0 · · · 0 0

∇ f (x(1)) ∗ ∗ 0 0 · · · 0 0

t = 2 x(2) ∗ ∗ 0 0 · · · 0 0

∇ f (x(2)) ∗ ∗ ∗ 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

t = d − 1 x(d−1) ∗ ∗ ∗ ∗ · · · ∗ 0

∇ f (x(d−1)) ∗ ∗ ∗ ∗ · · · ∗ ∗

We indicate the nonzero entries of the iterates and the gradients by ∗

Observation 2 Consider ǫ > 0, a function class F , and p, T ∈ N. If f : R
T → R

satisfies

i. f is a pth-order zero-chain,

ii. f belongs to the function class, i.e. f ∈ F , and

iii. ‖∇ f (x)‖ > ǫ for every x such that xT = 0;3

then Tǫ

(
A

(p)
zr ,F

)
≥ Tǫ

(
A

(p)
zr , { f }

)
> T .

Proof For A ∈ A
(p)
zr and {x (t)}t∈N = A[ f ] we have by Observation 1 that x

(t)
T = 0

for all t ≤ T and the large gradient property (iii) then implies
∥∥∇ f (x (t))

∥∥ > ǫ for all

t ≤ T . Therefore Tǫ

(
A, f

)
> T , and since this holds for any A ∈ A

(p)
zr we have

Tǫ

(
A

(p)
zr ,F

)
= inf

A∈A
(p)
zr

sup
f̃ ∈F

Tǫ

(
A, f̃

)
≥ sup

f̃ ∈F

inf
A∈A

(p)
zr

Tǫ

(
A, f̃

)
≥ inf

A∈A
(p)
zr

Tǫ

(
A, f

)
> T .

⊓⊔

If f is a zero-chain, then so is the function x �→ μ f (x/σ) for any multiplier μ and

scale parameter σ . This is useful for our development, as we construct zero-chains

{gT }T∈N such that ‖∇gT (x)‖ > c for every x with xT = 0 and some constant c > 0.

By setting f (x) = μgT (x/σ), then choosing T , μ, and σ to satisfy conditions (ii)

and (iii), we obtain a lower bound. As our choice of T is also the final lower bound,

it must grow to infinity as ǫ tends to zero. Thus, the hard functions we construct are

fundamentally high-dimensional, making this strategy suitable only for dimension-

free lower bounds.

3 We can readily adapt this property for lower bounds on other termination criteria, e.g. require f (x) −
inf y f (y) > ǫ for every x such that xT = 0.
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3.3 From deterministic to zero-respecting algorithms

Zero-chains allow us to generate strong lower bounds for zero-respecting algorithms.

The following reduction shows that these lower bounds are valid for deterministic

algorithms as well.

Proposition 1 Let p ∈ N ∪ {∞}, F be an orthogonally invariant function class and

ǫ > 0. Then

Tǫ

(
A

(p)

det
,F
)
≥ Tǫ

(
A

(p)
zr ,F

)
.

We also give a variant of Proposition 1 that is tailored to lower bounds constructed

by means of Observation 2 and allows explicit accounting of dimensionality.

Proposition 2 Let p ∈ N∪{∞}, F be an orthogonally invariant function class, f ∈ F

with domain of dimension d, and ǫ > 0. If Tǫ

(
A

(p)
zr , { f }

)
≥ T , then

Tǫ

(
A

(p)

det
,F
)
≥ Tǫ

(
A

(p)

det
, { fU | U ∈ O(d + T , d)}

)
≥ T ,

where fU := f (U⊤z) and O(d + T , d) is the set of (d + T )× d orthogonal matrices,

so that { fU | U ∈ O(d + T , d)} contains only function with domain of dimension

d + T .

The proofs of Propositions 1 and 2 , given in Appendix A, build on the classical

notion of a resisting oracle [35,37], which we briefly sketch here. Let A ∈ Adet, and

let f ∈ F , f : R
d → R. We adversarially select an orthogonal matrix U ∈ R

d ′×d

(for some finite d ′ > d) such that on the function fU := f (U⊤z) ∈ F the algorithm

A behaves as if it was a zero-respecting algorithm. In particular, U is sequentially

constructed such that for the function fU (z) the sequence U⊤
A[ fU ] ⊂ R

d is zero-

respecting with respect to f . Thus, there exists an algorithm ZA ∈ Adet ∩ Azr such

that ZA[ f ] = U⊤
A[ fU ], implying Tǫ

(
A, fU

)
= Tǫ

(
ZA, f

)
. Therefore,

inf
A∈Adet

sup
f ∈F

Tǫ

(
A, f

)
= inf

A∈Adet

sup
f ∈F ,U

Tǫ

(
A, fU

)

= inf
A∈Adet

sup
f ∈F

Tǫ

(
ZA, f

)
≥ inf

A∈Azr

sup
f ∈F

Tǫ

(
A, f

)
,

giving Propositions 1 and 2 follows similarly, and for it we may take d ′ = d + T .

The adversarial rotation argument that yields Propositions 1 and 2 is more or less

apparent in the proofs of previous lower bounds in convex optimization [4,35,45] for

deterministic algorithms. We believe it is instructive to separate the proof of lower

bounds on Tǫ

(
Azr,F

)
and the reduction from Adet to Azr, as the latter holds in great

generality. Indeed, Propositions 1 and 2 hold for any complexity measure Tǫ

(
·, ·
)

that

satisfies

1. Orthogonal invariance: for every f : R
d → R, every U ∈ R

d ′×d such that

U⊤U = Id and every sequence {z(t)}t∈N ⊂ R
d ′

, we have

Tǫ

(
{z(t)}t∈N, f (U⊤·)

)
= Tǫ

(
{U⊤z(t)}t∈N, f

)
.
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2. “Stopping time” invariance: for any T0 ∈ N, if Tǫ

(
{x (t)}t∈N, f

)
≤ T0 then

Tǫ

(
{x (t)}t∈N, f

)
= Tǫ

(
{x̂ (t)}t∈N, f

)
for any sequence {x̂ (t)}t∈N such that x̂ (t) =

x (t) for t ≤ T0.

These properties hold for the typical performance measures used in optimization.

Examples include time to ǫ-optimality, in which case Tǫ

(
{x (t)}t∈N, f

)
= inf{t ∈

N | f (x (t)) − infx f (x) ≤ ǫ}, and the second-order stationarity desired in many

non-convex optimization problems [15,26,40], where for ǫ1, ǫ2 > 0 we define

Tǫ

(
{x (t)}t∈N, f

)
= inf{t ∈ N | ‖∇ f (x (t))‖ ≤ ǫ1 and ∇2 f (x (t)) � −ǫ2 I }.

3.4 Randomized algorithms

Propositions 1 and 2 do not apply to randomized algorithms, as they require the

adversary (maximizing choice of f ) to simulate the action of A on f . To handle

randomized algorithms, we strengthen the notion of a zero-chain as follows.

Definition 4 A function f : R
d → R is a robust zero-chain if for every x ∈ R

d ,

|x j | < 1/2, ∀ j ≥ i implies f (y)

= f (y1, . . . , yi , 0, . . . , 0) for all y in a neighborhood of x .

A robust zero-chain is also an “ordinary” zero-chain. In Sect. 5 we replace the

adversarial rotation U of Sect. 3.3 with an orthogonal matrix drawn uniformly at

random, and consider the random function fU (x) = f (U⊤x), where f is a robust

zero-chain. We adapt a lemma by Woodworth and Srebro [45], and use it to show that

for every A ∈ Arand, A[ fU ] satisfies an approximate form of Observation 1 (w.h.p.)

whenever the iterates A[ fU ] have bounded norm. With further modification of fU

to handle unbounded iterates, our zero-chain strategy yields a strong distributional

complexity lower bound on Arand.

4 Lower bounds for zero-respecting and deterministic algorithms

For our first main results, we provide lower bounds on the complexity of all deter-

ministic algorithms for finding stationary points of smooth, potentially non-convex

functions. By Observation 2 and Proposition 1, to prove a lower bound on determinis-

tic algorithms it is sufficient to construct a function that is difficult for zero-respecting

algorithms. For fixed T > 0 , we define the (unscaled) hard instance f̄T : R
d → R

as

f̄T (x) = −Ψ (1) Φ (x1) +
T∑

i=2

[
Ψ (−xi−1)Φ (−xi ) − Ψ (xi−1) Φ (xi )

]
, (10)
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Fig. 1 Hard instance for full derivative information. Left: the functions Ψ and Φ (top) and their derivatives

(bottom). Right: Surface and contour plot of a two-dimensional cross-section of the hard instance f̄T

where the component functions are

Ψ (x) :=
{

0 x ≤ 1/2

exp
(

1 − 1

(2x−1)2

)
x > 1/2

and Φ(x) =
√

e

∫ x

−∞
e−

1
2 t2

dt .

Our construction, illustrated in Fig. 1, has two key properties. First is that f is a

zero-chain (Observation 3 in the sequel). Second, as we show in Lemma 2, ‖∇ f̄T (x)‖
is large unless |xi | ≥ 1 for every i ∈ [T ]. These properties make it hard for any zero-

respecting method to find a stationary point of scaled versions of f̄T , and coupled with

Proposition 1, this gives a lower bound for deterministic algorithms.

4.1 Properties of the hard instance

Before turning to the main theorem of this section, we catalogue the important prop-

erties of the functions Ψ , Φ and f̄T .

Lemma 1 The functions Ψ and Φ satisfy the following.

i. For all x ≤ 1
2

and all k ∈ N, Ψ (k)(x) = 0.

ii. For all x ≥ 1 and |y| < 1, Ψ (x)Φ ′(y) > 1.

iii. Both Ψ and Φ are infinitely differentiable, and for all k ∈ N we have

sup
x

|Ψ (k)(x)| ≤ exp

(
5k

2
log(4k)

)
and sup

x
|Φ(k)(x)| ≤ exp

(
3k

2
log

3k

2

)
.

iv. The functions and derivatives Ψ , Ψ ′, Φ and Φ ′ are non-negative and bounded,

with

0 ≤ Ψ < e, 0 ≤ Ψ ′ ≤
√

54/e, 0 < Φ <
√

2πe, and 0 < Φ ′ ≤
√

e.

We prove Lemma 1 in Appendix B.1. The remainder our development relies on Ψ

and Φ only through Lemma 1. Therefore, the precise choice of Ψ , Φ is not particularly
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special; any two functions with properties similar to Lemma 1 will yield similar lower

bounds.

The key consequence of Lemma 1.i is that the function f is a robust zero-chain

(see Definition 4) and consequently also a zero-chain (Definition 3):

Observation 3 For any j > 1, if |x j−1|, |x j | < 1/2 then f̄T (y) = f̄T (y1, . . . , y j−1, 0,

y j+1, . . . , yT ) for all y in a neighborhood of x.

Applying Observation 3 for j = i +1, . . . , T gives that f̄T is a robust zero-chain by

Definition 4. Taking derivatives of f̄T (x1, . . . , xi , 0, . . . , 0) with respect to x j , j > i ,

shows that f̄T is also a zero-chain by Definition 3. Thus, Observation 1 shows that

any zero-respecting algorithm operating on f̄T requires T +1 iterations to find a point

where xT �= 0.

Next, we establish the “large gradient property” that ∇ f̄T (x) must be large if any

coordinate of x is near zero.

Lemma 2 If |xi | < 1 for any i ≤ T , then there exists j ≤ i such that |x j | < 1 and

∥∥∇ f̄T (x)
∥∥ ≥

∣∣∣∣
∂

∂x j

f̄T (x)

∣∣∣∣ > 1.

Proof We take j ≤ i to be the smallest j for which |x j | < 1, so that |x j−1| ≥ 1

(where we use the shorthand x0 ≡ 1). Therefore, we have

∂ f̄T

∂x j

(x)

= −Ψ
(
−x j−1

)
Φ ′ (−x j

)
− Ψ

(
x j−1

)
Φ ′ (x j

)
− Ψ ′ (−x j

)
Φ
(
−x j+1

)

− Ψ ′ (x j

)
Φ
(
x j+1

)

(i)
≤ −Ψ

(
−x j−1

)
Φ ′ (−x j

)
− Ψ

(
x j−1

)
Φ ′ (x j

)

(i i)= −Ψ (|x j−1|)Φ ′ (x j sign(x j−1)
) (i i i)

< −1.

In the chain of inequalities, inequality (i) follows because Ψ ′(x)Φ(y) ≥ 0 for every

x, y; inequality (i i) follows because Ψ (x) = 0 for x ≤ 1/2, while equality (i i i)

follows from Lemma 1.ii and the pairing of |x j | < 1 and |x j−1| ≥ 1. ⊓⊔

Finally, we verify that f̄T meets the smoothness and boundedness requirements of

the function classes we consider.

Lemma 3 The function f̄T satisfies the following.

i. We have f̄T (0) − infx f̄T (x) ≤ 12T .

ii. For all x ∈ R
d ,
∥∥∇ f̄T (x)

∥∥ ≤ 23
√

T .

iii. For every p ≥ 1, the p-th order derivatives of f̄T are ℓp-Lipschitz continuous,

where ℓp ≤ exp( 5
2

p log p + cp) for a numerical constant c < ∞.
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The proof of Lemma 3 is technical, so we defer it to Appendix B.2. In the lemma,

Properties i and iii allow us to guarantee that appropriately scaled versions of f̄T are

in Fp(Δ, L p). Property is ii is necessary for analysis of the randomized construction

in Sect. 5.

4.2 Lower bounds for zero-respecting and deterministic algorithms

We can now state and prove a lower bound for finding stationary points of pth order

smooth functions using full derivative information and zero-respecting algorithms (the

class Azr). Proposition 1 transforms this bound into one on all deterministic algorithms

(the class Adet).

Theorem 1 There exist numerical constants 0 < c0, c1 < ∞ such that the following

lower bound holds. Let p ≥ 1, p ∈ N, and let Δ, L p, and ǫ be positive. Then

Tǫ

(
Adet,Fp(Δ, L p)

)
≥ Tǫ

(
Azr,Fp(Δ, L p)

)
≥ c0Δ

(
L p

ℓp

)1/p

ǫ
− 1+p

p

where ℓp ≤ e
5
2 p log p+c1 p. The lower bound holds even if we restrict Fp(Δ, L p) to

functions whose domain has dimension 1 + 2c0Δ(L p/ℓp)
1/pǫ

− 1+p
p .

Before we prove the theorem, a few remarks are in order. First, our lower bound

matches the upper bound (8) that pth-order regularization schemes achieve [7], up

to a constant depending polynomially on p. Thus, although our lower bound applies

to algorithms given access to ∇q f (x) for all q ∈ N, only the first p derivatives are

necessary to achieve minimax optimal scaling in Δ, L p, and ǫ.

Second, inspection of the proof shows that we actually bound smaller quanti-

ties than the complexity defined in Eq. (7). Indeed, we show that taking T �

Δ(L p/ℓp)
1/pǫ

− 1+p
p in the construction (10) and appropriately scaling f̄T yields a

function f : R
T → R that has L p-Lipschitz continuous pth derivative, and for which

any zero-respecting algorithm generates iterates such that ‖∇ f (x (t))‖ > ǫ for every

t ≤ T . That is,

inf
A∈Azr

Tǫ

(
A, f

)
> T � ΔL

1/p
p ǫ

− 1+p
p ,

which is stronger than a lower bound on Tǫ

(
Azr,Fp(Δ, L p)

)
. Combined with the

reduction in Proposition 2, this implies that for any deterministic algorithm A ∈ Adet

there exists orthogonal U ∈ R
(2T+1)×T for which fU (x) = f (U⊤x) is difficult, i.e.

Tǫ

(
A, f (U⊤·)

)
> T .

Finally, the scaling of ℓp with p may appear strange, or perhaps extraneous. We

provide two viewpoints on this. First, one expects that the smoothness constants L p

should grow quickly as p grows; for C∞ functions such as φ(t) = e−t2
or φ(t) =

log(1 + et ), supt |φ(p)(t)| grows super-exponentially in p. Indeed, ℓp is the Lipschitz

constant of the pth derivative of f̄T . Second, the cases of main practical interest are
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p ∈ {1, 2}, where ℓ
1/p
p � p

5
2 can be considered a numerical constant. This is because,

for p ≥ 3, the only known methods with dimension-free rate of convergence ǫ−(p+1)/p

[7] require full access to third derivatives, which is generally impractical. Therefore,

a realistic discussion of the complexity of finding stationary point with smoothness of

order p ≥ 3 must include additional restrictions on the algorithm class.

4.3 Proof of Theorem 1

To prove Theorem 1, we set up the hard instance f : R
T → R for some integer T by

appropriately scaling f defined in Eq. (10),

f (x) := L pσ
p+1

ℓp

f̄T (x/σ) ,

for some scale parameter σ > 0 to be determined, where ℓp ≤ e2.5p log p+c1 is as

in Lemma 3.iii. We wish to show f satisfies Observation 2. Observation 3 implies

Observation 2.i ( f is a zero-chain). Therefore it remains to show parts ii and iii of

Observation 2. Consider any x ∈ R
T such that xT = 0. Applying Lemma 2 guarantees

that
∥∥∇ f̄T (x/σ)

∥∥ > 1, and therefore

‖∇ f (x)‖ = L pσ
p

ℓp

∥∥∇ f̄T (x/σ)
∥∥ >

L pσ
p

ℓp

. (11)

It remains to choose T and σ based on ǫ such that ‖∇ f (x)‖ > ǫ and f ∈
Fp(Δ, L p). By the lower bound (11), the choice σ = (ℓpǫ/L p)

1/p guarantees

‖∇ f (x)‖ > ǫ. We note that ∇ p+1 f (x) = (L p/ℓp)∇ p+1 f (x/σ) and therefore by

Lemma 3.iii we have that the p-th order derivatives of f are L p-Lipschitz continuous.

Thus, to ensure f ∈ Fp(Δ, L p) it suffices to show that f (0) − infx f (x) ≤ Δ. By

the first part of Lemma 3 we have

f (0) − inf
x

f (x) = L pσ
p+1

ℓp

( f̄T (0) − inf
x

f̄T (x)) ≤ 12L pσ
p+1

ℓp

T = 12ℓ
1/p
p ǫ

1+p
p

L
1/p
p

T ,

where in the last transition we substituted σ = (ℓpǫ/L p)
1/p. We conclude that

f ∈ Fp(Δ, L p) and T =
⌊

ΔL
1/p
p

12ℓ
1/p
p

ǫ
− 1+p

p

⌋
so by Lemma 2, Tǫ

(
Azr,Fp(Δ, L p)

)
≥

Tǫ

(
Azr, { f }

)
≥ 1 + T ≥ ΔL

1/p
p

12ℓ
1/p
p ǫ

1+p
p

, with ℓp bounded from above as in Lemma 3.iii.

By Proposition 2, this bound transfers to Tǫ

(
Adet,Fp(Δ, L p)

)
, where functions of

dimension 2T + 1 suffice to establish it.
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5 Lower bounds for randomized algorithms

With our lower bounds on the complexity of deterministic algorithms established,

we turn to the class of all randomized algorithms. We provide strong distributional

complexity lower bounds by exhibiting a distribution on functions such that a function

drawn from it is “difficult” for any randomized algorithm, with high probability. We

do this via the composition of a random orthogonal transformation with the function

f̄T defined in (10).

The key steps in our deterministic bounds are (a) to show that any algorithm can

“discover” at most one coordinate per iteration and (b) finding an approximate sta-

tionary point requires “discovering” T coordinates. In the context of randomized

algorithms, we must elaborate this development in two ways. First, in Sect. 5.1 we

provide a “robust” analogue of Observation 1 (step (a) above): we show that for a

random orthogonal matrix U , any sequence of bounded iterates {x (t)}t∈N based on

derivatives of f̄T (U⊤·) must (with high probability) satisfy that |〈x (t), u( j)〉| ≤ 1
2

for

all t and j ≥ t , so that by Lemma 2,
∥∥∇ f̄T (U⊤x (t))

∥∥must be large (step (b)). Second,

in Sect. 5.2 we further augment our construction to force boundedness of the iterates

by composing f̄T (U⊤·) with a soft projection, so that an algorithm cannot “cheat”

with unbounded iterates. Finally, we present our general lower bounds in Sect. 5.3.

5.1 Random rotations and bounded iterates

To transform our hard instance (10) into a hard instance distribution, we introduce an

orthogonal matrix U ∈ R
d×T (with columns u(1), . . . , u(T )), and define

f̃T ;U (x) := f̄T (U⊤x) = f̄T (〈u(1), x〉, . . . , 〈u(T ), x〉), (12)

We assume throughout that U is chosen uniformly at random from the space of orthog-

onal matrices O(d, T ) = {V ∈ R
d×T | V ⊤V = IT }; unless otherwise stated, the

probabilistic statements we give are respect to this uniform U in addition to any ran-

domness in the algorithm that produces the iterates. With this definition, we have the

following extension of Observation 1 to randomized iterates, which we prove for f̄T

but is valid for any robust zero-chain (Definition 4). Recall that a sequence is informed

by f if it has the same distribution as A[ f ] for some randomized algorithm f (with

iteration (4)).

Lemma 4 Let δ > 0 and R ≥
√

T , and let x (1), . . . , x (T ) be informed by f̃T ;U and

bounded, so that ‖x (t)‖ ≤ R for each T . If d ≥ 52T R2 log 2T 2

δ
then with probability

at least 1 − δ, for all t ≤ T and each j ∈ {t, . . . , T }, we have

|〈u( j), x (t)〉| < 1/2.

The result of Lemma 4 is identical (to constant factors) to an important result of

Woodworth and Srebro [45, Lemma 7], but we must be careful with the sequential

conditioning of randomness between the iterates x (t), the random orthogonal U , and

123



Lower bounds for finding stationary points I 91

how much information the sequentially computed derivatives may leak. Because of

this additional care, we require a modification of their original proof,4 which we

provide in Sect. B.3, giving a rough outline here. For a fixed t < T , assume that

|〈u( j), x (s)〉| < 1/2 holds for every pair s ≤ t and j ∈ {s, . . . , T }; we argue that this

(roughly) implies that |〈u( j), x (t+1)〉| < 1/2 for every j ∈ {t + 1, . . . , T } with high

probability, completing the induction. When the assumption that |〈u( j), x (s)〉| < 1/2

holds, the robust zero-chain property of f̄T (Definition 4 and Observation 3) implies

that for every s ≤ t we have

f̃T ;U (y) = f̄T (〈u(1), y〉, . . . , 〈u(s), y〉, 0, . . . , 0)

for all y in a neighborhood of x (s). That is, we can compute all the derivatives

of f̃T ;U at x (s) from x (s) and u(1), . . . , u(s), as f̄T is known. Therefore, given

u(1), x (1), . . . , u(t), x (t) it is possible to reconstruct all the information the algorithm

has collected up to iteration t . This means that beyond possibly revealing u(1), . . . , u(t),

these derivatives contain no additional information on u(t+1), . . . , u(T ). Consequently,

any component of x (t+1) outside the span of u(1), x (1), . . . , u(t), x (t) is a complete “shot

in the dark.”

To give “shot in the dark” a more precise meaning, let û( j) be the projection of

u( j) to the orthogonal complement of span{u(1), x (1), . . . , u(t), x (t)}. We show that

conditioned on u(1), . . . , u(T ), and the induction hypothesis, û( j) has a rotation-

ally symmetric distribution in that subspace, and that it is independent of x (t+1).

Therefore, by concentration of measure arguments on the sphere [5], we have

|〈û( j), x (t+1)〉| � ‖x (t+1)‖/
√

d ≤ R/
√

d for any individual j ≥ t + 1, with high

probability. Using an appropriate induction hypothesis, this is sufficient to guarantee

that for every t + 1 ≤ j ≤ T , |〈u( j), x (t+1)〉| � R
√

(T log T )/d , which is bounded

by 1/2 for sufficiently large d.

5.2 Handling unbounded iterates

In the deterministic case, the adversary (choosing the hard function f ) can choose

the rotation matrix U to be exactly orthogonal to all past iterates; this is impossible

for randomized algorithms. The construction (12) thus fails for unbounded random

iterates, since as long as x (t) and u( j) are not exactly orthogonal, their inner product

will exceed 1/2 for sufficiently large ‖x (t)‖, thus breaching the “dead zone” of Ψ

and providing the algorithm with information on u( j). To prevent this, we force the

algorithm to only access f̃T ;U at points with bounded norm, by first passing the iterates

through a smooth mapping from R
d to a ball around the origin. We denote our final

hard instance construction by f̂T ;U : R
d → R, and define it as

f̂T ;U (x) = f̃T ;U (ρ(x)) + 1

10
‖x‖2 , where

ρ(x) = x√
1 + ‖x‖2 /R2

and R = 230
√

T . (13)

4 In a recent note Woodworth and Srebro [46] independently provide a revision of their proof that is similar,

but not identical, to the one we propose here.
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The quadratic term in f̂T ;U guarantees that all points beyond a certain norm have a

large gradient, which prevents the algorithm from trivially making the gradient small

by increasing the norm of the iterates. The following lemma captures the hardness of

f̂T ;U for randomized algorithms.

Lemma 5 Let δ > 0, and let x (1), . . . , x (T ) be informed by f̂T ;U . If d ≥ 52 · 2302 ·
T 2 log 2T 2

δ
then, with probability at least 1 − δ,

∥∥∇ f̂T ;U (x (t))
∥∥ > 1/2 for all t ≤ T .

Proof For t ≤ T , set y(t) := ρ(x (t)). For every p ≥ 0 and t ∈ N, the quantity

∇ p f̂T ;U (x (t)) is measurable with respect x (t) and {∇ i f̃T ;U (y(t))}p
i=0 (the chain rule

shows it can be computed from these variables without additional dependence on U , as

ρ is fixed). Therefore, the process y(1), . . . , y(T ) is informed by f̃T ;U (recall defining

iteration (4)). Since ‖y(t)‖ = ‖ρ(x (t))‖ ≤ R for every t , we may apply Lemma 4 with

R = 230
√

T to obtain that with probability at least 1 − δ,

|〈u(T ), y(t)〉| < 1/2 for every t ≤ T .

Therefore, by Lemma 2 with i = T , for each t there exists j ≤ T such that

∣∣∣
〈
u( j), y(t)

〉∣∣∣ < 1 and

∣∣∣
〈
u( j),∇ f̃T ;U (y(t))

〉∣∣∣ > 1. (14)

To show that ‖∇ f̂T ;U (x (t))‖ is also large, we consider separately the cases ‖x (t)‖ ≤
R/2 and ‖x (t)‖ ≥ R/2. For the first case, we use

∂ρ
∂x

(x) = I−ρ(x)ρ(x)⊤/R2√
1+‖x‖2/R2

to write

〈
u( j),∇ f̂T ;U (x (t))

〉
=
〈
u( j),

∂ρ

∂x
(x (t))∇ f̃T ;U (y(t))

〉
+ 1

5

〈
u( j), x (t)

〉

= 〈u( j),∇ f̃T ;U (y(t))〉 − 〈u( j), y(t)〉〈y(t),∇ f̃T ;U (y(t))〉/R2

√
1 + ‖x (t)‖2/R2

+ 1

5
〈u( j), y(t)〉

√
1 + ‖x (t)‖2/R2.

Therefore, for ‖y(t)‖ ≤ ‖x (t)‖ ≤ R/2 we have

∣∣∣
〈
u( j),∇ f̂T ;U (x (t))

〉∣∣∣ ≥ 2√
5

∣∣∣
〈
u( j),∇ f̃T ;U (y(t))

〉∣∣∣

−
∣∣∣
〈
u( j), y(t)

〉∣∣∣
(
‖∇ f̃T ;U (y(t))‖

2R
+ 1

2
√

5

)
.

By Lemma 3.ii we have ‖∇ f̃T ;U (y(t))‖ ≤ 23
√

T = R/10, which combined with (14)

and the above display yields ‖∇ f̂T ;U (x (T ))‖ ≥ |〈u( j),∇ f̂T ;U (x (T ))〉| ≥ 2√
5
− 1

20
−

1

2
√

5
> 1

2
.
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In the second case,
∥∥x (t)

∥∥ ≥ R/2, we have for any x satisfying ‖x‖ ≥ R/2 and

y = ρ(x) that

∥∥∥∇ f̂T ;U (x)

∥∥∥≥ 1

5
‖x‖ −

∥∥∥∥
∂ρ

∂x
(x)

∥∥∥∥
op

∥∥∥∇ f̃T ;U (y)

∥∥∥≥ R

10
− 2√

5

R

10
>

√
T ≥1, (15)

where we used ‖ ∂ρ
∂x

(x)‖op ≤ 1√
1+‖x‖2/R2

≤ 2/
√

5 and that ‖∇ f̃T ;U (y)‖ ≤ 23
√

T =
R/10. ⊓⊔

As our lower bounds repose on appropriately scaling the function f̂T ;U , it remains

to verify that f̂T ;U satisfies the few boundedness properties we require. We do so in

the following lemma.

Lemma 6 The function f̂T ;U satisfies the following.

i. We have f̂T ;U (0) − infx f̂T ;U (x) ≤ 12T .

ii. For every p ≥ 1, the pth order derivatives of f̂T ;U are ℓ̂p-Lipschitz continuous,

where ℓ̂p ≤ exp(cp log p + c) for a numerical constant c < ∞.

We defer the (computationally involved) proof of this Lemma to Sect. B.4.

5.3 Final lower bounds

With Lemmas 5 and 6 in hand, we can state our lower bound for all algorithms,

randomized or otherwise, given access to all derivatives of a C∞ function. Note that

our construction also implies an identical lower bound for (slightly) more general

algorithms that use any local oracle [10,35], meaning that the information the oracle

returns about a function f when queried at a point x is identical to that it returns when

a function g is queried at x whenever f (z) = g(z) for all z in a neighborhood of x .

Theorem 2 There exist numerical constants 0 < c0, c1 < ∞ such that the following

lower bound holds. Let p ≥ 1, p ∈ N, and let Δ, L p, and ǫ be positive. Then

Tǫ

(
Arand,Fp(Δ, L p)

)
≥ c0 · Δ

(
L p

ℓ̂p

)1/p

ǫ
− 1+p

p ,

where ℓ̂p ≤ ec1 p log p+c1 . The lower bound holds even if we restrict Fp(Δ, L p) to

functions where the domain has dimension 1 + c2q
(
Δ
(
L p/ℓp

)1/p
ǫ
− 1+p

p

)
with c2 a

numerical constant and q(x) = x2 log(2x).

We return to the proof of Theorem 2 in Sect. 5.4, following the same outline as

that of Theorem 1, and provide some commentary here. An inspection of the proof

to come shows that we actually demonstrate a stronger result than that claimed in

the theorem. For any δ ∈ (0, 1) let d ≥
⌈

52 · (230)2 · T 2 log(2T 2/δ)
⌉

where T =
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⌊c0Δ(L p/ℓ̂p)
1/pǫ

− 1+p
p ⌋ as in the claimed lower bound. In the proof we construct a

probability measure μ on functions in Fp(Δ, L p), of fixed dimension d, such that

inf
A∈Arand

∫
PA

(∥∥∇ f (x (t))
∥∥ > ǫ for all t ≤ T | f

)
dμ( f ) > 1 − δ, (16)

where the randomness in PA depends only on A. Therefore, by definition (6), for any

A ∈ Arand a function f drawn from μ satisfies

Tǫ

(
A, f

)
> T with probability greater than 1 − 2δ, (17)

implying Theorem 2 for any δ ≥ 1/2. Thus, we exhibit a randomized procedure for

finding hard instances for any randomized algorithm that requires no knowledge of

the algorithm itself.

Theorem 2 is stronger than Theorem 1 in that it applies to the broad class of all ran-

domized algorithms. Our probabilistic analysis requires that the functions constructed

to prove Theorem 2 have dimension scaling proportional to T 2 log(T ) where T is

the lower bound on the number of iterations. Contrast this to Theorem 1, which only

requires dimension 2T +1. A similar gap exists in complexity results for convex opti-

mization [45,46]. At present, it unclear if these gaps are fundamental or a consequence

of our specific constructions.

5.4 Proof of Theorem 2

We set up our hard instance distribution fU : R
d → R, indexed by a uniformly

distributed orthogonal matrix U ∈ O(d, T ), by appropriately scaling f̂T ;U defined

in (13),

fU (x) := L pσ
p+1

ℓ̂p

f̂T ;U (x/σ),

where the integer T and scale parameter σ > 0 are to be determined, d =
⌈52 · (230)2T 2 log(4T 2)⌉, and the quantity ℓ̂p ≤ exp(c1 p log p + c1) for a numerical

constant c1 is defined in Lemma 6.ii.

Fix A ∈ Arand and let x (1), x (2), . . . , x (T ) be the iterates produced by A applied on

fU . Since f and f̂T ;U differ only by scaling, the iterates x (1)/σ, x (2)/σ, . . . , x (T )/σ

are informed by f̂T ;U (recall Sect. 2.2), and therefore we may apply Lemma 5 with

δ = 1/2 and our large enough choice of dimension d to conclude that

PA,U

(∥∥∇ f̂T ;U
(

x (t)/σ
)∥∥ >

1

2
for all t ≤ T

)
>

1

2
,

where the probability is taken over both the random orthogonal U and any randomness

in A. As A is arbitrary, taking σ = (2ℓ̂pǫ/L p)
1/p, this inequality becomes the desired

strong inequality (16) with δ = 1/2 and μ induced by the distribution of U . Thus,

123



Lower bounds for finding stationary points I 95

by (17), for every A ∈ Arand there exists UA ∈ O(d, T ) such that Tǫ

(
A, fUA

)
≥ 1+T ,

so

inf
A∈Adet

sup
U∈O(d,T )

Tǫ

(
A, fU

)
≥ 1 + T .

It remains to choose T to guarantee that fU belongs to the relevant function class

(bounded and smooth) for every orthogonal U . By Lemma 6.ii, fU has L p-Lipschitz

continuous pth order derivatives. By Lemma 6.i, we have

fU (0) − inf
x

fU (x) ≤ L pσ
p+1

ℓ̂p

(
f̄T (0) − inf

x
f̄T (x)

)

≤ 12L pσ
p+1

ℓ̂p

T = 24(2ℓ̂p)
1/pǫ

p+1
p

L
1/p
p

T ,

where in the last transition we have substituted σ = (2ℓpǫ/L p)
1/p. Setting T =

⌊ Δ
48

(L p/ℓ̂p)
1/pǫ

− 1+p
p ⌋ gives fU (0)−inf x fU (x) ≤ Δ, and fU ∈ Fp(Δ, L p), yielding

the theorem.

6 Distance-based lower bounds

We have so far considered finding approximate stationary points of smooth functions

with bounded sub-optimality at the origin, i.e. f (0)− inf x f (x) ≤ Δ. In convex opti-

mization, it is common to consider instead functions with bounded distance between

the origin and a global minimum. We may consider a similar restriction for non-convex

functions; for p ≥ 1 and positive L p, D, let

F
dist
p (D, L p)

be the class of C∞ functions with L p-Lipschitz pth order derivatives satisfying

sup
x

{‖x‖ | x ∈ arg min f } ≤ D, (18)

that is, all global minima have bounded distance to the origin.

In this section we give a lower bound on the complexity of this function class that has

the same ǫ dependence as our bound for the class Fp(Δ, L p). This is in sharp contrast

to convex optimization, where distance-bounded functions enjoy significantly better

ǫ dependence than their value-bounded counterparts (see Sect. 3 in the companion

[14]). Qualitatively, the reason for this difference is that the lack of convexity allows

us to “hide” global minima close to the origin that are difficult to find for any algorithm

with local function access [35].

We postpone the construction and proof to Appendix C, and move directly to the

final bound.
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Theorem 3 There exist numerical constants 0 < c0, c1 < ∞ such that the following

lower bound holds. For any p ≥ 1, let D, L p, and ǫ be positive. Then

Tǫ

(
Arand,F

dist
p (D, L p)

)
≥ c0 · D1+p

(
L p

ℓ′p

) 1+p
p

ǫ
− 1+p

p ,

where ℓ′p ≤ ec1 p log p+c1 . The lower bound holds even if we restrict Fdist
p (D, L p) to

functions with domain of dimension 1 + c2q
(

D1+p
(

L p/ℓ
′
p

) 1+p
p

ǫ
− 1+p

p

)
, for a some

numerical constant c2 < ∞ and q(x) = x2 log(2x).

We remark that a lower-dimensional construction suffices for proving the lower

bound for deterministic algorithm, similarly to Theorem 1.

While we do not have a matching upper bound for Theorem 3, we can match its ǫ

dependence in the smaller function class

F
dist
1,p (D, L1, L p) = F

dist
1 (D, L1) ∩ F

dist
p (D, L p),

due to the fact that for any f : R
d → R with L1-Lipschitz continuous gradient

and global minimizer x⋆, we have f (x) − f (x⋆) ≤ 1
2

L1 ‖x − x⋆‖2 for all x ∈ R
d

[cf. 9, Eq. (9.13)]. Hence Fdist
1,p (D, L1, L p) ⊂ Fp(Δ, L p), with Δ := 1

2
L1 D2, and

consequently by the bound (8) we have

Tǫ

(
A

(p)

det
∩ A

(p)
zr ,Fdist

1,p (D, L1, L p)
)

� D2L1L
1/p
p ǫ

− p+1
p .

7 Conclusion

This work provides the first algorithm independent and tight lower bounds on the

dimension-free complexity of finding stationary points. As a consequence, we have

characterized the optimal rates of convergence to ǫ-stationarity, under the assumption

of high dimension and an oracle that provides all derivatives. Yet, given the importance

of high-dimensional problems, the picture is incomplete: high-order algorithms—even

second-order method—are often impractical in large scale settings. We address this

in the companion [14], which provides sharper lower bounds for the more restricted

class of first-order methods. In [14] we also provide a full conclusion for this paper

sequence, discussing in depth the implications and questions that arise from our results.
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A Proof of Propositions 1 and 2

The core of the proofs of Propositions 1 and 2 is the following construction.

Lemma 7 Let p ∈ N∪{∞}, T0 ∈ N andA ∈ A
(p)

det
. There exists an algorithmZA ∈ A

(p)
zr

with the following property. For every f : R
d → R there exists an orthogonal matrix

U ∈ R
(d+T0)×d such that, for every ǫ > 0,

Tǫ

(
A, fU

)
> T0 or Tǫ

(
A, fU

)
= Tǫ

(
ZA, f

)
,

where fU (x) := f (U⊤x).

Proof We explicitly construct ZA with the following slightly stronger property. For

every every f : R
d → R in F , there exists an orthogonal U ∈ R

(d+T0)×d , U⊤U = Id ,

such that fU (x) := f (U⊤x) satisfies that the first T0 iterates in sequences ZA[ f ] and

U⊤
A[ fU ] are identical. (Recall the notation A[ f ] = {a(t)}t∈N where a(t) are the

iterates of A on f , and we use the obvious shorthand U⊤{a(t)}t∈N = {U⊤a(t)}t∈N.)

Before explaining the construction ofZA, let us see how its defining property implies

the lemma. If Tǫ

(
A, fU

)
> T0, we are done. Otherwise, Tǫ

(
A, fU

)
≤ T0 and we have

Tǫ

(
A, fU

)
:= Tǫ

(
A[ fU ], fU

) (i)= Tǫ

(
U⊤

A[ fU ], f
) (i i)= Tǫ

(
ZA, f

)
, (19)

as required. The equality (i) follows because ‖Ug‖ = ‖g‖ for all orthogonal U , so

for any sequence {a(t)}t∈N

Tǫ

(
{a(t)}t∈N, fU

)
= inf

{
t ∈ N | ‖∇ fU (a(t))‖ ≤ ǫ

}

= inf
{

t ∈ N | ‖∇ f (U⊤a(t))‖ ≤ ǫ
}
= Tǫ

(
{U⊤a(t)}t∈N, f

)

and in equality (i) we let {a(t)}t∈N = A[ fU ]. The equality (i i) holds because Tǫ

(
·, ·
)

is a “stopping time”: if Tǫ

(
U⊤

A[ fU ], f
)
≤ T0 then the first T0 iterates of U⊤

A[ fU ]
determine Tǫ

(
U⊤

A[ fU ], f
)
, and these T0 iterates are identical to the first T0 iterates

of ZA[ f ] by assumption.

It remains to construct the zero-respecting algorithmZA with iterates matching those

of A under appropriate rotation. We do this by describing its operation inductively on

any given f : R
d → R, which we denote {z(t)}t∈N = ZA[ f ]. Letting d ′ = d + T0,

the state of the algorithm ZA at iteration t is determined by a support St ⊆ [d]
and orthonormal vectors {u(i)}i∈St ⊂ R

d ′
identified with this support. The support

condition (5) defines the set St ,
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St =
⋃

q∈[p]

⋃

s<t

supp
{
∇q f (z(s))

}
,

so that ∅ = S1 ⊆ S2 ⊆ · · · and the collection {u(i)}i∈St grows with t . We let U ∈
R

d ′×d be the orthogonal matrix whose i th column is u(i)—even though U may not be

completely determined throughout the runtime of ZA, our partial knowledge of it will

suffice to simulate the operation ofA on fU (a) = f (U⊤a). Letting {a(t)}t∈N = A[ fU ],
our requirements ZA[ f ] = U⊤

A[ fU ] and ZA ∈ Azr are equivalent to

z(t) = U⊤a(t) and supp{z(t)} ⊆ St (20)

for every t ≤ T0 (we set z(i) = 0 for every i > T0 without loss of generality).

Let us proceed with the inductive argument. The iterate a(1) ∈ R
d ′

is an arbitrary

(but deterministic) vector in R
d ′

. We thus satisfy (20) at t = 1 by requiring that

〈u( j), a(1)〉 = 0 for every j ∈ [d], whence the first iterate of ZA satisfies z(1) =
0 ∈ R

d . Assume now the equality and containment (20) holds for every s < t ,

where t ≤ T0 (implying that ZA has emulated the iterates a(2), . . . , a(t−1) of A);

we show how ZA can emulate a(t), the t’th iterate of A, and from it can construct

z(t) that satisfies (20). To obtain a(t), note that for every q ≤ p, and every s < t ,

the derivatives ∇q fU (a(s)) are a function of ∇q f (z(s)) and orthonormal the vectors

{u(i)}i∈Ss+1 , because supp{∇q f (z(s))} ⊆ Ss+1 and therefore the chain rule implies

[
∇q fU (a(s))

]
j1,..., jq

=
∑

i1,...,iq∈Ss+1

[
∇q f (z(s))

]
i1,...,iq

u
(i1)
j1

· · · u
(iq )

jq
.

Since A ∈ A
(p)

det
is deterministic, a(t) is a function of ∇q f (z(s)) for q ∈ [p] and

s ∈ [t − 1], and thus ZA can simulate and compute it. To satisfy the support condition

supp{z(t)} ⊆ St we require that 〈u( j), a(t)〉 = 0 for every j /∈ St . This also means that

to compute z(t) = U⊤a(t) we require only the columns of U indexed by the support

St .

Finally, we need to show that after computing St+1 we can find the vectors

{u(i)}i∈St+1\St satisfying 〈u( j), a(s)〉 = 0 for every s ≤ t and j ∈ St+1\St , and

additionally that U be orthogonal. Thus, we need to choose {u(i)}i∈St+1\St in the orthog-

onal complement of span
{
a(1), . . . , a(t), {u(i)}i∈St

}
. This orthogonal complement has

dimension at least d ′ − t − |St | = |Sc
t | + T0 − t ≥ |Sc

t |. Since |St+1\St | ≤ |Sc
t |, there

exist orthonormal vectors {u(i)}i∈St+1\St that meet the requirements. This completes

the induction.

Finally, note that the arguments above hold unchanged for p = ∞. ⊓⊔

With Lemma 7 in hand, the propositions follow easily.

Proposition 1 Let p ∈ N ∪ {∞}, F be an orthogonally invariant function class and

ǫ > 0. Then
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Tǫ

(
A

(p)

det
,F
)
≥ Tǫ

(
A

(p)
zr ,F

)
.

Proof We may assume that Tǫ

(
A

(p)

det
,F
)

< T0 for some integer T0 < ∞, as otherwise

we have Tǫ

(
A

(p)

det
,F
)

= ∞ and the result holds trivially. For any A ∈ A
(p)

det
and

the value T0, we invoke Lemma 7 to construct ZA ∈ A
(p)
zr such that Tǫ

(
A, fU

)
≥

min{T0, Tǫ

(
ZA, f

)
} for every f ∈ F and some orthogonal matrix U that depends on

f and A. Consequently, we have

Tǫ

(
A

(p)

det
,F
)

= inf
A∈A

(p)

det

sup
f ∈F

Tǫ

(
A, f

) (i)
≥ inf

A∈A
(p)

det

sup
f ∈F

Tǫ

(
A, fU

) (i i)
≥ min

{
T0, inf

A∈A
(p)

det

sup
f ∈F

Tǫ

(
ZA, f

)}

(i i i)
≥ min

{
T0, inf

B∈A
(p)
zr

sup
f ∈F

Tǫ

(
B, f

)}
= min

{
T0, Tǫ

(
A

(p)
zr ,F

)}
,

where inequality (i) uses that fU ∈ F because F is orthogonally invariant, step

(i i) uses Tǫ

(
A, fU

)
≥ min{T0, Tǫ

(
ZA, f

)
} and step (i i i) is due to ZA ∈ A

(p)
zr by

construction. As we chose T0 for which Tǫ

(
A

(p)

det
,F
)

< T0, the chain of inequalities

implies Tǫ

(
A

(p)

det
,F
)
≥ Tǫ

(
A

(p)
zr ,F

)
, concluding the proof. ⊓⊔

Proposition 2 Let p ∈ N∪{∞}, F be an orthogonally invariant function class, f ∈ F

with domain of dimension d, and ǫ > 0. If Tǫ

(
A

(p)
zr , { f }

)
≥ T , then

Tǫ

(
A

(p)

det
,F
)
≥ Tǫ

(
A

(p)

det
, { fU | U ∈ O(d + T , d)}

)
≥ T ,

where fU := f (U⊤z) and O(d + T , d) is the set of (d + T )× d orthogonal matrices,

so that { fU | U ∈ O(d + T , d)} contains only function with domain of dimension

d + T .

Proof For any A ∈ A
(p)

det
, we invoke Lemma 7 with T0 = T to obtain ZA ∈ A

(p)
zr and

orthogonal matrix U ′ (dependent on f and A) for which

Tǫ

(
A, fU ′

)
≥ min{T , Tǫ

(
ZA, f

)
} = T ,

where the last equality is due to inf
B∈A

(p)
zr

Tǫ

(
B, f

)
= Tǫ

(
A

(p)
zr , { f }

)
≥ T . Since

fU ′ ∈ { fU | U ∈ O(d + T , d)}, we have

sup
f ′∈{ fU |U∈O(d+T ,d)}

Tǫ

(
A, f ′) ≥ T ,

and taking the infimum over A ∈ A
(p)

det
concludes the proof. ⊓⊔
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B Technical results

B.1 Proof of Lemma 1

Lemma 1 The functions Ψ and Φ satisfy the following.

i. For all x ≤ 1
2

and all k ∈ N, Ψ (k)(x) = 0.

ii. For all x ≥ 1 and |y| < 1, Ψ (x)Φ ′(y) > 1.

iii. Both Ψ and Φ are infinitely differentiable, and for all k ∈ N we have

sup
x

|Ψ (k)(x)| ≤ exp

(
5k

2
log(4k)

)
and sup

x
|Φ(k)(x)| ≤ exp

(
3k

2
log

3k

2

)
.

iv. The functions and derivatives Ψ , Ψ ′, Φ and Φ ′ are non-negative and bounded,

with

0 ≤ Ψ < e, 0 ≤ Ψ ′ ≤
√

54/e, 0 < Φ <
√

2πe, and 0 < Φ ′ ≤
√

e.

Each of the statements in the lemma is immediate except for part iii. To see this

part, we require a few further calculations. We begin by providing bounds on the

derivatives of Φ(x) = e
1
2

∫ x

−∞ e−
1
2 t2

dt . To avoid annoyances with scaling factors, we

define φ(t) = e−
1
2 t2

.

Lemma 8 For all k ∈ N, there exist constants c
(k)
i satisfying |c(k)

i | ≤ (2 max{i, 1})k ,

and

φ(k)(t) =
( k∑

i=0

c
(k)
i t i

)
φ(t).

Proof We prove the result by induction. We have φ′(t) = −te−
1
2 t2

, so that the base

case of the induction is satisfied. Now, assume for our induction that

φ(k)(t) =
k∑

i=0

c
(k)
i t i e−

1
2 t2 =

k∑

i=0

c
(k)
i t iφ(t).

where |c(k)
i | ≤ 2k(max{i, 1})k . Then taking derivatives, we have

φ(k+1)(t) =
k∑

i=1

[
i · c

(k)
i t i−1 − c

(k)
i t i+1

]
φ(t) − c

(k)
0 tφ(t) =

k+1∑

i=0

c
(k+1)
i t iφ(t)

where c
(k+1)
i = (i + 1)c

(k)
i+1 − c

(k)
i−1 (and we treat c

(k)
k+1 = 0) and |c(k+1)

k+1 | = 1. With

the induction hypothesis that c
(k)
i ≤ (2 max{i, 1})k , we obtain

|c(k+1)
i | ≤ 2k(i + 1)(i + 1)k + 2k(max{i, 1})k ≤ 2k+1(i + 1)k+1.
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This gives the result. ⊓⊔

With this result, we find that for any k ≥ 1,

Φ(k)(x) =
√

e

( k−1∑

i=0

c
(k−1)
i x i

)
φ(x).

The function log(x iφ(x)) = i log x − 1
2

x2 is maximized at x =
√

i , so that x iφ(x) ≤
exp( i

2
log i

e
). We thus obtain the numerically verifiable upper bound

|Φ(k)(x)| ≤
√

e

k−1∑

i=0

(2 max{i, 1})k−1 exp

(
i

2
log

i

e

)
≤ exp (1.5k log(1.5k)) .

Now, we turn to considering the function Ψ (x). We assume w.l.o.g. that x > 1
2

, as

otherwise Ψ (k)(x) = 0 for all k. Recall Ψ (x) = exp
(

1 − 1
(2x−1)2

)
for x > 1

2
. We

have the following lemma regarding its derivatives.

Lemma 9 For all k ∈ N, there exist constants c
(k)
i satisfying |c(k)

i | ≤ 6k(2i + k)k such

that

Ψ (k)(x) =
( k∑

i=1

c
(k)
i

(2x − 1)k+2i

)
Ψ (x).

Proof We provide the proof by induction over k. For k = 1, we have that

Ψ ′(x) = 4

(2x − 1)3
exp

(
1 − 1

(2x − 1)2

)
= 4

(2x − 1)3
Ψ (x),

which yields the base case of the induction. Now, assume that for some k, we have

Ψ (k)(x) =
(

k∑

i=1

c
(k)
i

(2x − 1)k+2i

)
Ψ (x).

Then

Ψ (k+1)(x) =
(
−

k∑

i=1

2(k + 2i)c
(k)
i

(2x − 1)k+1+2i
+

k∑

i=1

4c
(k)
i

(2x − 1)k+3+2i

)
Ψ (x)

=
(

k+1∑

i=1

4c
(k)
i−1 − 2(k + 2i)c

(k)
i

(2x − 1)k+1+2i

)
Ψ (x),
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where c
(k)
k+1 = 0 and c

(k)
0 = 0. Defining c1

1 = 4 and c
(k+1)
i = 4c

(k)
i−1 − 2(k + 2i)c

(k)
i

for i > 1, then, under the inductive hypothesis that |c(k)
i | ≤ 6k(2i + k)k , we have

|c(k+1)
i | ≤ 4 · 6k(k − 2 + 2i)k + 2 · 6k(k + 2i)(k + 2i)k

≤ 6k+1(k + 2i)k+1 ≤ 6k+1(k + 1 + 2i)k+1

which gives the result. ⊓⊔
As in the derivation immediately following Lemma 8, by replacing t = 1

2x−1
, we

have that tk+2i e−t2
is maximized by t =

√
(k + 2i)/2, so that

1

(2x − 1)k+2i
Ψ (x) ≤ exp

(
1 + k + 2i

2
log

k + 2i

2e

)
,

which yields the numerically verifiable upper bound

|Ψ (k)(x)|≤
k∑

i=1

exp

(
1+k log(6k+12i)+ k+2i

2
log

k+2i

2e

)
≤exp (2.5k log(4k)) .

B.2 Proof of Lemma 3

Lemma 3 The function f̄T satisfies the following.

i. We have f̄T (0) − infx f̄T (x) ≤ 12T .

ii. For all x ∈ R
d ,
∥∥∇ f̄T (x)

∥∥ ≤ 23
√

T .

iii. For every p ≥ 1, the p-th order derivatives of f̄T are ℓp-Lipschitz continuous,

where ℓp ≤ exp( 5
2

p log p + cp) for a numerical constant c < ∞.

Proof Part i follows because f̄T (0) < 0 and, since 0 ≤ Ψ (x) ≤ e and 0 ≤ Φ(x) ≤√
2πe,

f̄T (x) ≥ −Ψ (1) Φ (x1) −
T∑

i=2

Ψ (xi−1) Φ (xi ) > −T · e ·
√

2πe ≥ −12T .

Part ii follows additionally from Ψ (x) = 0 on x < 1/2, 0 ≤ Ψ ′(x) ≤
√

54e−1 and

0 ≤ Φ ′(x) ≤ √
e, which when substituted into

∂ f̄T

∂x j

(x) = −Ψ
(
−x j−1

)
Φ ′ (−x j

)
− Ψ

(
x j−1

)
Φ ′ (x j

)

−Ψ ′ (−x j

)
Φ
(
−x j+1

)
− Ψ ′ (x j

)
Φ
(
x j+1

)

yields

∣∣∣∣
∂ f̄T

∂x j

(x)

∣∣∣∣ ≤ e ·
√

e +
√

54e−1 ·
√

2πe ≤ 23
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for every x and j . Consequently,
∥∥∇ f̄T (x)

∥∥ ≤
√

T ≤ 23
√

T .

To establish part iii, fix a point x ∈ R
T and a unit vector v ∈ R

T . Define the real

function hx,v : R → R by the directional projection of f̄T , hx,v(θ) := f̄T (x + θv).

The function θ �→ hx,v(θ) is infinitely differentiable for every x and v. Therefore, f̄T

has ℓp-Lipschitz p-th order derivatives if and only if |h(p+1)
x,v (0)| ≤ ℓp for every x , v.

Using the shorthand notation ∂i1 · · · ∂ik
for ∂k

∂xi1
···∂xik

, we have

h
(p+1)
x,v (0) =

T∑

i1,...,i p+1=1

∂i1 · · · ∂i p+1 f̄T (x) vi1 · · · vi p+1 .

Examining f̄T , we see that ∂i1 · · · ∂i p+1 f̄T is non-zero if and only if
∣∣i j − ik

∣∣ ≤ 1 for

every j, k ∈ [p + 1]. Consequently, we can rearrange the above summation as

h
(p+1)
x,v (0) =

∑

δ1,δ2,...,δp∈{0,1}p∪{0,−1}p

T∑

i=1

∂i+δ1 · · · ∂i+δp∂i f̄T (x) vi+δ1 · · · vi+δpvi ,

where we take v0 := 0 and vT+1 := 0. Brief calculation show that

sup
x∈RT

max
i∈[T ]

max
δ∈{0,1}p∪{0,−1}p

∣∣∂i+δ1 · · · ∂i+δp∂i f̄T (x)
∣∣

≤ max
k∈[p+1]

{
2 sup

x∈R

∣∣∣Ψ (k)(x)

∣∣∣ sup
x ′∈R

∣∣∣Φ(p+1−k)(x ′)
∣∣∣
}

≤ 2
√

2πe · e2.5(p+1) log(4(p+1)) ≤ exp (2.5p log p + 4p + 9) .

where the second inequality uses Lemma 1.iii, and Φ(x ′) ≤
√

2πe for the case

k = p + 1. Defining ℓp = 2p+1e2.5p log p+4p+9 ≤ e2.5p log p+5p+10, we thus have

∣∣∣h(p+1)
x,v (0)

∣∣∣ ≤
∑

δ∈{0,1}p∪{0,−1}p

2−(p+1)ℓp

∣∣∣∣∣

T∑

i=1

vi+δ1 · · · vi+δpvi

∣∣∣∣∣

≤
(

2p+1 − 1
)

2−(p+1)ℓp ≤ ℓp,

where we have used |
∑T

i=1 vi+δ1 · · · vi+δpvi | ≤ 1 for every δ ∈ {0, 1}p ∪ {0,−1}p.

To see this last claim is true, recall that v is a unit vector and note that

T∑

i=1

vi+δ1 · · · vi+δpvi =
T∑

i=1

v
p+1−

∑p
j=1 δ j

i v

∑p
j=1 δ j

i±1 .
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If δ = 0 then |
∑T

i=1 vi+δ1 · · · vi+δpvi | = |
∑T

i=1 v
p+1
i | ≤

∑T
i=1 v2

i = 1. Otherwise,

letting 1 ≤
∑p

j=1 |δ j | = n ≤ p, the Cauchy-Swartz inequality implies

∣∣∣∣∣

T∑

i=1

vi+δ1 · · · vi+δpvi

∣∣∣∣∣ =
∣∣∣∣∣

T∑

i=1

v
p+1−n
i vn

i+s

∣∣∣∣∣

≤

√√√√
T∑

i=1

v
2(p+1−n)
i

√√√√
T∑

i=1

v2n
i+s ≤

T∑

i=1

v2
i = 1,

where s = −1 or 1. This gives the result. ⊓⊔

B.3 Proof of Lemma 4

The proof of Lemma 4 uses a number of auxiliary arguments, marked as Lemmas 4a,

4b and 4c . Readers looking to gain a high-level view of the proof of Lemma 4 can

safely skip the proofs of these sub-lemmas. In the following, recall that U ∈ R
d×T

is drawn from the uniform distribution over d × T orthogonal matrices (satisfying

U T U = I , as d > T ), that the columns of U are denoted u(1), . . . , u(T ), and that

f̃T ;U (x) = f̄T (U⊤x).

Lemma 4 Let δ > 0 and R ≥
√

T , and let x (1), . . . , x (T ) be informed by f̃T ;U and

bounded, so that ‖x (t)‖ ≤ R for each T . If d ≥ 52T R2 log 2T 2

δ
then with probability

at least 1 − δ, for all t ≤ T and each j ∈ {t, . . . , T }, we have

|〈u( j), x (t)〉| < 1/2.

For t ∈ N, let Pt ∈ R
d×d denote the projection operator to the span of

x (1), u(1), . . . , x (t), u(t), and let P⊥
t = I − Pt denote its orthogonal complement.

We define the event G t as

G t =
{

max
j∈{t,...,T }

∣∣∣
〈
u( j), P⊥

t−1x (t)
〉∣∣∣ ≤ α

∥∥∥P⊥
t−1x (t)

∥∥∥
}

where α = 1

5R
√

T
. (21)

For every t , define

G≤t = ∩i≤t Gi and G<t = ∩i<t Gi .

The following linear-algebraic result justifies the definition (21) of G t .

Lemma 4a For all t ≤ T , G≤t implies |〈u( j), x (s)〉| < 1/2 for every s ∈ {1, . . . , t}
and every j ∈ {s, . . . , T }.

Proof First, notice that since G≤t implies G≤s for every s ≤ t , it suffices to show

that G≤t implies |〈u( j), x (t)〉| < 1/2 for every j ∈ {t, . . . , T }. We will in fact prove

a stronger statement:
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For every t, G<t implies

∥∥∥Pt−1u( j)
∥∥∥

2
≤ 2α2 (t − 1) for every j ∈ {t, . . . , T },

(22)

where we recall that Pt ∈ R
d×d is the projection operator to the span of

x (1), u(1), . . . , x (t), u(t), P⊥
t = Id − Pt and α = 1/(5R

√
T ). Before proving (22), let

us show that it implies our result. Fixing j ∈ {t, . . . , T }, we have

∣∣∣
〈
u( j), x (t)

〉∣∣∣ ≤
∣∣∣
〈
u( j), P⊥

t−1x (t)
〉∣∣∣+

∣∣∣
〈
u( j), Pt−1x (t)

〉∣∣∣ .

Since G t holds, its definition (21) implies |〈u( j), P⊥
t−1x (t)〉| ≤ α

∥∥P⊥
t−1x (t)

∥∥ ≤
α
∥∥x (t)

∥∥. Moreover, by Cauchy-Schwarz and the implication (22), we have

|〈u( j), Pt−1x (t)〉| ≤
∥∥Pt−1u( j)

∥∥ ∥∥x (t)
∥∥ ≤

√
2α2(t − 1)

∥∥x (t)
∥∥. Combining the two

bounds, we obtain the result of the lemma,

∣∣∣
〈
u( j), x (t)

〉∣∣∣ ≤
∥∥∥x (t)

∥∥∥ (α +
√

2α2(t − 1)) <
5

2

√
t Rα ≤ 1

2
,

where we have used
∥∥x (t)

∥∥ ≤ R and α = 1/(5R
√

T ).

We prove bound (22) by induction. The basis of the induction, t = 1, is trivial,

as P0 = 0. We shall assume (22) holds for s ∈ {1, . . . , t − 1} and show that it

consequently holds for s = t as well. We may apply the Graham-Schmidt procedure

on the sequence x (1), u(1), . . . , x (t−1), u(t−1) to write

∥∥∥Pt−1u( j)
∥∥∥

2
=

t−1∑

i=1

∣∣∣∣∣

〈
P⊥

i−1x (i)

∥∥P⊥
i−1x (i)

∥∥ , u( j)

〉∣∣∣∣∣

2

+
t−1∑

i=1

∣∣∣∣∣∣

〈
P̂⊥

i−1u(i)

∥∥∥P̂⊥
i−1u(i)

∥∥∥
, u( j)

〉∣∣∣∣∣∣

2

(23)

where P̂k is the projection to the span of {x (1), u(1), . . . , x (k), u(k), x (k+1)},

P̂k = Pk + 1
∥∥P⊥

k x (k+1)
∥∥2

(
P⊥

k x (k+1)
) (

P⊥
k x (k+1)

)⊤
.

Then for every j > i we have

〈
P̂⊥

i−1u(i), u( j)
〉
= −

〈
P̂i−1u(i), u( j)

〉
= −

〈
Pi−1u(i), u( j)

〉

−
〈
u(i), P⊥

i−1x (i)
〉 〈

u( j), P⊥
i−1x (i)

〉
∥∥P⊥

i−1x (i)
∥∥2

,

where the equalities hold by
〈
u(i), u( j)

〉
= 0, P̂⊥

i−1 = I − P̂i−1, and the definition of

P̂i−1.
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The Pi matrices are projections, so P2
i−1 = Pi−1, and Cauchy-Swartz and the

induction hypothesis imply

∣∣∣
〈
Pi−1u(i), u( j)

〉∣∣∣ =
∣∣∣
〈
Pi−1u(i), Pi−1u( j)

〉∣∣∣ ≤
∥∥∥Pi−1u(i)

∥∥∥
∥∥∥Pi−1u( j)

∥∥∥ ≤ 2α2 · (i − 1) .

Moreover, the event Gi implies
∣∣〈u(i), P⊥

i−1x (i)〉〈u( j), P⊥
i−1x (i)〉

∣∣ ≤ α2
∥∥P⊥

i−1x (i)
∥∥2

,

so

∣∣∣
〈
P̂⊥

i−1u(i), u( j)
〉∣∣∣ ≤

∣∣∣
〈
Pi−1u(i), u( j)

〉∣∣∣+
∣∣∣∣∣

〈
u(i), P⊥

i−1x (i)
〉 〈

u( j), P⊥
i−1x (i)

〉
∥∥P⊥

i−1x (i)
∥∥2

∣∣∣∣∣

≤ α2 (2i − 1) ≤ α

2
, (24a)

where the last transition uses α = 1

5R
√

T
≤ 1

4i
because R ≥

√
T ≥ i . We also have

the lower bound

∥∥∥P̂⊥
i−1u(i)

∥∥∥
2
=
∣∣∣
〈
P̂⊥

i−1u(i), u(i)
〉∣∣∣ = 1 −

∥∥∥Pi−1u(i)
∥∥∥

2
−
(〈

u(i), P⊥
i−1x (i)

〉)2
∥∥P⊥

i−1x (i)
∥∥2

≥ 1 − α2 (2i − 1) ≥ 1

2
, (24b)

where the first equality uses (P⊥
i−1)

2 = P⊥
i−1, the second the definition of P̂i−1, and

the inequality uses 〈u( j), P⊥
i−1x (i)〉 ≤ α‖P⊥

i−1x (i)‖ and ‖Pi−1u( j)‖2 ≤ 2α2 (i − 1).

Combining the observations (24a) and (24b), we can bound each summand in the

second summation in (23). Since the summands in the first summation are bounded

by α2 by definition (21) of Gi , we obtain

∥∥Pt−1u( j)
∥∥2 ≤

t−1∑

i=1

α2 +
t−1∑

i=1

(α/2)2

1/2
= α2

(
t − 1 + t − 1

2

)
≤ 2α2 (t − 1) ,

which completes the induction. ⊓⊔

By Lemma 4a the event G≤T implies our result, so using P(Gc
≤T ) ≤

∑T
t=1 P(Gc

t |
G<t ), it suffices to show that

P
(
Gc

≤T

)
≤

T∑

t=1

P(Gc
t | G<t ) ≤ δ. (25)

Let us therefore consider P
(
Gc

t | G<t

)
. By the union bound and fact that

∥∥P⊥
t−1u( j)

∥∥ ≤
1 for every t and j ,
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P(Gc
t | G<t )

≤
∑

j∈{t,...,T }
P

(∣∣∣∣∣

〈
u( j),

P⊥
t−1x (t)

∥∥P⊥
t−1x (t)

∥∥

〉∣∣∣∣∣ > α | G<t

)

=
∑

j∈{t,...,T }
Eξ,U(<t)

P

(∣∣∣∣∣

〈
u( j),

P⊥
t−1x (t)

∥∥P⊥
t−1x (t)

∥∥

〉∣∣∣∣∣ > α | ξ, U(<t), G<t

)

≤
∑

j∈{t,...,T }
Eξ,U(<t)

P

(∣∣∣∣∣

〈
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ ,
P⊥

t−1x (t)

∥∥P⊥
t−1x (t)

∥∥

〉∣∣∣∣∣ > α | ξ, U(<t), G<t

)
,

(26)

where U(<t) is shorthand for u(1), . . . , u(t−1) and ξ is the random variable generating

x (1), . . . , x (T ).

In the following lemma, we state formally that conditioned on G<i , the iterate x (i)

depends on U only through its first (i − 1) columns.

Lemma 4b For every i ≤ T , there exist measurable functions A
(i)
+ and A

(i)
− such that

x (i) = A
(i)
+
(
ξ, U(<i)

)
1(G<i ) + A

(i)
− (ξ, U ) 1(Gc

<i)
. (27)

Proof Since the iterates are informed by f̃T ;U , we may write each one as (recall

definition (4))

x (i) = A
(i)
(
ξ,∇(0,...,p) f̃T ;U (x (1)), . . . ,∇(0,...,p) f̃T ;U (x (i−1))

)
= A

(i)
− (ξ, U ) ,

for measurable functions A(i),A
(i)
− , where we recall the shorthand ∇(0,...,p)h(x) for the

derivatives of h at x to order p. Crucially, by Lemma 4a, G<i implies |〈u( j), x (s)〉| < 1
2

for every s < i and every j ≥ s. As f̄T is a fixed robust zero-chain (Definition 4), for

any s < i , the derivatives of f̃T ;U at x (s) can therefore be expressed as functions of

x (s) and u(1), . . . , u(s−1), and—applying this argument recursively—we see that x (i)

is of the form (27) for every i ≤ T . ⊓⊔

Consequently (as G<t implies G<i for every i ≤ t), conditioned on ξ, U(<t) and

G<t , the iterates x (1), . . . , x (t) are deterministic, and so is P⊥
t−1x (t). If P⊥

t−1x (t) = 0

then G t holds and P(Gc
t | G<t ) = 0, so we may assume without loss of generality that

P⊥
t−1x (t) �= 0. We may therefore regard P⊥

t−1x (t)/
∥∥P⊥

t−1x (t)
∥∥ in (26) as a deterministic

unit vector in the subspace P⊥
t−1 projects to. We now characterize the conditional

distribution of P⊥
t−1u( j)/

∥∥P⊥
t−1u( j)

∥∥.

Lemma 4c Let t ≤ T , and j ∈ {t, . . . , T }. Then conditioned on ξ, U(<t) and G<t , the

vector
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ is uniformly distributed on the unit sphere in the subspace to which

P⊥
t−1 projects.
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Proof This lemma is subtle. The vectors u( j), j ≥ t , conditioned on U(<t), are certainly

uniformly distributed on the unit sphere in the subspace orthogonal to U(<t). However,

the additional conditioning on G<t requires careful handling. Throughout the proof

we fix t ≤ T and j ∈ {t, . . . , T }. We begin by noting that by (22), G<t implies

∥∥∥P⊥
t−1u( j)

∥∥∥
2
= 1 −

∥∥∥Pt−1u( j)
∥∥∥

2
≥ 1 − 2α2(t − 1) > 0.

Therefore, when G<t holds we have P⊥
t−1u( j) �= 0 so P⊥

t−1u( j)/
∥∥P⊥

t−1u( j)
∥∥ is well-

defined.

To establish our result, we will show that the density of U(≥t) = [u(t), . . . , u(T )]
conditioned on ξ, U(<t), G<t is invariant to rotations that preserve the span of

x (1), u(1), . . . , x (t−1), u(t−1). More formally, let p≥t denote the density of U(≥t) con-

ditional on ξ, U(<t) and G<t . We wish to show that

p≥t

(
U(≥t) | ξ, U(<t), G<t

)
= p≥t

(
ZU(≥t) | ξ, U(<t), G<t

)
(28)

for every rotation Z ∈ R
d×d , Z⊤Z = Id , satisfying

Zv = v = Z⊤v for all v ∈
{

x (1), u(1), . . . , x (t−1), u(t−1)
}

.

Throughout, we let Z denote such a rotation. Letting pξ,U and pU denote the densities

of (ξ, U ) and U , respectively, we have

p≥t

(
U(≥t) | ξ, U(<t), G<t

)
= P (G<t | ξ, U ) pξ,U (ξ, U )

P
(
G<t | ξ, U(<t)

)
pξ,U(<t)

(
ξ, U(<t)

)

= P (G<t | ξ, U ) pU (U )

P
(
G<t | ξ, U(<t)

)
pU(<t)

(
U(<t)

)

where the first equality holds by the definition of conditional probability and second

by the independence of ξ and U . We have ZU(<t) = U(<t) and therefore, by the

invariance of U to rotations, pU ([U(<t), ZU(≥t)]) = pU (ZU ) = pU (U ). Hence,

replacing U with ZU in the above display yields

p≥t

(
ZU(≥t) | ξ, U(<t), G<t

)
= P (G<t | ξ, ZU ) pU (U )

P
(
G<t | ξ, U(<t)

)
pU(<t)

(
U(<t)

) .

Therefore if we prove P(G<t | ξ, U ) = P(G<t | ξ, ZU )—as we proceed to do—then

we can conclude the equality (28) holds.

First, note that P (G<t | ξ, U ) is supported on {0, 1} for every ξ, U , as they com-

pletely determine x (1), . . . , x (T ). It therefore suffices to show that P(G<t | ξ, U ) = 1

if and only if P (G<t | ξ, ZU ) = 1. Set U ′ = ZU , observing that u′(i) = Zu(i) = u(i)

for any i < t , and let x ′(1)
, . . . , x ′(T )

be the sequence generated from ξ and U ′. We

will prove by induction on i that P(G<t | ξ, U ) = 1 implies P(G<i | ξ, U ′) = 1 for

every i ≤ t . The basis of the induction is trivial as G<1 always holds. Suppose now
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that P(G<i | ξ, U ′) = 1 for i < t , and therefore x ′(1)
, . . . , x ′(i) can be written as

functions of ξ and u′(1)
, . . . , u′(i−1) = u(1), . . . , u(i−1) by Lemma 4b. Consequently,

x ′(l) = x (l) for any l ≤ i and also P ′⊥
i−1x ′(i) = P⊥

i−1x (i). Therefore, for any l ≥ i ,

∣∣∣∣∣∣

〈
u′(l),

P ′⊥
i−1x ′(i)

∥∥∥P ′⊥
i−1x ′(i)

∥∥∥

〉∣∣∣∣∣∣
(i)=
∣∣∣∣∣

〈
u(l), Z⊤ P⊥

i−1x (i)

∥∥P⊥
i−1x (i)

∥∥

〉∣∣∣∣∣
(i i)=

∣∣∣∣∣

〈
u(l),

P⊥
i−1x (i)

∥∥P⊥
i−1x (i)

∥∥

〉∣∣∣∣∣
(i i i)
≤ α,

where in (i) we substituted u′(l) = Zu(l) and P ′⊥
i−1x ′(i) = P⊥

i−1x (i), (i i) is because

P⊥
i−1x (i) = x (i)−Pi−1x (i) is in the span of vectors

{
x (1), u(1), . . . , x (i−1), u(i−1), x (i)

}

and therefore not modified by Z⊤, and (i i i) is by our assumption that G<t holds,

and so Gi holds. Therefore P
(
Gi | ξ, U ′) = 1 and P

(
G<i+1 | ξ, U ′) = 1, con-

cluding the induction. An analogous argument shows that P
(
G<t | ξ, U ′) = 1

implies P (G<t | ξ, U ) = P
(
G<t | ξ, Z⊤U ′) = 1 and thus P (G<t | ξ, U ) =

P (G<t | ξ, ZU ) as required.

Marginalizing the density (28) to obtain a density for u( j) and recalling that P⊥
t−1 is

measurable ξ, U(<t), G<t , we conclude that, conditioned on ξ, U(<t), G<t the random

variable
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ has the same density as
P⊥

t−1 Zu( j)

∥∥P⊥
t−1 Zu( j)

∥∥ . However, P⊥
t−1 Z = Z P⊥

t−1 by

assumption on Z , and therefore

P⊥
t−1 Zu( j)

∥∥P⊥
t−1 Zu( j)

∥∥ = Z
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ .

We conclude that the conditional distribution of the unit vector
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ is invariant

to rotations in the subspace to which P⊥
t−1 projects. ⊓⊔

Summarizing the discussion above, the conditional probability in (26) measures the

inner product of two unit vectors in a subspace of R
d of dimension d ′ = tr

(
P⊥

t−1

)
≥

d−2 (t − 1), with one of the vectors deterministic and the other uniformly distributed.

We may write this as

P

(∣∣∣∣∣

〈
P⊥

t−1u( j)

∥∥P⊥
t−1u( j)

∥∥ ,
P⊥

t−1x (t)

∥∥P⊥
t−1x (t)

∥∥

〉∣∣∣∣∣ > α | ξ, U(<t), G<t

)
= P(|v1| > α),

where v is uniformly distributed on the unit sphere in R
d ′

. By a standard concentration

of measure bound on the sphere [5, Lecture 8],

P(|v1| > α) ≤ 2e−d ′α2/2 ≤ 2e−
α2

2 (d−2t).

Substituting this bound back into the probability (26) gives

P
(
Gc

t | G<t

)
≤ 2 (T − t + 1) e−

α2

2 (d−2t) ≤ 2T e−
α2

2 (d−2T ).
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Substituting this in turn into the bound (25), we have P(Gc
≤T ) ≤

∑T
t=1 P(Gc

t |
G<t ) ≤ 2T 2e−

α2

2 (d−2T ). Setting d ≥ 52T R2 log 2T 2

δ
≥ 2

α2 log 2T 2

δ
+ 2T establishes

P(Gc
≤T ) ≤ δ, concluding Lemma 4. ⊓⊔

B.4 Proof of Lemma 6

Lemma 6 The function f̂T ;U satisfies the following.

i. We have f̂T ;U (0) − infx f̂T ;U (x) ≤ 12T .

ii. For every p ≥ 1, the pth order derivatives of f̂T ;U are ℓ̂p-Lipschitz continuous,

where ℓ̂p ≤ exp(cp log p + c) for a numerical constant c < ∞.

Proof Part i holds because f̂T ;U (0) = f̄T (0) and f̂T ;U (x) ≥ f̃T ;U (ρ(x)) for every

x , so

inf
x∈Rd

f̂T ;U (x) ≥ inf
x∈Rd

f̃T ;U (ρ(x)) = inf
‖x‖≤R

f̄T (x) ≥ inf
x∈Rd

f̄T (x) ,

and therefore by Lemma 3.i, we have f̂T ;U (0)−inf x f̂T ;U (x) ≤ f̄T (0)−inf x f̄T (x) ≤
12T .

Establishing part ii requires substantially more work. Since smoothness with respect

to Euclidean distances is invariant under orthogonal transformations, we take U to be

the first T columns of the d-dimensional identity matrix, denoted U = Id,T . Recall

the scaling ρ(x) = Rx/
√

R2 + ‖x‖2 with “radius” R = 230
√

T and the definition

f̂T ;U (x) = f̄T (U⊤ρ(x)) + 1
10

‖x‖2.

The quadratic 1
10

‖x‖2 term in f̂T ;U has 1
5
-Lipschitz first derivative and 0-Lipschitz

higher order derivatives (as they are all constant or zero), and we take U = Id,T

without loss of generality, so we consider the function

f̂T ;I (x) := f̄T (ρ(x)) = f̄T ([ρ (x)]1 , . . . , [ρ (x)]T ) .

We now compute the partial derivatives of f̂T ;I . Defining y = ρ(x), let ∇̃k
j1,..., jk

:=
∂k

∂ y j1
···∂ y jk

denote derivatives with respect to y. In addition, define Pk to be the set

of all partitions of [k] = {1, . . . , k}, i.e. (S1, . . . , SL) ∈ Pk if and only if the Si are

disjoint and ∪l Sl = [k]. Using the chain rule, we have for any k and set of indices

i1, . . . , ik ≤ T that

∇k
i1,...,ik

f̂T ;I (x)

=
∑

(S1,...,SL )∈Pk

T∑

j1,..., jL=1

( L∏

l=1

∇ |Sl |
iSl

ρ jl (x)

)
∇̃L

j1,..., jL
f̄T (y), y = ρ(x), (29)
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where we have used the shorthand ∇ |S|
iS

to denote the partial derivatives with respect

to each of xi j
for j ∈ S. We use the equality (29) to argue that (recall the identity (2))

∥∥∥∇ p+1 f̂T ;I (x)

∥∥∥
op

= sup
‖v‖=1

〈∇ p+1 f̂T ;I (x), v⊗(p+1)〉 := ℓ̂p − 1

5
1(p=1) ≤ ecp log p+c,

for some numerical constant5, 0 < c < ∞ and every p ≥ 1. As explained in Sect. 2.1,

this implies f̂T ;U has ecp log p+c-Lipschitz pth order derivative, giving part ii of the

lemma.

To do this, we begin by considering the partitioned sum (29). Let v ∈ R
d be an

arbitrary direction with ‖v‖ = 1. Then for j ∈ [d] and k ∈ N we define the quantity

ṽk
j = ṽk

j (x) := 〈∇kρ j (x), v⊗k〉,

algebraic manipulations and rearrangement of the sum (29) yield

〈∇k f̂T ;I (x), v⊗k〉

=
∑

(S1,...,SL )∈Pk

d∑

i1,...,ik=1

vi1vi2 · · · vik

T∑

j1,..., jL=1

( L∏

l=1

∇ |Sl |
iSl

ρ jl (x)

)
∇̃L

j1,..., jL
f̄T (y)

=
∑

(S1,...,SL )∈Pk

T∑

j1,..., jL=1

ṽ
|S1|
j1

· · · ṽ|SL |
jL

∇̃L
j1,..., jL

f̄T (y)

=
∑

(S1,...,SL )∈Pk

〈
∇̃L f̄T (y), ṽ|S1| ⊗ · · · ⊗ ṽ|SL |

〉
.

We claim that there exists a numerical constant c < ∞ such that for all k ∈ N,

sup
x

‖̃vk(x)‖ ≤ exp(ck log k + c)R1−k . (30)

Before proving inequality (30), we show how it implies the desired lemma. By the

preceding display, we have

|〈∇ p+1 f̂T ;I (x), v⊗(p+1)〉| ≤
∑

(S1,...,SL )∈Pp+1

∥∥∥∇̃L f̄T (y)

∥∥∥
op

L∏

l=1

‖̃v|Sl |‖.

Lemma 3 shows that there exists a numerical constant c < ∞ such that

∥∥∥∇(L) f̄T (y)

∥∥∥
op

≤ ℓL−1 ≤ exp(cL log L + c) for all L ≥ 2.

5 To simplify notation we allow c to change from equation to equation throughout the proof, always

representing a finite numerical constant independent of d, T , k or p.
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When the number of partitions L = 1, we have |S1| = p + 1 ≥ 2, and so Lemma 3.ii

yields

∥∥∇ f̄T (y)
∥∥

op
‖̃v|S1|‖ =

∥∥∇ f̄T (y)
∥∥ ‖̃v|S1|‖ ≤ 23

√
T · R−p exp(cp log p + c)

≤ exp(cp log p + c),

where we have used R = 230
√

T . Using |S1| + · · · + |SL | = p + 1 and the fact that

q(x) = (x + 1) log(x + 1) satisfies q(x) + q(y) ≤ q(x + y) for every x, y > 0, we

have

∥∥∥∇̃L f̄T (y)

∥∥∥
op

L∏

l=1

‖̃v|Sl |‖ ≤ exp(cp log p + c)

for some c < ∞ and every (S1, . . . , SL) ∈ Pp+1. Bounds on Bell numbers [6,

Thm. 2.1] give that there are at most exp(k log k) partitions in Pk , which combined

with the bound above gives desired result.

Let us return to the derivation of inequality (30). We begin by recalling Faà di

Bruno’s formula for the chain rule. Let f , g : R → R be appropriately smooth

functions. Then

dk

dtk
f (g(t)) =

∑

P∈Pk

f (|P|)(g(t)) ·
∏

S∈P

g(|S|)(t), (31)

where |P| denotes the number of disjoint elements of partition P ∈ Pk . Define the

function ρ(ξ) = ξ/
√

1 + ‖ξ‖2, and let λ(ξ) =
√

1 + ‖ξ‖2 so that ρ(ξ) = ∇λ(ξ) and

ρ(ξ) = Rρ(ξ/R). Let vk
j (ξ) = 〈∇kρ j (ξ), v⊗k〉, so that

vk(ξ) = ∇〈∇kλ(ξ), v⊗k〉 and ṽk = R1−kvk(x/R). (32)

With this in mind, we consider the quantity 〈∇kλ(ξ), v⊗k〉. Defining temporarily the

functions α(r) =
√

1 + 2r and β(t) = 1
2
‖ξ + tv‖2, and their composition h(t) =

α(β(t)), we evidently have

h(k)(0) = 〈∇kλ(ξ), v⊗k〉 =
∑

P∈Pk

α(|P|)(β(0)) ·
∏

S∈P

β(|S|)(0),

where the second equality used Faá di Bruno’s formula (31). Now, we note the fol-

lowing immediate facts:

α(l)(r) = (−1)l (2l − 1)!!
(1 + 2r)l−1/2

and β(l)(t) =

⎧
⎪⎨
⎪⎩

〈v, ξ 〉 + t ‖v‖2 l = 1

‖v‖2 l = 2

0 l > 2.
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Thus, if we let Pk,2 denote the partitions of [k] consisting only of subsets with one or

two elements, we have

h(k)(0) =
∑

P∈Pk,2

(−1)|P| (2|P| − 1)!!
(1 + ‖ξ‖2)|P|−1/2

〈ξ, v〉C1(P) ‖v‖2C2(P)

where Ci (P) denotes the number of sets in P with precisely i elements. Noting that

‖v‖ = 1, we may rewrite this as

〈∇kλ(ξ), v⊗k〉 =
k∑

l=1

∑

P∈Pk,2,C1(P)=l

(−1)|P| (2|P| − 1)!!
(1 + ‖ξ‖2)|P|−1/2

〈ξ, v〉l .

Taking derivatives we obtain

ṽk = ∇〈∇kλ(ξ), v⊗k〉 =
( k∑

l=1

al(ξ)〈ξ, v〉l−1

)
v +

( k∑

l=1

bl(ξ)〈ξ, v〉l

)
ξ

where

al(ξ) = l ·
∑

P∈Pk,2,C1(P)=l

(−1)|P|(2|P| − 1)!!
(1 + ‖ξ‖2)|P|−1/2

and bl(ξ) =
∑

P∈Pk,2,C1(P)=l

(−1)|P|+1(2|P| + 1)!!
(1 + ‖ξ‖2)|P|+1/2

.

We would like to bound al(ξ)〈ξ, v〉l−1 and bl(ξ)〈ξ, v〉lξ . Note that |P| ≥ C1(P) for

every P ∈ Pk , so |P| ≥ l in the sums above. Moreover, bounds for Bell numbers [6,

Thm. 2.1] show that there are at most exp(k log k) partitions of [k], and (2k − 1)!! ≤
exp(k log k) as well. As a consequence, we obtain

sup
ξ

|al(ξ)〈ξ, v〉l−1| ≤ exp(cl log l) sup
ξ

|〈ξ, v〉|l−1

(1 + ‖ξ‖2)(l−1)/2
< exp(cl log l),

where we have used |〈ξ, v〉| ≤ ‖ξ‖ due to ‖v‖ = 1. We similarly bound

supξ |bl(ξ)||〈ξ, v〉|l ‖ξ‖. Returning to expression (32), we have

sup
x

‖̃vk(x)‖ ≤ exp (ck log k + c) R1−k,

for a numerical constant c < ∞. This is the desired bound (30), completing the proof.

⊓⊔
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C Proof of Theorem 3

Theorem 3 There exist numerical constants 0 < c0, c1 < ∞ such that the following

lower bound holds. For any p ≥ 1, let D, L p, and ǫ be positive. Then

Tǫ

(
Arand,F

dist
p (D, L p)

)
≥ c0 · D1+p

(
L p

ℓ′p

) 1+p
p

ǫ
− 1+p

p ,

where ℓ′p ≤ ec1 p log p+c1 . The lower bound holds even if we restrict Fdist
p (D, L p) to

functions with domain of dimension 1 + c2q
(

D1+p
(

L p/ℓ
′
p

) 1+p
p

ǫ
− 1+p

p

)
, for a some

numerical constant c2 < ∞ and q(x) = x2 log(2x).

We divide the proof of the theorem into two parts, as in our previous results, first

providing a few building blocks, then giving the theorem. The basic idea is to introduce

a negative “bump” that is challenging to find, but which is close to the origin.

To make this precise, let e( j) denote the j th standard basis vector. Then we define

the bump function h̄T : R
T → R by

h̄T (x) = Ψ

(
1 − 25

2

∥∥∥∥x − 4

5
e(T )

∥∥∥∥
2
)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0
∥∥x − 4

5
e(T )

∥∥ ≥ 1
5

exp

⎛
⎜⎝1 − 1(

1−25

∥∥∥x− 4
5

e(T )
∥∥∥

2
)2

⎞
⎟⎠ otherwise.

(33)

As Fig. 2 shows, h̄T features a unit-height peak centered at 4
5

e(T ), and it is identically

zero when the distance from that peak exceeds 1
5
. The volume of the peak vanishes

exponentially with T , making it hard to find by querying h̄T locally. We list the

properties of h̄T necessary for our analysis.

Fig. 2 Two-dimensional cross-section of the bump function h̄T
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Lemma 10 The function h̄T satisfies the following.

i. h̄T

(
0.8e(T )

)
= 1 and h̄T (x) ∈ [0, 1] for all x ∈ R

T .

ii. h̄T (x) = 0 on the set {x ∈ R
d | xT ≤ 3

5
or ‖x‖ ≥ 1}.

iii. For p ≥ 1, the pth order derivatives of h̄T are ℓ̃p-Lipschitz continuous, where

ℓ̃p < e3p log p+cp for some numerical constant c < ∞.

We prove the lemma in Sect. C.1; the proof is similar to that of Lemma 6. With

these properties in hand, we can prove Theorem 3.

C.1 Proof of Lemma 10

Properties i and ii are evident from the definition (33) of h̄T . To show property iii,

consider h(x) = h̄T ( x+0.8e(T )

5
) = Ψ (1− 1

2
‖x‖2), which is a translation and scaling of

h̄T , so if we show h has (ℓ̃p/5p+1)-Lipschitz pth order derivatives, for every p ≥ 1, we

obtain the required results. For any x, v ∈ R
T with ‖v‖ ≤ 1 we define the directional

projection hx,v(t) = h(x + t · v). The required smoothness bound is equivalent to

∣∣∣h(p+1)
x,v (0)

∣∣∣ ≤ ℓ̃p/5p+1 ≤ ecp log p+c

for every x, v ∈ R
d with ‖v‖ ≤ 1, every p ≥ 1 and some numerical constant c < ∞

(which we allow to change from equation to equation, caring only that it is finite and

independent of T and p).

As in the proof of Lemma 6, we write hx,v(t) = Ψ (β(t)) where β(t) = 1 −
1
2
‖x + tv‖2, and use Faá di Bruno’s formula (31) to write, for any k ≥ 1,

h(k)
x,v(0) =

∑

P∈Pk

Ψ (|P|)(β(0)) ·
∏

S∈P

β(|S|)(0),

where Pk is the set of partitions of [k] and |P| denotes the number of set in partition

P . Noting that β ′(0) = −〈x, v〉, β ′′(0) = −‖v‖2 and β(n)(0) = 0 for any n > 2, we

have

h(k)
x,v(0) =

∑

P∈Pk,2

(−1)|P|Ψ (|P|)
(

1 − 1

2
‖x‖2

)
〈x, v〉C1(P) ‖v‖2C2(P)

where Pk,2 denote the partitions of [k] consisting only of subsets with one or two

elements and Ci (P) denotes the number of sets in P with precisely i elements.

Noting that Ψ (k)(1 − 1
2
‖x‖2) = 0 for any k ≥ 0 and ‖x‖ > 1, we may assume

‖x‖ ≤ 1. Since ‖v‖ ≤ 1, we may bound |h(p+1)
x,v (0)| by

∣∣∣h(p+1)
x,v (0)

∣∣∣ ≤
∣∣Pp+1,2

∣∣ · max
k∈[p+1]

sup
x∈R

|Ψ (k)(x)|

(i)
≤ e

p+1
2 log(p+1) · e

5(p+1)
2 log( 5

2 (p+1)) ≤ e3p log p+cp
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for some absolute constant c < ∞, where inequality (i) follows from Lemma 1.iv

and that the number of matchings in the complete graph (or the kth telephone number

[21, Lem. 2]) has bound |Pk,2| ≤ e
k
2 log k . This gives the result.

C.2 Proof of Theorem 3

For some T ∈ N and σ > 0 to be specified, and d =
⌈

52 · 2302 · T 2 log(4T 2)
⌉

,

consider the function fU : R
d → R indexed by orthogonal matrix U ∈ R

d×T and

defined as

fU (x) = L pσ
p+1

ℓ′p
f̂T ;U (x/σ) − L p D p+1

ℓ′p
h̄T (U⊤x/D),

where f̂T ;U (x) = f̃T ;U (ρ(x)) + 1
10

‖x‖2 is the randomized hard instance con-

struction (13) with ρ(x) = x/
√

1 + ‖x/R‖2, h̄T is the bump function (33) and

ℓ′p = ℓ̂p + ℓ̃p, for ℓ̂p and ℓ̃p as in Lemmas 6.ii and 10.iii, respectively. By the

lemmas, fU has L p-Lipschitz pth order derivatives and ℓ′p ≤ ec1 p log p+c1 for some

c1 < ∞. We assume that σ ≤ D; our subsequent choice of σ will obey this constraint.

Following our general proof strategy, we first demonstrate that fU ∈ Fdist
p (D, L p),

for which all we need do is guarantee that the global minimizers of fU have norm at

most D. By the constructions (13) and (10) of f̂T ;U and f̃T ;U , Lemma 10.i implies

fU

(
(0.8D)u(T )

)

= L pσ
p+1

ℓ′p
f̄T (ρ(e(T ))) + L pσ

p+1

10ℓ′p

∥∥∥∥∥
4Du(T )

5σ

∥∥∥∥∥

2

− L p D p+1

ℓ′p
h̄T (0.8e(T ))

= L pσ
p+1

ℓ′p
f̄T (0) + 8L pσ

p−1 D2

125ℓ′p
+ −L p D p+1

ℓ′p
< −117

125

L p D p+1

ℓ′p

+ L pσ
p+1

ℓ′p
f̄T (0)

with the final inequality using our assumption σ ≤ D. On the other hand, for any x

such that h̄T (U⊤x/D) = 0, we have by Lemma 6.i (along with f̂T ;U (0) = 0) that

fU (x) ≥ L pσ
p+1

ℓ′p
inf

x
f̂T ;U (x) ≥ −12

L pσ
p+1

ℓ′p
T + L pσ

p+1

ℓ′p
f̄T (0).

Combining the two displays above, we conclude that if

12
L pσ

p+1

ℓ′p
T ≤ 117

125

L p D p+1

ℓ′p
,
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then all global minima x⋆ of fU must satisfy h̄T (U⊤x⋆/D) > 0. Inspecting the

definition (18) of h̄T , this implies
∥∥x⋆/D − 0.8u(T )

∥∥ < 1
5
, and therefore ‖x⋆‖ ≤ D.

Thus, by setting

T =
⌊

D p+1

13σ p+1

⌋
, (34)

we guarantee that fU ∈ Fdist
p (D, L p) as long as σ ≤ D.

It remains to show that, for an appropriately chosen σ , any randomized algorithm

requires (with high probability) more than T iterations to find x such that ‖∇ fU (x)‖ <

ǫ. We claim that when σ ≤ D, for any x ∈ R
d ,

|〈u(T ), ρ(x/σ)〉| <
1

2
implies h̄T (U⊤y/D) = 0 for y in a neighborhood of x .

(35)

We defer the proof of claim (35) to the end of this section.

Now, let U ∈ R
d×T be an orthogonal matrix chosen uniformly at random from

O(d, T ). Let x (1), . . . , x (t) be a sequence of iterates generated by algorithm A ∈ Arand

applied on fU . We argue that |〈u(T ), ρ(x (t)/σ)〉| < 1/2 for all t ≤ T , with high

probability. To do so, we briefly revisit the proof of Lemma 4 (Sect. B.3) where

we replace f̃T ;U with fU and x (t) with ρ(x (t)/σ). By Lemma 4a we have that for

every t ≤ T the event G≤t implies |〈u(T ), ρ(x (s)/σ)〉| < 1/2 for all s ≤ t , and

therefore by the claim (35) we have that Lemma 4b holds (as we may replace the

terms h̄T (U⊤x (s)/D), s < t , with 0 whenever G<t holds). The rest of the proof of

Lemma 4a proceeds unchanged and gives us that with probability greater than 1/2

(over any randomness in A and the uniform choice of U ),

|〈u(T ), ρ(x (t)/σ)〉| <
1

2
for all t ≤ T .

By claim (35), this implies ∇h̄T (U⊤x (t)/D) = 0, and by Lemma 5, ‖∇ f̂T ;U (x (t)/σ)‖
> 1/2. Thus, after scaling,

∥∥∥∇ fU (x (t))

∥∥∥ >
L pσ

p

2ℓ′p

for all t ≤ T , with probability greater that 1/2. As in the proof of Theorem 2, By

taking σ = (2ℓ′pǫ/L p)
1/p we guarantee

inf
A∈Adet

sup
U∈O(d,T )

Tǫ

(
A, fU

)
≥ 1 + T .

where T =
⌊

D p+1/13σ p+1
⌋

is defined in Eq. (34). Thus, as fU ∈ Fdist
p (D, L p) for

our choice of T , we immediately obtain
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Tǫ

(
Arand,F

dist
p (D, L p)

)
≥ T + 1 ≥ D1+p

52

(
L p

ℓ′p

) 1+p
p

ǫ
− 1+p

p ,

as long as our initial assumption σ ≤ D holds. When σ > D, we have that
2ℓ′p
L p

ǫ > D p,

or 1 > D p+1(
L p

2ℓ′p
)

1+p
p ǫ

− 1+p
p , so that the bound is vacuous in this case regardless: every

method must take at least 1 step.

Finally, we return to demonstrate claim (35). Note that |〈u(T ), ρ(x/σ)〉| < 1/2

is equivalent to |〈u(T ), x〉| < σ
2

√
1 + ‖ x

σ R
‖2, and consider separately the cases

‖x/σ‖ ≤ R/2 and ‖x/σ‖ > R/2 = 115
√

T . In the first case, we have |〈u(T ), x〉| <

(
√

5/4)σ < (3/5)D, by our assumption σ ≤ D. Therefore, by Lemma 10.ii we

have that h̄T (U⊤y/D) = 0 for y near x . In the second case, we have ‖x‖ >

(4R/
√

5)|〈u(T ), x〉| > 230|〈u(T ), x〉|. If in addition |〈u(T ), x〉| < (3/5)D then our

conclusion follows as before. Otherwise, ‖x‖ /D > 230 · (3/5) > 1, so again the

conclusion follows by Lemma 10.ii.
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