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Abstract
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any (potentially randomized) algorithm A, there exists a function f with Lipschitz pth
order derivatives such that A requires at least e ~(?*1/? queries to find an e-stationary
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1 Introduction
Consider the optimization problem

minimize f(x)
xeRd

where f : RY — R is smooth, but possibly non-convex. In general, it is intractable
to even approximately minimize such f [33,35], so—following an established line
of research—we consider the problem of finding an e-stationary point of f, meaning
some x € R? such that

VSl < e. ey

We prove lower bounds on the number of function and derivative evaluations required
for algorithms to find a point x satisfying inequality (1). While for arbitrary smooth
f, anear-stationary point (1) is certainly insufficient for any type of optimality, there
are a number of reasons to study algorithms and complexity for finding stationary
points. In several statistical and engineering problems, including regression models
with non-convex penalties and objectives [30,31], phase retrieval [12,42], and non-
convex (low-rank) reformulations of semidefinite programs and matrix completion
[8,11,27], it is possible to show that all first- or second-order stationary points are
(near) global minima. The strong empirical success of local search strategies for such
problems, as well as for neural networks [28], motivates a growing body of work on
algorithms with strong complexity guarantees for finding stationary points [2,7,13,15,
40]. In contrast to this algorithmic progress, algorithm-independent lower bounds for
finding stationary points are largely unexplored.

Even for non-convex functions f, it is possible to find e-stationary points for which
the number of function and derivative evaluations is polynomial in 1/€ and the dimen-
sion d of dom f. Of particular interest are methods for which the number of function
and derivative evaluations does not depend on d, but instead depends on measures
of f’s regularity. The best-known method with such a dimension-free convergence
guarantee is classical gradient descent: for every (non-convex) function f with Li-
Lipschitz gradient satisfying f(x(®)—inf, f(x) < A atthe initial point x(?), gradient
descent finds an e-stationary point in at most 2L Ae? iterations [37]. Under the
additional assumption that f has Lipschitz continuous Hessian, our work [15] and
Agarwal et al. [2] exhibit randomized first-order methods that find an e-stationary
point in time scaling as € ~//*log g (igoring other problem-dependent constants). In
subsequent work [13], we show a different deterministic accelerated gradient method
that achieves dimension-free complexity € ~7/* log %, and if f additionally has Lips-
chitz third derivatives, then e /3 log % iterations suffice to find an e-stationary point.

By evaluation of higher order derivatives, such as the Hessian, it is possible to
achieve better € dependence. Nesterov and Polyak’s cubic regularization of Newton’s
method [16,40] guarantees e-stationarity (1) in € /2 iterations, but each iteration may
be expensive when the dimension d is large. More generally, pth-order regularization
methods iterate by sequentially minimizing models of f based on order p Taylor
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approximations, and Birgin et al. [7] show that these methods converge in ¢ ~(P*+1D/P
iterations. Each iteration requires finding an approximate stationary point of a high-
dimensional, potentially non-convex, degree p+ 1 polynomial, which suggests that the
methods will be practically challenging for p > 2. The methods nonetheless provide
fundamental upper complexity bounds.

In this paper and its companion [14], we focus on the converse problem: providing
dimension-free complexity lower bounds for finding e-stationary points. We show
fundamental limits on the best achievable € dependence, as well as dependence on
other problem parameters. Together with known upper bounds, our results shed light
on the optimal rates of convergence for finding stationary points.

1.1 Related lower bounds

In the case of convex optimization, we have a deep understanding of the complexity
of finding e-suboptimal points, that is, x satisfying f(x) < f(x*)+¢€ forsome e > 0,
where x* € arg min, f (x). Here we review only the dimension-free optimal rates, as
those are most relevant for our results. Given a point x (¥ satisfying | x© — x*|| < D <
00, if f is convex with L;-Lipschitz gradient, Nesterov’s accelerated gradient method
finds an e-suboptimal pointin /L1 De ~'/? gradient evaluations, which is optimal even
among randomized, higher-order algorithms [35-37,45].! For non-smooth problems,
that is, when f is Lo-Lipschitz, subgradient methods achieve the optimal rate of
L%D2 /62 subgradient evaluations (cf. [10,35,37]). In Part II of this paper [14], we
consider the impact of convexity on the difficulty of finding stationary points using
first-order methods.

Globally optimizing smooth non-convex functions is of course intractable:
Nemirovski and Yudin [35, §1.6] show that for functions f : RY — R with Lip-
schitz 1st through pth derivatives, and algorithms receiving all derivatives of f at the
query point x, the worst case complexity of finding e-suboptimal points scales at least
as (1/€)?/P_ This exponential scaling in d shows that dimension-free guarantees for
achieving near-optimality in smooth non-convex functions are impossible to obtain.

Less is known about lower bounds for finding stationary points for f : RY — R.
Nesterov [39] proposes lower bounds for finding stationary points under a box
constraint, but his construction does not extend to the unconstrained case when
F(x@) —inf, f(x) is bounded. Vavasis [44] considers the complexity of finding
e-stationary points of functions with Lipschitz derivatives in a first-order (gradient
and function-value) oracle model. For such problems, he proves a lower bound of
€~ 1/2 oracle queries that applies to any deterministic algorithm operating on certain
two-dimensional functions. This appears to be the first algorithm-independent lower
bound for approximating stationary points of non-convex functions, but it is unclear
if the bound is tight, even for functions on R2.

A related line of work considers algorithm-dependent lower bounds, describing
functions that are challenging for common classes of algorithms, such as Newton’s

1 Higher order methods can yield improvements under additional smoothness: if in addition f has L>-
Lipschitz Hessian and € < Lz/ 3L; 4/3 D2/ 3, an accelerated Newton method achieves the (optimal) rate
(L2D3/e)?/7 [4,32].
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method and gradient descent. In this vein, Jarre [25] shows that the Chebyshev—
Rosenbrock function is difficult to optimize, and that any algorithm that employs line
search to determine the step size will require an exponential (in €) number of iterations
to find an e-suboptimal point, even though the Chebyshev—Rosenbrock function has
only a single stationary point. While this appears to contradict the polynomial com-
plexity guarantees mentioned above, Cartis et al. [19] explain this by showing that the
difficult Chebyshev—Rosenbrock instances have e-stationary point with function value
that is w (€)-suboptimal. Cartis et al. also develop algorithm-specific lower bounds on
the iteration complexity of finding approximate stationary points. Their works [16,17]
show that the performance guarantees for gradient descent and cubic regularization
of Newton’s method are tight for two-dimensional functions they construct, and they
also extend these results to certain structured classes of methods [18,20].

1.2 The importance of high-dimensional constructions

To tightly characterize the algorithm- and dimension-independent complexity of find-
ing e-stationary points, one must construct hard instances whose domain has dimension
that grows with 1/€. The reason for this is simple: there exist algorithms with complex-
ity that trades dependence on dimension d in favor of better 1 /e dependence. Indeed,
Vavasis [44] gives a grid-search method that, for functions with Lipschitz gradient,
finds an e-stationary point in max{2¢, e ~2¢/(@+2)} gradient and function evaluations.
Moreover, Hinder [24] exhibits a cutting-plane method that, for functions with Lips-
chitz first and third derivatives, finds an e-stationary point in d - € ~#/3 log é gradient
and function evaluations.

High-dimensional constructions are similarly unavoidable when developing lower
bounds in convex optimization. There, the center-of-gravity cutting plane method
(cf. [37]) finds an e-suboptimal point in d logé (sub)gradient evaluations, for any
continuous convex function with bounded distance to optimality. Consequently, proofs
of the dimension-free lower bound for convex optimization (as we cite in the previous
section) all rely on constructions whose dimensionality grows polynomially in 1/e€.

Our paper continues this well-established practice, and our lower bounds apply
in the following order of quantifiers: for all € > 0, there exists a dimension d € N
such that for any d’ > d and algorithm A, there is some f : R — R such that A
requires at least 7 (¢€) oracle queries to find an e-stationary point of f. Our bounds on
deterministic algorithms require dimension d = 1 + 27 (¢), while our bounds on all
randomized algorithms require d = c- T (¢)? log T (¢) for anumerical constant ¢ < oo.
In contrast, the results of Vavasis [44] and Cartis et al. [16—18,20] hold with d = 2
independent of €. Inevitably, they do so at a cost; the lower bound [44] is loose, while
the lower bounds [16—18,20] apply only to certain algorithm classes (based on Taylor
models) that exclude the aforementioned grid-search and cutting-plane algorithms.

1.3 Our contributions

In this paper, we consider the class of all randomized algorithms that access the function
f through an information oracle that returns the function value, gradient, Hessian and

@ Springer



Lower bounds for finding stationary points | 75

all higher-order derivatives of f at a queried point x. Our main result (Theorem 2 in
Sect. 5) is as follows. Let p € Nand A, L, and € > 0. Then, for any randomized
algorithm A based on the oracle described above, there exists a function f that has
L »-Lipschitz pth derivative, satisfies f (x@) — f(x*) < A, and is such that, with
high probability, A requires at least

cp AL}/I’E—(P‘H)/P

oracle queries to find an e-stationary point of f, where ¢, > 01is a constant decreasing
at most polynomially in p. As explained in the previous section, the domain of the
constructed function f has dimension polynomial in 1/€.

For every p, our lower bound matches (up to a constant) known upper bounds,
thereby characterizing the optimal complexity of finding stationary points. For p = 1,
our results imply that gradient descent [37,39] is optimal among all methods (even
randomized, high-order methods) operating on functions with Lipschitz continuous
gradient and bounded initial sub-optimality. Therefore, to strengthen the guarantees
of gradient descent one must introduce additional assumptions, such as convexity of
f or Lipschitz continuity of V2 f. Similarly, in the case p = 2 we establish that cubic
regularization of Newton’s method [16,40] achieves the optimal rate € ~3/2, and for
general p we show that pth order Taylor-approximation methods [7] are optimal.

These results say little about the potential of first-order methods on functions with
higher-order Lipschitz derivatives, where first-order methods attain rates better than
€72 [13]. In Part II of this series [14], we address this issue and show lower bounds for
deterministic algorithms using only first-order information. The lower bounds exhibit
a fundamental gap between first- and second-order methods, and nearly match the
known upper bounds [13].

1.4 Our approach and paper organization

In Sect. 2 we introduce the classes of functions and algorithms we consider as well
as our notion of complexity. Then, in Sect. 3, we present the generic technique we
use to prove lower bound for deterministic algorithms in both this paper and Part II
[14]. While essentially present in previous work, our technique abstracts away and
generalizes the central arguments in many lower bounds [4,34,35,45]. The technique
applies to higher-order methods and provides lower bounds for general optimization
goals, including finding stationary points (our main focus), approximate minimizers,
and second-order stationary points. It is also independent of whether the functions
under consideration are convex, applying to any function class with appropriate rota-
tional invariance [35]. The key building blocks of the technique are Nesterov’s notion
of a “chain-like” function [37], which is difficult for a certain subclass of algorithms,
and a “resisting oracle” [35,37] reduction that turns a lower bound for this subclass
into a lower bound for all deterministic algorithms.

In Sect. 4 we apply this generic method to produce lower bounds for deterministic
methods (Theorem 1). The deterministic results underpin our analysis for randomized
algorithms, which culminates in Theorem 2 in Sect. 5. Following Woodworth and
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Srebro [45], we consider random rotations of our deterministic construction, and show
that for any algorithm such a randomly rotated function is, with high probability,
difficult. For completeness, in Sect. 6 we provide lower bounds on finding stationary
points of functions where ||x© — x*|| is bounded, rather than the function value gap
F(x@) — £(x*); these bounds have the same ¢ dependence as their bounded function
value counterparts.

Notation Before continuing, we provide the conventions we adopt throughout the
paper. For a sequence of vectors, subscripts denote coordinate index, while parenthe-
sized superscripts denote element index, e.g. x}l) is the jth coordinate of the ith entry
in the sequence x', x®®, .. .. Forany p > 1 and p times continuously differentiable
f:RY — R, welet V” f(x) denote the tensor of pth order partial derivatives of f at
point x, so V? f(x) is an order p symmetric tensor with entries

[VPr@]; =V/ -f(x)=ap—f(x) forij e {l,...,d}.

----- P yenslp 8-xl] "'axip

Equivalently, we may write V7 f(x) as a multilinear operator V? f (x) : (R9)? — R,
VP f(x) [v(l), o v(”)]

d d
opP
=2 2w o Ty = (v pm @@ ),
= — PoOxiy - 0X;),

i

where (-, -) is the Euclidean inner product on tensors, defined for order k tensors T
and M by (T, M) = Zil,...,ik T;,.....iMi, .. i, and ® denotes the Kronecker product.

. k
We let @*d denote d x - - - x d, k times, so that T € R®¥ denotes an order k tensor.
For a vector v € R? we let ||v]| := +/ (v, v) denote the Euclidean norm of v. For a
k . .
tensor T € R® 9 the Euclidean operator norm of 7 is

,,,,,

ITllgp = sup {<T, oD@ ... @u®)
v&)

1 k i .
= Z Ty ol ol 00 = i =1, k],

1

If T is a symmetric order k tensor, meaning that 7;, __; is invariant to permutations
of the indices (for example, V¥ f(x) is always symmetric), then Zhang et al. [47,
Thm. 2.1] show that

ITllop = sup [(T.v®)|, where v* =v@v® - ®v. )
o=t k times

For vectors, the Euclidean and operator norms are identical.
For any n € N, we let [n] := {1, ..., n} denote the set of positive integers less
than or equal to n. We let C* denote the set of infinitely differentiable functions.
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We denote the ith standard basis vector by e and let 1; € R4*%4 denote the d x d
identity matrix; we drop the subscript d when it is clear from context. For any set S
and functions g, h : § — [0, 00) we write g < h or g = O(h) if there exists ¢ > 0
such that g(s) < c - h(s) forevery s € S. We write g = 0 (h) if g < hlog(h + 2).

2 Preliminaries

We begin our development with definitions of the classes of functions (Sect. 2.1),
classes of algorithms (Sect. 2.2), and notions of complexity (Sect. 2.3) that we study.

2.1 Function classes

Measures of function regularity are crucial for the design and analysis of optimization
algorithms [9,35,37]. We focus on two types of regularity conditions: Lipschitzian
properties of derivatives and bounds on function value.

We first list a few equivalent definitions of Lipschitz continuity. A function
f:R! > Rhas L p-Lipschitz pth order derivatives if it is p times continuously
differentiable, and for every x € R? and direction v € R?, |[v|| < 1, the directional
projection fy () := f(x +1¢-v) of f, defined for r € R, satisfies

£ @6 — 1P

<Lplt—7|

forallz,t’ € R, where fx(f”v)(-) is the pth derivative of t — fx ,(¢).If fis p+ 1 times

continuously differentiable, this is equivalent to requiring

PO =L, o [V F@

=L,
op

forall x,v € R?, |lv] < 1. We occasionally refer to a function with Lipschitz pth
order derivatives as pth order smooth.

Complexity guarantees for finding stationary points of non-convex functions f
typically depend on the function value bound f(x©@) — inf, f(x), where x@ is a
pre-specified point. Without loss of generality, we take the pre-specified point to be 0
for the remainder of the paper. With that in mind, we define the following classes of
functions.

Definition1 Let p > 1, A > O and L, > 0. Then the set
Fp(A, Lp)

denotes the union, over d € N, of the collection of C* functions f : RY — R with
L ,-Lipschitz pth derivative and f(0) —inf, f(x) < A.

The function classes (A, L) include functions on R4 for all d € N, follow-
ing the established study of “dimension free” convergence guarantees [35,37]. As
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explained in Sect. 1.2, we construct explicit functions f : RY — R that are difficult
to optimize, where the dimension d is finite, but our choice of d grows inversely in
the desired accuracy of the solution.

For our results, we also require the following important invariance notion, proposed
(in the context of optimization) by Nemirovski and Yudin [35, Ch. 7.2].

Definition 2 [Orthogonal invariance] A class of functions F is orthogonally invariant
if forevery f € F, f : R? - R, and every matrix U € R? ¢ such that U ' U = I,
the function fy : R? — R defined by fy(x) = f(U"x) belongs to F.

Every function class we consider is orthogonally invariant, as f(0) — inf, f(x) =
fu(0) —inf, fy(x) and fy has the same Lipschitz constants to all orders as f, as
their collections of associated directional projections are identical.

2.2 Algorithm classes

We also require careful definition of the classes of optimization algorithms we consider.
For any dimension d € N, an algorithm A (also referred to as method) maps functions
f :RY — R to a sequence of iterates in R?; that is, A is defined separately for every
finite d. We let

ALf] = (xD)2,

denote the sequence x) € R¥ of iterates that A generates when operating on f.

To model the computational cost of an algorithm, we adopt the information-based
complexity framework, which Nemirovski and Yudin [35] develop (see also [1,10,43]),
and view every every iterate x*) as a query to an information oracle. Typically, one
places restrictions on the information the oracle returns (e.g. only the function value and
gradient at the query point) and makes certain assumptions on how the algorithm uses
this information (e.g. deterministically). Our approach is syntactically different but
semantically identical: we build the oracle restriction, along with any other assumption,
directly into the structure of the algorithm. To formalize this, we define

VOP) f(x) 1= (f(x), VF(X), VEF(x), ..., VP f(x)}

as shorthand for the response of a pth order oracle to a query at point x. When p = oo
this corresponds to an oracle that reveals all derivatives at x. Our algorithm classes
follow.

Deterministic algorithms For any p > 0, a pth-order deterministic algorithm A
operating on f : RY — R is one producing iterates of the form

x® = A® (V(O""'p)f(x(l)), o V(O’wl’)f(x("*”)) fori € N,

where A®¥) is a measurable mapping to R? (the dependence on dimension d is implicit).

We denote the class of pth-order deterministic algorithms by Aé‘éi and let Aget 1=

Agﬁ) denote the class of all deterministic algorithms based on derivative information.
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As a concrete example, for any p > 1 and L > 0 consider the algorithm REG, | €

.A((j’;i that produces iterates by minimizing the sum of a pth order Taylor expansion

and an order p + 1 proximal term:

P
x®+D . — are min {f(x(k)) + Z(qu(x<k)), x®9y

lx — x“‘>||f’+1}.
q=1

(p+ D!
3)

For p = 1, REG,, 1 is gradient descent with step-size 1/L, for p = 2 it is cubic-
regularized Newton’s method [40], and for general p it is a simplified form of the
scheme that Birgin et al. [7] propose.

Randomized algorithms (and function-informed processes) A pth-order randomized
algorithm A is a distribution on pth-order deterministic algorithms. We can write
any such algorithm as a deterministic algorithm given access to a random uniform
variable on [0, 1] (i.e. infinitely many random bits). Thus the algorithm operates on f
by drawing & ~ Uni[0, 1] (independently of f), then producing iterates of the form

MONNG) (E,V(O ..... P rDy, L O p)f(xo'—l))) fori € N, 4)

where A®) are measurable mappings into R?. In this case, A[ f] is a random sequence,
and we call a random process {x "}, cry informed by f if it has the same law as A[ ] for

some randomized algorithm A. We let ‘Ag)r:d
(c0)

algorithms and Arang := A, denote the class of randomized algorithms that use
derivative-based information.

denote the class of pth-order randomized

Zero-respecting sequences and algorithms While deterministic and randomized algo-
rithms are the natural collections for which we prove lower bounds, it is useful to define
an additional structurally restricted class. This class forms the backbone of our lower
bound strategy (Sect. 3), as it is both ‘small’ enough to uniformly underperform on
a single function, and ‘large’ enough to imply lower bounds on the natural algorithm
classes.

For v € R? we let supp {v} := {i € [d] | vi # 0} denote the support (non-zero
indices) of v. We extend this to tensors as follows. Let T € R®'? be an order k
tensor, and fori € {1, ...,d} let T, € R® ' be the order (k — 1) tensor defined by
[Ti1jy,....jkc = Ti jy,.... ju_, - With this notation, we define

supp{T}:={i € {1,...,d} | T; #0}.

Then for p € N and any f : RY - R, we say that the sequence xD x@ s pth
order zero-respecting with respect to f if

supp {x(’)} C U U supp {qu(x(s))} foreacht € N. 5)

gelp]s<t
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The definition (5) says that xl.(t) = Oifall partial derivatives involving the i th coordinate

of f (up to the pth order) are zero. For p = 1, this definition is equivalent to the

requirement that for every ¢ and j € [d], if V; f(x )y = 0 for s < t, then x](.t) = 0.

The requirement (5) implies that x() = 0.

An algorithm A € Aang is pth order zero-respecting if for any f : R? — R,
the (potentially random) iterate sequence A[ f] is pth order zero respecting w.r.t.
f. Informally, an algorithm is zero-respecting if it never explores coordinates which
appear not to affect the function. When initialized at the origin, most common first- and
second-order optimization methods are zero-respecting, including gradient descent
(with and without Nesterov acceleration), conjugate gradient [23], BFGS and L-BFGS
[29,41],2 Newton’s method (with and without cubic regularization [40]) and trust-
region methods [22]. We denote the class of pth order zero-respecting algorithms by

) and let Ay 1= ALY

In the literature on lower bounds for first-order convex optimization, it is common to
assume that methods only query points in the span of the gradients they observe [3,37].
Our notion of zero-respecting algorithms generalizes this assumption to higher-order
methods, but even first-order zero-respecting algorithms are slightly more general. For
example, coordinate descent methods [38] are zero-respecting, but they generally do
not remain in the span of the gradients.

2.3 Complexity measures

With the definitions of function and algorithm class in hand, we turn to formalizing
our notion of complexity: what is the best performance an algorithm in class A can
achieve for all functions in class F? As we consider finding stationary points of f,
the natural performance measure is the number of iterations (oracle queries) required
to find a point x such that ||V f(x)|| < €. Thus for a deterministic sequence {x(’ )}teN
we define

Te((<Oer £) = inf {1 € N | [V < e

and refer to it as the complexity of {x};cn on f. As we consider randomized algo-
rithms as well, for arandom process {x ")}, with probability distribution P, meaning
foraset A C (R?)N the probability that {x},;cx € A is P(A), we define

T (P, f) = inf{t eN|P([Vfa)] > eforalls <) < %} ©6)

The complexity T (P, f) is also the median of the random variable T¢ ({x},en, f)
for {x},ey ~ P. By Markov’s inequality, definition (6) provides a lower bound on
expectation-based alternatives, as

2 If the initial Hessian approximation is a diagonal matrix, as is typical.
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inf {r e NTEp [IV£G )] < €} = Tac(P. £) and Ep [Te(1x)en, £)]

1
Z _TG (P ) f )
2
(Here Ep denotes expectation taken according to the distribution P.)
To measure the performance of algorithm A on function f, we evaluate the iterates
it produces from f, and with mild abuse of notation, we define

Te(A, f) :=Te(ALfL f)

as the complexity of A on f. With this setup, we define the complexity of algorithm
class A on function class F as

T (A, := inf Te(A, ).
(A7) ;&gg( f) )

Many algorithms guarantee “dimension independent” convergence [37] and thus
provide upper bounds for the quantity (7). A careful tracing of constants in the analysis
of Birgin et al. [7] implies that the generalized regularization scheme REG), ; defined
by the recursion (3) guarantees

T (Agn VAL Fp(A L)< sup  Te(REG, 1, f)SALY e PP (8)
FEF,(ALy)

for all p € N. In this paper we prove these rates are sharp to within (p-dependent)
constant factors.

While definition (7) is our primary notion of complexity, our proofs provide bounds
on smaller quantities than (7) that also carry meaning. For zero-respecting algorithms,
we exhibit a single function f and bound infac 4, Te(A, f) from below, in effect
interchanging the inf and sup in (7). This implies that all zero-respecting algorithms
share a common vulnerability. For randomized algorithms, we exhibit a distribution
P supported on functions of a fixed dimension d, and we lower bound the average
infac A,nq [ Te (A, f)dP(f), bounding the distributional complexity [10,35], which is
never greater than worst-case complexity (and is equal for randomized and determinis-
tic algorithms). Even randomized algorithms share a common vulnerability: functions
drawn from P.

3 Anatomy of a lower bound

In this section we present a generic approach to proving lower bounds for optimization
algorithms. The basic techniques we use are well-known and applied extensively in
the literature on lower bounds for convex optimization [4,35,37,45]. However, here we
generalize and abstract away these techniques, showing how they apply to high-order
methods, non-convex functions, and various optimization goals (e.g. e-stationarity,
€-optimality).
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3.1 Zero-chains

Nesterov [37, Chapter 2.1.2] proves lower bounds for smooth convex optimization
problems using the “chain-like” quadratic function

d—1
1 1
J00 =500 = 1% + 5 ;m — xi41)?, )

which he calls the “worst function in the world.” The important property of f is that
for every i € [d], V; f(x) = 0 whenever x;_1 = x; = xj4+1 = 0 (with x¢ := 1 and
X441 := 0). Thus, if we “know” only the first # — 1 coordinates of f, i.e. are able to
query only vectors x such x; = x;41 = --- = x4 = 0, then any x we query satisfies
Vs f(x) = 0fors > r; we only “discover” a single new coordinate t. We generalize
this chain structure to higher-order derivatives as follows.

Definition 3 For p € N, a function f : RY — R is a pth-order zero-chain if for every
x e RY,

supp {x} € {1,...,i — 1} implies U supp (VI f(0)} € {1,....i}.
q€lp]

We say f is a zero-chain if it is a pth-order zero-chain for every p € N.

In our terminology, Nesterov’s function (9) is a first-order zero-chain but not a
second-order zero-chain, as supp { V2 £(0)} = [d]. Informally, at a point for which
Xi—1 = x; = --- = xg = 0, a zero-chain appears constant in x;, Xj4+1, ..., Xq.
Zero-chains structurally limit the rate with which zero-respecting algorithms acquire
information from derivatives. We formalize this in the following observation, whose
proof is a straightforward induction; see Table 1 for an illustration.

Observation1 Ler f : RY — R be a pth order zero-chain and let xV = 0, x@, ...

be a pth order zero-respecting sequence with respect to f. Then X" =0 for j >t

and all t < d. !

Proof We show by induction on k that supp {x(‘)} C [t — 1] for every t < k; the case
k = d is the required result. The case k = 1 holds since x(! = 0. If the hypothesis
holds for some k < d then by Definition 3 we have Uge(psupp {V4 f(x)} <

{1,...,¢} for every t < k. Therefore, by the zero-respecting property (5), we
have supp {x<k+l)} C Ugelpl YUr<k+1 supp{qu(x([))} C [k], completing the
induction. O

3.2 Alower bound strategy

The preceding discussion shows that zero-respecting algorithms take many iterations
to “discover” all the coordinates of a zero-chain. In the following observation, we
formalize how finding a suitable zero-chain provides a lower bound on the performance
of zero-respecting algorithms.
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Table 1 Illustration of Observation 1: a zero-respecting algorithm operating on a zero-chain

Iteration Information Coordinate 2 3 4 d—1 d
ji=1
t=0 x© 0 0 0 0 0 0
Vx®) * 0 0 0 0 0
r=1 x(D s 0 0 0 0 0
VM) s * 0 0 0 0
=2 x®@ s s 0 0 0 0
V(x®) * * * 0 0 0
r=d—1 x@=D * * * " " 0
V f(xd=D) * * s * " N

We indicate the nonzero entries of the iterates and the gradients by *

Observation 2 Consider € > 0, a function class F, and p,T ¢ N.If f : RT - R
satisfies

i. f is a pth-order zero-chain,
ii. f belongs to the function class, i.e. f € F, and
iii. ||V f(x)|| > € for every x such that x = 0,3

then Te( ;f),]:) > Z(Agf)’ {f}) >T.

Proof For A € AY and {x®},cx = A[f] we have by Observation 1 that x"’ = 0
for all + < T and the large gradient property (iii) then implies H VF(x®) H > ¢ for all

t < T. Therefore T, (A, f ) > T, and since this holds for any A € Ag’ ) we have

T(AP, F) = inf supTe(A f) = sup inf T.(A f)> inf T.(A f)>T.
Ae A feF feF Ae A Ay

O

If f is a zero-chain, then so is the function x + u f(x /o) for any multiplier x and
scale parameter o. This is useful for our development, as we construct zero-chains
{gT}Ten such that | Vgr(x)| > ¢ for every x with x7 = 0 and some constant ¢ > 0.
By setting f(x) = ugr(x/o), then choosing T, u, and o to satisfy conditions (ii)
and (iii), we obtain a lower bound. As our choice of T is also the final lower bound,
it must grow to infinity as € tends to zero. Thus, the hard functions we construct are
fundamentally high-dimensional, making this strategy suitable only for dimension-
free lower bounds.

3 We can readily adapt this property for lower bounds on other termination criteria, e.g. require f(x) —
infy f(y) > € for every x such that x7 = 0.

@ Springer



84 Y.Carmon et al.

3.3 From deterministic to zero-respecting algorithms

Zero-chains allow us to generate strong lower bounds for zero-respecting algorithms.
The following reduction shows that these lower bounds are valid for deterministic
algorithms as well.

Proposition1 Let p € N U {oo}, F be an orthogonally invariant function class and
€ > 0. Then
T A(P) F) > T (p) F
(Ader F) = Te(Aat”, F).

We also give a variant of Proposition 1 that is tailored to lower bounds constructed
by means of Observation 2 and allows explicit accounting of dimensionality.

Proposition 2 Let p € NU{oo}, F be an orthogonally invariant function class, f € F
with domain of dimension d, and € > 0. Ifﬂ(Ag’), {f}) > T, then

Te(Ager F) = Te(Agy

dop U lU€0d+T,d)}) =T,

where fy = f(U'z) and O(d+T,d) is the set of (d + T) x d orthogonal matrices,
so that {fy | U € O(d + T, d)} contains only function with domain of dimension
d+T.

The proofs of Propositions 1 and 2 , given in Appendix A, build on the classical
notion of a resisting oracle [35,37], which we briefly sketch here. Let A € Aget, and
let f € F, f:R?Y — R. We adversarially select an orthogonal matrix U € R4 xd
(for some finite d’ > d) such that on the function fyy := f(U "z) € F the algorithm
A behaves as if it was a zero-respecting algorithm. In particular, U is sequentially
constructed such that for the function fy(z) the sequence U ' A[ fy] C R? is zero-
respecting with respect to f. Thus, there exists an algorithm Za € Aget N Az such
that Za[ f1= U "TA[ fu1, implying Tc (A, fu) = Te(Za, f). Therefore,

inf sup T(A, f) = inf sup Te(A, fu)

AcAget feF AcAget feF,U
= inf sup T¢(Za, > inf sup T¢(A, f),
AcAget fe.g-' E( A f) T AcAy fe_ry): E( f)

giving Propositions 1 and 2 follows similarly, and for it we may take d’ =d + T.

The adversarial rotation argument that yields Propositions 1 and 2 is more or less
apparent in the proofs of previous lower bounds in convex optimization [4,35,45] for
deterministic algorithms. We believe it is instructive to separate the proof of lower
bounds on 7 (Azr, F ) and the reduction from Aget to Ay, as the latter holds in great
generality. Indeed, Propositions 1 and 2 hold for any complexity measure T, (~, ) that
satisfies

1. Orthogonal invariance: for every f : RY — R, every U € R4 guch that
U U = I; and every sequence {z};en C R?, we have

Te({zVen, FWUT)) =Te({U T2 )sen, f).
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2. “Stopping time” invariance: for any Ty € N, if Te({x®};en, f) < Tp then
Te({x(’)}leN, f) =T ({f(’)}teN, f) for any sequence {X’};cy such that £ =
x fort < Tp.

These properties hold for the typical performance measures used in optimization.
Examples include time to e-optimality, in which case T, ({x(’)}teN, f ) = inf{t €
N | f (x®) — inf, f(x) < €}, and the second-order stationarity desired in many
non-convex optimization problems [15,26,40], where for €1,e2 > 0 we define
Te(txOYen, f) = inflr e N[ [V ()| < € and V2 f(x) = —er]}.

3.4 Randomized algorithms

Propositions 1 and 2 do not apply to randomized algorithms, as they require the
adversary (maximizing choice of f) to simulate the action of A on f. To handle
randomized algorithms, we strengthen the notion of a zero-chain as follows.

Definition 4 A function f : RY — R is a robust zero-chain if for every x € R?,

|xj| < 1/2, Vj =i implies f(y)
=f(,-..,%,0,...,0) forall y in a neighborhood of x.

A robust zero-chain is also an “ordinary” zero-chain. In Sect. 5 we replace the
adversarial rotation U of Sect. 3.3 with an orthogonal matrix drawn uniformly at
random, and consider the random function fy(x) = f(U Tx), where f is a robust
zero-chain. We adapt a lemma by Woodworth and Srebro [45], and use it to show that
for every A € Ajang, Al fu] satisfies an approximate form of Observation 1 (w.h.p.)
whenever the iterates A[ fiy] have bounded norm. With further modification of fy;
to handle unbounded iterates, our zero-chain strategy yields a strong distributional
complexity lower bound on Aang.

4 Lower bounds for zero-respecting and deterministic algorithms

For our first main results, we provide lower bounds on the complexity of all deter-
ministic algorithms for finding stationary points of smooth, potentially non-convex
functions. By Observation 2 and Proposition 1, to prove a lower bound on determinis-
tic algorithms it is sufficient to construct a function that is difficult for zero-respecting
algorithms. For fixed T > 0, we define the (unscaled) hard instance fT ‘R4 > R
as

T

fron=—w M@ )+ Y [ (~x-) @ (—x) =¥ (- @ ()], (10)

i=2
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Fig.1 Hard instance for full derivative information. Left: the functions ¥ and & (top) and their derivatives
(bottom). Right: Surface and contour plot of a two-dimensional cross-section of the hard instance f7

where the component functions are

x<1/2

0 X
W(x) = { 1 and ®(x) = JE/ e dr
exp(l—m> )C>1/2 —00

Our construction, illustrated in Fig. 1, has two key properties. First is that f is a
zero-chain (Observation 3 in the sequel). Second, as we show in Lemma 2, ||V f7 (x) ||
is large unless |x;| > 1 for every i € [T]. These properties make it hard for any zero-
respecting method to find a stationary point of scaled versions of f7, and coupled with
Proposition 1, this gives a lower bound for deterministic algorithms.

4.1 Properties of the hard instance

Before turning to the main theorem of this section, we catalogue the important prop-
erties of the functions ¥, @ and fr.

Lemma 1 The functions ¥ and @ satisfy the following.

i. Forallx <% andallk e N, w®(x) = 0.
ii. Forallx > land|y| <1, ¥(x)®'(y) > 1.
iii. Both W and ® are infinitely differentiable, and for all k € N we have

5k 3k . 3k
sup [P (x)| < exp (7 log(4k)> and sup |@® (x)| < exp (7 log ?> .
X X

iv. The functions and derivatives W, W', @ and @' are non-negative and bounded,
with

0<¥ <e, 0<V¥' <,/54/e, 0 <® <+ 2me, and 0 < &' < /e.

We prove Lemma 1 in Appendix B.1. The remainder our development relies on ¥
and @ only through Lemma 1. Therefore, the precise choice of ¥, @ is not particularly
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special; any two functions with properties similar to Lemma 1 will yield similar lower
bounds.

The key consequence of Lemma 1.1 is that the function f is a robust zero-chain
(see Definition 4) and consequently also a zero-chain (Definition 3):

Observation 3 Forany j > 1,if|x;_1], |xj| < 1/2then fr(y) = fr(y, .. Yj-1,0,
Yj+1s .-, y7) forall y in a neighborhood of x.

Applying Observation 3 for j = i+1, ..., T gives that fr is arobust zero-chain by
Definition 4. Taking derivatives of fT (x1,...,%,0,...,0) withrespectto x;, j > i,
shows that f7 is also a zero-chain by Definition 3. Thus, Observation 1 shows that
any zero-respecting algorithm operating on f7 requires 7 + 1 iterations to find a point
where x7 # O.

Next, we establish the “large gradient property” that V f7 (x) must be large if any
coordinate of x is near zero.

Lemma2 If|x;| < 1foranyi < T, then there exists j < i such that |x;| < 1 and

> 1.

[V Ffreo| =

9 -
EjfT(x)

Proof We take j < i to be the smallest j for which |x;| < 1, so that [x;_1| > 1
(where we use the shorthand xg = 1). Therefore, we have

d fr
E(X)
= =W (=xj1) @' (=xj) =¥ (xj-1) @ (xj) = ¥/ (=) @ (=xj+1)
— ¥ (x;) @ (xj11)

< W (=xjo1) @' (=xj) = ¥ (xj-1) @' (x))
D _y(x; 1)@’ (x sign(xj_) £ 1.

In the chain of inequalities, inequality (i) follows because ¥'(x)® (y) > 0 for every
x, y; inequality (ii) follows because ¥ (x) = 0 for x < 1/2, while equality (iii)
follows from Lemma 1.ii and the pairing of |x;| < 1 and |x;_1| > 1. O

Finally, we verify that f7 meets the smoothness and boundedness requirements of
the function classes we consider.

Lemma 3 The function fr satisfies the following.

i. We have fr(0) —inf, fr(x) < 12T.
ii. Forallx e RY, |V fr(x)| <23VT.
ili. For every p > 1, the p-th order derivatives of fr are € p-Lipschitz continuous,

where £, < exp(%p log p + cp) for a numerical constant ¢ < oo.
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The proof of Lemma 3 is technical, so we defer it to Appendix B.2. In the lemma,
Properties i and iii allow us to guarantee that appropriately scaled versions of fr are
in 7, (A, Lp). Property is ii is necessary for analysis of the randomized construction
in Sect. 5.

4.2 Lower bounds for zero-respecting and deterministic algorithms

We can now state and prove a lower bound for finding stationary points of pth order
smooth functions using full derivative information and zero-respecting algorithms (the
class . Az). Proposition 1 transforms this bound into one on all deterministic algorithms
(the class Adet)-

Theorem 1 There exist numerical constants 0 < cq, ¢c1 < 00 such that the following
lower bound holds. Let p > 1, p € N, and let A, L, and € be positive. Then

Ly\"? _ip
Z(Adetv fp(A9 Lp)) Z Te(Azn fp(A» Lp)) Z COA <£_p> € p
p

5
where £, < e2P12P+AP  The lower bound holds even if we restrict Fp(A, Lp) to

_Lp
Sfunctions whose domain has dimension 1 + 2coA(L /€ p)l/ Pe "p,

Before we prove the theorem, a few remarks are in order. First, our lower bound
matches the upper bound (8) that pth-order regularization schemes achieve [7], up
to a constant depending polynomially on p. Thus, although our lower bound applies
to algorithms given access to V4 f(x) for all ¢ € N, only the first p derivatives are
necessary to achieve minimax optimal scaling in A, L, and €.

Second, inspection of the proof shows that we actually bound smaller quanti-
ties than the complexity defined in Eq. (7). Indeed, we show that taking T 2

A(Ly/tL p)l/ pefHTP in the construction (10) and appropriately scaling fr yields a
function f : RT — R that has L p-Lipschitz continuous pth derivative, and for which
any zero-respecting algorithm generates iterates such that |V f (x())|| > e for every
t < T.Thatis,

I+p

inf To(A, f)>T > ALY e 7,
Anf Te(A,f) > T 2 AL

which is stronger than a lower bound on 7¢ (.Azr, Fp(A, L ,,)). Combined with the
reduction in Proposition 2, this implies that for any deterministic algorithm A € Aget
there exists orthogonal U € R?T+D*T for which fy (x) = f(U "x) is difficult, i.e.
Te(A f(UT)) > T.

Finally, the scaling of £, with p may appear strange, or perhaps extraneous. We
provide two viewpoints on this. First, one expects that the smoothness constants L

should grow quickly as p grows; for C* functions such as ¢(¢) = e or o) =
log(1 +¢"), sup, |pP) ()| grows super-exponentially in p. Indeed, €, is the Lipschitz
constant of the pth derivative of fr. Second, the cases of main practical interest are
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p € {1, 2}, where E},/ P < p% can be considered a numerical constant. This is because,
for p > 3, the only known methods with dimension-free rate of convergence € —(p+D/p
[7] require full access to third derivatives, which is generally impractical. Therefore,
arealistic discussion of the complexity of finding stationary point with smoothness of
order p > 3 must include additional restrictions on the algorithm class.

4.3 Proof of Theorem 1

To prove Theorem 1, we set up the hard instance f : R’ — R for some integer T by
appropriately scaling f defined in Eq. (10),

p

L,oPtl _
fx) = PTfr<x/0>,
P

for some scale parameter o > 0 to be determined, where £, < e2Srlogpter jg g9
in Lemma 3.iii. We wish to show f satisfies Observation 2. Observation 3 implies
Observation 2.i (f is a zero-chain). Therefore it remains to show parts ii and iii of
Observation 2. Consider any x € R” such that x7 = 0. Applying Lemma 2 guarantees
that ||VfT (x/o) || > 1, and therefore

Lyo?
IVl = .

|V free/o)] > (1

Lyo?
£p

It remains to choose T and o based on € such that |V f(x)|| > € and f €
Fp(A, Lp). By the lower bound (11), the choice 0 = (Z,,e/Lp)l/p guarantees
[V£(x)ll > €. We note that VP! f(x) = (L,/€,)VP*! f(x/o) and therefore by
Lemma 3.iii we have that the p-th order derivatives of f are L ,-Lipschitz continuous.
Thus, to ensure f € F,(A, L)) it suffices to show that f(0) —inf; f(x) < A. By
the first part of Lemma 3 we have

1+
, Lyo?*! o 120,07 120477
fO) —inf f(x) = ———(fr(0) —inf fr(x)) < T = ;
X ¢ X Y2 l/p
P p Ly
where in the last transition we substituted o = (£,¢/L,)!/P. We conclude that
1/p 1+
feFpA Ly)and T = {j‘;q’,peﬁ’J 50 by Lemma 2, T, (Azr, F (A, L)) >
¥4
1/p
TG(Azr, {f}) >14+T > %, with £, bounded from above as in Lemma 3.iii.
12077

By Proposition 2, this bound transfers to ’Z;(Adet, Fp(A, L p)), where functions of
dimension 27 + 1 suffice to establish it.
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5 Lower bounds for randomized algorithms

With our lower bounds on the complexity of deterministic algorithms established,
we turn to the class of all randomized algorithms. We provide strong distributional
complexity lower bounds by exhibiting a distribution on functions such that a function
drawn from it is “difficult” for any randomized algorithm, with high probability. We
do this via the composition of a random orthogonal transformation with the function
fr defined in (10).

The key steps in our deterministic bounds are (a) to show that any algorithm can
“discover” at most one coordinate per iteration and (b) finding an approximate sta-
tionary point requires “discovering” T coordinates. In the context of randomized
algorithms, we must elaborate this development in two ways. First, in Sect. 5.1 we
provide a “robust” analogue of Observation 1 (step (a) above): we show that for a
random orthogonal matrix U, any sequence of bounded iterates {x(’)}teN based on
derivatives of f7(UT-) must (with high probability) satisfy that |(x®), u)| < 1 for
allt and j > ¢, so that by Lemma 2, | V fr(UTx®) || must be large (step (b)). Second,
in Sect. 5.2 we further augment our construction to force boundedness of the iterates
by composing f7 (U T-) with a soft projection, so that an algorithm cannot “cheat”
with unbounded iterates. Finally, we present our general lower bounds in Sect. 5.3.

5.1 Random rotations and bounded iterates

To transform our hard instance (10) into a hard instance distribution, we introduce an
orthogonal matrix U € RAxT (with columns u® u(T)), and define

friv@) = fr@W0x) = frw®, x), ..., @D x), (12)

We assume throughout that U is chosen uniformly at random from the space of orthog-
onal matrices O(d, T) = {V € R*T | VTV = I7}; unless otherwise stated, the
probabilistic statements we give are respect to this uniform U in addition to any ran-
domness in the algorithm that produces the iterates. With this definition, we have the
following extension of Observation 1 to randomized iterates, which we prove for fr
but is valid for any robust zero-chain (Definition 4). Recall that a sequence is informed
by f if it has the same distribution as A[ f] for some randomized algorithm f (with
iteration (4)).

Lemma4 Let§ > 0 and R > «/T and let xV, ... xD pe informed by fT;U and

bounded, so that |x® || < R for each T. Ifd > 52T R*log ZSLZ then with probability
atleast 1 —§, forallt < T and each j € {t, ..., T}, we have

[, x| < 1/2.

The result of Lemma 4 is identical (to constant factors) to an important result of
Woodworth and Srebro [45, Lemma 7], but we must be careful with the sequential
conditioning of randomness between the iterates x® the random orthogonal U, and
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how much information the sequentially computed derivatives may leak. Because of
this additional care, we require a modification of their original proof,* which we
provide in Sect. B.3, giving a rough outline here. For a fixed + < T, assume that
[, x| < 1/2 holds for every pairs < f and j € {s, ..., T}; we argue that this
(roughly) implies that |(u/), x**+D)| < 1/2 for every j € {t + 1, ..., T} with high
probability, completing the induction. When the assumption that | (1), x| < 1/2
holds, the robust zero-chain property of f7 (Definition 4 and Observation 3) implies
that for every s <t we have

friom = fri®,y), @, y),0,...,0)

for all y in a neighborhood of x). That is, we can compute all the derivatives
of fT;U at x® from x® and D, ..., u®, as fT is known. Therefore, given
uD x® oy ®O ) x@ e possible to reconstruct all the information the algorithm
has collected up to iteration 7. This means that beyond possibly revealing uV, ... u®,
these derivatives contain no additional information on D ... (@, Consequently,
any component of x “*1 outside the span of ™, x| ... u® x® isacomplete “shot
in the dark.”

To give “shot in the dark” a more precise meaning, let #/) be the projection of
u to the orthogonal complement of span{u(l), x® o u®, x(’)}. We show that
conditioned on u®, ..., u™), and the induction hypothesis, i) has a rotation-
ally symmetric distribution in that subspace, and that it is independent of x¢+1),
Therefore, by concentration of measure arguments on the sphere [5], we have
[(@D, x@ DY < |x@D|//d < R/+/d for any individual j > r + 1, with high
probability. Using an appropriate induction hypothesis, this is sufficient to guarantee
that forevery t +1 < j < T, |(u(j),x(’+1))| < R,/(T'logT)/d, which is bounded
by 1/2 for sufficiently large d.

5.2 Handling unbounded iterates

In the deterministic case, the adversary (choosing the hard function f) can choose
the rotation matrix U to be exactly orthogonal to all past iterates; this is impossible
for randomized algorithms. The construction (12) thus fails for unbounded random
iterates, since as long as x) and u/) are not exactly orthogonal, their inner product
will exceed 1/2 for sufficiently large [|x ||, thus breaching the “dead zone” of ¥
and providing the algorithm with information on u/). To prevent this, we force the
algorithm to only access fT v at points with bounded norm, by first passing the iterates
through a smooth mapping from R? to a ball around the origin. We denote our final
hard instance construction by fT v : R4 — R, and define it as

n ~ 1
friv®) = fro(e) + 45 llx|I>, where
X

S Py

4 In arecent note Woodworth and Srebro [46] independently provide a revision of their proof that is similar,
but not identical, to the one we propose here.

and R = 230/T . (13)
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The quadratic term in fT;U guarantees that all points beyond a certain norm have a
large gradient, which prevents the algorithm from trivially making the gradient small
by increasing the norm of the iterates. The following lemma captures the hardness of
fT; v for randomized algorithms.

Lemma5 Ler 8 > 0, and let xV ., ..., xT) be informed by fr.y. Ifd > 52 - 230% -
T2 log 2%2 then, with probability at least 1 — &,

||VfT;U(x(t))|| > 1/2 forallt <T.

Proof Fort < T, set y) := p(x®). For every p > 0 and r € N, the quantity
VP fT;U(x(’)) is measurable with respect x) and {VifT;U(y(t))}f:O (the chain rule
shows it can be computed from these variables without additional dependence on U, as
p is fixed). Therefore, the process yD, ooy is informed by fT;U (recall defining
iteration (4)). Since [|y® || = [ p(x®)|| < R for every 7, we may apply Lemma 4 with

R = 230+/T to obtain that with probability at least 1 — §,
™, y D) < 1/2 foreveryr < T.

Therefore, by Lemma 2 with i = T, for each ¢ there exists j < T such that

<u(j), y(’)>‘ < 1and

(1,9 frw )| > 1. (14)

To show that ||V fT; v (xM)]| is also large, we consider separately the cases [|x || <

T 2
R/2 and [|x®| = R/2. For the first case, we use g—ﬁ(x) = =000 JR™ o write

A/ 1+x]1%/R2

. N 5 dp ~ 1 .
<u(1)’ Vfr;u(x‘”)) — <u</)’ a(x<z))va;U(y<t))> +< <u(/), x(’)>

@,V friv0) = @y OV frio )/ R

- VI+IKO12/R?
1 .
+ 5@ yON 14+ IO/ R

Therefore, for ||y® || < ||x”| < R/2 we have

(6, ¥ froc )| = % (2. ¥ Fr.u 0D

oy o\ IV o1
Ku}’”( 2’ T25)

By Lemma 3.ii we have ||V f7.y (y®)|| < 23+/T = R/10, which combined with (14)
and the above display yields ||V fr.p xT)|| > [D, V fr.p (x(TD)) 1

1

2
|2\_f5 20
1
— > 3.
25 7 2
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y = p(x) that

|V frw)] = 5 1x - H—(x)

HVfTU(y)H E—7E>\/_ . (15

where we used ||g—’;()c)||0p < Tﬂ/]ﬂ < 2/\/5 and that ||VfT v < 23JT =
R/10. O

As our lower bounds repose on appropriately scaling the function fT; U, it remains
to verify that fr.y satisfies the few boundedness properties we require. We do so in
the following lemma.

Lemma 6 The function fT;U satisfies the following.

i. We have fr.y(0) —infy fr.y(x) < 12T.
ii. For every p > 1, the pth order derivatives of fr; v are £,-Lipschitz continuous,
where { p < exp(cplog p + ¢) for a numerical constant ¢ < oo.

We defer the (computationally involved) proof of this Lemma to Sect. B.4.

5.3 Final lower bounds

With Lemmas 5 and 6 in hand, we can state our lower bound for all algorithms,
randomized or otherwise, given access to all derivatives of a C* function. Note that
our construction also implies an identical lower bound for (slightly) more general
algorithms that use any local oracle [10,35], meaning that the information the oracle
returns about a function f when queried at a point x is identical to that it returns when
a function g is queried at x whenever f(z) = g(z) for all z in a neighborhood of x.

Theorem 2 There exist numerical constants 0 < cg, c; < 00 such that the following
lower bound holds. Let p > 1, p € N, and let A, L, and € be positive. Then

L 1/p "
7 ) =0 (),
P

where ép < ec1rlogpte The lower bound holds even if we restrict F,(A, Lp) to
_lp
functions where the domain has dimension 1 + c2q (A (Lp/ﬁp) VP == ) with ¢y a
numerical constant and q(x) = x2 log(2x).
We return to the proof of Theorem 2 in Sect. 5.4, following the same outline as
that of Theorem 1, and provide some commentary here. An inspection of the proof

to come shows that we actually demonstrate a stronger result than that claimed in
the theorem. For any § € (0, 1) letd > [52-(230)* - T*1log(2T?/5)| where T =

@ Springer



94 Y.Carmon et al.

n 1+p
LcoA(Lp/t p)l/ p G_TIJ as in the claimed lower bound. In the proof we construct a
probability measure w on functions in ), (A, L), of fixed dimension d, such that

inf /IP’A (IVf )] > eforalle < 7| f)du(f)>1-38,  (16)

AeArand

where the randomness in P depends only on A. Therefore, by definition (6), for any
A € Aiang a function f drawn from pu satisfies

Te (A, f ) > T with probability greater than 1 — 2§, (17)

implying Theorem 2 for any § > 1/2. Thus, we exhibit a randomized procedure for
finding hard instances for any randomized algorithm that requires no knowledge of
the algorithm itself.

Theorem 2 is stronger than Theorem 1 in that it applies to the broad class of all ran-
domized algorithms. Our probabilistic analysis requires that the functions constructed
to prove Theorem 2 have dimension scaling proportional to 72 log(7) where T is
the lower bound on the number of iterations. Contrast this to Theorem 1, which only
requires dimension 27 + 1. A similar gap exists in complexity results for convex opti-
mization [45,46]. At present, it unclear if these gaps are fundamental or a consequence
of our specific constructions.

5.4 Proof of Theorem 2

We set up our hard instance distribution fyy : R — R, indexed by a uniformly
distributed orthogonal matrix U € O(d, T'), by appropriately scaling fr.y defined
in (13),

LPUP'H ~
Jux) = é—fT;U(X/U),

p

where the integer 7 and scale parameter ¢ > 0 are to be determined, d =
[52 - (230)2T?10g(4T?)], and the quantity fp < exp(cy plog p +c1) for a numerical
constant ¢y is defined in Lemma 6.1i.

Fix A € Aang and let (D, x@ | x(T) be the iterates produced by A applied on
fu. Since f and fr.y differ only by scaling, the iterates x1) /o, x@ /o, ..., xT) Jor
are informed by fT;U (recall Sect. 2.2), and therefore we may apply Lemma 5 with
6 = 1/2 and our large enough choice of dimension d to conclude that

A 1 1
Pau (”VfT;U (_x(t)/o‘)” > 5 forall 1 < T) > 5

where the probability is taken over both the random orthogonal U and any randomness
in A. As Ais arbitrary, taking o = (2€,¢/L p)l/ P this inequality becomes the desired
strong inequality (16) with 6 = 1/2 and p induced by the distribution of U. Thus,
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by (17), for every A € Arang there exists Ua € O(d, T) such that Tc (A, fy,) = 1+T,
50

inf sup Tg(A, fU) >14T.
AeAget UcO(d,T)

It remains to choose 7' to guarantee that fyy belongs to the relevant function class
(bounded and smooth) for every orthogonal U. By Lemma 6.ii, fy has L ,-Lipschitz
continuous pth order derivatives. By Lemma 6.i, we have

Lpaf"'H - -
fu ) = inf fux) = =L (Jr(© ~ inf fr ()

p

A

~ +1
2Lyt 2428 )P
A - 1
ep Lp/p

’

where in the last transition we have substituted o = (2¢,¢/L p)l/ P, Setting T =

~ 1+
Lﬁ(Lp/ﬁp)l/pe_TpJ gives fy (0)—infy fy(x) < A,and fy € F,(A, Lp),yielding
the theorem.

6 Distance-based lower bounds

We have so far considered finding approximate stationary points of smooth functions
with bounded sub-optimality at the origin, i.e. f(0) —inf, f(x) < A.In convex opti-
mization, it is common to consider instead functions with bounded distance between
the origin and a global minimum. We may consider a similar restriction for non-convex
functions; for p > 1 and positive L, D, let

fgist ( D, Lp)
be the class of C* functions with L ,-Lipschitz pth order derivatives satistying

sup {|lx|| | x € arg minf} < D, (18)
X

that is, all global minima have bounded distance to the origin.

In this section we give a lower bound on the complexity of this function class that has
the same € dependence as our bound for the class 7, (A, L ). This is in sharp contrast
to convex optimization, where distance-bounded functions enjoy significantly better
€ dependence than their value-bounded counterparts (see Sect. 3 in the companion
[14]). Qualitatively, the reason for this difference is that the lack of convexity allows
us to “hide” global minima close to the origin that are difficult to find for any algorithm
with local function access [35].

We postpone the construction and proof to Appendix C, and move directly to the
final bound.
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Theorem 3 There exist numerical constants 0 < cg, c; < 00 such that the following
lower bound holds. For any p > 1, let D, L, and € be positive. Then

I+p

is L,\ " _iw
,Te(-Arandv ]:;]m(D, Lp)) =Co- D'*? e_/P € 7,
p

where E;, < efrPlogpter The lower bound holds even if we restrict fgiSt(D, L) to
Itp

_l+p
unctions with domain of dimension 1 + c2q DYFP (L, )" € 7 ), forasome
rr=p

numerical constant c; < o0 and q(x) = x2 log(2x).

We remark that a lower-dimensional construction suffices for proving the lower
bound for deterministic algorithm, similarly to Theorem 1.

While we do not have a matching upper bound for Theorem 3, we can match its €
dependence in the smaller function class

FISUD, Ly, Lp) = F{™(D, L1) N Fy(D, L),

due to the fact that for any f : RY — R with L-Lipschitz continuous gradient
and global minimizer x*, we have f(x) — f(x*) < %Ll lx — x*ll2 for all x € R
[cf. 9, Eq. (9.13)]. Hence ]—'d‘S‘(D Li,L,) C Fp(A, Lp), with A := 1L D?, and
consequently by the bound (8) we have

p+1

1 _
T (Agn VAL, FI(D, Ly, L)) S DPLiLy"e

7 Conclusion

This work provides the first algorithm independent and tight lower bounds on the
dimension-free complexity of finding stationary points. As a consequence, we have
characterized the optimal rates of convergence to e-stationarity, under the assumption
of high dimension and an oracle that provides all derivatives. Yet, given the importance
of high-dimensional problems, the picture is incomplete: high-order algorithms—even
second-order method—are often impractical in large scale settings. We address this
in the companion [14], which provides sharper lower bounds for the more restricted
class of first-order methods. In [14] we also provide a full conclusion for this paper
sequence, discussing in depth the implications and questions that arise from our results.
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A Proof of Propositions 1 and 2

The core of the proofs of Propositions 1 and 2 is the following construction.

(p)

Lemma7 Letp € NU{oo}, Ty € NandA € AP There exists an algorithmZy € Ay

det”
with the following property. For every f : R — R there exists an orthogonal matrix

U e RUFTTX gych that, for every € > 0,
To(A. fu) > To or T.(A. fu) = Te(Za. f).

where fy(x) = f(U " x).

Proof We explicitly construct Za with the following slightly stronger property. For
every every f : R? — Rin F, there exists an orthogonal U € R@*T0xd Ty = [,
such that fy (x) := f(U Tx) satisfies that the first Ty iterates in sequences Za[ f] and
UTA[ fu] are identical. (Recall the notation A[ f] = {a(’)},eN where a® are the
iterates of A on f, and we use the obvious shorthand U " {a”};en = {U Ta®},en.)
Before explaining the construction of Za, let us see how its defining property implies
the lemma. If T (A, fy) > To, we are done. Otherwise, Te (A, fu) < Tp and we have

Te(A fu) =T ALl f0) ETUTALRL £) D Te(Za, £), (19)

as required. The equality (i) follows because ||Ug|| = ||gl| for all orthogonal U, so
for any sequence (@D} en

Te(la®hen, fu) = inf {1 € N | IV fu@)]| < e}

— inf {r eN| VAU Ta)| < e} =T({U"a"}sen. f)

and in equality (i) we let {a®},eny = A[ fu]. The equality (ii) holds because Te(-, )
is a “stopping time”: if T¢ (UTA[fU], f) < Ty then the first T iterates of UTA[fU]
determine T, (U TA[ ful, f ), and these Ty iterates are identical to the first Tj iterates
of Za[ f] by assumption.

It remains to construct the zero-respecting algorithm Za with iterates matching those
of A under appropriate rotation. We do this by describing its operation inductively on
any given f : R? — R, which we denote {z\"};eny = Za[f]. Letting d’ = d + Ty,
the state of the algorithm Zp at iteration ¢ is determined by a support S; C [d]
and orthonormal vectors {u(")}iegl C RY identified with this support. The support
condition (5) defines the set S;,
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si=J Usupp{V"f(z(”)},

qelpls<t

sothat = §; € S, C --- and the collection {u(i)}iest grows with 7. We let U €
R¥*d be the orthogonal matrix whose ith column is u)—even though U may not be
completely determined throughout the runtime of Za, our partial knowledge of it will
suffice to simulate the operation of Aon fy (a) = f(UTa). Letting {a(’) }ten = Al ful,
our requirements Za[ f] = U TAl fuland Zp € Ay are equivalent to

2D =UTa" and supp{z} C S, (20)

for every t < To (we set z) = 0 for every i > Tp without loss of generality).

Let us proceed with the inductive argument. The iterate a) e R? is an arbitrary
(but deterministic) vector in RY". We thus satisfy (20) at + = 1 by requiring that
(u(j), a(l)) = 0 for every j € [d], whence the first iterate of Zp satisfies M =
0 € RY. Assume now the equality and containment (20) holds for every s < ¢,
where ¢+ < Ty (implying that Zx has emulated the iterates a@, ... a"D of A);
we show how Za can emulate a'?, the #’th iterate of A, and from it can construct
7 that satisfies (20). To obtain a”, note that for every ¢ < p, and every s < f,
the derivatives V¥ fy (a®) are a function of V4 £ (z*)) and orthonormal the vectors
{M(i)}iess 1» because supp{V? f (z*))} C S,41 and therefore the chain rule implies

(iq)
uj

[Vifu@n] = 3 [virE9)]

| R
Jlseens Jg

. . ST lg
i15000,0g €Ss41

Since A € Agg is deterministic, ¢ is a function of V4 f(z*)) for ¢ € [p] and
s € [t — 1], and thus Za can simulate and compute it. To satisfy the support condition
supp{z”} C S; we require that (u/), a®) = 0 for every j ¢ S;. This also means that
to compute z) = U Ta® we require only the columns of U indexed by the support
S;.

Finally, we need to show that after computing S;,;; we can find the vectors
{M(i)}ieS,H\S, satisfying (), a®) = 0 for every s < t and j € S;41\S;, and
additionally that U be orthogonal. Thus, we need to choose {u}; ¢ S;+1\s; inthe orthog-
onal complement of span {a(l), e a® u® Vies, } This orthogonal complement has
dimension at leastd’ — 1 — |S;| = | S| + To — ¢ > |S¢|. Since [S;+1\S¢| < |SF|, there
exist orthonormal vectors {u™};cs,,,\s, that meet the requirements. This completes
the induction.

Finally, note that the arguments above hold unchanged for p = oo. O

With Lemma 7 in hand, the propositions follow easily.

Proposition1 Let p € N U {oo}, F be an orthogonally invariant function class and
€ > 0. Then
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Te(Ada F) 2 T(A, F).

Proof We may assume that 7, (Aéii, F) < Ty for some integer Ty < 00, as otherwise

we have Z(Aff;i, F) = oo and the result holds trivially. For any A € Aé’; i and

the value T, we invoke Lemma 7 to construct Za € A§£’ ) such that Te (A, fU) >
min{7y, T¢ (ZA, f )} for every f € F and some orthogonal matrix U that depends on
f and A. Consequently, we have

T (Ager: 7)
— inf supTe(Af) 2 inf supTe(A f) = min {7y, inf sup Tc(Za. f)}

Ac AL feF Ac AP feF AcAY) feF

(@iii)
lg min{To, inf supTe(B, f)}:min{To,’];( g’)}")}
BeAY) feF

where inequality (i) uses that fy € F because F is orthogonally invariant, step
(ii) uses Te(A, fu) = min{To, Te(Za, f)} and step (iii) is due to Zp € AP by
construction. As we chose Ty for which 7¢ (Afjpei, F) < T, the chain of inequalities

implies 7¢ (Agg, F ) > Te( §f ), F ) concluding the proof. O

Proposition 2 Let p € NU{oo}, F be an orthogonally invariant function class, f € F
with domain of dimension d, and € > 0. If’];(Ag’), {f}) > T, then

/TE(A(P) j:) > /TE(A(P)

det’ det’ {fU | U E O(d+ Tad)}) Z Ta

where fy := f(U " z) and O(d + T, d) is the set of (d + T) x d orthogonal matrices,
so that {fy | U € O(d + T, d)} contains only function with domain of dimension
d+T.

Proof For any A € Aff;i, we invoke Lemma 7 with Ty = T to obtain Zp € A§f ) and

orthogonal matrix U’ (dependent on f and A) for which
Te (A, fu/) > min{7, TG(ZA, f)} =T,

where the last equality is due to infBEA(,,) TG(B, f) = Z(Ag’), {f}) > T. Since
fu €{fu U e€0Od+T,d)}, we have

Sup TE (Av f/) Z Tv
el fulUeO0d+T,d)}

and taking the infimum over A € Aé’;i concludes the proof. O

@ Springer



100 Y. Carmon et al.

B Technical results
B.1 Proof of Lemma 1

Lemma 1 The functions ¥ and @ satisfy the following.

1. Forall x < % and all k € N, lll(k)(x) =0.
ii. Forallx > 1and|y| <1, ¥(x)®'(y) > 1.
iii. Both W and @ are infinitely differentiable, and for all k € N we have

S5k 3k 3k
sup |l1/(k)(x)| < exp (7 10g(4k)> and sup |<D(k)(x)| < exp (7 log 7) .
X X

iv. The functions and derivatives W, W', @ and @' are non-negative and bounded,
with

0<W¥ <e, 0<¥' < /54/e, 0 <® </2me, and 0 < @' < Je.

Each of the statements in the lemma is immediate except for part iii. To see this
part, we require a few further calculations. We begin by providing bounds on the

o 1 _1p2 . . .
derivatives of @ (x) = e2 ff o€ 2""dt. To avoid annoyances with scaling factors, we
1.2
define ¢(t) = e~ 2"".

Lemma 8 For all k € N, there exist constants cfk) satisfying |cl-(k)| < 2max{i, 1)k,
and

P (1) = (Zc(") )¢(r>

Proof We prove the result by induction. We have ¢/(1) = —te™ 21 , so that the base
case of the induction is satisfied. Now, assume for our induction that

k
oW =Y cPrema” = Zc<k> '6().
i=0
where |c§k)| < 2%(max{i, 1})*. Then taking derivatives, we have
k . .
p&tD (1) = Z [i _Clgk)tz—l —cf")t’“]q)(t) (k)t(p(t) Zc(k+l)t o)

i=1 i=0

where c(kH) i+ l)c,({?1 (k)l (and we treat c,((ljzl = 0) and |c,((/j:’11)| = 1. With

the induction hypothesis that cgk) < (2max{i, 1})k, we obtain
e V) < 285G + 16+ DF + 25 (max(i, 1)F < 284G+ DL
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This gives the result. O

With this result, we find that for any k > 1,

k—1
o® (x) = ﬁ( > c,?"‘”x">¢(x).

i=0

The function log(xiqb(x)) =ilogx — %xz is maximized at x = /7, so thatxiqﬁ(x) <

exp(% log i—) We thus obtain the numerically verifiable upper bound

k—1

|o® (x)] < JZZ (2max{i, 1)* exp (% log i) < exp (1.5k log(1.5k)) .
e

i=0

Now, we turn to considering the function ¥ (x). We assume w.l.0.g. that x > %, as

otherwise ¥ ® (x) = 0 for all k. Recall ¥ (x) = exp (1 ) for x > % We
have the following lemma regarding its derivatives.

_ 1
(2x—1)2

Lemma9 Forallk € N, there exist constants cfk) satisfying |cl.(k)| < 6K(2i +k)* such
that

. k o
i=1

Proof We provide the proof by induction over k. For k = 1, we have that

Wi = —2 exp1 ! . S
0=y eXp( T 2x— 1)2) = aao

which yields the base case of the induction. Now, assume that for some k, we have

. k C?k)
i=1

Then

L2k 4200 & @
lp(kJrl)(x) = <_ Z (Zx _ 1)k+1+2i + Z ( 1)k+3+2z> lp(x)

i=1 i=1
1

Kl 4e® 2k +2i)e®
_ i—1 W (x)
- - 2x — 1)k+1+2i ’
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where c,((]jzl = 0 and c(k) = 0. Defining cl =4 and c(k+1) = 4c(k) —2(k + 2i)cfk)
for i > 1, then, under the inductive hypothesis that |cfk)| < 6K(2i 4 k)X, we have

e <46k — 24+ 20)F + 2 65 (k + 2i) (k + 20)
< 6k+l(k + 2i)k+1 < 6k+1 (k + 1 +21)k+1

which gives the result. O

As in the derivation immediately following Lemma 8, by replacing ¢ = 2)6%], we
have that 742 ¢=* is maximized by t = /(k + 2i)/2, so that

1

mlll(x) < exp <1 +

1
2 BT,

k+2i k+2i)

which yields the numerically verifiable upper bound

2 k—+2i

|‘1’(k)(x)|<Zexp (l+k10g(6k+121)+ —;ll og —; ><exp(25k10g(4k))
e

i=1

B.2 Proof of Lemma 3

Lemma 3 The function fr satisfies the following.

i. We have fT(O) 1nf fT(x) < 12T.
ii. Forallx e RY, | < 23JT.
iii. For every p > 1, the p-th order derivatives of fr are € p-Lipschitz continuous,

where £, < exp(%p log p + ¢p) for a numerical constant ¢ < o0.

Proof Part i follows because fT (0) < Oand,since0 < ¥ (x) <eand0 < &(x) <
2me,

T
fT(x) > v (1)D(x1)— ZlI/ Xi—1) P (xj) > =T -e-V2me > —12T.

i=2

Part ii follows additionally from ¥ (x) = Oonx < 1/2,0 < ¥'(x) < v/54e~! and
0 < @’(x) < /e, which when substituted into

yields

<e-+Je+V54e ! 2me <23

‘%(x)
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for every x and j. Consequently, | V fr(x) H VT <23JT.

To establish part iii, fix a point x € R” and a unit vector v € R”. Define the real
function £, , : R — R by the directional projection of fT, hy v (0) = fT (x + 6v).
The function 6 — hy ,,(0) is infinitely differentiable for every x and v. Therefore, fr

has £ ,-Lipschitz p-th order derivatives if and only if Ihff7 ;r D (0)| < £, forevery x, v.

Using the shorthand notation d;, - - - 9;, for 5 dx , we have
T
(p+1) 7
RIS O = Y B iy fr () vy vy
[yl pt1=
Examining fr, we see that iy =+ Oi ey fr is non-zero if and only if |ij - ik| <1 for

every j, k € [p + 1]. Consequently, we can rearrange the above summation as

(p+1)
hy 7 (0) = Z Z sy« + 0igs, 0 1 (X) Vigsy -+ Vigs, Vi
81,82,..,8,€(0,1}PU{0,— 1) i=1

where we take vg := 0 and vy := 0. Brief calculation show that

9 R 9 3
Sup max o | 4oy 0igs, 0 f1 ()]

< max {ZSup)lI/(k)(x) }
ke[p+1] xeR x'eR

< 2V2me - 2APHDILGPED) < oxp (2 5plogp +4p +9).

where the second inequality uses Lemma 1.iii, and @ (x") < +/2me for the case
k = p + 1. Defining ¢, = 2pt1g25plog ptapt9 < ,2.5plog p+5p+10 e thus have

T
Z Vitsy - Vits, Vi

i=1

RN 0TS D A
§e€{0,1}PU{0,—1}P

< (2P+1 _ 1) 2*(P+l)gp <,

where we have used |ZiT=1 Vits) - Vits, Vil < 1 forevery § € {0, 1}7 U {0, —1}7.
To see this last claim is true, recall that v is a unit vector and note that

T T
pHI=X0_ 8 YE 8
ZUH-(Sl crVigs, Vi = ZU,' Vi .

i=1
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If§ = 0then | Y7, vigs, e Vigs, Ui = DI <y , v = 1. Otherwise,
letting 1 < Zé.’:] |6;] = n < p, the Cauchy-Swartz inequality implies

T
P+1 non
1+s

T
E Vit5y * - Vits, Vi
i=1

T T
< [T [ s e

i=1 i=1 i=1

where s = —1 or 1. This gives the result. O

B.3 Proof of Lemma 4

The proof of Lemma 4 uses a number of auxiliary arguments, marked as Lemmas 4a,
4b and 4c . Readers looking to gain a high-level view of the proof of Lemma 4 can
safely skip the proofs of these sub-lemmas. In the following, recall that U € RY*T
is drawn from the uniform distribution over d x T orthogonal matrices (satisfying
l{TU = I,as d > T), that the columns of U are denoted uD . u®) and that
friv) = fr(Ux).

Lemma4 Let 8 > 0 and R > /T, and let xV, ..., xT be informed by fT v and

bounded, so that |x®|| < R for each T. Ifd > 52T R2 log 2 then with probability
atleast 1 — 6, forallt < T andeach j € {t,..., T}, we have

[, x®) < 1/2.
For t € N, let P, € R?? denote the projection operator to the span of

O gD x @ 4O and let Ptl = [ — P; denote its orthogonal complement.
We define the event G, as

G, = { max
jeft,....T}

(Mm’ P,l_lx(’)>‘ <a HP,L_M(”

1
} where o = 5— 21

RJT

For every ¢, define
GSf = ﬁiS,Gi and G<t = mi<tGi .

The following linear-algebraic result justifies the definition (21) of G;.

Lemmada Forallt < T, G<; implies (D, x| < 1/2 for everys € {1,...,1}
and every j € {s,..., T}

Proof First, notice that since G <, implies G<; for every s < t, it suffices to show
that G <; implies [, x®D)| < 1/2 forevery j € {t, ..., T}. We will in fact prove
a stronger statement:
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N
P,_lu(f)” <202 (1 — 1) forevery j € {t, ..., T},
(22)

For every t, G -; implies ‘

where we recall that P, € R?*“ is the projection operator to the span of

x D ® @) PtJ- =1I;— P,anda = 1/(5R\/T). Before proving (22), let
us show that it implies our result. Fixing j € {t, ..., T'}, we have

K”(j)’x(t)>‘ < Kuu), Piﬂ“)‘ + Kum, PHx")> .

Since G; holds, its definition (21) implies |(u/", Ptflx(’))| < « || Ptj;lx(’) ||

o ||x(‘) H Moreover, by Cauchy-Schwarz and the implication (22), we have
@D, P_jx®D)] < || PuD | |xP] < v2a2@ — 1) [|x]. Combining the two
bounds, we obtain the result of the lemma,

‘<u(j),x(’)> H (')H (@ + 22t = 1)) < \/_R a <

where we have used [x®|| < Rand o = 1/(5RV/T).

We prove bound (22) by induction. The basis of the induction, t = 1, is trivial,
as Pp = 0. We shall assume (22) holds for s € {1,...,t — 1} and show that it
consequently holds for s = ¢ as well. We may apply the Graham-Schmidt procedure

E

on the sequence xV, u M . xO=D 3 =D to write
2
112 —! PJ‘ x( =l PJ‘ u® .
Hp 1u(1)H — 1 el SN 0)) (23)
11— 1 )
| P= P L ou®
where 13k is the projection to the span of {x(l), ud x(k), u®, x(k'H)},
5 1 LD ((pLo D) "
Pio= Pt ———— (PEc®0) (pat)

1 2
[Bitxten]
Then for every j > i we have
(pl;_lua), u(j)> — _(pi_lua), u(j)> — —(P,-_lu“), u(j)>

(u®, PL x ) (uh), pL x®)
” Pil—lx(i) ”2

)

where the equalities hold by <u(i), ul )) =0, ISIJ; =1- ﬁ,-,l, and the definition of
Pi_1.
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The P; matrices are projections, so Piz_ | = Pi—1, and Cauchy-Swartz and the
induction hypothesis imply

[ ) =i i) = [ ] <20,

Moreover, the event G; implies |(u(i), Piflx(i))(u(j), PiL_lx(i))| < a? H Pil_1
SO

(u®, PL xO) (), pL x®)
H PiL—lxm Hz

, (24a)

)

~.

+

<13il_1u(i),u(~")>‘ < ‘(Piflu("),u(

P

<a?2i—1)<

| R

where the last transition uses o = because R > «/T > i. We also have

5Rf - 41

the lower bound

((”(l)’ PIL—lx(l)»

2
pL @)
] | P @]

_ (ﬁi]u(”, u(i)>’ - le._lua) ’_

1
>1—-a?Qi—1)> > (24b)

where the first equality uses (Pl.l_ 1)2 = Pil_ |» the second the definition of f’,-_l, and
the inequality uses (u"/), P x@) < o|| P x D) and || P juP|> < 2% (i — 1).
Combining the observations (24a) and (24b), we can bound each summand in the

second summation in (23). Since the summands in the first summation are bounded
by a? by definition (21) of G;, we obtain

, 2)? -1
1P| Z Z(“l//z) - Z(t-1+tT)sza2(t—1),

which completes the induction. O
By Lemma 4a the event G <7 implies our result, so using P(G¢ r) = Z, 1 P(GY |

G -;), it suffices to show that

P(Gy) < ZP(G, | G) <38. (25)
t=1

Let us therefore consider P (G¢ | G ;). By the union bound and fact that || P;- ,u )| <
1 for every ¢ and j,
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W, Py
m > o | G<t
pLox®
<u(]), m>‘ >ao | Uxp, G<t)

< leu(n PL x® >
| Pt x|

where U is shorthand for uD, o u=D and & is the random variable generating
(1) (1)
xW,x

In the following lemma, we state formally that conditioned on G _;, the iterate x®
depends on U only through its first (i — 1) columns.

P(G; | G<)

SZIP’(

jelt,....,T}

= Z Be,u) P (

JEit,... T}

Z Ee,u. (

je{t ..... T}

> o | Ev U(<l)7 G<t> )

(26)

Lemma4b Foreveryi < T, there exist measurable functions Agi) and Ag) such that
D =AY (£, Up) 1 AD (&, U) 1 e 27
0 =A0 (. Un) Loy +AL (6, U) Lge ). 27

Proof Since the iterates are informed by fT;U, we may write each one as (recall
definition (4))

0 = AD (&, VO oy c0), L V0D oy (D)) = AD 6, 0),

for measurable functions A®, Ag) , where we recall the shorthand V@) p (x) for the
derivatives of / at x to order p. Crucially, by Lemma 4a, G _; implies | (1), x®)| < 3
forevery s < i and every j > 5. As fr is a fixed robust zero-chain (Definition 4), for
any s < i, the derivatives of fT v at x® can therefore be expressed as functions of
x) and u(l), ..., u®~D and—applying this argument recursively—we see that x )
is of the form (27) foreveryi < T. O

Consequently (as G, implies G.; for every i < t), conditioned on &, U and
G -, the iterates x(V, ..., x® are deterministic, and so is Ptflx(’). If Ptflx(’) =0
then G, holds and P(G{ | G ;) = 0, so we may assume without loss of generality that
PtJ; 1x(’ ) # 0. We may therefore regard PtJ; 1x(’ )/ || PIJ; lx(’ ) || in (26) as a deterministic
unit vector in the subspace Pt{ | projects to. We now characterize the conditional
distribution of P, ut) /| Pt u'?|.

Lemmadc Lett < T,and j € {t, ..., T}. Then conditioned on§, Uy and G -, the
Pt uW
vector m is uniformly distributed on the unit sphere in the subspace to which
t—1

P[J; | projects.

@ Springer



108 Y. Carmon et al.

Proof Thislemmais subtle. The vectors u®/), J = t,conditioned on U(), are certainly
uniformly distributed on the unit sphere in the subspace orthogonal to U(.,). However,
the additional conditioning on G ; requires careful handling. Throughout the proof
wefixt < T and j € {t,..., T}. We begin by noting that by (22), G .; implies

Therefore, when G -, holds we have P u") = 0 so PL ul) /| P ul|| is well-
defined.

To establish our result, we will show that the density of U= = [u(’ ), u(T)]
conditioned on &, Uy, G, is invariant to rotations that preserve the span of
x M M xED =D More formally, let P> denote the density of U=, con-
ditional on &, U() and G ;. We wish to show that

12 12
P,L_lu(f)H =l—‘P,_1u(f)H >1-20%(—1)> 0.

Pt (Uen 1 £, U<ty, G<i) = p=1 (ZUzp) | &, U<r), Gt) (28)

for every rotation Z € R?*4, ZT 7 = I,, satisfying
Zv=v=2"v forall ve {x(l), u® o xD, u(t_l)} )

Throughout, we let Z denote such a rotation. Letting p¢ ¢y and py denote the densities
of (¢, U) and U, respectively, we have

P(G< |6, U) peu (8. U)
P(G< | & Uiwn) Pe.viy (. Uicn)
_ PG & U)py (U)

-~ P(G< 1§ Uin) pu.,, (Ui<n)

P>t (U(Zt) | &, U<y, G<z) =

where the first equality holds by the definition of conditional probability and second
by the independence of & and U. We have ZU ;) = U(<,) and therefore, by the
invariance of U to rotations, py([Uc<y), ZU=n]) = pu(ZU) = py(U). Hence,
replacing U with ZU in the above display yields

PG |§,2U) py (U)
(G<t | 57 U(<l)) pU(<t) (U(<t))

P>t (ZUzn | €, U<y, G<) = P

Therefore if we prove P(G; | §,U) = P(G -, | §, ZU)—as we proceed to do—then
we can conclude the equality (28) holds.
First, note that P (G, | €, U) is supported on {0, 1} for every &, U, as they com-

pletely determine x® 0 xT) 1t therefore suffices to show that ]P(G<l |&€,U) =1
ifand onlyif P (G, | £, ZU) = 1.Set U’ = ZU, observing that ' = Zu® = 4®
for any i < ¢, and let D 2T be the sequence generated from & and U’. We

will prove by induction on i that P(G.; | £, U) = 1 implies P(G; | £, U’) = 1 for
every i < t. The basis of the induction is trivial as G -1 always holds. Suppose now
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that P(G-; | £&,U’) = 1 fori < t, and therefore x'", ..., x'® can be written as
functions of & and u’" WD =y =D py Lemma 4b. Consequently,
¥ = x® for any [ <i and also Pl./f 10— PJ- x®_ Therefore, for any [ > i,

(iii)

(i) < o

L) LG LG
<u/(l) PET > @ <u<z> RIS > <u<l> Piopx? >
9 - b J_ . 9 .

H Pt x® | P x @] x|

where in (i) we substituted W'D = zu® and Pi/flx/(i) = Pl.{lx(i), (ii) is because
Piflx(i) =xD—p_1xDisinthe span of vectors {x(l), uD, . x=D 0= x(i)}
and therefore not modified by Z T, and (iii) is by our assumption that G _; holds,
and so G; holds. Therefore ]P(Gi | €, U') = 1 and ]P’(G<i+1 | €, U’) = 1, con-
cluding the induction. An analogous argument shows that ]P’(G<, &, U’ ) =1
implies P(G, | £, U) = P(G & ZTU') = 1 and thus P(G, | £,U)
P(G.; | &, ZU) as required.

Marginalizing the density (28) to obtain a density for #/) and recalling that P, 1 is
measurable &, U(<,) G -, we conclude that, conditioned on &, U<, G <; the random

P, ulh) p 1\ Zu )
variable m has the same density as W However, PI_IZ =7 P[_l by
assumption on Z, and therefore
1 ) LG
PHZ“(’ 3 Pt—l“(])
1 j - 1 NN
[Py zud | | P
Loulh . .
We conclude that the conditional distribution of the unit vector ”1—(,)” is invariant
I 1
to rotations in the subspace to which P 1 projects. O

Summarizing the discussion above, the conditional probability in (26) measures the
inner product of two unit vectors in a subspace of R? of dimension d’ = tr (PtJ; 1) >
d—2(t — 1), with one of the vectors deterministic and the other uniformly distributed.
We may write this as

1 j 1
[[D( Pt—l”(j) Pt—lx(t)
o
” Pz—l t—lxm ”
where v is uniformly distributed on the unit sphere in RY By a standard concentration
of measure bound on the sphere [5, Lecture 8],

> | gv U(<l‘)v G<l> = ]P(|vl| > a)v

’ a2
P(jvi| > a) < 2¢7¢ 02/2 2 9= [d=20),
Substituting this bound back into the probability (26) gives
o? o2
P(G{|Gs)<2(T—t+ 1) e TWU-2) < o7~ TW@-2T),
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Substituting this in turn into the bound (25), we have P(G¢ T) < Z, 1 P(GY |

G;) <2T? _*(d_ZT) . Setting d > 52T R? log % > a_2 log 2L T + 2T establishes
P(G¢ r) =6, concluding Lemma 4. m]

B.4 Proof of Lemma 6

Lemma 6 The function fT;U satisfies the following.

i. We have fr.y(0) —inf, fr.y(x) < 12T.
ii. For every p > 1, the pth order derivatives of fr; v are £ ,-Lipschitz continuous,
where { p < exp(cplog p + ¢) for a numerical constant ¢ < oo.

Proof Part i holds because fT;U (0) = fr (0) and fT;U (x) > fT;U (p(x)) for every
X, SO

inf fr.y () > 1nf frv (p(x)) = 1H£R fr(x) > inéd fr x),

xeRd

and therefore by Lemma 3.1, we have fr; v (0)—inf, fr; v(x) < fr0)—inf, fr(x) <
12T.

Establishing part ii requires substantially more work. Since smoothness with respect
to Euclidean distances is invariant under orthogonal transformations, we take U to be
the first 7 columns of the d-dimensional identity matrix, denoted U = I r. Recall
the scaling p(x) = Rx/v/ R2 + ||lx| |2 with “radius” R = 230+/T and the definition
friw@ = frWTp)) + 15 IIx)1*.

The quadratlc 1o ll* % term in fT; v has %-Lipschitz first derivative and O-Lipschitz
higher order derivatives (as they are all constant or zero), and we take U = Iy 1
without loss of generality, so we consider the function

fria@) = frip) = fr (p @, ..., [p )l7).

We now compute the partial derivatives of fT; 1. Defining y = p(x), let 5;‘1 L=
3/(
9yjy =-9¥j
of all partitions of [k] = {1, ..., k}, i.e. (S1,...,SL) € Pk if and only if the S; are
disjoint and U;S; = [k]. Using the chain rule, we have for any k and set of indices
i1,...,0g < T that

denote derivatives with respect to y. In addition, define Py to be the set

Vi i)

.....

= > Z (l_[V'S"pr)) ),y =0, (29)

(815, SL)EPY j1,-es jL=1
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where we have used the shorthand Vl.‘ssl to denote the partial derivatives with respect
to each of x;; for j € S. We use the equality (29) to argue that (recall the identity (2))

~ 1
= sup (VIH— fTI(x) U®(P+1)> E _ gl(p=1) Eecplogp-q—c’

HVPHJ?T;I(X)
op lvll=1

for some numerical constant’, 0 < ¢ < oo and every p > 1. As explained in Sect. 2.1,
this implies fT;U has eP1°2 P+¢_Lipschitz pth order derivative, giving part ii of the
lemma.

To do this, we begin by considering the partitioned sum (29). Let v € R? be an
arbitrary direction with ||v|| = 1. Then for j € [d] and k € N we define the quantity

T =T (0) = (VEp; (), v,
algebraic manipulations and rearrangement of the sum (29) yield

(VK fr(x), v®)

d T
N
SO SRR S ) L
(S1,..., SL)EPkil,...,ik=l Jlaeenjr=1

- Z Wl )

(S1,---SL)EPx jt,-s jr=1

- 3 (eLf-T(y),;w@ ®U|SL|>

We claim that there exists a numerical constant ¢ < oo such that for all k € N,

sup [|7¥ (x)|| < exp(ck logk 4+ ¢)R' . (30)
X

Before proving inequality (30), we show how it implies the desired lemma. By the
preceding display, we have

17 1 L
(9P frao 020y < 3[R H 5151
(81,...81)€Pp41
Lemma 3 shows that there exists a numerical constant ¢ < oo such that

HV(L)fr(y) H <11 <exp(cLlog L +¢) forall L > 2.
op

5 To simplify notation we allow ¢ to change from equation to equation throughout the proof, always
representing a finite numerical constant independent of d, 7', k or p.
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When the number of partitions L = 1, we have |S;| = p 4+ 1 > 2, and so Lemma 3.ii
yields

19 71 o 17511 = [V Fr ) [ 1711 < 23VT - R77 exp(eplog p + ¢)
<exp(cplogp + o),

where we have used R = 230+/T. Using |S1]| 4+ -+ |Sz]| = p + 1 and the fact that
q(x) = (x + 1) log(x + 1) satisfies g(x) + g(y) < g(x + y) for every x, y > 0, we
have

L
194 7| TTIE1 < expeplog p + )
op =1

for some ¢ < oo and every (Sy,...,S8.) € Ppy1. Bounds on Bell numbers [6,
Thm. 2.1] give that there are at most exp(k log k) partitions in P, which combined
with the bound above gives desired result.

Let us return to the derivation of inequality (30). We begin by recalling Faa di
Bruno’s formula for the chain rule. Let f,g : R — R be appropriately smooth
functions. Then

dk
Tl =3 o) [T, 31)

PePy SeP

where | P| denotes the number of disjoint elements of partition P € Py. Define the

function p(&) = £/4/1 + ||€]|2, and let A(§) = /1 + ||€]|? so that 5(£) = VA(£) and
p(&) = Rp(§/R). Let () = (V¥P;(£), v®), so that

7°(E) = V(VFAE), v®) and ¥ = R'FT*(x/R). (32)

With this in mind, we consider the quantity (VKA (£), v®). Defining temporarily the
functions «(r) = +/1 4+ 2r and B(t) = %HS + tv]|?, and their composition h(r) =
a(B(1)), we evidently have

h®©0) = (VFa@). v = >~ o) - [T 85000,

PePy SepP

where the second equality used Faa di Bruno’s formula (31). Now, we note the fol-
lowing immediate facts:

(v, &) +tlvll> 1=1
and BO@) = {||v|? [=2
0 [ > 2.

Q1 — !

Oy = (=127~
o (r)_( 1) (1+2r)l_1/2
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Thus, if we let Py > denote the partitions of [k] consisting only of subsets with one or
two elements, we have

2|P| — D!

(k) _ _ 1P|
O= 23, D (1 + |l 1?)IPI=1/2

PePk,z

(. v) P )P

where C; (P) denotes the number of sets in P with precisely i elements. Noting that
[lv]| = 1, we may rewrite this as

k
Q1P| = D!
Ve =3, 3 ).
I=1 PPy 2,Ci(P)=I (14 IEHIPI=1/2

Taking derivatives we obtain

k k
T = V(VEAE), v = (Zaz(@(s, v)l—l)v + (sz@xs, v>l)e
=1 =1

where
» (—DIPl@pP| - D!
2y[P|-1/2
PePy2,Ci(P)=l I+ 11E17)

Z (=DIPHLQIPI+ D!
(14 [|E])IPI+1/2

a(§) =1-

and by (§) =

PePy2,Ci(P)=I

We would like to bound a; (§) (&, v)l_l and b;(£) (&, v)lg. Note that |P| > C;(P) for
every P € Py, so | P| > [ in the sums above. Moreover, bounds for Bell numbers [6,
Thm. 2.1] show that there are at most exp(k log k) partitions of [k], and (2k — 1)!! <
exp(k logk) as well. As a consequence, we obtain

-1 (&, v)|'~!
sup |a;(§)(§, v)' | < exp(cllogl) sup < exp(cllogl),
5

¢ (14 &%=/

where we have used [(§,v)] < |&]| due to |v] = 1. We similarly bound

supg |bi(§)[1(&, v) I ||€|l. Returning to expression (32), we have

sup |7¥(x)|| < exp (cklogk +¢) R'7F,
X

for a numerical constant ¢ < co. This is the desired bound (30), completing the proof.
O
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C Proof of Theorem 3

Theorem 3 There exist numerical constants 0 < cq, c; < 00 such that the following
lower bound holds. For any p > 1, let D, L, and € be positive. Then

I+p

; L P
Te(Arandv f;hSt(D, Lp)) > o D'*r <E_’p> € Pp,
p

where Z;, < ec1rlogptei The lower bound holds even if we restrict fgiSt(D, L) to
I+p

L+
functions with domain of dimension 1 + caq (DH"’ (L,,/E;,) r G_Tp),for a some
numerical constant c; < o0 and q(x) = x2 log(2x).

We divide the proof of the theorem into two parts, as in our previous results, first
providing a few building blocks, then giving the theorem. The basic idea is to introduce
a negative “bump” that is challenging to find, but which is close to the origin.

To make this precise, let e/) denote the jth standard basis vector. Then we define
the bump function 47 : RT — R by

_ 25 4 ol
hT(x)lef<l—7 x—ge(T) )
0 x = 5T = 5
= 33
exp 1 otherwise. (33)

- N2
(1—25”x—%e(7) H )

As Fig. 2 shows, 7 features a unit-height peak centered at %e(T), and it is identically
zero when the distance from that peak exceeds % The volume of the peak vanishes

exponentially with 7', making it hard to find by querying hr locally. We list the
properties of 47 necessary for our analysis.

f_LT(a?l, 0, ceny 0, :L‘T)

0.4

T
1 o7

Fig.2 Two-dimensional cross-section of the bump function /27
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Lemma 10 The function hr satisfies the following.

i. hr (0.8¢D) =1 and hr(x) € [0, 1] for all x € RT.
ii. hr(x) =0 on the set {x € R4 |x7 < % or ||x| > 1}.
iii. For p > 1, the pth order derivatives of hr are { p-Lipschitz continuous, where

3

Ly, <e? log p+ep for some numerical constant ¢ < oo.

We prove the lemma in Sect. C.1; the proof is similar to that of Lemma 6. With
these properties in hand, we can prove Theorem 3.

C.1 Proof of Lemma 10

Properties i and ii are evident from the deﬁnition (33) of hy. To show property iii,
consider h(x) = ET(%&(D) =v(l—-5 ||x || ), which is a translation and scaling of

hr,soif we show h has (£ p/5P +1)-L1psch1tz pthorder derivatives, forevery p > 1, we
obtain the required results. For any x, v € RT with ||v|| < 1 we define the directional
projection hy () = h(x 4+t - v). The required smoothness bound is equivalent to

< gp/517+1 < ecplogpte

for every x, v € R? with |Jv]| < 1, every p > 1 and some numerical constant ¢ < oo
(which we allow to change from equation to equation, caring only that it is finite and
independent of 7" and p).

As in the proof of Lemma 6, we write hy (1) = ¥ (B(t)) where (1) =
% lx + 7v]|%, and use Fad di Bruno’s formula (31) to write, for any k > 1,

h,0) = > wiPgoy - T80,

PePy SeP

where Py is the set of partitions of [k] and | P| denotes the number of set in partition
P. Noting that /(0) = —(x, v), /(0) = — ||v]|*> and B (0) = O for any n > 2, we
have

1
THOEE SR A (1—5||x||2) (e, )P PR

PePra

where Py 2 denote the partitions of [k] consisting only of subsets with one or two
elements and C; (P) denotes the number of sets in P with precisely i elements.
Noting that ¥ ®) (1 — l Ix11%) = 0 for any k > 0 and ||x|| > 1, we may assume

x|l < 1. Since [[v]] < 1, we may bound |17, (0)| by

1
h§?j>(0)‘ [Pperal- max sup @)
P+1]x€R

D it op(p+1) | 2B 1083 (p+1) < 3plog pep
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for some absolute constant ¢ < oo, where inequality (i) follows from Lemma 1.iv
and that the number of matchings in the complete graph (or the kth telephone number

[21, Lem. 2]) has bound | Py »| < ¢5 108k Thig gives the result.

C.2 Proof of Theorem 3

For some 7 € Nand o > 0 to be specified, and d = [52-230% - T?log(4T?)],
consider the function fy : R? — R indexed by orthogonal matrix U € R?*T and
defined as

Lp0p+1 . L,,DP“ _ -
fux) = TfT;U(x/U) - ThT(U x/D),
p p
where fT;U(x) = fT;U(,o(x)) + 11—0 ||x||2 is the randomized hard instance con-

struction (13) with p(x) = x/v1+ ||x/R||2, hr is the bump function (33) and
E;, = ép + Zp, for ép and fp as in Lemmas 6.ii and 10.iii, respectively. By the
lemmas, fy has L ,-Lipschitz pth order derivatives and E’p < ef1Plogpter for some
c1 < 0o. We assume that ¢ < D; our subsequent choice of o will obey this constraint.
Following our general proof strategy, we first demonstrate that fi; € }'giS‘(D, Ly),
for which all we need do is guarantee that the global minimizers of fy have norm at
most D. By the constructions (13) and (10) of fT;U and fT;U, Lemma 10.i implies

fy(msDﬁA“)
2
L,oPtl _ L,oPt! 4Dy L,DP*!_
= pz/ fT(IO(e(T))) + IIJOE/ 50. - pe/ hT(OSe(T))
P P P
LyoPth . 8L,0?~'D> —L,DP*! 117 L,DPH!
= fr(0) + <=
e, 125¢/, e, 125 ¢,
LPUPJrl -
+ = fr(0)
p

with the final inequality using our assumption o < D. On the other hand, for any x
such that A7 (U "x/D) = 0, we have by Lemma 6.i (along with fr.y(0) = 0) that

Lpo_p+l ) R LPUP+]
fux) > g—/lr}f friux) = —12
p

1

. Lyo?t
Vi Y
p p

fr(0).

Combining the two displays above, we conclude that if

LyoP™! 117 L,DPT!
/ =15 o
e, 125 ¢,

12

)
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then all global minima x* of fy must satisfy hr(UTx*/D) > 0. Inspecting the
definition (18) of /7, this implies |x*/D — 0.8u‘"|| < 1, and therefore [x*|| < D.
Thus, by setting

DPt1
T = {—J , (34)

13g P!

we guarantee that fy € fgiS‘(D, Lpy)aslongaso < D.

It remains to show that, for an appropriately chosen o, any randomized algorithm
requires (with high probability) more than T iterations to find x such that ||V fy (x)|| <
€. We claim that when o < D, for any x € R4,

1 _
D, p(x /o)) < 3 implies 27(U " y/D) =0 for y in a neighborhood of x.
(35)

We defer the proof of claim (35) to the end of this section.

Now, let U € RY*T be an orthogonal matrix chosen uniformly at random from
oW, T).Letx®, ... xObea sequence of iterates generated by algorithm A € Aang
applied on fy. We argue that [(u'D), p(x®)/0))| < 1/2 for all t < T, with high
probability. To do so, we briefly revisit the proof of Lemma 4 (Sect. B.3) where
we replace fT;U with fy and x with p(x") /o). By Lemma 4a we have that for
every t < T the event G, implies [(u, p(x®) /o))| < 1/2 for all s < t, and
therefore by the claim (35) we have that Lemma 4b holds (as we may replace the
terms i_zT(U Tx(”/ D), s < t, with 0 whenever G -; holds). The rest of the proof of
Lemma 4a proceeds unchanged and gives us that with probability greater than 1/2
(over any randomness in A and the uniform choice of U),

1
D, p(xD /o)) < 3 forallr < T.

By claim (35), this implies Va7 (U Tx® /D) = 0,and by Lemma 5, |V fr.y (x /o) |
> 1/2. Thus, after scaling,

P
Lyo

|[vsue] - 20/,

for all + < T, with probability greater that 1/2. As in the proof of Theorem 2, By
taking o = (2¢),¢/L 2P we guarantee

inf sup Te(A, fu)=1+T.
AeAget UcO(d,T) 6( )

where T = | DP*! /1307 | is defined in Eq. (34). Thus, as fu € fgiSt(D, L) for
our choice of 7', we immediately obtain
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I+p
DYP (L,\ " _iw

X € P s
52 \ ¢,

/Te(-Aranda ‘ngSt(Dy Lp)) >T+1>

o e,e . 2£/}
as long as our initial assumption o < D holds. Wheno > D, we have that L—’e > DP?,
P
L, Hp _ltp . . .
orl > DPF! (377) 7 € 7 ,sothatthe boundis vacuousin this case regardless: every

method must take at least 1 step.
Finally, we return to demonstrate claim (35). Note that |(u"), p(x/0))| < 1/2

is equivalent to |[(u'D),x)| < %,/1 + ||$||2, and consider separately the cases

lx/oll < R/2 and ||lx/o| > R/2 = 1154/T. In the first case, we have | (1T, x)| <
(v/5/4)0 < (3/5)D, by our assumption ¢ < D. Therefore, by Lemma 10.ii we
have that h7(U"y/D) = 0 for y near x. In the second case, we have |x| >
AR/ ™, x)| > 230|(u™, x)|. If in addition |(u™, x)| < (3/5)D then our
conclusion follows as before. Otherwise, ||x|| /D > 230 - (3/5) > 1, so again the
conclusion follows by Lemma 10.ii.
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