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BRIDGE: Byzantine-resilient Decentralized
Gradient Descent

Cheng Fang, Zhixiong Yang, and Waheed U. Bajwa

Abstract—Machine learning has begun to play a central role
in many applications. A multitude of these applications typically
also involve datasets that are distributed across multiple comput-
ing devices/machines due to either design constraints (e.g., multi-
agent and Internet-of-Things systems) or computational/privacy
reasons (e.g., large-scale machine learning on smartphone data).
Such applications often require the learning tasks to be carried
out in a decentralized fashion, in which there is no central
server that is directly connected to all nodes. In real-world
decentralized settings, nodes are prone to undetected failures due
to malfunctioning equipment, cyberattacks, etc., which are likely
to crash non-robust learning algorithms. The focus of this paper
is on robustification of decentralized learning in the presence
of nodes that have undergone Byzantine failures. The Byzantine
failure model allows faulty nodes to arbitrarily deviate from their
intended behaviors, thereby ensuring designs of the most robust
of algorithms. But the study of Byzantine resilience within decen-
tralized learning, in contrast to distributed learning, is still in its
infancy. In particular, existing Byzantine-resilient decentralized
learning methods either do not scale well to large-scale machine
learning models, or they lack statistical convergence guarantees
that help characterize their generalization errors. In this paper,
a scalable, Byzantine-resilient decentralized machine learning
framework termed Byzantine-resilient decentralized gradient
descent (BRIDGE) is introduced. Algorithmic and statistical con-
vergence guarantees for one variant of BRIDGE are also provided
in the paper for both strongly convex problems and a class
of nonconvex problems. In addition, large-scale decentralized
learning experiments are used to establish that the BRIDGE
framework is scalable and it delivers competitive results for
Byzantine-resilient convex and nonconvex learning.

I. INTRODUCTION

One of the fundamental tasks of machine learning (ML) is
to learn a model using training data that minimizes the statisti-
cal risk [1]. A typical technique that accomplishes this task is
empirical risk minimization (ERM) of a loss function [2]–[6].
Under the ERM framework, an ML model is learned by an
optimization algorithm that tries to minimize the average loss
with respect to the training data that are assumed available at
a single location. In many recent applications of ML, however,
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training data tend to be geographically distributed; examples
include the multi-agent and Internet-of-Things systems, smart
grids, sensor networks, etc. In several other recent applications
of ML, the training data cannot be gathered at a single
machine due to either the massive scale of data and/or privacy
concerns; examples in this case include the social network
data, smartphone data, healthcare data, etc. The applications
in both such cases require that the ML model be learned
using training data that are distributed over a network. When
the ML/optimization algorithm in such applications requires
a central coordinating server connected to all the nodes in
the network, the resulting framework is often referred to as
distributed learning [7]. Practical constraints many times also
require an application to accomplish the learning tasks without
a central server [8], in which case the resulting framework is
referred to as decentralized learning.

The focus of this paper is on decentralized learning, with
a particular emphasis on characterizing the sample complexity
of the decentralized learning algorithm—i.e., the rate, as a
function of the number of training data samples, at which
the ERM solution approaches the Bayes optimal solution in
a decentralized setting [5], [8]. While decentralized learning
has a rich history, a significant fraction of that work has
focused on the faultless setting [9]–[13]. But real-world de-
centralized systems are bound to undergo failures because
of malfunctioning equipment, cyberattacks, and so on [14].
And when the failures happen and go undetected, the learning
algorithms designed for the faultless networks break down [7],
[15]. Among the different types of failures in the network, the
so-called Byzantine failure [16] is considered the most general,
as it allows the faulty/compromised nodes to arbitrarily deviate
from the agreed-upon protocol [14]. Byzantine failures are
the hardest to safeguard against and can easily jeopardize the
ability of the network to reach consensus [17], [18]. Moreover,
it has been shown in [15] that a single Byzantine node with
a simple strategy can lead to the failure of a decentralized
learning algorithm. The overarching goal of this paper is
to develop and (algorithmically and statistically) analyze an
efficient decentralized learning algorithm that is provably
resilient against Byzantine failures in decentralized settings
with respect to both convex and nonconvex loss functions.

A. Relationship to prior works

Although the model of Byzantine failure was brought up
decades ago, it has attracted the attention of ML researchers
only very recently. Motivated by applications in large-scale
machine learning [8], much of that work has focused solely
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on the distributed learning setup such as the parameter–server
setting [19] and the federated learning setting [20]. A neces-
sarily incomplete list of these works, most of which have de-
veloped and analyzed Byzantine-resilient distributed learning
approaches from the perspective of stochastic gradient descent,
include [21]–[42]. Nonetheless, translating the algorithmic and
analytical insights from the distributed learning setups to the
decentralized ones, which lack central coordinating servers, is
a nontrivial endeavor. As such, despite the plethora of work
on Byzantine-resilient distributed learning, the problem of
Byzantine-resilient decentralized learning—with the exception
of a handful of works discussed in the following—largely
remains unexplored in the literature.

In terms of decentralized learning in general, there are
three broad classes of iterative algorithms that can be utilized
for decentralized training purposes. The first one of these
classes of algorithms corresponds to first-order methods such
as the distributed gradient descent (DGD) and its (stochastic)
variants [43]–[46]. The iterative methods in this class have
low (local) computational complexity, which makes them
particularly well suited for large-scale problems. The second
class of algorithms involves the use of augmented Lagrangian-
based methods [47]–[49], which require each node in the
network to locally solve an optimization subproblem. The
third class of algorithms includes second-order methods [50],
[51], which typically have high computational and/or commu-
nications cost. Although the decentralized learning methods
within these three classes of algorithms have their own sets
of strengths and weaknesses, all of these traditional works
assume faultless operations within the decentralized network.

Within the context of Byzantine failures in decentralized
systems, some of the first works focused on the problem
of Byzantine-resilient averaging consensus [52], [53]. These
works were then leveraged to develop theory and algorithms
for Byzantine-resilient decentralized learning for the case of
scalar-valued models [15], [54]. But neither of these works are
applicable to the general vector-valued ML framework being
considered in this paper. In parallel, some researchers have also
developed Byzantine-resilient decentralized learning methods
for some specific vector-valued problems that include the
decentralized support vector machine [55] and decentralized
estimation [56]–[58].

Similar to the classical ML framework, however, there
is a need to develop and algorithmically/statistically ana-
lyze Byzantine-resilient decentralized learning methods for
vector-valued models for general—rather than specialized—
loss functions, which can be broadly divided into two classes
of convex and nonconvex loss functions. The first work in the
literature that tackled this problem is [59], which developed
a decentralized coordinate-descent-based learning algorithm
termed ByRDiE and established its resilience to Byzantine
failures in the case of a loss function that is given by the sum
of a convex differentiable function and a strictly convex and
smooth regularizer. The analysis in [59] also provided rates
for algorithmic convergence as well as statistical convergence
(i.e., sample complexity) of ByRDiE. One of the limitations
of [59] is its exclusive focus on convex loss functions for
the purposes of analysis. More importantly, however, the

coordinate-descent nature of ByRDiE makes it slow and
inefficient for learning of large-scale models. Let d denote
the number of parameters in the ML model being trained
(e.g., the number of weights in a deep neural network). One
iteration of ByRDiE then requires updating the d coordinates
of the model in d network-wide collaborative steps, each one
of which requires a computation of the local d-dimensional
gradient at each node in the network. In the case of large-scale
models such as the deep neural networks with tens or hundreds
of thousands of parameters, the local computation costs as
well as the network-wide coordination and communications
overhead of such an approach can be prohibitive for many
applications. By contrast, since the algorithmic developments
in this paper are based on the gradient-descent method, the
resulting computational framework is highly efficient and
scalable in a decentralized setting. And while the algorithmic
and statistical convergence results derived in here match
those for ByRDiE in the case of convex loss functions, the
proposed framework is fundamentally different from ByRDiE
and therefore necessitates its own theoretical analysis.

We conclude by noting that some additional works [60]–
[63] relevant to the topic of Byzantine-resilient decentral-
ized learning have appeared during the course of revising
this paper, which are being discussed here for the sake of
completeness. It is worth reminding the reader, however, that
the work in this paper predates these recent efforts. Equally
important, none of these works provide statistical convergence
rates for the proposed methods. Additionally, the work in
[60] only focuses on convex loss functions and it does not
provide any convergence rates. Further, the ability of the
proposed algorithm to defend against a large number of
Byzantine nodes severely diminishes with an increase in the
problem dimension. In contrast, the authors in [61] focus on
Byzantine-resilient decentralized learning in the presence of
non-uniformly distributed data and time-varying networks. The
focus in this work is also only on convex loss functions and
the performance of the proposed algorithm is worse than that
of the approach advocated in this work for static networks and
uniformly distributed data. Next, an algorithm termed MOZI
is proposed in [62], with the focus once again being on convex
loss functions. The resilience of MOZI, however, requires
an aggressive two-step ‘filtering’ operation, which limits the
maximum number of Byzantine nodes that can be handled by
the algorithm. The analysis in [62] also makes the unrealistic
assumption that the faulty nodes always send messages that
are ‘outliers’ relative to those of the regular nodes. Finally,
the only paper in the literature that has investigated Byzantine-
resilient decentralized learning for nonconvex loss functions is
[63]. The authors in this work have introduced three methods,
among which the so-called ICwTM method is effectively a
variant of our approach. The ICwTM algorithm, however, has
at least twice the communications overhead of our approach,
since it requires the neighbors to exchange both their local
models and local gradients. In addition, [63] requires the nodes
to have the same initialization and it does not bring out the
dependence of the network topology on the learning problem.

Remark 1. While this paper was in review, a related work [68]
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Algorithm Nonconvex Byzantine failures Algorithmic convergence rate Statistical convergence rate
ByRDiE [59] ×

√ √ √

Kuwaranancharoen et. al [60] ×
√

× ×
Peng and Ling [61] ×

√ √
×

MOZI [62] ×
√ √

×
ICwTM [63]

√ √ √
×

DGD [45] × ×
√

×
NEXT [64]

√
× × ×

Nonconvex DGD [65]
√

×
√

×
D-GET [66]

√
×

√ √

GT-SARAH [67]
√

×
√ √

BRIDGE (This paper)
√ √ √ √

TABLE I: Comparison of BRIDGE with different vector-valued decentralized learning/optimization methods in the literature.

appeared on a preprint server; this recent work on Byzantine-
resilient decentralized learning, in contrast to our paper, studies
a more general class of nonconvex loss functions and also
allows the distribution of training data at the regular nodes to
be heterogeneous. However, in addition to the fact that [68]
significantly postdates our work, the main result in [68] relies
on clairvoyant knowledge of several network-wide parameters,
including the subset of Byzantine nodes within the network,
and also requires the maximum ‘cumulative mixing weight’
associated with the Byzantine nodes to be impractically small
(e.g., even in the case of a fully connected network, the
cumulative weight must be no greater than 9.76× 10−5).

B. Our contributions

One of the main contributions of this paper is the intro-
duction of an efficient and scalable algorithmic framework
for Byzantine-resilient decentralized learning. The proposed
framework, termed Byzantine-resilient decentralized gradient
descent (BRIDGE), overcomes the computational and com-
munications overhead associated with the one-coordinate-at-
a-time update pattern of ByRDiE through its use of the
gradient descent-style updates. Specifically, the network nodes
locally compute the d-dimensional gradient (and exchange the
local d-dimensional model) only once in each iteration of the
BRIDGE framework, as opposed to the d computations of
the d-dimensional gradient in each iteration of ByRDiE. The
BRIDGE framework therefore has significantly less local com-
putational cost due to fewer gradient computations, and it also
has smaller network-wide coordination and communications
overhead due to fewer exchange of node-to-node messages.
Note that BRIDGE is being referred to as a framework since it
allows for multiple variants of a single algorithm depending on
the choice of the screening method used within the algorithm
for resilience purposes; see Section III for further details.

Another main contribution of this paper is analysis of one
of the variants of BRIDGE, termed BRIDGE-T, for resilience
against Byzantine failures in the network. The analysis enables
us to provide both algorithmic convergence rates and statistical
convergence rates for BRIDGE-T for certain classes of convex
and nonconvex loss functions, with the rates derived for the
convex setting matching those for ByRDiE [59]. The final
main contribution of this paper is reporting of large-scale
numerical results on the MNIST [69] and CIFAR-10 [70]
datasets for both convex and nonconvex decentralized learning
problems in the presence of Byzantine failures. The reported

results, which include both independent and identically dis-
tributed (i.i.d.) and non-i.i.d. datasets within the network,
highlight the benefits of the BRIDGE framework and validate
our theoretical findings.

In summary, and to the best of our knowledge, BRIDGE is
the first Byzantine-resilient decentralized learning algorithm
that is scalable, has results for a class of nonconvex learn-
ing problems, and provides rates for both algorithmic and
statistical convergence. We also refer the reader to Table I,
which compares BRIDGE with recent works in both faultless
and faulty vector-valued decentralized optimization/learning
settings. Additional relevant works not appearing in this table
include [15], [54], since they limit themselves to scalar-valued
problems, and [68], since it substantially postdates our work.
Further, [15], [54] neither study nonconvex loss functions
nor derive the statistical convergence rates, while the main
result in [68]—despite the generality of its problem setup—is
significantly restrictive, as discussed in Remark 1.

C. Notation and organization

The following notation is used throughout the rest of the
paper. We denote scalars with regular-faced lowercase and
uppercase letters (e.g., a and A), vectors with bold-faced low-
ercase letters (e.g., a), and matrices with bold-faced uppercase
letters (e.g., A). All vectors are taken to be column vectors,
while [a]k and [A]ij denote the k-th element of vector a and
the (i, j)-th element of matrix A, respectively. We use ∥a∥ to
denote the ℓ2-norm of a, 1 to denote the vector of all ones,
and I to denote the identity matrix, while (·)T denotes the
transpose operation. Given two matrices A and B, the notation
A ⪰ B signifies that A−B is a positive semidefinite matrix.
We also use ⟨a1,a2⟩ to denote the inner product between
two vectors. For a given vector a and nonnegative constant
γ, we denote the ℓ2-ball of radius γ centered around a as
B(a, γ) := {a′ : ∥a − a′∥ ≤ γ}. Finally, given a set, | · |
denotes its cardinality, while we use the notation G(J , E) to
denote a graph with the set of nodes J and edges E .

The rest of this paper is organized as follows. Section II
provides a mathematical formulation of the Byzantine-resilient
decentralized learning problem, along with a formal definition
of a Byzantine node and various assumptions on the loss
function. Section III introduces the BRIDGE framework
and discusses different variants of the BRIDGE algorithm.
Section IV provides theoretical guarantees for the BRIDGE-T
algorithm for certain classes of convex and nonconvex



4

loss functions, which include guarantees for network-wide
consensus among the nonfaulty nodes and statistical conver-
gence. Section V reports results corresponding to numerical
experiments on the MNIST and CIFAR-10 datasets for both
convex and nonconvex learning problems, establishing the
usefulness of the BRIDGE framework for Byzantine-resilient
decentralized learning. We conclude the paper in Section VI,
while the supplementary material contains results of addi-
tional experiments and proofs of the lemmas and theorems.

II. PROBLEM FORMULATION

A. Preliminaries

Let (w, z) 7→ f(w, z) be a non-negative-valued (and possi-
bly regularized) loss function that maps the tuple of a model
w and a data sample z to the corresponding loss f(w, z).
Without loss of much generality, we assume the model w in
this paper to be a parametric one, i.e., w ∈ Rd (e.g., d could be
the number of parameters in a deep neural network). The data
sample z, on the other hand, corresponds to a random variable
on some probability space (Ω,F ,P), i.e., z is F -measurable
and has been drawn from the sample space Ω according to the
probability law P. The holy grail in machine learning (ML) is
to obtain an optimal model w∗ that minimizes the expected
loss, termed the statistical risk [5], [6], i.e.,

w∗ ∈ argmin
w∈Rd

EP[f(w, z)]. (1)

A model w∗ that satisfies (1) is termed a statistical risk
minimizer (also known as a Bayes optimal model). In the real
world, however, one seldom has access to the distribution of
z, which precludes the use of the statistical risk EP[f(w, z)]
in any computations. Instead, a common approach utilized in
ML is to leverage a collection Z := {zn}Nn=1 of data samples
that have been drawn according to the law P and solve an
empirical variant of (1) as follows [5], [6]:

w∗
ERM ∈ argmin

w∈Rd

1

N

N∑
n=1

f(w, zn). (2)

This approach, which is termed as the empirical risk minimiza-
tion (ERM), typically relies on an optimization algorithm to
solve for w∗

ERM. The resulting solution ŵ, from the perspective
of an ML practitioner, must satisfy two criteria: (i) it should
have fast algorithmic convergence, measured in terms of the
algorithmic convergence rate, to a fixed point (often taken
to be a stationary point of (2) in centralized settings); and
(ii) it should have fast statistical convergence, often specified
in terms of the sample complexity (number of samples),
to a statistical risk minimizer. Our focus in this paper, in
contrast to several related prior works (cf. Table I), is on both
the algorithmic and the statistical convergence of the ERM
solution. The final set of results in this case rely on a number
of assumptions on the loss function f(w, z), stated below.

Assumption 1 (Bounded and Lipschitz gradients). The loss
function f(w, z) is differentiable in the first argument P-
almost surely (a.s.) and the gradient of f(w, z) with respect

to the first argument, denoted as ∇f(w, z), is bounded and
L′-Lipschitz a.s., i.e.,1 ∀w ∈ Rd, ∥∇f(w, z)∥ ≤ L a.s. and

∀w1,w2 ∈ Rd, ∥∇f(w1, z)−∇f(w2, z)∥ ≤ L′∥w1−w2∥ a.s.

In the literature, functions with L′-Lipschitz gradients are
also referred to as L′-smooth functions. Assumption 1 implies
the loss function is itself a.s. L-Lipschitz continuous [71], i.e.,
∀w1,w2 ∈ Rd, |f(w1, z)− f(w2, z)| ≤ L∥w1 −w2∥ a.s.

Assumption 2 (Bounded training loss). The loss function is
a.s. bounded over the training samples, i.e., there exists a
constant C such that supw∈Rd,z∈Z f(w, z) ≤ C <∞ a.s.

The analysis carried out in this paper considers two differ-
ent classes of loss functions, namely, convex functions and
nonconvex functions. In the case of analysis for the convex
loss functions, we make the following assumption.

Assumption 3 (Strong convexity). The loss function f(w, z)
is a.s. λ-strongly convex in the first argument, i.e.,

∀w1,w2 ∈ Rd, f(w1, z) ≥ f(w2, z)+⟨∇f(w2, z),w1−w2⟩

+
λ

2
∥w1 −w2∥2 a.s.

Note that the Lipschitz gradients assumption can be relaxed
to Lipschitz subgradients in the case of strongly convex
loss functions. Some examples of loss functions that satisfy
Assumptions 1 and 3 arise in ridge regression, elastic net re-
gression, ℓ2-regularized logistic regression, and ℓ2-regularized
training of support vector machines when the optimization
variable w is constrained to belong to a bounded set in Rd.
Our discussion in the sequel shows that w indeed remains
bounded for the algorithms in consideration, justifying the
usage of Assumptions 1 and 3. And while Assumption 2, as
currently stated, would not be satisfied for the aforementioned
regularized problems, the analysis in the paper only requires
boundedness of the data-dependent term(s) of the loss function
over the finite set of training data. For the sake of compactness
of notation, however, we refrain from expressing the loss func-
tion as the sum of two terms, with the implicit understanding
that Assumption 2 is concerned only with the data-dependent
component of f(·, ·). Finally, in contrast to Assumption 3, we
make the following assumption in relation to analysis of the
class of nonconvex loss functions.

Assumption 3′ (Local strong convexity). The loss function
f(w, z) is nonconvex and a.s. twice differentiable in the
first argument. Next, let ∇2F (w) denote the Hessian of the
statistical risk F (w) := EP[f(w, z)] and let W∗

s denote
the set of all first-order stationary points of F (w), i.e.,
W∗

s := {w ∈ Rd : ∇F (w) = 0}. Then, for any w∗
s ∈ W∗

s ,
the statistical risk is locally λ-strongly convex in a sufficiently
large neighborhood of w∗

s , i.e., there exist positive constants
λ and β such that ∀w ∈ B(w∗

s , β),∇2F (w) ⪰ λI.

It is straightforward to see that the local strong convexity of
the statistical risk does not imply the global strong convexity
of either the statistical risk or the loss function. Assumptions

1Unless specified otherwise, all almost sure statements in the paper are to
be understood with respect to the probability law P.
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similar to Assumption 3′ are nowadays routinely used for anal-
ysis of nonconvex optimization problems in machine learning;
see, e.g., [72]–[75]. In particular, Assumption 3′ along with
the proof techniques utilized in this work allow the theoretical
results to be applicable to a broader class of functions in which
the strong convexity is preserved only locally.
Remark 2. The convergence guarantees for nonconvex loss
functions in this paper are local in the sense that they hold
as long as the BRIDGE iterates are initialized within a
sufficiently small neighborhood of a stationary point (cf. Sec-
tion IV). Such local convergence guarantees are typical of
many results in nonconvex optimization (see, e.g., [76]–[78]),
but they do not imply that an iterative algorithm requires
knowledge of the stationary point.

B. System model for decentralized learning
Consider a network of M nodes (devices, machines, etc.),

expressed as a directed, static, and connected graph G(J , E)
in which the set J := {1, . . . ,M} represents nodes in the
network and the set of edges E represents communication links
between the nodes. Specifically, (j, i) ∈ E if and only if node i
can directly receive messages from node j and vice versa. We
also define the neighborhood Nj of node j as the set of nodes
that can send messages to it, i.e., Nj := {i ∈ J : (i, j) ∈ E}.
We assume each node j has access to a local training dataset
Zj := {zjn}

|Zj |
n=1. For simplicity of exposition, we assume the

cardinalities of the local training sets to be the same, as the
generalization of our results to the case of Zj’s not being same
sized is trivial. Collectively, therefore, the network has a total
of MN samples that could be utilized for learning purposes.

In order to obtain an estimate of the statistical risk min-
imizer w∗ (cf. (1)) in this decentralized setting, one would
ideally like to solve the following ERM problem:

min
w∈Rd

1

MN

M∑
j=1

N∑
n=1

f(w, zjn) = min
w∈Rd

1

M

M∑
j=1

fj(w), (3)

where we have used fj(w) := 1
N

∑N
n=1 f(w, zjn) to denote

the local empirical risk associated with the j-th node. In
particular, it is well known that the minimizer of (3) will
statistically converge with high probability to w∗ in the
case of a strictly convex loss function [1]. The problem in
(3), however, necessitates bringing together of the data at a
single location; as such, it cannot be practically solved in its
current form in the decentralized setting. Instead, we assume
each node j maintains a local version wj of the desired
global model and collaborate among themselves to solve the
following decentralized ERM problem:

min
{w1,...,wM}

1

M

M∑
j=1

fj(wj) subject to ∀i, j, wi = wj . (4)

Traditional decentralized learning algorithms proceed itera-
tively to solve this decentralized ERM problem [9]–[13], [47],
[79]. This is typically accomplished through each node j
engaging in two tasks during each iteration: update the local
variable wj according to some (local and data-dependent) rule
gj(·), and broadcast some summary of its local information to
the nodes that have node j in their respective neighborhoods.

C. Byzantine-resilient decentralized learning

While decentralized learning is well understood in the case
of faultless networks, the main assumption in this paper is that
some of the network nodes can arbitrarily deviate from their
intended behavior during the iterative process. Such deviations
could be caused by malfunctioning equipment, cyberattacks,
etc. We model the deviations of the faulty nodes as a Byzantine
failure, which is formally defined as follows [14], [16].

Definition 1 (Byzantine node). A node j ∈ J is said to
have undergone a Byzantine failure if, during any iteration
of decentralized learning, it either updates its local variable
wj using an update rule g̃j(·) ̸= gj(·) or it broadcasts some
information other than the intended summary of its local
information to the nodes in its vicinity.

Throughout the remainder of this paper, we use R ⊆ J and
B ⊂ J to denote the sets of nonfaulty and Byzantine nodes
in the network, respectively. In addition, we use r to denote
the cardinality of the set R and assume that the number of
Byzantine nodes is upper bounded by an integer b. Thus, we
have 0 ≤ |B| ≤ b and r ≥ M − b. In addition, without loss
of generality, we label the nonfaulty nodes from 1 to r within
our analysis, i.e., R := {1, . . . , r}.

Under this assumption of Byzantine failures in the network,
it is straightforward to see that the decentralized ERM problem
as stated in (4) cannot be solved. Rather, the best one could
hope for is to solve an ERM problem that is restricted to the
set of nonfaulty nodes, i.e.,

min
{wj :j∈R}

1

r

∑
j∈R

fj(wj) subject to ∀i, j ∈ R, wi = wj , (5)

except that the set R is unknown to an algorithm and therefore
traditional decentralized learning algorithms cannot be utilized
for this purpose. Consequently, the main goal in this paper is
threefold: (i) Develop a decentralized learning algorithm that
can provably solve some variant of the decentralized ERM
problem (4); (ii) Establish that the resulting solution statisti-
cally converges to the statistical risk minimizer (Assumption 3)
or a stationary point of the statistical risk (Assumption 3′); and
(iii) Characterize the sample complexity of the solution, i.e.,
the statistical rate of convergence as a function of the number
of samples, rN , associated with the nonfaulty nodes.

In order to accomplish the stated goal of this paper, we need
to make one additional assumption concerning the topology
of the network. This assumption, which is common in the
literature on Byzantine resilience within decentralized net-
works [15], [59], requires definitions of the notions of a source
component of a graph and a reduced graph, Gred(b), of G.

Definition 2 (Source component). A source component of a
graph is any subset of graph nodes such that each node in the
subset has a directed path to every other node in the graph.

Definition 3 (Reduced graph). A subgraph Gred(b) of G is
called a reduced graph with parameter b if it is generated from
G by (i) removing all Byzantine nodes along with all their
incoming and outgoing edges from G, and (ii) additionally
removing b incoming edges from each nonfaulty node.
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Assumption 4 (Sufficient network connectivity). The decen-
tralized network is assumed to be sufficiently connected in the
sense that all reduced graphs Gred(b) of the underlying graph
G(J , E) contain at least one source component of cardinality
greater than or equal to (b+ 1).

We conclude by expanding further on Assumption 4, which
concerns the redundancy of information flow within the net-
work. In words, this assumption ensures that each nonfaulty
node can continue to receive information from a few other
nonfaulty nodes even after a certain number of edges have
been removed from every nonfaulty node. And while efficient
certification of this assumption remains an open problem, there
is an understanding of the generation of graphs that satisfy this
assumption [52]. In addition, we have empirically observed
that Assumption 4 is often satisfied in Erdős–Rényi graphs as
long as the degree of the least connected node is larger than
2b. This is also the approach we take while generating graphs
for our numerical experiments.
Remark 3. In the finite sample regime, in which each (non-
faulty) node has only a finite number of training data samples,
the local empirical risk fj(w) at every node will be different
due to the randomness of the data samples, regardless of
whether the training data across the nodes are i.i.d. or non-i.i.d.
While this makes the formulation in (5) similar to the one in
[54] and [60] for scalar-valued and vector-valued Byzantine-
resilient decentralized optimization, respectively, the funda-
mental difference between the statistical learning framework of
this work and the optimization-only framework in [54], [60] is
the intrinsic focus on sample complexity in statistical learning.
In particular, the sample complexity results in Section IV-B
also help characterize the gap between local-only learning, in
which every regular node learns its own model using its own
training data, and decentralized learning, in which the regular
nodes collaborate to learn a common model.

III. BYZANTINE-RESILIENT DECENTRALIZED
GRADIENT DESCENT

In the faultless case, the decentralized ERM problem (4) can
be solved, perhaps to one of its stationary points, using any
one of the distributed/decentralized optimization methods in
the literature [43]–[46], [64]–[67]. The prototypical distributed
gradient descent (DGD) method [43] with decreasing step
size, for instance, accomplishes this for (strongly) convex loss
functions by letting each node in iteration (t + 1) update its
local variable wj(t) as

wj(t+ 1) =
∑

i∈Nj∪{j}

ajiwi(t)− ρ(t)∇fj(wj(t)), (6)

where 0 ≤ aji ≤ 1 is the weighting that node j applies
to the local variable wi(t) that it receives from node i, and
{ρ(t)} denotes a positive sequence of step sizes that satisfies
ρ(t+1) ≤ ρ(t), ρ(t) t→ 0,

∑∞
t=0 ρ(t) =∞, and

∑∞
t=0 ρ

2(t) <
∞. One choice for such a sequence is ρ(t) = 1

λ(t0+t) for
some t0, which ensures that a network-wide consensus is
reached among all nodes, i.e., ∀i, j,wi(t)

t→ wj(t), and all
local variables converge to the decentralized (and thus the
centralized) ERM solution.

Algorithm 1 The BRIDGE Framework

Input: Local datasets Zj , maximum number of Byzantine
nodes b, step size sequence {ρ(t)}∞t=0, and maximum
number of iterations tmax

1: Initialize: t← 0 and ∀j ∈ R,wj(0)
2: for t = 0, 1, . . . , tmax − 1 do
3: Broadcast wj(t), ∀j ∈ R
4: Receive wi(t) at each node j ∈ R from

every i ∈ Nj ⊂ (R∪ B)
5: yj(t)← screen({wi(t)}i∈Nj∪{j}), ∀j ∈ R
6: wj(t+ 1)← yj(t)− ρ(t)▽fj(wj(t)), ∀j ∈ R
7: end for

Output: wj(tmax), ∀j ∈ R

Traditional distributed/decentralized optimization methods,
however, fail to reach a stationary point of the decentral-
ized ERM problem (4) (or its restricted variant (5)) in the
presence of a single Byzantine failure in the network [27]–
[29], [54], [80]–[82]. To overcome this shortcoming of the
traditional approaches as well as improve on the limitations
of existing works on Bynzatine-resilient decentralized learn-
ing (cf. Sections I-A and I-B), we introduce an algorithmic
framework termed Byzantine-resilient decentralized gradient
descent (BRIDGE).

The BRIDGE framework, which is listed in Algorithm 1,
is a gradient descent-based approach whose main update step
(Step 6 in Algorithm 1) is similar to the DGD update (6).
The main difference between the BRIDGE framework and
DGD is that each node j ∈ R in BRIDGE screens the
incoming messages from its neighboring nodes for potentially
malicious content (Step 5 in Algorithm 1) before updating
its local variable wj(t). Note, however, that BRIDGE does
not permanently label any nodes as malicious, which also
allows it to manage any transitory Byzantine failures in
a graceful manner. While this makes BRIDGE similar to
the ByRDiE algorithm [59], the fundamental advantage of
BRIDGE over ByRDiE is its scalability that comes from the
fact that it eschews the one-coordinate-at-a-time update of the
local variables in ByRDiE in favor of one update of the entire
vector wj(t) in each iteration. In terms of other details, the
BRIDGE framework is input with the maximum number of
Byzantine nodes b that need to be tolerated, a decreasing
step size sequence {ρ(t)}, and the maximum number of
gradient descent iterations tmax. Next, the local variable at
each nonfaulty node j in the network is initialized at wj(0).
Afterward, within every iteration (t + 1) of the framework,
each node j ∈ R broadcasts wj(t) as well as receives wi(t)
from every node i ∈ Nj . This is followed by every node j ∈ R
screening the received wi(t)’s for any malicious information
and then updating the local variable wj(t).

In the following, we discuss four different variants of the
screening rule (Step 5 in Algorithm 1), each one of which
in turn gives rise to a different realization of the BRIDGE
framework. The motivation for these screening rules comes
from the literature on robust statistics [83], with all these
rules appearing in some form within the literature on robust
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Variant Screening Min. neighborhood size Ave. computational complexity
BRIDGE-T coordinate-wise 2b+ 1 O(nd), where n := maxj |Nj |
BRIDGE-M coordinate-wise 1 O(nd)
BRIDGE-K vector b+ 3 O(n2d)
BRIDGE-B vector + coordinate-wise max(4b, 3b+ 2) + 1 O(n2d)

TABLE II: Comparison between the four different variants of the BRIDGE framework.

averaging consensus [52], [53] and robust distributed learning
[21], [27]–[29]. The challenge here of course, as discussed in
Section I, is that these prior works on robust averaging con-
sensus and distributed learning do not translate into equivalent
results for Byzantine-resilient decentralized learning.

The BRIDGE-T variant of the BRIDGE framework uses
the coordinate-wise trimmed mean as the screening rule. A
similar screening principle has been utilized within distributed
frameworks [28] and decentralized frameworks [15], [54],
[59]. The coordinate-wise trimmed-mean screening within
BRIDGE-T filters the b largest and the b smallest values in
each coordinate of the local variables wi(t) received from the
neighborhood of node j and uses an average of the remaining
values for the update of wj(t). Specifically, for any iteration
index t, BRIDGE-T finds the following three sets for each
coordinate k ∈ {1, . . . , d} in parallel:

N k

j (t) := argmin
X :X⊂Nj ,|X |=b

∑
i∈X

[wi(t)]k, (7)

N k
j (t) := argmax

X :X⊂Nj ,|X |=b

∑
i∈X

[wi(t)]k, and (8)

Ckj (t) := Nj \
{
N k

j (t)
⋃
N k

j (t)
}
. (9)

Afterward, the screening routine outputs a combined and
filtered vector yj(t) whose k-th element is given by

[yj(t)]k =
1

|Nj | − 2b+ 1

∑
i∈Ck

j (t)

∪{j}[wi(t)]k. (10)

Notice that BRIDGE-T requires each node to have at least
2b+ 1 neighbors. Also, note that the elements from different
neighbors may survive the screening at different coordinates.
Therefore, the average within BRIDGE-T is not taken over
vectors; rather, the calculation of yj(t) has to be carried out
in a coordinate-wise manner.

The BRIDGE-M variant uses the coordinate-wise median
as the screening rule, with a similar screening idea having
been utilized within distributed frameworks [28]. Similar to
BRIDGE-T, BRIDGE-M is also a coordinate-wise screening
procedure in which the k-th element of the combined and
filtered output yj(t) takes the form

[yj(t)]k = median
(
{[wi(t)]k}i∈Nj∪{j}

)
. (11)

Notice that, unlike BRIDGE-T, the coordinate-wise median
screening within BRIDGE-M neither requires an explicit
knowledge of b nor does it impose an explicit constraint on
the minimum number of neighbors of each node.

The BRIDGE-K variant uses the Krum function as the
screening rule, which is similar to the screening principle
that has been employed within distributed frameworks [21]. In

terms of specifics, the Krum screening for the decentralized
framework can be described as follows. Given i, h ∈ Nj∪{j},
write h ∼ i if wh(t) is one of the |Nj | − b − 2 vectors with
the smallest Euclidean distance, expressed as ∥wh(t)−wi(t)∥,
from wi(t). The Krum-based screening at node j then finds
the neighbor index i∗j (t) as

i∗j (t) = argmin
i∈Nj

∑
h∈Nj∪{j}:h∼i

∥wh(t)−wi(t)∥, (12)

and outputs the (combined and filtered) vector yj(t) as
yj(t) = wi∗j

(t). Unlike BRIDGE-T and BRIDGE-M,
BRIDGE-K utilizes vector-valued operations for screening,
resulting in the surviving vector yj(t) to be entirely from
one neighbor of each node. The Krum screening rule within
BRIDGE-K requires the neighborhood of every node to be
larger than b+ 2. Note that since the Krum function requires
the pairwise distances of all nodes within the neighborhood of
every node, BRIDGE-K has high computational complexity in
comparison to BRIDGE-T and BRIDGE-M.

Last but not least, the BRIDGE-B variant—inspired by
a similar screening procedure within distributed frame-
works [27]—uses a combination of Krum and coordinate-wise
trimmed mean as the screening rule. Specifically, the screening
within BRIDGE-B involves first selecting |Nj |−2b neighbors
of the j-th node by recursively finding an index i∗j (t) ∈ Nj

using (12), removing the selected node from the neighborhood,
finding a new index from Nj \ {i∗j (t)} using (12) again, and
repeating this Krum-based process |Nj | − 2b times. Next,
coordinate-wise trimmed mean-based screening, as described
within BRIDGE-T, is applied to the received wi(t)’s of the
|Nj |−2b neighbors of node j that survive the first-stage Krum-
based screening. Intuitively, the Krum-based vector screen-
ing first guarantees the surviving neighbors have the closest
wi(t)’s in terms of the Euclidean distance, while coordinate-
wise trimmed-mean screening afterward guarantees that each
coordinate of the combined and filtered vector yj(t) only
includes the “inlier” values. The cost of this two-step screening
procedure includes high computational complexity due to the
use of the Krum function and the stricter requirement that the
neighborhood of each node be larger than max(4b, 3b+ 2).

We conclude by providing a comparison in Table II between
the four different variants of the BRIDGE framework. Note
that both BRIDGE-T and BRIDGE-B reduce to DGD in the
case of b = 0; this, however, is not the case for BRIDGE-M
and BRIDGE-K. It is also worth noting that additional variants
of BRIDGE can be obtained through further combinations of
the different screening rules and/or incorporation of additional
ideas from the literature on robust statistics. Nonetheless, each
variant of the BRIDGE framework requires its own theoretical
analysis for convergence guarantees. In this paper, we limit
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ourselves to BRIDGE-T for this purpose and provide the
corresponding guarantees in the next section.

IV. BRIDGE-T: CONVERGENCE GUARANTEES

In this section, we derive the algorithmic and statistical
convergence guarantees for BRIDGE-T for both convex and
nonconvex loss functions. While these results match those for
ByRDiE for convex loss functions, they cannot be obtained
directly from [59] since the filtered vector yj(t) in BRIDGE-
T corresponds to an iteration-dependent amalgamation of the
iterates {wi(t)} in the neighborhood of node j (cf. (10)). Our
statistical convergence guarantees require the training data to
be independent and identically distributed (i.i.d.) among all the
nodes. Additionally, let w∗ denote the unique global minimizer
of the statistical risk in the case of the strongly convex loss
function, while it denotes one of the first-order stationary
points of the statistical risk in the case of the nonconvex loss
function. We assume there exists a positive constant Γ such
that for all j ∈ R, t ∈ Rd, ∥wj(t)−w∗∥ ≤ Γ. Note that this
Γ can be arbitrary large and so the above assumption, which
is again needed for derivation of the statistical rate of conver-
gence, is a mild one (also, see Lemma 4 and its accompanying
discussion). Broadly speaking, the analysis for our algorithmic
and statistical convergence guarantees proceeds as follows.

First, we define a “consensus” vector v(t) and establish
in Section IV-A that ∀j ∈ R,wj(t) → v(t) as t → ∞
for an appropriate choice of the step-size sequence ρ(t) that
satisfies ρ(t + 1) ≤ ρ(t), ρ(t) t→ 0,

∑∞
t=0 ρ(t) = ∞, and∑∞

t=0 ρ
2(t) < ∞. In particular, we work with the step size

ρ(t) = 1
λ(t0+t) , t0 ≥

L
λ , where L is the Lipschitz constant

of the loss function; see, e.g., Assumption 1. This consensus
analysis relies on the condition that the wj(0)’s for all j ∈ R
are initialized such that v(0) ∈ B(w∗,Γ). One such choice of
initialization is initializing all wj(0)’s to be within B(w∗,Γ).
(Note that in terms of our analysis for the nonconvex loss func-
tion, which is provided in Section IV-B2, we will impose addi-
tional constraints on the initialization.). Afterward, we define
two vectors u(t+1) and x(t+1) in Section IV-B that corre-
spond to gradient descent updates of the consensus vector v(t)
using, respectively, a convex combination of gradients of the
local loss functions evaluated at v(t) and the gradient of the
statistical risk evaluated at v(t). Finally, we define the follow-
ing collection of distances: a1(t) := ∥x(t+1)−w∗∥, a2(t) :=
∥u(t + 1) − x(t + 1)∥, a3(t) := ∥v(t + 1) − u(t + 1)∥, and
a4(t+1) := maxj∈R ∥wj(t+1)−v(t+1)∥. It is straightfor-
ward to see that ∥v(t+1)−w∗∥ ≤ a1(t)+a2(t)+a3(t), and we
establish in Section IV-B that a1(t) + a2(t) + a3(t)

t→ 0 with
high probability as well as a4(t+ 1)

t→ 0 using Assumptions
1, 2, 3 and 4 in the convex setting and Assumptions 1, 2, 3′

and 4 in the nonconvex setting, thereby completing our proof
of optimality for both convex and nonconvex loss functions.

A. Consensus guarantees

Let us pick an arbitrary index k ∈ {1, . . . , d} and define
a vector Ω(t) ∈ Rr whose respective elements correspond to
the k-th element of the iterate wj(t) of nonfaulty nodes, i.e.,
∀j ∈ R, [Ω(t)]j = [wj(t)]k. Note that Ω(t) as well as most

of the variables in our discussion in this section depend on the
index k; however, since k is arbitrary, we drop this explicit
dependence on k in many instances for simplicity of notation.

We first show that the BRIDGE-T update at the nonfaulty
nodes in the k-th coordinate can be expressed in a form that
only involves the nonfaulty nodes. Specifically, we write

Ω(t+ 1) = Y(t)Ω(t)− ρ(t)g(t), (13)

where the vector g(t) is defined as [g(t)]j =
[∇fj(wj(t))]k, j ∈ R. The formulation of the matrix
Y(t) in this expression is as follows. Let N r

j denote
the nonfaulty nodes in the neighborhood of node j, i.e.,
N r

j := R ∩ Nj . The set of Byzantine neighbors of node
j can then be defined as N b

j := Nj \ N r
j . To make the

rest of the expressions clearer, we drop the iteration index
t for the remainder of this discussion, even though the
variables are still t-dependent. Let us now define the notation
b∗ := |B| as the actual (unknown) number of Byzantine
nodes in the network, bkj as the number of Byzantine nodes
remaining in the filtered set Ckj , and qkj := b − b∗ + bkj .
Since b − b∗ ≥ 0 by assumption and bkj ≥ 0 by definition,
notice that only one of two cases can happen during each
iteration for every coordinate k: (i) qkj > 0 or (ii) qkj = 0.
For case (i), we either have b − b∗ > 0 or bkj > 0 or
both. These conditions correspond to the scenario where
the node j filters out more than b regular nodes from its
neighborhood. Thus, we know that N k

j ∩ N r
j ̸= ∅. Likewise,

it follows that N k
j ∩ N r

j ̸= ∅. Then ∃m′
j ∈ N

k

j ∩ N r
j and

m′′
j ∈ N

k
j ∩ N r

j satisfying [wm′
j
]k ≤ [wi]k ≤ [wm′′

j
]k for

any i ∈ Ckj . Thus, for every i ∈ Ckj ∩ N b
j , ∃θi ∈ (0, 1)

satisfying [wi]k = θi[wm′
j
]k +(1− θi)[wm′′

j
]k. Consequently,

the elements of the matrix Y can be written as

[Y]ji =



1
2(|Nj |−2b+1) , i ∈ N r

j ∩ Ckj ,
1

|Nj |−2b+1 , i = j,∑
i′∈N b

j ∩Ck
j

θi′
qkj (|Nj |−2b+1)

+
∑

i′∈N r
j ∩Ck

j

θi′
qkj (|Nj |−2b+1)

, i ∈ N k

j ∩N r
j ,∑

i′∈N b
j ∩Ck

j

1−θi′
qkj (|Nj |−2b+1)

+
∑

i′∈N r
j ∩Ck

j

1−θi′
qkj (|Nj |−2b+1)

, i ∈ N k
j ∩N r

j ,

0, otherwise.
(14)

For case (ii), we must have that b− b∗ = 0 and bkj = 0. Thus,
all the filtered nodes in Ckj would be regular nodes in this case.
Therefore, we can describe Y in this case as

[Y]ji =

{
1

|Nj |−2b+1 , i ∈ {j} ∪ Ckj ,
0, otherwise.

(15)

Combining the expressions of Y in the two cases above
allows us to express the update in (13) exclusively in terms of
information from the nonfaulty nodes.

Next, we define ψ to be the total number of reduced graphs
that can be generated from G, the parameter ν as ν := ψr,
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and the maximum neighborhood size of the nonfaulty nodes as
Nmax := maxj∈R |Nj |. Further, we define a transition matrix
Φ(t, t0) from some index t0 ≤ t to t, i.e.,

Φ(t, t0) := Y(t)Y(t− 1) · · ·Y(t0). (16)

Then it follows from [84, Lemma 4] that if Assumption 4 is
satisfied then

lim
t→∞

Φ(t, t0) = 1αT (t0), (17)

where the vector α(t0) ∈ Rr satisfies [α(t0)]j ≥ 0 and∑r
j=1[α(t0)]j = 1. In particular, we have [84, Theorem 3]

|[Φ(t, t0)]ji − [α(t0)]i| ≤ µ(
t−t0+1

ν ), (18)

where µ ∈ (0, 1) is defined as µ := 1− 1
(2Nmax−2b+1)ν .

Next, it follows from (13) and the definition of Φ(t, t0) that

Ω(t) = Y(t− 1)Ω(t− 1)− ρ(t− 1)g(t− 1)

= Y(t− 1)Y(t− 2) · · ·Y(0)Ω(0)

−
t−1∑
τ=0

Y(t− 1)Y(t− 2) · · ·Y(τ + 1)ρ(τ)g(τ)

= Φ(t− 1, 0)Ω(0)−
t−1∑
τ=0

Φ(t− 1, τ + 1)ρ(τ)g(τ).

(19)

Now, similar to [84, Convergence Analysis of Algorithm 1],
suppose all nodes stop computing their local gradients after
iteration t so that g(τ) = 0 when τ > t. Note that this is
without loss of generality when we let t approach infinity, as
we recover BRIDGE-T in that case. Further, let T ≥ 0 be an
integer and define a vector v̄(t) as follows:

v̄(t) = lim
T→∞

Ω(t+ T + 1)

= lim
T→∞

Φ(t+ T, 0)Ω(0)− lim
T→∞

t+T∑
τ=0

Φ(t+ T, τ + 1)ρ(τ)g(τ)

= 1αT (0)Ω(0)−
t−1∑
τ=0

1αT (τ + 1)ρ(τ)g(τ). (20)

Notice that v̄(t) is a constant vector and we define a scalar-
valued sequence v(t) to be any one of its elements. We now
show that [wj(t)]k

t→ v(t). Indeed, we have from (20) that

v(t) =
r∑

i=1

[α(0)]i[wi(0)]k

−
t−1∑
τ=0

ρ(τ)
r∑

i=1

[α(τ + 1)]i[∇fi(wi(τ))]k. (21)

Also recall from the update of [wj(t)]k that

[wj(t)]k =
r∑

i=1

[Φ(t− 1, 0)]ji[wi(0)]k

−
t−1∑
τ=0

ρ(τ)
r∑

i=1

[Φ(t− 1, τ + 1)]ji[∇fi(wi(τ))]k.

From Assumption 1 and the initialization of wj(t)’s, there
exist two scalars Cw and L such that ∀j ∈ R, |[wj(0)]k| ≤ Cw

and |[∇fj(wj)]k| ≤ L. Therefore, we have

|[wj(t)]k − v(t)| ≤ |
r∑

i=1

([Φ(t− 1, 0)]ji − [α(0)]i)[wi(0)]k|

+ |
t−1∑
τ=0

ρ(τ)
r∑

i=1

([Φ(t− 1, τ + 1)]ji − [α(τ + 1)]i)[∇fi(wi(τ))]k|

≤ rCwµ
t
ν + rL

t∑
τ=0

ρ(τ)µ
t−τ+1

ν
t→ 0. (22)

Here, the fact that the second term in the second inequality of
(22) converges to zero follows from our assumptions on the
decreasing step size sequence along with [84, Lemma 6].

Finally, recall that the vector-valued iterate updates in
BRIDGE-T can be thought of as individual updates of the d
coordinates in parallel. Therefore, since the coordinate k was
arbitrarily picked, we have proven that BRIDGE-T achieves
consensus among the nonfaulty nodes for both convex and
nonconvex loss functions, as summarized in the following.

Theorem 1. Define a vector v(t) ∈ Rd as one whose k-
th entry [v(t)]k is given by the right-hand-side of (21). If
Assumptions 1 and 4 are satisfied, then the gap between
wj(t), ∀j ∈ R, and v(t) goes to 0 as t→∞, i.e.,

lim
t→∞

a4(t) = lim
t→∞

max
j∈R
∥wj(t)− v(t)∥

≤ lim
t→∞

[
√
drCwµ

t
ν +
√
drL

t∑
τ=0

ρ(τ)µ
t−τ+1

ν

]
= 0. (23)

We conclude our discussion with a couple of remarks.
First, note that Theorem 1 has been obtained without needing
Assumptions 2 and 3 / 3′. Thus, BRIDGE-T guarantees
consensus among the nonfaulty nodes for both convex and
nonconvex loss functions under a general set of assumptions.
Second, notice that the second term in (23) is a sum of t
terms and it converges to 0 at a slower rate than the first term.
Among all the sub-terms in the sum of the second term, the
last term ρ(t)µ

1
ν is the one that converge to zero at the slowest

rate. Thus, the rate at which BRIDGE-T achieves consensus
is determined by this sub-term and is given by O(

√
dρ(t)).

In particular, if we choose ρ(t) to be O(1/t), the rate of
consensus for BRIDGE-T is O(

√
d/t).

B. Statistical optimality guarantees
While Theorem 1 guarantees consensus among the non-

faulty nodes by providing an upper bound on the distance
a4(t), this result alone cannot be used to characterize the gap
between the iterates {wj(t)}j∈R and the global minimizer
(resp., first-order stationary point) w∗ of the statistical risk for
the convex loss function (resp., nonconvex loss function). We
accomplish the goal of establishing the statistical optimality
by providing bounds on the remaining three distances a1(t),
a2(t), and a3(t) described in the beginning of the section.

We start with a bound on a3(t). To this end, let v(t) be as
defined in Theorem 1 and notice from (20) that

v(t+ 1) = v(t)− ρ(t)g1(t), (24)
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where g1(t) has the k-th entry defined in terms of gradients
of the local loss functions evaluated at the local iterates as
[g1(t)]k =

∑r
j=1[αk(t)]j [∇fj(wj(t))]k. Here, αk(t) is an

element of the probability simplex associated with the k-th
coordinate of the consensus vector v(t), as described earlier.
Next, define another vector g2(t) whose k-th entry is defined
in terms of gradients of the local loss functions evaluated at the
consensus vector as [g2(t)]k =

∑r
j=1[αk(t)]j [∇fj(v(t))]k.

Further, define a new sequence u(t+ 1) as

u(t+ 1) = v(t)− ρ(t)g2(t). (25)

It then follows from (22), Assumption 1, and some algebraic
manipulations that

a3(t) = ∥v(t+ 1)− u(t+ 1)∥ = ρ(t)∥g2(t)− g1(t)∥
≤ ρ(t)L′ max

j∈R
∥v(t)−wj(t)∥ = ρ(t)L′a4(t). (26)

We next turn our attention to a bound on a2(t), which
is necessarily going to be probabilistic in nature because of
its dependence on the training samples, and define a new
sequence x(t) as

x(t+ 1) = v(t)− ρ(t)∇EP[f(v(t), z)]. (27)

Trivially, we have

a2(t) = ∥u(t+ 1)− x(t+ 1)∥
= ρ(t)∥g2(t)− EP[f(v(t), z)]∥. (28)

The following lemma, whose proof is provided in Section S.II
in supplementary material, now bounds a2(t) by establishing
that g2(t) converges in probability to EP[f(v(t), z)].

Lemma 1. Suppose Assumptions 1 and 2 are satisfied and the
training data are i.i.d. Then, fixing any δ ∈ (0, 1), we have
with probability at least 1− δ that

a2(t) ≤ ρ(t) sup
t
∥g2(t)− EP[f(v(t), z)]∥

= O
(√

d∥αm∥2 log 2
δ

N

)
ρ(t), (29)

where the vector αm ∈ Rr is a problem-dependent (unknown)
vector defined in Section S.II in supplementary material and
satisfies [αm]j ≥ 0 and

∑r
j=1[αm]j = 1.

Notice that while the bounds for a2(t), a3(t), and a4(t)
have been obtained for both the convex and nonconvex loss
functions in the same manner, the bound for a1(t) = ∥x(t +
1) − w∗∥ in the nonconvex setting does require the aid of
Assumption 3′, as opposed to Assumption 3 in the convex
setting. This leads to separate proofs of the final statistical
optimality results under Assumption 3 and Assumption 3′.

1) Statistical optimality for the convex case: Notice that
x(t + 1) is obtained from v(t) by taking a regular gradient
descent step, with step size ρ(t), with respect to the gradient
EP[f(v(t), z)] of the statistical risk. Under Assumptions 1 and
3, therefore, it follows from our understanding of the behavior
of gradient descent iterations that [85, Chapter 2.1.5]

a1(t) = ∥x(t+ 1)−w∗∥ ≤ (1− L′ρ(t))∥v(t)−w∗∥
≤ (1− λρ(t))∥v(t)−w∗∥, (30)

where the last inequality holds because of the fact that λ ≤ L′.
We then have the following bound:

∥v(t+ 1)−w∗∥ ≤ (1− λρ(t))∥v(t)−w∗∥+ a2(t) + a3(t).
(31)

Notice that (31) only provides the relationship between steps
t and t+1. In order to bound the distance ∥v(t+1)−w∗∥ in
terms of the initial distance ∥v(0)−w∗∥, we can recursively
make use of (31) to arrive at the following lemma.

Lemma 2. Suppose Assumptions 1, 2, 3, and 4 are satisfied
and the training data are i.i.d. Then fixing any δ ∈ (0, 1),
an upper bound on ∥v(t + 1) − w∗∥ can be derived with
probability at least 1− δ as

∥v(t+ 1)−w∗∥ ≤ t0
t+ t0

C1 +
C2(N)

λ
+

C3

t+ t0

+ C4
1

t+ t0

(
1

t0
+

1

1 + t0
+

1

2 + t0
+ · · ·+ 1

t+ t0

)
, (32)

where C1 = ∥v(0) − w∗∥, C2(N) = O
(√

d∥αm∥2 log 2
δ

N

)
,

C3 =
√
d

L

′
rCwλ

(
1− µ 1

ν

)
and C4 =

√
dLL′rµ

1
ν

t0λ2

(
1−µ

1
ν

) .

Proof of Lemma 2 is provided in Section S.III in sup-
plementary material. Lemma 2 establishes that ∥v(t + 1) −
w∗∥ can be upper bounded by a sum of terms that can
be made arbitrarily small for sufficiently large t and N .
Since maxj∈R ∥wj(t) − v(t)∥ can also be made arbitrarily
small when t is sufficiently large, we can therefore bound
∥wj(t+1)−w∗∥, j ∈ R, using the bounds on ∥v(t+1)−w∗∥
and maxj∈R ∥wj(t+1)−v(t+1)∥ to arrive at the following
lemma.

Lemma 3. Suppose Assumptions 1, 2, 3, and 4 are satisfied
and the training data are i.i.d. Then fixing any δ ∈ (0, 1)

and any ϵ > C2(N)
λ > 0, we can always find a t1 such that

for all t ≥ t1 and j ∈ R, with probability at least 1 − δ,
∥wj(t+ 1)−w∗∥ ≤ ϵ.

Proof of Lemma 3 is provided in Section S.IV in supple-
mentary material. Notice that given a sufficiently large N ,
C2(N) is arbitrarily small, which means that the iterates of
non-Byzantine nodes can be made arbitrarily close to w∗. We
are now ready to state the main result concerning the statistical
convergence of BRIDGE-T at the nonfaulty nodes to the global
statistical risk minimizer w∗.

Theorem 2. Suppose Assumptions 1, 2, 3, and 4 are satisfied
and the training data are i.i.d. Then the iterates of BRIDGE-
T converge sublinearly in t to the minimum of the global
statistical risk at each nonfaulty node. In particular, given any
ϵ > ϵ′′

λ > 0, ∀j ∈ R, with probability at least 1 − δ and for
large enough t,

∥wj(t+ 1)−w∗∥ ≤ ϵ, (33)

where δ = 2 exp
(
− 4rNϵ′′2

16L2rd∥αm∥2+ϵ′′2
+ r log

(
12L

√
rd

ϵ′′

)
+

d log
(

12L′β
√
d

ϵ′′

))
and ϵ′′ = C2(N) = O

(√
d∥αm∥2 log 2

δ

N

)
.
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Proof of Theorem 2 is provided in Section S.V in supple-
mentary material. Note that when N → ∞ and when ρ(t)
is chosen as a O(1/t) sequence, (33) leads to a sublinear
convergence rate, as shown in Section S.V in supplementary
material. Thus, both the algorithmic and statistical convergence
rates derived for BRIDGE-T match the existing Byzantine-
resilient rates in the decentralized setting [59]. In terms of
the statistical guarantees, recall that when there is no failure
in the network, the non-resilient gradient descent algorithms
such as DGD usually have the statistical learning rate as
O
(√

1/MN
)
, while if each node runs centralized algorithm

with the given N samples, the learning rate is given as
O
(√

1/N
)
. BRIDGE-T achieves the statistical learning rate

of O
(√
∥αm∥2/N

)
, which lies between the rate of centralized

learning and DGD. In particular, compared to local learning,
BRIDGE-T reduces the sample complexity by a factor of
∥αm∥2 for each node by cooperating over a network, but it
cannot approach the fault-free rate. This shows the trade-off
between sample complexity and robustness.

2) Statistical optimality for the nonconvex case: A general
challenge for optimization methods in the nonconvex setting is
the presence of multiple stationary points within the landscape
of the loss function. Distributed frameworks in general and
potential Byzantine failures within the network in particular
make this an even more challenging problem. We overcome
this challenge by making use of Assumption 3′ (local strong
convexity) and aiming for local convergence guarantees.

In terms of specifics, recall the positive constant β from
Assumption 3′ that describes the region of local strong con-
vexity around a stationary point w∗, let β1 ≤ β be another
positive constant that will be defined shortly, and pick any
β0 ∈ (0, β − β1]. Then our local convergence guarantees
are based on the assumption that ∀j ∈ R,wj(0)’s are
initialized such that v(0) ∈ B(w∗, β0), with one such choice
of initialization being that the wj(0)’s at the nonfaulty nodes
are initialized within B(w∗, β0). In particular, assuming β ≥ Γ
for Γ defined in the beginning of Section IV, we obtain
the following lemma that establishes the boundedness of the
iterates wj(t) for any j ∈ R and t ∈ R, characterizes the
relationship between β, β0, and β1, and helps us understand
how large β need be as a function of the different parameters.

Lemma 4. Suppose Assumptions 1, 2, 3′, and 4 are satisfied
and the training data are i.i.d. Then with the initialization
described above for β ≥ max{Γ, β1} and β1 defined as β1 :=
C2(N)

λ + C3

t0
+ C4

t20
+ C5, the wj(t)’s will never escape from

B(w∗, β) for all j ∈ R, t ∈ R. Here, the constants C2, C3,
and C4 are as defined in Lemma 2, while the constant C5 :=√
drCwµ

1
ν +
√
drL 1

1−µ
1
ν

[
1

λt0
µ

1
ν + 1

λ(t0+1)

]
.

Lemma 4 is proved in Section S.VI in supplementary mate-
rial. In terms of the implications of this lemma, it first and fore-
most helps justify the assumption of bounded iterates of the
nonfaulty nodes stated in the beginning of Section IV. More
importantly, however, notice that the constraint β ≥ Γ and the
assumption that ∀j ∈ R, t ∈ Rd, ∥wj(t)−w∗∥ ≤ Γ have the
potential to make Assumption 3′ meaningless for large-enough
Γ. But Lemma 4 effectively helps us characterize the extent

of Γ, i.e., choosing Γ to be C1 +
C2(N)

λ + C3

t0
+ C4

t20
+ C5 is

sufficient to guarantee that all iterates of the nonfaulty nodes
remain within B(w∗,Γ) ⊆ B(w∗, β).

We conclude with our main result for the nonconvex case,
which mirrors that for the convex loss functions.

Theorem 3. Suppose Assumptions 1, 2, 3′ and 4 are satisfied
and the training data are i.i.d. Then with the earlier described
initialization within B(w∗, β0), the iterates of BRIDGE-T
converge sublinearly in t to the stationary point w∗ of the
statistical risk at each nonfaulty node. In particular, given any
ϵ > ϵ′′

λ > 0, ∀j ∈ R, with probability at least 1 − δ and for
large enough t,

∥wj(t+ 1)−w∗∥ ≤ ϵ, (34)

where δ = 2 exp
(
− 4rNϵ′′2

16L2rd∥αm∥2+ϵ′′2
+ r log

(
12L

√
rd

ϵ′′

)
+

d log
(

12L′β
√
d

ϵ′′

))
and ϵ′′ = C2(N) = O

(√
d∥αm∥2 log 2

δ

N

)
.

Proof of Theorem 3 is provided in Section S.VI-A in
supplementary material. It can be seen from Section S.VI-A
that the proof in the convex setting maps to the nonconvex one
without much additional work. The reason for this is the new
proof technique being used in the convex case, instead of the
one utilized in [86], which guarantees BRIDGE-T converges to
a local stationary point for the nonconvex functions described
in Assumption 3′.

Remark 4. The convergence rates derived for BRIDGE-T are
a function of the dimension d. Such dimension dependence
is typical of many results in (centralized) statistical learning
theory [87], [88]. While there is an ongoing effort to ob-
tain dimension-independent rates in statistical learning [88],
[89], we leave an investigation of this within the context of
Byzantine-resilient decentralized learning for future work.

V. NUMERICAL RESULTS

The numerical experiments are separated into three parts.
In the first part, we run experiments on the MNIST and
CIFAR-10 datasets using a linear classifier with squared hinge
loss, which is a case that fully satisfies all our assumptions
for the theoretical guarantees in the convex setting. In the
second part, we run experiments on the MNIST and CIFAR-
10 datasets using a convolutional neural network. By showing
that BRIDGE works in this general nonconvex loss function
setting, we establish that BRIDGE indeed works for loss
functions that satisfy Assumption 3′. In the third part, we run
experiments on the MNIST dataset with non-i.i.d. distributions
of data across the agents. The purpose of all the experiments is
to provide numerical validation of our theoretical results and
address the usefulness of our Byzantine-resilient technique on
a broad scope (convex, nonconvex, non-i.i.d. data) of machine
learning problems.

A. Linear classifier on MNIST and CIFAR-10

The first set of experiments is performed to demonstrate
two facts: BRIDGE can maintain good performance under
Byzantine attacks while classic decentralized learning methods
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Fig. 1: Comparison between DGD and BRIDGE-T, -M, -K,
-B in the faultless setting for a convex loss function and the
MNIST dataset, where b is set to be b = 1 for BRIDGE.

fail; and compared to an existing Byzantine-resilient method,
ByRDiE [59], BRIDGE is more efficient in terms of commu-
nications cost. We choose one of the most well-understood
machine learning tools, the linear classifier with squared
hinge loss, to learn the model for this purpose. Note that by
showing BRIDGE works in this strictly convex and Lispchitz
loss function setting means BRIDGE also works for strongly
convex loss functions with bounded Lipschitz gradients.

The MNIST dataset is a set of 60,000 training images
and 10,000 test images of handwritten digits from ‘0’ to ‘9’.
Each image is converted to a 784-dimensional vector and we
distribute 60,000 images equally among 50 nodes. The CIFAR-
10 dataset is a set of 50,000 training images and 10,000 test
images of 10 different classes. Each image is converted to
a 3072-dimensional vector and we distribute 50,000 images
equally among 50 nodes. Then, unless stated otherwise, we
connect each pair of nodes with probability p = 0.5. Some of
the nodes are randomly picked to be Byzantine nodes, which
broadcast random vectors to all their neighbors during each
iteration. The parameter b for BRIDGE is set to be b = 1 in the
faultless setting, while it is set to be equal to |B| in the faulty
setting. Once a random network is generated and the Byzantine
nodes are randomly placed, we check for each variant of
BRIDGE whether the minimum neighborhood-size condition
listed in Table II for its execution is satisfied before running
that variant. The classifiers are trained using the “one vs all”
strategy. We run five sets of experiments, with the first four on
the MNIST dataset and the last one on the CIFAR-10 dataset:
(i) classic distributed gradient descent (DGD) and BRIDGE-
T, -M, -K, -B with no Byzantine nodes; (ii) classic DGD and
BRIDGE-T, -M, -K, -B with 2 and 4 Byzantine nodes; (iii)
BRIDGE-T, -M, and -K with 6, 12, 18, and 24 Byzantine
nodes and varying probabilities of connection (p = 0.5, 0.75,
and 1); (iv) ByRDiE and BRIDGE-T with 2 Byzantine nodes;
and (v) BRIDGE-T, -M, and -K with 0, 2, 4, and 6 Byzantine
nodes. The performance is evaluated by two metrics: classifica-
tion accuracy on the 10,000 test images and whether consensus
is achieved. When comparing ByRDiE and BRIDGE, we
compare the accuracy with respect to the number of commu-

Fig. 2: Comparison between DGD and BRIDGE-T, M, K, B
with two and four Byzantine nodes for a convex loss function
with the MNIST dataset.

nication iterations, which is defined as the number of scalar-
valued information exchanged among the neighboring nodes.

As we can see from Figure 1, despite using b = 1, the
performances of all BRIDGE methods except BRIDGE-B
are as good as DGD in the faultless setting with ∼ 88%
average accuracy, while BRIDGE-B performs slightly worse
at 83% average accuracy (final accuracy: DGD = 87.8%,
BRIDGE-T = 87.6%, -M = 87.3%; -K = 86.9%, and
-B = 83.1%). Note that these accuracy figures match the
state-of-the-art results for the MNIST dataset using a linear
classifier [69]. We also attribute the superiority of BRIDGE-T
over -M, -K, and -B to its ability to retain information from
a wider set of neighbors after the screening in each iteration.
Next, we conclude from Figure 2 that DGD fails in the faulty
setting when |B| = 2 and produces an even worse accuracy in
the faulty setting when |B| = 4. However, BRIDGE-T, -M, -K
and -B with b = |B| are able to learn relatively good models
in these faulty settings.

The next set of results in Figure 3 highlights the robustness
of the BRIDGE framework to a larger number of Byzantine
nodes for varying levels of network connectivity that range
from p = 0.5 to p = 1. We exclude BRIDGE-B in this figure
since it fails to run for a majority of the randomly generated
networks because of the stringent minimum neighborhood size
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Fig. 3: Comparison between BRIDGE-T, -M, and -K for
different numbers of Byzantine nodes and varying levels of
network connectivity (convex loss and MNIST dataset).

condition (cf. Table II). The results in this figure reaffirm
our findings from Figure 2 that the BRIDGE framework
is extremely resilient to Byzantine attacks in the network.
In particular, we see that BRIDGE-T (when it satisfies the
minimum neighborhood size condition) and -M perform very
similarly in the face of a large number of Byzantine nodes in
the network, while BRIDGE-K is a close third in performance.
Another observation from this figure is the robustness of

Fig. 4: Comparing BRIDGE-T with ByRDiE in the presence
of two Byzantine nodes (convex loss and MNIST dataset).

Fig. 5: Performance of BRIDGE-T, -M, and -K with zero, two,
four, and six Byzantine nodes for a convex loss function with
the CIFAR-10 dataset.

BRIDGE-M for loosely connected Erdős–Rényi networks and
a large number of Byzantine attacks; indeed, BRIDGE-M is
the only variant that can be run in the case of b = 24 and
p = 0.5 since it always satisfies the minimum neighborhood
size condition even when close to 50% of the nodes in the
network are Byzantine. In contrast, BRIDGE-T could not be
run when b ≥ 18 (resp., b = 24) and p = 0.5 (resp., p = 0.75),
while BRIDGE-K could not be run when b = 24 and p = 0.5.

We next compare BRIDGE-T and ByRDiE in Figure 4. Both
BRIDGE-T and ByRDiE are resilient to two Byzantine nodes
but since ByRDiE is based on a coordinate-wise screening
method, the time it takes to reach the final optimal solution
is thousands-fold more than BRIDGE-T. Indeed, since nodes
within the BRIDGE framework compute the local gradients
and communicate with their neighbors only once per iteration,
this leads to massive savings in computation and communi-
cations costs in comparison with ByRDiE. This difference
in terms of computation and communications costs is even
more pronounced in higher-dimensional tasks; thus we will
not compare with ByRDiE for the rest of our experiments.

Last but not the least, Figure 5 highlights the robustness of
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Fig. 6: Comparison between DGD and BRIDGE-T, -M, -K,
and -B in the faultless setting for a nonconvex loss function
with the MNIST dataset.

the BRIDGE framework on the higher-dimensional CIFAR-
10 dataset for the case of a linear classifier. It can be seen
from this figure that the earlier conclusions concerning the
different variants of BRIDGE still hold, with BRIDGE-T
approaching the state-of-the-art accuracy of ∼ 39% [90] for
a linear classifier. We conclude by noting that BRIDGE-B is
excluded here and in the following for the experiments on
CIFAR-10 dataset because of its relatively high computational
complexity on larger-dimensional data.

B. Convolutional neural network on MNIST and CIFAR-10

In the theoretical analysis, we gave local convergence guar-
antees of BRIDGE-T in the nonconvex setting. In this set
of experiments, we numerically show that BRIDGE indeed
performs well in the nonconvex case. We train a convolutional
neural network (CNN) on MNIST and CIFAR-10 datasets
for this purpose, with the model including two convolutional
layers followed by two fully connected layers. Each convolu-
tional layer is followed by a max pooling and ReLU activation
while the output layer uses softmax activation. We construct a
network with 50 nodes and each pair of nodes has probability
of 0.5 to be directly connected. Each node has access to 1200
samples randomly picked from the training set. We randomly
choose two or four of the nodes to be Byzantine nodes, which
broadcast random vectors to all their neighbors during each
iteration for all screening methods. We again use the averaged
classification accuracy on the MNIST and CIFAR-10 test sets
over all nonfaulty nodes as the metric for performance. In this
experiment, we cannot compare with ByRDiE due to the fact
that the learning model is of high dimension, which makes
ByRDiE unfeasible in this setting.

As we can see from Figure 6, the performances of all
BRIDGE methods are as good as DGD in the faultless setting
with 92% to 95% percent average accuracy. In Figure 7,
we see that DGD fails in the faulty setting when b = 2
and b = 4. But BRIDGE-T, -M, -K, and -B are able to
learn a relatively good model in these cases. The final set
of results for the CIFAR-10 dataset obtained using BRIDGE-
T, -M, and -K for the case of zero, two, and four Byzantine

Fig. 7: Comparison between DGD and BRIDGE-T, -M, -K,
and -B with two and four Byzantine nodes for nonconvex loss
with the MNIST dataset.

nodes is presented in Figure 8. The top-left quadrant in this
figure is reserved for the accuracy of the centralized solution
for the chosen CNN architecture.2 It can be seen that both
BRIDGE-T and -M remain resilient to Byzantine attacks and
achieve accuracy similar to the centralized solution. However,
BRIDGE-K gets stuck in a suboptimal critical point of the
loss landscape for the case of two and four Byzantine nodes.
Non-i.i.d data distribution on MNIST: In the interest of space,
additional experimental results using non-i.i.d data distribution
on MNIST are provided in Section S.I of the supplementary
material.

VI. CONCLUSION

This paper introduced a new decentralized machine learning
framework called Byzantine resilient decentralized gradient
descent (BRIDGE). This framework was designed to solve
machine learning problems when the training set is distributed
over a decentralized network in the presence of Byzantine
failures. Both theoretical results and experimental results were
used to show that the framework could perform well while
tolerating Byzantine attacks. One variant of the framework

2Note that a better CIFAR-10 accuracy can be obtained through a fine
tuning of the CNN architecture and the step size sequence.
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Fig. 8: Performance comparison of BRIDGE-T, -M, and -K
with zero, two, and four Byzantine nodes for nonconvex loss
with the CIFAR-10 dataset.

was shown to converge sublinearly to the global minimum
in the convex setting and first-order stationary point in the
convex setting. In addition, statistical convergence rates were
also provided for this variant.

Future work aims to improve the framework to tolerate more
Byzantine agents within the network with faster convergence
rates and to deal with more general nonconvex objective
functions with either i.i.d. or non-i.i.d. distribution of the
dataset. In addition, an exploration of the number of Byzantine
nodes that this framework can tolerate under different kinds
of non-i.i.d. settings will also be undertaken in future work.
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Supplementary Material
BRIDGE: Byzantine-resilient Decentralized Gradient Descent

Cheng Fang, Zhixiong Yang, and Waheed U. Bajwa

S.I. NON-I.I.D. DATA DISTRIBUTION ON MNIST

In the theoretical analysis section, we gave convergence
gurantees for BRIDGE-T in both convex and nonconvex
settings. However, the main results are based on identical
and independent distribution (i.i.d.) of the dataset. In this
section, we compare our method to the one proposed in
[1], which we term “Byzantine-robust decentralized stochastic
optimization” (BRDSO) in the following discussion based on
the terminology used in [1]. We compare BRIDGE-T with
BRDSO [1] in the following non-i.i.d. settings.

Fig. S.1: Comparing BRIDGE-T with BRDSO [1] in the
extreme non-i.i.d. setting (convex loss and MNIST dataset).

Fig. S.2: Comparing BRIDGE-T with BRDSO [1] in the
moderate non-i.i.d. setting (convex loss and MNIST dataset)

Extreme non-i.i.d. setting: We group the dataset corre-
sponding to labels and distribute all the samples labelled
“0” to 5 agents, distribute all the samples labelled “1” to
another 5 agents, and so on. We can see from Figure S.1
that when the number of Byzantine nodes is equal to 0 or 2,
the accuracies of both the algorithms are as good as in the
i.i.d. case, while in the case when the number of Byzantine
nodes is equal to 4, there is about 9 percent of accuracy drop

due to the non-i.i.d. distribution of data for both algorithms.
In this extreme non-i.i.d. setting when four of the agents are
chosen to be Byzantine, the worst-case scenario happens when
all the Byzantine nodes are assigned all samples with the same
label. This means 80 percent of the samples of one label is
not being used towards the training process, which causes both
algorithms to underperform compared to the i.i.d. setting.

Moderate non-i.i.d. setting: We group the dataset corre-
sponding to labels and distribute the samples associated with
each label evenly to 10 agents. Every agent receives two sets
of differently labelled data evenly. As we can see from Figure
S.2, both algorithms perform as well as in the i.i.d. setting
in the presence of two or four Byzantine nodes. We conclude
that, with distribution closer to i.i.d., the impact of Byzantine
nodes in the non-i.i.d. setting will be less.

S.II. PROOF OF LEMMA 1
First, we drop P and z in notation of the statistical risk for

convenience and observe that for any dimension k we have

E[g2(t)]k = E
r∑

j=1

[αk(t)]j [∇fj(v(t))]k = E[∇f(v(t))]k.

Since k is arbitrary, it then follows that

E[g2(t)] = E[∇f(v(t))]. (S.1)

In the definition of g2(t), notice that v(t) depends on t and
αk(t) depends on both t and k. We therefore need to show
that the convergence of g2(t) to E[∇f(v(t))] is uniformly
over all v(t) and αk(t). We fix an arbitrary coordinate k and
drop the index k for the rest of this section for simplicity. We
next define a vector h(t) as h(t) := [[∇fj(v(t))] : j ∈ R]
and note that g2(t) = ⟨α(t),h(t)⟩. Since the training data are
i.i.d., h(t) has identically distributed elements. We therefore
have from Hoeffding’s inequality [2] that for any ϵ0 ∈ (0, 1):

P
(
|⟨α(t),h(t)⟩ − E[∇f(v(t))]| ≥ ϵ0

)
≤ 2 exp

(
− 2Nϵ20

L2∥α(t)∥2
)
.

(S.2)

Further, since the r-dimensional vector α(t) is an arbitrary
element of the standard simplex, defined as

∆ := {q ∈ Rr :
r∑

j=1

[q]j = 1 and ∀j, [q]j ≥ 0}, (S.3)

the probability bound in (S.2) also holds for any q ∈ ∆, i.e.,

P
(
|⟨q,h(t)⟩ − E[∇f(v(t))]| ≥ ϵ0

)
≤ 2 exp

(
− 2Nϵ0

2

L2∥q∥2

)
.

(S.4)
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We now define the set Sα := {αk(t)}∞,d
t,k=1. Our next goal

is to leverage (S.4) and derive a probability bound similar to
(S.2) that uniformly holds for all q ∈ Sα. To this end, let

Cξ := {c1, . . . , cdξ
} ⊂ ∆ s.t. Sα ⊆

dξ⋃
q=1

B(cq, ξ) (S.5)

denote a ξ-covering of Sα in terms of the ℓ2 norm and define
c̄ := argmaxc∈Cξ

∥c∥. Then from (S.4) and the union bound

P
(

sup
c∈Cξ

|⟨c,h(t)⟩ − E[∇f(v(t))]| ≥ ϵ0

)
≤ 2dξ exp

(
− 2Nϵ0

2

L2∥c̄∥2

)
.

(S.6)

In addition, we have

sup
q∈Sα

|⟨q,h(t)⟩ − E[∇f(v(t))]|
(a)

≤ sup
q∈Sα,c∈Cξ

∥q− c∥∥h(t)∥

+ sup
c∈cξ

|⟨c,h(t)⟩ − E[∇f(v(t))]| , (S.7)

where (a) is due to the triangle and Cauchy–Schwarz inequal-
ities. Trivially, supq∈Sα,c∈Cξ

∥q− c∥ ≤ ξ from the definition
of Cξ, while ∥h(t)∥ ≤

√
rL from the definition of h(t) and

Assumption 1. Combining (S.6) and (S.7), we get

P
(

sup
q∈Sα

|⟨q,h(t)⟩ − E[∇f(v(t))]| ≥ ϵ0 +
√
rξL

)
≤ 2dξ exp

(
− 2Nϵ0

2

L2∥c̄∥2

)
. (S.8)

We now define αm := argmaxq∈Sα
∥q∥. It can then be

shown from the definitions of Cξ and c̄ that

∥c̄∥2 ≤ 2(∥αm∥2 + ξ2). (S.9)

Therefore, fixing ϵ0 ∈ (0, 1), and defining ϵ′ := 2ϵ0 and ξ :=
ϵ′/(2L

√
r), we have from (S.8) and (S.9) that

P
(

sup
q∈Sα

|⟨q,h(t)⟩ − E[∇f(v(t))]| ≥ ϵ′
)

≤ 2dξ exp

(
− 4rNϵ′

2

4L2r∥αm∥2 + ϵ′2

)
.

(S.10)

Note that (S.10) is derived for a fixed but arbitrary k.
Extending this to the entire vector gives us for any v(t)

P
(
∥g2(t)− E[∇f(v(t))]∥ ≥

√
dϵ′

)
≤ 2dξ exp

(
− 4rNϵ′

2

4L2r∥αm∥2 + ϵ′2

)
.

(S.11)

To obtain the desired uniform bound, we next need to remove
the dependence on v(t) in (S.11). Here we drop t from v(t)
for simplicity of notation and write g2(t) as g2(v) to show
the dependence of g2 on v. Notice from our discussion in the
beginning of Section IV and the analysis in Section IV-A that
v(t) ∈ V := {v : ∥v∥ ≤ Γ0} for some Γ0 and all t. We then

define Eζ := {e1, . . . , emζ
} ⊂ V to be a ζ-covering of V in

terms of the ℓ2 norm. It then follows from (S.11) that

P
(

sup
e∈Eζ

∥g2(e)− E[∇f(e)]∥ ≥
√
dϵ′

)
≤ 2dξmζ exp

(
− 4rNϵ′

2

4L2r∥αm∥2 + ϵ′2

)
.

(S.12)

Similar to (S.7), we can also write

sup
v∈V

∥g2(v)− E[∇f(v)∥| ≤ sup
e∈Eζ

∥g2(e)− E[∇f(e)]∥

+ sup
e∈Eζ ,v∈V

[
∥g2(v)− g2(e)∥+ ∥E[∇f(e)]− E[∇f(v)]∥

]
.

(S.13)

Further, Assumption 1 and definition of the set Eζ imply

sup
e∈Eζ ,v∈V

∥g2(v)− g2(e)∥ ≤ L′ζ. (S.14)

We now define ϵ′′ := 2ϵ′
√
d and ζ := ϵ′′/4L′. We then obtain

the following from (S.11)–(S.14):

P
(
sup
v∈V

∥g2(v)− E[∇f(v)]∥ ≥ ϵ′′
)

≤ 2dξmζ exp

(
− 4rNϵ′′

2

16L2rd∥αm∥2 + ϵ′′2

)
.

(S.15)

Since v(t) ∈ V for all t, we then have

P
(
sup
t

∥g2(v(t))− E[∇f(v(t))]∥ ≥ ϵ′′
)

≤ 2dξmζ exp

(
− 4rNϵ′′

2

16L2rd∥αm∥2 + ϵ′′2

)
.

(S.16)
The proof now follows from (S.16) and the following facts

about the covering numbers of the sets Sα and V: (1) Since
Sα is a subset of ∆, which can be circumscribed by a sphere
in Rr−1 of radius

√
r − 1/r < 1, we can upper bound dξ by(

12L
√
rd

ϵ′′

)r

[3]; and (2) Since V ⊂ Rd can be circumscribed

by a sphere in Rd of radius Γ0

√
d, we can upper bound mζ

by
(

12L′Γ0

√
d

ϵ′′

)d

. Then for any ϵ′′ ∈ (0, 1), we have

sup
t

∥g2(v(t))− E[∇f(v(t))]∥ < ϵ′′ (S.17)

with probability exceeding

1− 2 exp

(
− 4rNϵ′′

2

16L2rd∥αm∥2 + ϵ′′2
+ r log

(
12L

√
rd

ϵ′′

)
+ d log

(
12L′Γ0

√
d

ϵ′′

))
.

(S.18)

Equivalently, we have with probability at least 1− δ that

sup
t

∥g2(v(t))− E[∇f(v(t))]∥ < O
(√

4L2d∥αm∥2 log 2
δ

N

)
,

where δ = 2 exp
(
− 4rNϵ′′2

16L2rd∥αm∥2+ϵ′′2
+ r log

(
12L

√
rd

ϵ′′

)
+

d log
(

12L′Γ0

√
d

ϵ′′

))
. ■
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S.III. PROOF OF LEMMA 2

All statements in this proof are probabilistic, with prob-
ability at least 1 − δ and δ being given in Appendix S.II.
In particular, the discussion should be assumed to have been
implicitly conditioned on this high probability event. From
(31), we iteratively add up from v(0) to v(t+ 1) and get

∥v(t+ 1)−w∗∥ ≤
(
1− 1

t+ t0

)
∥v(t)−w∗∥

+ a2(t) + a3(t)

≤
(
1− 1

t+ t0

)[(
1− 1

t− 1 + t0

)
∥v(t− 1)−w∗∥

+ a2(t− 1, N) + a3(t− 1)

]
+ a2(t) + a3(t)

≤
t∏

τ=0

(
1− 1

τ + t0

)
∥v(0)−w∗∥+ a2(t) + a3(t)

+
t−1∑
τ=0

[a2(τ) + a3(τ)]
t∏

z=τ+1

(
1− 1

z + t0

)
. (S.19)

The first term in (S.19) can be simplified as
t∏

τ=0

(
1− 1

τ + t0

)
∥v(0)−w∗∥

=

(
1− 1

0 + t0

)(
1− 1

1 + t0

)
· · ·

(
1− 1

t+ t0

)
∥v(0)−w∗∥

=

(
t0 − 1

t+ t0

)
C1, (S.20)

where C1 = ∥v(0)−w∗∥.
The remaining terms in (S.19) can be simplified as

a2(t) + a3(t) +
t−1∑
τ=0

[a2(τ) + a3(τ)]
t∏

z=τ+1

(
1− 1

z + t0

)
≤

(
1− 1

t+ t0

)
a2(t− 1)

+

(
1− 1

t+ t0

)(
1− 1

t− 1 + t0

)
a2(t− 2)

+ a2(t) + · · ·+
(
1− 1

t+ t0

)
· · ·

(
1− 1

1 + t0

)
a2(0)

+
L′

λ(t+ t0)
a4(t) +

(
1− 1

t+ t0

)
L′

λ(t− 1 + t0)
a4(t− 1)

+ · · ·+
(
1− 1

t+ t0

)
· · ·

(
1− 1

1 + t0

)
L′

λ(t0)
a4(0)

= C2(N)ρ(t) + C2(N)ρ(t− 1)
t+ t0 − 1

t+ t0

+ · · ·+ C2(N)ρ(0)
t0

t+ t0
+

L′

λ(t+ t0)
a4(t)

+
t+ t0 − 1

λ(t+ t0)

1

t− 1 + t0
L′a4(t− 1)

+ · · ·+ t0
λ(t+ t0)

1

t0
L′a4(0)

=
t

λ(t+ t0)
C2(N) +

L′

λ

1

t0 + t
[a4(0) + · · ·+ a4(t)],

(S.21)

where C2(N) = O
(√

d∥αm∥2 log 2
δ

N

)
.

The term a4(0) + · · · + a4(t) in (S.21) can be further
simplified using (22) as:

a4(0) + · · ·+ a4(t) ≤
√
d

(
rCw + rL

1

λt0
µ

1
ν

)
+

√
d

[
rCwµ

1
ν + rL

1

λt0
µ

2
ν + rL

1

λ(1 + t0)
µ

1
ν

]
+ · · ·

+
√
d

[
rCwµ

t
ν + rL

1

λt0
µ

t+1
ν + rL

1

λ(1 + t0)
µ

t
ν

+ rL
1

λ(2 + t0)
µ

t−1
ν + · · ·+ rL

1

λ(t+ t0)
µ

1
ν

]
≤

√
d

(
rCw + rCwµ

1
ν + rCwµ

2
ν + · · ·+ rCwµ

t
ν

)
+

√
drL

λ
µ

1
ν

(
1

t0
+

1

t0 + 1
+ · · · 1

t0 + t

)
+

√
drL

λ
µ

2
ν

(
1

t0
+

1

t0 + 1
+ · · ·+ 1

t0 + t

)
+ · · ·+

+

√
drL

λ
µ

t
ν

(
1

t0
+

1

t0 + 1
+ · · ·+ 1

t0 + t

)
=

√
drCw

(1− µ
t
ν )

1− µ
1
ν

+

√
drL

λ

µ
1
ν (1− µ

t+1
ν )

1− µ
1
ν

(
1

t0
+

1

t0 + 1
+ · · ·+ 1

t0 + t

)
.

(S.22)

Plugging (S.22) into (S.21) we finish the simplification of the
remaining terms as:

a2(t) + a3(t) +
t−1∑
τ=0

[a2(τ) + a3(τ)]
t∏

z=τ+1

(
1− 1

z + t0

)

≤ 1

λ
C2(N) +

L′

λ(t0 + t)

(√
drCw

1− µ
1
ν

)
+

√
dLL′rµ

1
ν

λ2

(
1− µ

1
ν

) 1

t+ t0

(
1

t0
+

1

1 + t0
+ · · ·+ 1

t+ t0

)
.

(S.23)

Finally we express ∥v(t + 1) −w∗∥ using (S.20) and (S.23)
as:

∥v(t+ 1)−w∗∥ ≤ t0
t+ t0

C1 +
C2(N)

λ
+

C3

t+ t0

+
C4

t+ t0

(
1

t0
+

1

1 + t0
+ · · ·+ 1

t+ t0

)
, (S.24)

where C3 =
√
drCwL′

λ

(
1−µ

1
ν

) and C4 =
√
dLL′rµ

1
ν

λ2

(
1−µ

1
ν

) . ■

S.IV. PROOF OF LEMMA 3

Similar to the proof of Lemma 2, our statements in this
appendix are also conditioned on the high probability event



4

described in Appendix S.II. From Theorem 1 and (S.24) in
the proof of Lemma 2, we conclude for all j ∈ R that

∥wj(t+ 1)−w∗∥ ≤ t0
t+ t0

C1 +
C2(N)

λ
+

C3

t+ t0

+
C4

t+ t0

(
1

t0
+

1

1 + t0
+ · · ·+ 1

t+ t0

)
+ a4(t+ 1).

(S.25)

Next, we get an upper bound on a4(t+1) as following when
we choose t as an even number:

a4(t+ 1) ≤
√
drCwµ

t+1
ν +

√
drL

[
ρ(0)µ

t+1
ν + ρ(1)µ

t
ν + · · ·

+ ρ(t− 1)µ
2
ν + ρ(t)µ

1
ν + ρ(t+ 1)

]
≤

√
drCwµ

t+1
ν

+
√
drL

[
ρ(0)µ

t+1
ν + · · ·+ ρ(0)µ

t
2
+1

ν

]
+
√
drL

[
ρ

(
t

2
+ 1

)
µ

t
2
ν + · · ·+ ρ

(
t

2
+ 1

)
µ

1
ν + ρ

(
t

2
+ 1

)]
=

√
drCwµ

t+1
ν +

√
drLρ(0)µ

t+2
2ν

1− µ
t
2ν

1− µ
1
ν

+
√
drLρ

(
t

2
+ 1

)
1− µ

t
2ν

1− µ
1
ν

≤
√
drCwµ

t+1
ν

+
√
drL

1

1− µ
1
ν

[
ρ(0)µ

t+2
2ν + ρ

(
t

2
+ 1

)]
.

(S.26)

When t is an odd number, we have:
√
drL

[
ρ(0)µ

t+1
ν + ρ(1)µ

t
ν

+ · · ·+ ρ(t− 1)µ
2
ν + ρ(t)µ

1
ν + ρ(t+ 1)

]
≤

√
drL

[
ρ(0)µ

t+1
ν + · · ·+ ρ(0)µ

t
2
+ 1

2
ν

]
+
√
drL

[
ρ

(
t

2
+

1

2

)
µ

t
2
− 1

2
ν + · · ·+ ρ

(
t

2
+

1

2

)
µ

1
ν

+ ρ

(
t

2
+

1

2

)]
(S.27)

and the remaining steps are similar to (S.26), so we omit them.
Plugging either (S.26) or (S.27) into (S.25), we have for all

j ∈ R

∥wj(t+ 1)−w∗∥ ≤ t0
t+ t0

C1 +
C2(N)

λ
+

C3

t+ t0

+
C4

t+ t0

(
1

t0
+

1

1 + t0
+ · · ·+ 1

t+ t0

)
+
√
drCwµ

t+1
ν +

√
drL

1

1− µ
1
ν

[
ρ(0)µ

t+2
2ν + ρ

(
t

2
+ 1

)]
.

(S.28)

From (S.28) we see that all the terms except C2(N)
λ are

monotonically decreasing with increasing t. Thus, given any
ϵ > C2(N)

λ > 0, we can find a t1 such that for all t ≥ t1, with
probability at least 1− δ, ∥wj(t+ 1)−w∗∥ ≤ ϵ. ■

S.V. PROOF OF THEOREM 2

Lemma 3 establishes the convergence of wj(t+1) to w∗ for
all j ∈ R with probability at least 1− δ. Next, we derive the
rate of convergence. From (S.25) since a4(t) has a convergence
rate of O(1/t), as mentioned in Theorem 1, the term that con-
verges the slowest to 0 among all the terms in ∥wj(t+1)−w∗∥
is C4

t+t0

(
1
t0
+ 1

1+t0
+· · ·+ 1

t+t0

)
. Therefore, using the harmonic

series approximation, we conclude that the convergence rate is
O
(

log t
t

)
. The above statement shows BRIDGE-T converges

to the minimum of the global statistical risk at a sublinear rate,
thus completing the proof of Theorem 2. ■

S.VI. PROOF OF LEMMA 4

Under the stated assumptions of the lemma as well as the
initialization for the nonconvex loss function, it is straightfor-
ward to see that (S.28) also holds for the nonconvex setting. In
particular, the upper bound in (S.28) on ∥wj(t+1)−w∗∥ for
all j ∈ R monotonically decreases with t. Thus, ∥wj(t+1)−
w∗∥ for all j ∈ R, t ∈ R can be upper bounded by the bound
on ∥wj(1)−w∗∥, which is C1+

C2(N)
λ + C3

t0
+ C4

t20
+C5. The

proof now follows from the fact that C1 := ∥v(0)−w∗∥ ≤ β0

by virtue of the initialization. ■

A. Proof of Theorem 3

The local strong convexity of the loss function implies
that f(w, z) can be treated as λ-strongly convex when re-
stricted to the ball B(w∗, β). Therefore, Assumption 3′, the Γ-
boundedness of the iterates stated in the beginning of Section
IV and Lemma 4, and the constraint β ≥ Γ imply that the
proof of this theorem is a straightforward replication of the
proof of Theorem 2 for the convex case. ■
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