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ABSTRACT
Phantom Enhanced 911 (E911) calls are automatically generated 2
second calls, are a serious concern on cellular networks, and con-
sume critical resources. As networks become increasingly complex,
detecting and troubleshooting the causes of phantom E911 calls
is becoming increasingly difficult. In this paper machine learning
(ML) tools are used to analyze anonymized call detail record data
collected by a major US telecom network service provider. The data
is carefully pre-processed and encoded using an efficient encoding
method. Classification algorithms K Nearest Neighbors (KNN) and
Decision Trees (DTs) are then implemented to study correlations
between device and network level features and a mobile device’s
ability to initiate phantom calls. Based on the results, this work also
suggests certain policy changes for network operators that may
decrease the high volume of phantom E911 calls or alleviate the
pressure of phantom E911 calls on a cellular network.
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1 INTRODUCTION
An average of 240million 911 calls are made annually in the United
States, 80% of which originate from wireless devices [11]. E911 calls,
which provide dispatchers with the caller’s location, are especially
important for public safety. Emergency services rely on such calls
being routed from cellular devices to first responders in a timely
manner. In recent years, telecommunication networks have been
receiving high volumes of “phantom” E911 calls. Phantom calls are
typically automatically generated two-second calls, placed often
unbeknownst to the user. Phantom E911 calls are problematic as
they pose a drag on cellular networks and take away from critical
resources needed to respond to genuine calls and true emergencies.
At the moment, it is unclear whether phantom E911 calls are a
product of device configuration issues or are related to issues in the
device operating system. Despite their high volume, the huge differ-
ence in data sample size between good calls vs phantom calls makes
it challenging for the machine learning model to learn and classify
them effectively. Additionally, mobile networks often contain mo-
bile devices from third-party vendors; this adds further complexity
to the network and makes the task of phantom call detection even
more challenging. To this end, it is crucial to study the phenomenon
of phantom E911 calls to diagnose where the issues lie (whether
they are the result of a few isolated device types or a majority of
devices), and to propose possible actions that can be taken by the
general cellular community to help mitigate the problem.

In order to fulfill the current customer demands fueled by mas-
sive subscriber growth, mobile network technologies are enhancing
at a fast rate. Phantom E911 calls are one of the by-products of this
ever changing technological landscape where the devices and their
software configurations need to support connectivity and call pro-
tocols for various changes across technologies (3G/4G/5G etc..).
Multiple existing works have discussed the impact of complex-
ity on the mobile network as well as on its users, management
and maintenance. Some work study security threats (or vulnera-
bilities) at the network level [1, 3, 18]. These works characterize
attacks as actions that usually take advantage of mobile devices,
or deny service to them. Some of these works study the possible
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security threats of rogue femtocells within a network [2, 5], includ-
ing the ability of mobile operators to “create” rogue mobile devices.
Other literature identify Denial of Service (DoS) attacks that may
target a network and a collection of mobile devices due to rogue
or faulty base stations in Self Organizing Networks (SONs) [15].
Other works of interest employ ML-driven approaches to study or
detect abnormalities/anomalies in the network. These abnormali-
ties are non-threatening phenomenon (an example of which is the
problem of phantom E911 calls under study), but may cause an
unwanted drag on the network resources. Anomalies in the current
literature include base stations that exhibit irregular behavior or
cells experiencing performance degradation due to mobility (such
as during handovers) [7, 16]. Other abnormalities include sleep-
ing cells [4], cells with unusually low or even high user activity
(occurring perhaps due to malfunctions or events in the urban en-
vironment) [12, 17]. Furthermore, other works detect “spectrum
anomalies,” characterized as abnormal spectrum usage [8]. Much of
the existing literature employs unsupervised or semi-supervisedma-
chine learning algorithms to detect such abnormalities/anomalies
of interest, using collected data such as call-records or spectrum
data. While these works study various anomalies that arise within
the network architecture and try to detect them, the phenomenon of
phantom E911 calls, and ways to detect them, has yet to be studied
in detail- despite it being a major issue of concern among network
operators. In addition to this, the types of anomalies studied in
the literature are mainly network level related anomalies (such as
sleeping cells or spectrum anomalies) [4, 8, 12]. However, an early
investigation of the anonymized call records data by a major US
network service provider indicates that phantom calls are most
likely a consequence device level related anomalies (i.e. a mobile
device“going rogue”) among a particular cluster of devices. Addi-
tionally, anomalies mostly come from a particular cell site(s) in
the network, whereby network devices can be used to locate the
anomalous devices. Therefore, in this paper, we hypothesize that the
possible causes of phantom E911 calls can be of two types: 1) those
related to devices and 2) those related to the network properties. In
order to verify this hypothesis we opt to study device and network
related features separately. To take the first step towards “taming
the beast” of phantom E911 calls we use readily available machine
learning tools to study anonymized data on call detail records con-
taining various device IDs and network IDs, and explore device and
network-related features that may increase the potential of a device
to initiate phantom calls. The aim of this paper is therefore diag-
nostic in nature [10], in which we utilize machine learning-driven
techniques to identify the possible triggers of phantom E911 calls.
Our main contributions in this direction are as follows:

• Call record data is carefully pre-processed, separated into
device and network level features, and encoded.

• AKNN algorithm is used to classify call record data, verifying
that only a handful of device-level features have a strong
correlation with a mobile’s ability to initiate phantom E911
calls. The fitted model is generalizable and works well even
on new testing data.

• A DT algorithm is used to classify call record data, verifying
that only certain network level features are associated with
E911 phantom calls.

Figure 1: High-Level System view of LTE network. Two-sided
arrow indicates a connection between UE and the network,
dotted lines are signals, solid lines are data traffic

• Based on our findings, we provide network operator policy
suggestions to mitigate the problem of E911 phantom calls.

It’s worth noting that the machine learning algorithms were chosen
due to their ease of implementation, interpretability and accuracy.
Additionally, these machine learning approaches do not require
any prior assumptions on the model as other signal processing
based approaches may. The remainder of the paper is organized as
follows: Section 2 formulates the problem under study. Section 3
gives a formal description of the data used for E911 phantom call
diagnosis, the pre-processing steps, the machine learning model
and experiments. Section 4 provides an interpretation of the results,
and Section 5 concludes the work.

2 PROBLEM FORMULATION
Throughout this paper, we also refer to “rogue devices” as mo-
bile devices that have initiated phantom E911 calls. We focus on
LTE networks, as the majority of the present network calls are
through 4G LTE and the phenomenon of phantom E911 calls has
been prominently observed in such networks. A 4G LTE network
is comprised of four essential blocks; the User Equipment (UE),
the Evolved UTRAN (E-UTRAN), the Evolved Packet Core (EPC)
and the Packet Data Network (PDN). Figure 1 depicts the LTE
architecture at the block level. The EUTRAN controls all radio com-
munications between a UE (i.e. a mobile device) and the EPC. The
EPC communicates with external networks, or, PDN, to provide
services to the mobile user, such as the Internet or other operator
services. The EPC contains the core entities responsible for the
functionality of the network, including management of voice and
data calls. Figure 2 shows a more detailed (though not comprehen-
sive) view of the LTE architecture blocks. The E-UTRAN has only
a single physical component, the eNodeB (eNB). An eNB (located
at a given point, or, “cell site”) is assigned a cluster of one or more
network cells (a wide geographical area with devices that communi-
cate with a cell site), and controls the mobile devices located within
its cluster. For a mobile device in a particular cell, the controlling
eNB is responsible for radio interface transmission and reception.
In addition to this, the eNB is responsible for ensuring secure con-
nectivity between the mobile device and the rest of the network.
In the EPC, the Mobile Management Entity (MME) is central to all
other entities within the EPC. Each MME manages several eNBs
- there are typically two or more MMEs in the entire network. A
single MME communicates with the mobile devices in its service
area through their corresponding eNBs. One of the many responsi-
bilities of the MME is the authentication of the mobile device upon
its initial connection to the network. To avoid security threats that
may arise when a mobile device makes itself known to the network,
the MME assigns each device under its management a unique but



temporary identity, or Globally Unique Temporary ID (GUTI). The
MME also supports control signaling for handovers of a mobile
device between eNBs or other MMEs. The MME communicates
with two other major components; the Home Subscriber Server
(HSS) and the Serving Gateway (S-GW). The HSS contains the user
profiles of the mobile devices in the network, and the S-GW—much
like a router—forwards data between the network and any PDN
Gateway (P-GW), which then connects to the PDN if necessary [14].
The main pipeline of initiating a call in the network architecture
is highlighted in purple, Figure 2. For a phantom E911 call to be
initiated (for a device to “go rogue”), some malfunction, unexpected
issue or error must have occurred somewhere along the pipeline.
As Figure 2 suggests, the factors contributing to a device “going
rogue” may be device related, network related, or both.

The data under study was collected from oracle device data
sources. The main features of interest are The International Mobile
Equipment Identity (IMEI) and International Mobile Subscriber
Identifier (IMSI). IMEI is a unique identification or serial number
assigned to mobile devices. IMSI is a number of 14-15 digits which
uniquely identifies a mobile subscriber by their SIM card. Each data
sample is labelled as “phantom - 1” if it was collected from a rogue
device, and “role model - 0” if it was collected from a normal device.

Throughout this paper we identify a mobile device that has a
tendency to initiate phantom calls (i.e a rogue device) through its
IMEI, and we refer to it as a “phantom IMEI”. A non-phantom IMEI
is referred to as a “role model IMEI”. Thus, given a dataset of call
records with device and network level features, where phantom
and role model IMEIs are known, we wish to build two transductive
models that can identify device and network level features strongly
correlated with a mobile’s ability to go rogue. We must note here
that a challenging aspect of the data under study is its categorical
nature, and we must apply pre-processing and encoding techniques
before any transductive model can be implemented.

3 METHODOLOGY
In this sectionwe introduce the data, discuss its pre-processing (data
anonymization, cleaning on feature and sample levels), describe
encoding of categorical data, and discuss the experimental set up.

3.1 Data Pre-Processing and Encoding
Pre-processing raw features after data acquisition is an essential
step in machine learning. It ensures the quality and usefulness of
the data and directly affects the performance of the model. The
initial step of pre-processing involves data-cleaning at the feature
and sample level. This involves carefully filling in missing values
(or removing samples with multiple missing values), and discard-
ing features that are deemed unhelpful. Discarding of features is
done sparingly and we rely on the following criteria to systemati-
cally determine if a feature should be discarded: 1) A feature has
null/missing values across all data samples. 2) A feature is redundant
(has only one value across all call records, for both phantom and
role model IMEIs). 3) A feature is deemed meaningless/desultory,
i.e, it has no affect on the data sample label.

The original features consisted of 209 features that described
different device and network specific information, such as time
stamps, and various identifiers for devices, gateways, nodes and

Table 1: Description of Device and Network Level Features

Feature Description Type

IMSI International Mobile Subscriber Iden-
tity: The unique identifier of a mobile
device’s SIM card. It is used to authenti-
cate a user in the mobile network.

Device

IMEI International Mobile Equipment Iden-
tity: A unique identifier of an individual
mobile/UE.

Device

CELL_ID Geographic area that communicates
with an eNB, and identified by its “cell
ID”.

Network

PLMN_ID Public Land Mobile Network Identifier:
A unique identifier of a PLMN (a terres-
trial wireless communication network).

Network

MMEGI MME Group ID: Unique within a PLMN.
When MME Pooling is utilised within
an LTE network, the MMEGI uniquely
identifies which group (pool) the MME
is assigned to.

Network

MMEC MME Code: Uniquely identifies an
MME within a MME Group.

Network

MTMSI MME Mobile Subscriber Identity: As-
signed randomly but unique for every
device within an MME.

Network

eNBId Identification number of the eNodeB. Network

area codes. After anonymizing and cleaning the data based on
the criteria described above Table 1 shows a list and description
of the final set of features under study. The sensitive personal
information was anonymized by removing it from the dataset to
maintain the customer privacy. As we can see, the device-related
features are “IMEI”, “IMSI”, and the network related features are
“MMEGI”, “MMEC”, “MTMSI”, “PLMN_ID”, “eNBId”, “CELL_ID”.

The features under study are categorical data, thus the pre-
processed data must also be encoded. Some of the most notable
encodign techniques include One hot Encoding, Binary Encoding
and BaseN Encoding [6]. The major limitations of One Hot or Bi-
nary encoding are computation complexity and the storage. We
apply Base𝑁 -Encoder to encode the cleaned data with 𝑁 = 10,
which is essentially decimal encoding. Compared to other encoding
methods, decimal encoding requires less computational resources,
especially when the number of distinct categories for any feature
is large, (which is indeed the case for the data under study).

3.2 Supervised ML - Experimental Setup
This work employs two supervised classification algorithms: K
Nearest Neighbours (KNN) and Decision Trees (DT), [9, 13, 19, 20].
We now introduce two sets of experiments:

(1) KNN classification model on data with the device level fea-
tures, only.

(2) DT classification model on data with the network level fea-
tures, only.



Figure 2: An in-depth view of LTE network architecture showing communication between the UE, E-UTRAN, EPC and PDN.
The dotted lines indicate signals and the solid lines indicate data traffic.

We used a KNN model in order to achieve a higher level of
accuracy in experiment setup 1. We thus use an auxiliary soft-
ware to perform a feature importance analysis. Since we use DT
in experiment setup 2 we are able to perform a feature analysis
automatically. As in Figure 3, a main dataset for both experimental
setupsconsists of network and device level features from (4G/LTE)
network call records collected between the months of January and
August of 2021. The data consisted of 7 distinct phantom IMEIs
and 25000 distinct role model IMEIs. Each IMEI produces at least
1 - up to a few thousand- samples (i.e, we are not operating in the
undersampling regime). The samples were labeled as “phantom
-1 ” if its corresponding IMEI was phantom and “role model - 0”
(or “not phantom”) if its corresponding IMEI was not phantom.
The categorical data for device level features (IMEI and IMSI) from
these samples were extracted and used in the first experimental
setup, whilst the categorical data for the network level features
were extracted and used in the second experimental setup. In addi-
tion to this, some supplementary device level data samples were
also appended with the data for setup 1, comprised of 5890 distinct
phantom IMEIs. We note here that many of the network level fea-
tures shown in Table 1 are in fact elements composing the GUTI. As
shown in Figure 4, the GUTI is comprised of the features “MMEGI”,
“MMEC”, “MTMSI”, “PLMN_ID”. By considering the features indi-
vidually, we can increase the richness and interpretability of the
data under study. With this motivation in mind, feature engineer-
ing was then performed on the device level features. As shown in
Figure 5, IMEI is also composed of several features, IMEI is struc-
tured using Type Allocation Code (TAC), the Serial Number, and a
Check digit (which we are not interested in for the purposes of this
paper). TAC is used to uniquely identify a mobile device in an LTE
network and is composed of a Body Identifier and a Type Identifier,
which indicate the device’s brand owner and model type. The Serial
Number is a unique number assigned to the device by the manu-
facturer. Similarly, IMSI can also be split into the Mobile Country
Code (MCC), the Mobile Network Code (MNC), and the Mobile
Subscriber Identification Number (MSIN), which are all identifiers
stored on a SIM card in a device. Therefore - when studying device
level features - rather than considering IMEI and IMSI alone, we
opt to consider the 6 features that compose IMEI and IMSI (i.e. TAC

Figure 3: Data Partitioning for Experiments

Figure 4: GUTI; no more than 80 bits and is PLMN_ID +
MMEGI +MMEC + MTMSI.

Body, TAC Type, Serial Number, MCC, MNC, MSIN). In experiment
setup 1, we hypothesize that the chosen features are indeed fea-
tures of interest and are strongly correlated with a device’s ability
to initiate phantom E911 calls. Our goal is to verify this hypothesis.
Appending supplementary device level data (as shown in Figure 3)
was a balancing technique done in order to achieve comparability
between the number of phantom and role model data samples re-
spectively. For training the KNN model, we used a 67/33 split ratio.
The distinct device features (i.e. the 6 components of IMEI and IMSI
rather than IMEI and IMSI alone) were used, and data was sampled



Figure 5: IMEI and IMSI; no more than 15 digits each. IMEI is
TAC (body and type) + Serial Number + Code. IMSI is MCC +
MNC + MSIN.

in a way such that there was no overlap in IMEI (phantom and role
model) between the training and validation sets. The training stage
included hyper parameter tuning in order to get the best number
of neighbors K. In order to test the generalizability of the fitted
model (and evaluate the model with changes in real networks),
the model was also tested against a the selection of call records
extracted from the year 2020, comprised of 19551 distinct phantom
IMEIs and 10000 distinct role model IMEIs. In addition to fitting the
KNN model, we are interested in understanding the contributions
that the device level features have on the model. For this we used
an inference tool, Lime, which helped in understanding the data
features that impact the accuracy.

In experiment setup 2, we diagnose network related features
that may be correlated to a device’s ability to initiate phantom E911
calls, or may aid in further understanding some of the properties of
phantom devices. We use a DT model and analyze feature impor-
tance. The data utilized in experiment setup 2 contained call records
from 7 phantom IMEIs. Therefore, we dropped one phantom IMEI
due to it’s very low number of samples , and just performed 6-fold
cross validation, where in each validation iteration (also called a
trial) call records from an IMEI were used as test data. To ensure
a balanced dataset in each iteration, we sample role model call
records uniformly at random- of course, also ensuring no overlap
in IMEIs between training and testing.

4 NUMERICAL RESULTS AND DISCUSSION
In both experimental setups, we consider two accuracy scores:
Recall and Specificity. Denote "true/false positive" and "true/false
negative" as TP/FP and TN/FN respectively. Recall is (𝑇𝑃/(𝑇𝑃 +
𝑇𝑁 )) representing the model’s ability to accurately label phantom
call records. Specificity is (𝑇𝑁 /(𝑇𝑁 +𝐹𝑃)) representing the model’s
ability to accurately label role model call records. It is important
to separate these two scores as our goal is to detect phantom call
records specifically, and an average classification accuracy may not
reflect the model’s ability to do so.

4.1 Experimental Setup 1 (Device Level
Features)

In experiment setup 1, training/validation of the KNN model had
a 94% accuracy overall. As for testing, we stress that the testing
dataset is never used in the training/validation process, thus be-
comes a perfect test data to evaluate the generalizability of the KNN

model. The model was able to predict 80% of phantom call records,
and 94% of normal records which indicates a high confidence in the
model’s predictive ability. The most impactful data features found
using Lime are shown to be TAC Type and MNC. These results help
customer care teams to only focus on a narrowed list of possible
devices that have a potential to go rogue (in our experiments, 25%
of devices were tagged as rogue compared to millions of active
devices in the network), allowing proactive action on the identified
devices, perhaps even before any phantom call is initiated.

4.2 Experimental Setup 2 (Network Level
Features)

Table 2 shows the average test recall values for each validation
trial (i.e, for each IMEI) over 14 Monte Carlos. We hypertune over
the depth of the DT, with depth= 2 yielding best accuracy scores.
Figure 6 shows the corresponding DT of the best cross-validation
iteration (trial 2). The feature importance analysis of the DT shows
that MTMSI is mostly correlated with a phantom call record, and oc-
cupies 98%− 100% of the decisive power. Table 3 shows the average
recall and specificity scores across all validations, where

∑
denotes

the sum of samples over all 6 trials. The average recall over all trials
is 95.3%, which means we were able to correctly detect over 95%
call records made by phantom devices. To validate the results of the
DT, Table 2 also shows the average test recall values when using
only the network feature MTMSI, and Table 4 shows the average
recall and specificity over all trials, using only MTMSI. We see from
the approximately equal accuracies in Table 3 and Table 4, that the
results agree with the inference of the DT, whereby MTMSI is a
feature most correlated with phantom devices and holds most of
the decisive power in the phantom detection process. MTMSI is
associated with MME group which in turn helps to recognize the
geographic location involved in a phantom call. Identifying the
MTMSI and MME associated to the phantom call can be very useful
if a cluster of devices are involved in phantom calls. Such a cluster
of MTMSIs can be easily identified through the DT itself. Based
on these results, we conclude two aspects. First, the device specific
machine learning model helps in the real networks to predict the
devices that have the potential to go rogue (Namely IMEI and IMSI,
but more specifically, TAC Body Type and MNC). Such predictions
directly help network carrier’s customer care teams to focus on
helping customer’s with such devices - if they are “bring your own
device” (BYOD), then such devices can be suggested for discounted
upgrades to solve the software issues related to features highly
correlated with phantom devices. Applying these steps at an early
stage saves network resources and reduces the volume of phantom
E911 calls. Secondly, the network specific machine learning model
helps in detecting the cluster of devices that are behaving in rogue
(through their MTMSIs), so customer care teams can identify the
behaviour and place appropriate measures to handle them automat-
ically. This saves troubleshooting time for customer care personnel
and network engineers, rather than having to manually figure out
the pattern in such cluster of rogue devices.

5 CONCLUSION
In this paper we implemented two diagnostic models for device
and network related features respectively, using supervised ML



Table 2: Recall accuracy for DTmodel over 6 Cross Validation
iterations, for all network features and for MTMSI

Trial Ph_IMEI 6 Features
(Depth= 2)

Feature MTMSI
(Depth= 2)

1 IMEI 1 0.962 0.979
2 IMEI 2 0.987 0.969
3 IMEI 3 0.978 0.986
4 IMEI 4 0.819 0.945
5 IMEI 5 0.438 0.393
6 IMEI 6 0.643 0.714

Figure 6: Decision Tree (depth=2) of Trial Based on the 6
Network Features

Table 3: Results of DT Model (6 Trials, 6 Network Features

Max_Depth Criterion Expression Value

2

Average Recall
∑
𝑇𝑃∑

𝑇𝑃+∑ 𝐹𝑁
0.953

Average Specificity
∑
𝑇𝑁∑

𝑇𝑁+∑ 𝐹𝑃
0.979

Table 4: Reults of DTModel Over 6 Trials for Feature ‘MTMSI’

Max_Depth Criterion Expression Value

2

Average Recall
∑
𝑇𝑃∑

𝑇𝑃+∑ 𝐹𝑁
0.960

Average Specificity
∑
𝑇𝑁∑

𝑇𝑁+∑ 𝐹𝑃
0.981

algorithms: KNN and DT. Our results show that only a handful of
features are strongly correlated with a device’s ability to initiate
phantom E911 calls. The device ML model has shown to be gener-
alizable and works well even with unseen data. We are also able to
conclude that the network feature “MTMSI” occupied around 99%
importance in triggering the phantom E911 calls. Based on this, we
give suggestions to network operators that may help reduce the
large volume and provide early prevention of phantom E911 calls.
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