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Abstract
Weconstruct and analyze a continuumdynamical percolation processwhich evolves in
a random environment given by a γ -Liouville measure. The homogeneous counterpart
of this process describes the scaling limit of discrete dynamical percolation on the
rescaled triangular lattice. Our focus here is to study the same limiting dynamics,
but where the speed of microscopic updates is highly inhomogeneous in space and is
driven by the γ -Liouville measure associated with a two-dimensional log-correlated
field h. Roughly speaking, this continuum percolation process evolves very rapidly
where the field h is high and barely moves where the field h is low. Our main results
can be summarized as follows.

• First, we build this inhomogeneous dynamical percolation, which we call γ -
Liouville dynamical percolation (LDP), by taking the scaling limit of the associated
process on the triangular lattice. We work with three different regimes each requir-
ing different tools: γ ∈ [0, 2−√

5/2), γ ∈ [2−√
5/2,

√
3/2), and γ ∈ (

√
3/2, 2).

• When γ <
√
3/2, we prove that γ -LDP is mixing in the Schramm–Smirnov

space as t → ∞, quenched in the log-correlated field h. On the contrary, when
γ >

√
3/2 the process is frozen in time. The ergodicity result is a crucial piece of

the Cardy embedding project of the second and fourth coauthors, where LDP for
γ = √

1/6 is used to study the scaling limit of a variant of dynamical percolation
on uniform triangulations.

• When γ <
√
3/4, we obtain quantitative bounds on the mixing of quad crossing

events.
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1 Introduction

Given an arbitrary graph, (site) percolation on the graph gives to each vertex the
property of being open or closed independently. For infinite graphs and if p ∈ [0, 1]
denotes the probability that a vertex is open, there is a critical value pc for p, which
is defined as the infimum of p for which there is an infinite cluster of open vertices
a.s. Critical percolation on a wide range of planar graphs and lattices is believed to
have a conformally invariant scaling limit. This was proved by Smirnov [55] for the
triangular lattice.

Dynamical percolation on a graph is a percolation valued process indexed by
the non-negative real numbers R+, such that each vertex has an independent Poisson
clock and the status of the vertex is resampled every time its clock rings. The first
important properties of this model were proved in [32,56]. The subsequent papers
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Liouville dynamical percolation 623

[23,24,26] studied dynamical percolation on the triangular lattice in the homogeneous
case where all the Poisson clocks have the same rate. They proved that this process has
a càdlàg scaling limit (ω0(t))t∈R+ when the rate is chosen appropriately. The limiting
process can be defined directly in the continuum as a stationary process, such that at
each fixed time t ∈ R+, ω0(t) has the law of the percolation scaling limit.

In this paper we study dynamical percolation evolving in a random environment
defined byLiouville quantum gravity (LQG). The latter is a theory of random fractal
surfaces (see for example [11–13]). Letγ ∈ (0, 2) and leth be an instance of aGaussian
free field (GFF) or another log-correlated field (see Sect. 2.4) in a planar domain D.
Heuristically speaking, a γ -LQG surface is a random surface whose area measure is of
the form eγ hd2z. This definition does not make rigorous sense since h is a distribution
and not a function, but via regularization of h one can make rigorous sense of the area
measure eγ h d2z and certain other measures of the form eγ h dσ for γ ∈ (0, 2) and
a base measure σ . Recently it was also proven that a γ -LQG surface is associated
with a natural metric (i.e., distance function) [10,21]. As explained in Sect. 1.3, LQG
is intimately related to the scaling limits of random planar maps and this connection
with planar maps constitutes the main motivation underlying this work.

The process we will focus on is called (continuum) Liouville dynamical perco-
lation (cLDP). Informally, it can be described as a continuum analog of dynamical
percolation where the clocks are driven by an independent LQG measure.

We construct cLDP as the scaling limit of (discrete) Liouville dynamical perco-
lation (dLDP) on the triangular lattice; see Theorem 1.3.1 The rate of the Poisson
clocks will now be inhomogeneous and determined by a background log-correlated
field h. More explicitly, for η > 0 let Tη denote the regular triangular lattice rescaled
such that the distance between adjacent vertices is η. Let α

η
4 (η, 1) be the probability

of having a so-called 4-arm event from a site to distance 1 (see Sect. 2.3). For x a
vertex on Tη, let Bh

η (x) denote the hexagon corresponding to x in the dual graph of
Tη. The following defines dynamical percolation driven by any given fixed measure
σ (not necessarily a random measure associated to LQG).

Definition 1.1 (Dynamical percolation driven by a general measure σ ) Fix η > 0. Let
σ be a measure on R

2. A dynamical percolation on Tη driven by σ is a dynamics on
percolation configurations denoted by ωσ

η (·) that is built via the following procedure:
• At time t = 0, ωσ

η (0) is a percolation configuration on Tη in which the status of
the sites are chosen independently open or closed with probability 1/2.

• Each site x ∈ Tη of the lattice has an associated Poisson clock with rate
σ(Bh

η (x))α
η
4 (η, 1)−1, which rings independently of all other information.

• Each time a clock of some vertex x rings, we resample the status of the vertex
x , i.e., its status is set to open or closed with probability 1/2 independently of all
other randomness.

When σ is Lebesgue measure on the plane, the dynamical percolation driven by
σ is the subject of [25]. The scaling σ(Bh

η (x))α
η
4 (η, 1)−1 of the rate is necessary for

getting a non-trivial scaling limit.

1 The notion “Liouville dynamical percolation” (LDP) may refer to either dLDP or cLDP, and the meaning
will be clear from the context.
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624 C. Garban et al.

In this paper, we study the scaling limit of dynamical percolation driven by a specific
family of space-inhomogeneous fractal measures—the LQG area measures.

Definition 1.2 (discrete Liouville dynamical percolation (dLDP)) Let μγ h be the γ -
LQG measure associated with a log-correlated field h. We define ω

γ
η (·) = ω

μγ h
η (·) to

be the dynamical percolation driven by the measure μγ h , such that h and ω
γ
η (0) are

independent.

1.1 Main results

Let D ⊂ C be a bounded simply connected domain with smooth boundary. Let
0 ≤ γ < 2 and let h be a centred Gaussian log-correlated field on D.2 We denote by
μγ h the γ -LQG area measure associated with h.

The following theorem gives convergence of dLDP. We refer to Sect. 2.2 for a
discussion of the various topologies which can be used to represent the scaling limit ω
of critical percolation. In thisworkwewillmainly rely on theSchramm–Smirnov space
H introduced in [57]; see Sect. 2.2 for its definition. See [8,52] for other topologies.3

The space of càdlàg functions with values in H will be equipped with two different
topologies: the Skorokhod topology and the L1 topology, where the latter topology
is weaker and is generated by a metric where we integrate the distance between two
processes over the considered time interval.

Theorem 1.3

(i) If γ ∈ [0, 2 − √
5/2), then (ω

γ
η (t))t≥0 converges in law to a càdlàg process

(ω
γ∞(t))t≥0. The convergence holds for the finite-dimensional laws and in the

Skorokhod topology for the Schramm–Smirnov space H .
(ii) If γ ∈ [2−√

5/2,
√
3/2), then (ω

γ
η (t))t≥0 converges in law to a càdlàg process

(ω
γ∞(t))t≥0. The convergence holds for the finite-dimensional laws and in the

L1-topology for the Schramm–Smirnov space H .
(iii) If γ ∈ (

√
3/2, 2), then the conclusion of (ii) still holds. Furthermore, the limiting

process is constant (i.e., ω
γ∞(t) = ω

γ∞(0) for all t ≥ 0).

In all cases (i)-(iii), conditionally on h, t 	→ ω
γ∞(t) is a Markov process on the

Schramm–Smirnov space H .

We refer to Sect. 1.2 for an intuitive explanation of the transition points at γ =
2−√

5/2 and γ = √
3/2. It is not clear to us whether one would expect convergence

in Skorokhod topology to hold also for γ > 2−√
5/2.

We call the limiting process (ω
γ∞(t))t≥0 continuum Liouville dynamical perco-

lation (cLDP). A fundamental property of cLDP for γ ∈ [0,√3/2) is its mixing

2 See Sect. 2.4 for the precise class of fields we consider.
3 We remark that the loop ensemble space considered in e.g. [8] and the quad crossing space considered in
[26,57] and this paper are equivalent in the sense that the associated σ -algebras are the same. See [8] and
[24, Section 2.3] for a proof that the loops determine the quad crossing information, and see [33, Theorem
6.10] for the converse result. Therefore (ωγ (t))t≥0 can also be viewed as a process with values in the loop
ensemble space.

123



Liouville dynamical percolation 625

property, which we state next and which will be instrumental in the second and fourth
authors’ work [33]. See Sect. 2.2 for the definition of a rectangular quad and what it
means for a percolation configuration to cross a rectangular quad. See Sect. 2.6 for a
reminder of the definition of mixing in the setting of ergodic theory and the fact that
it implies ergodicity.

Theorem 1.4 Let Q be a rectangular quad, and for any t ≥ 0 let A(t) be the event
that ω

γ∞(t) crosses Q. For measurable sets B, C ⊂ H and t ∈ R+ define the events
B(t) = {ωγ∞(t) ∈ B} and C(t) = {ωγ∞(t) ∈ C}.
(i) If γ ∈ [0,√3/2) then ω

γ∞(·) is mixing. More precisely, for B(0) and C(t) as
above,

lim
t→∞Cov(1B(0), 1C(t)) = 0.

(ii) Let γ ∈ [0,√3/4) and θ(d, γ ) := d−γ 2

d+γ 2 . Then for A(t) as above and any ξ < 2θ
5

for θ = θ(3/4, γ ), we have that

lim
t→∞Cov(1A(0), 1A(t))t

ξ = 0.

More generally, for B(0) and A(t) as above,

lim
t→∞Cov(1B(0), 1A(t))t

ξ/2 = 0. (1.1)

(iii) The results above also hold in the quenched sense, i.e., a.s.,

lim
t→∞Cov(1B(0), 1C(t) | h) = lim

t→∞Cov(1A(0), 1A(t) | h)tξ

= lim
t→∞Cov(1B(0), 1A(t) | h)tξ/2 = 0.

We remark that we do not expect the power ξ in the theorem to be optimal, i.e., we
expect that (ii) and (iii) still hold for a larger value of ξ .

Remark 1.5 Since Theorem 1.4 holds for γ = 0, we prove mixing for the Euclidean
dynamical percolation studied by Garban et al. [26]. In particular, we answer the
question asked in [26, Remark 12.3]. It was previously known [26, Section 12] that
we have polynomial mixing for the event of crossing a single rectangular quad for
γ = 0. That is, if A(t) denotes the event that a fixed rectangular quad Q is crossed
at time t , it was know that Cov(1A(0), 1A(t)) ≤ CQt−2/3 for a constant CQ > 0
depending only on Q (see in [26, Theorem 12.1]).

Remark 1.6 Theorem 1.3 and the non-quantitative assertions of Theorem 1.4 (i.e.,
Assertion (i) and the first limit in Assertion (iii)) also hold if we replace h by h + g,
where g is a (possibly random) function that is continuous on D, regardless of how g is
coupled with h. Our proofs can be carried out exactly as before under this assumption
since we can find two random numbers m and M such that m ≤ g ≤ M a.s.
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626 C. Garban et al.

In [26,27] convergence results for near-critical percolation and the minimal span-
ning tree are established, building on the method for dynamical percolation. In the
regime γ ∈ (0, 2 − √

5/2) (where microscopic stability is satisfied, see Propo-
sition 3.2), we obtain analogous results in our inhomogeneous case as immediate
corollaries of the proof of Theorem 1.3, proceeding similarly as in the γ = 0 case
studied in [26,27]. We will first define near-critical percolation and the minimal span-
ning tree in the LQG environment and then state these corollaries.

Definition 1.7 The γ -near-critical coupling (ω
γ,nc
η (λ))λ∈R is the process constructed

as follows:

(i) Sample ω
γ,nc
η (λ = 0) according to Pη, the law of critical percolation on Tη.

(ii) As λ increases, closed hexagons switch independently to open at exponential rate

r(η) = μγ h(Bh
η (x))α

η
4 (η, 1)−1 . (1.2)

(iii) As λ decreases, open hexagons switch independently to closed at same rate r(η).

As such, for any λ ∈ R, the near-critical percolation ω
γ,nc
η (λ) corresponds exactly to

a percolation configuration on Tη with parameter

{
p = pc + 1− e−λ r(η) if λ ≥ 0,

p = pc − (1− e−|λ| r(η)) if λ < 0 .

Similarly, following [27], one may define an inhomogeneous model of minimal
spanning tree on the triangular lattice Tη induced by an LQG measure. Let us start
with two preliminary comments. 1) As in [27], the microscopic definition of the model
of Minimal Spanning Tree for which one can prove a scaling limit is necessarily a
bit subtle as the Minimal Spanning Tree needs to be naturally related to critical site
percolation on T. 2) One technical restriction in [27] is that the scaling limit results
are stated on C and on the tori L2

M = R
2/(MZ

2) but not on general planar domains
D. We will thus consider for this reason a log-correlated field h on L

2
M with mean

zero.
We are now ready to define the Minimal Spanning Tree in our present inhomoge-

neous setting.

Definition 1.8 Let M > 0 and h be a log-correlated field on L
2
M = R

2/(MZ
2) with

mean zero. Assign to each vertex x ∈ Tη ∩ L
2
M , a weight V (x) in [0, 1] given by

V (x) := 1
2 + 1

2 tanh

(
1

μγ h(Bh
η (x))

(Wx − 1
2 )

)
, (1.3)

where (Wx )x∈Tη∩L2
M
are i.i.d. uniform variables on [0, 1]. Now, exactly as in [27],

assign to each edge e = (x, y) of the triangular lattice Tη the vector label

U (e) := (V (x) ∨ V (y), V (x) ∧ V (y)) .
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Liouville dynamical percolation 627

Wedefine theMinimal Spanning TreeMSTγ
η in the Liouville random environmentμγ h

to be the a.s. unique minimal spanning tree in Tη ∩ L
2
M determined by these vector

labels considered with lexicographic order.

Remark 1.9 Minimal Spanning Trees are naturally defined out of a collection of
weights on the edges of a graph. In order to obtain a scaling limit result in [27]
from near-critical site-percolation on T, it was necessary to define a natural model
of MST whose weights were in correspondance with i.i.d. weights on the sites of T.
This is the reason for this lexicographic order in order to brake local ties that would
otherwise appear along the construction of the MST.

Remark 1.10 The particular choice of function in the definition (1.3) of the weights
V (x) is very flexible. It follows easily from [27] that choosing instead for example

Ṽ (x) := 1
2 + 1

2 tan
−1

(
1

μγ h(Bh
η (x))

(Wx − 1
2 )

)
,

would lead to the exact same limiting process. The only important feature of our choice
of weights is the fact they favor in some sense points in areas where the field h is large
(in the right quantitative way depending on γ ). We opted for this function in order
to match with the setup of [27] (i.e. weights in [0, 1] and half of the MST has been
constructed using Kruskal’s algorithm when reaching pc = 1

2 ). The following choice
of weights (not restricted to live in [0, 1]) would also lead to the same limiting tree
and looks somewhat simpler:

V̂ (x) := W̃ (x)

μγ h(Bh
η (x))

,

where (Ŵ (x)) are now i.i.d. standard Gaussian variables.

We may now state the following two corollaries of Theorem 1.3:

Corollary 1.11 For any 0 ≤ γ < 2 − √
5/2, the càdlàg process (ω

γ,nc
η (λ))λ∈R con-

verges for the Skorokhod topology on H to a limiting Markov process (ω
γ,nc∞ (λ))λ∈R.

Corollary 1.12 For any γ ∈ [0, 2 − √
5/2), as η → 0, the spanning tree MSTγ

η on
Tη ∩ L

2
M converges in distribution (under the setup introduced in [1]) to a limiting

tree MSTγ∞.

Remark 1.13 Note that for these two models, we are only able to treat the regime
0 ≤ γ < 2−√

5/2. For dynamical percolation, the fact that the process is stationary
together with the Fourier technology help tremendously. However, it seems natural
to guess that the other two models will keep behaving similarly thanks to a more
delicate stability analysis for γ ∈ [2 − √

5/2, γ̂c). The question of whether γ̂c is
equal to

√
3/2 or not does not seem obvious to us. Indeed, for the out-of-equilibrium

case corresponding to near-critical percolation, the microscopic stability may cease
to exist before reaching

√
3/2 while in the equilibrium case, on and off switches may

still compensate each other.
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628 C. Garban et al.

Finally, in Sect. 4, we prove a scaling limit result for the so-called spectral mea-
sures. The spectral measures are certain random measures in D, each associated with
a percolation crossing event (see Sect. 2.1). Spectral measures play an important role
in several of our proofs and were a crucial tool in [23]. In particular, we use the spec-
tral measures as a tool to prove mixing in the subcritical regime and to prove that
the supercritical process is trivial. In Proposition 4.1, we prove that spectral measures
associatedwith a large class of crossing events converge in law as η → 0. This answers
half of the third open problem stated in [23].

Other results of independent interest not mentioned above are found in the appen-
dices. In particular, we want to highlight Proposition A.1, where we prove under mild
assumptions that if (σ n)n∈N is a sequence of measures converging in probability to
a limiting measure σ , then the LQG measure with base measure σ n converges to the
LQG measure with base measure σ . Furthermore, in Appendix B we prove upper and
lower bounds for the total mass of the spectral measure associated with the crossing
of multiple quads. This extends the main result of [23], where the case of a single
rectangular quad was considered.

1.2 Sketch of proofs

When 0 < γ < 2−√
5/2, one proves Theorem 1.3 by adapting the proofs of [26] for

the case γ = 0. The key reason that the proofs carry through in this regime, is that4

μγ h(Bh
η (x)) 
 α

η
4 (η, 1) a.s. for all x ∈ D and sufficiently small η > 0. (1.4)

In a certain sense, on the scale of the microscopic grid Tη, this means that there are
no sites in D whose clock rates are of order one or higher. See Remark 1.14.

In the case 2 − √
5/2 < γ <

√
3/2, one cannot directly apply the techniques of

[26] to prove Theorem 1.3. The reason is the failure of (1.4). In fact, in this case there
are a.s. points x ∈ D such that μγ h(Bh

η (x)) � α
η
4 (η, 1) as η → 0. To fix this issue

one needs to modify the dLDP. For some 
 > 0 (depending on γ ) to be determined,5

define the moderate points of constant C by

MC := {x ∈ D : μγ h(Bh
2−n (x)) < Cα2−n

4 (2−n, 1)2−n
, for all n ∈ N} . (1.5)

Thendefine themeasure μ̃C
γ h(·) := μγ h(·∩MC ), anddefine the dynamical percolation

with measure μ̃C
γ h by

ω̃C,γ
η (·) := ω

μ̃C
γ h

η (·) . (1.6)

The points of MC are called moderate since they are points where the rate of the
associated clock is o(1).

4 Above we defined Bh
r (x) only for x ∈ Tη , but the definition extends immediately to x ∈ C by considering

Tη recentred so that x ∈ Tη .
5 We will choose 
 such that Lemma 2.14 is satisfied.
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Liouville dynamical percolation 629

It is easy to see that for this modified measure the proofs of [26] work, so ω̃
C,γ
η (·)

converges to some process ω̃
C,γ∞ (·). The difficulty now is to show that limη→0 ω

γ
η (·) =

limC→∞ ω̃
C,γ∞ (·) a.s. To do this we first couple ω̃

C,γ
η (·) with ω

γ
η (·) in the natural way.

Then we show that when C is big enough, for any fixed quad Q and t ≥ 0, the
probability that Q is crossed for ω̃

C,γ
η (t) and not for ω

γ
η (t), or vice versa, converges

to 0.
Finally, when γ ∈ (

√
3/2, 2), we study P(Q ∈ ω

γ
η (0)�ω

γ
η (t)) for a fixed quad Q.

This probability can be expressed in terms of the so-called Liouville spectral measure.
In this regime it is possible to show that this measure converges in probability to 0,
which implies the same for the considered probability. Intuitively, cLDP is trivial in this
regime since the limiting pivotal points6 are disjoint from the so-called γ -thick points
of h, which implies that the limiting measure μλε

γ h is trivial since γ -LQG measures
are supported on γ -thick points.

The attentive reader may have realized that for the second and third cases we made
reference only to the distribution of quads at a given time t . In fact, we are not able to
prove convergence for all times simultaneously, and we only get convergence of the
finite-dimensional marginals and for the L1 topology rather than for the Skorokhod
topology for these cases.

Let us now explain how we prove the mixing properties of cLDP when γ <
√
3/2.

First, we show that if S is the scaling limit of the spectral measure of the crossing
of a given quad Q, then one can define μS

γ h , which is the γ -LQG measure with base
measure S . Then we show the following key identity

Cov(1Q∈ω
γ∞(0), 1Q∈ω

γ∞(t) | h) = E

[
e−μS

γ h (D)1S (D) �=0 | h
]

. (1.7)

Using that a.s.μS
γ h(D) �= 0 on the eventS (D) �= 0, we can prove convergence of the

right side to 0 as t → ∞. The same is true when one studies the events in Theorem 1.4.
To prove the quantitative speed of decorrelation, we use (1.7) again. The new idea

is to take expected value and prove, first, the result in the annealed regime. To do
that, we use the quantitative estimates obtained in [19], which allow us to give explicit
polynomial decay, at least for γ <

√
3/4. Then we deduce the quenched result from

the annealed result, using, among other properties, that the covariance decreases in
time.

Remark 1.14 We observe in Sect. 2.5 that the transition point γ = 2 − √
5/2 corre-

sponds exactly to matter central charge c = 1. It is an interesting coincidence that
our stability argument breaks down exactly at c = 1; note that almost all mathematics
literature on LQG considers only the classical range c ≤ 1 and not the more exotic
range c > 1. We see no apparent reason why the desired stability property (namely,
μγ h(Bh

η (z)) 
 α
η
4 (η, 1) for all z ∈ D and sufficiently small η) should break down

6 A concrete way to understand the limiting pivotal points is through the limiting loop ensemble called
CLE6 [8]. The limiting pivotal points can be realized as the collection of double points and intersection
points of loops in CLE6. Since our paper is mainly focused on the Schramm–Smirnov topology, we will
not elaborate on this point of view. See [33, Section 5] for more details.
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exactly at c = 1. We leave as a curiosity for the interested reader to investigate this
further.

1.3 Motivation from random planar maps

The current work is an important input to a program of the second and fourth authors,
which proves the convergence of uniform triangulations to

√
8/3-LQG under the so-

called Cardy embedding.
Let us start by shortly discussing how LQG surfaces arise as the scaling limit of

discrete surfaces known as random planarmaps (RPM). A planar map is a graph drawn
on the sphere (without edge-crossings) viewed modulo continuous deformations. Le
Gall [40], Miermont [42], and others proved that certain uniformly sampled RPM
equipped with the graph distance converge in law for the Gromov-Hausdorff distance
to a limitingmetric space knownas theBrownianmap.Miller andSheffield [43,44,46]
proved that the Brownian map is equivalent to

√
8/3-LQG in the sense that an instance

of the Brownian map can be coupled together with an instance of
√
8/3-LQG such

that the two surfaces determine each other in a natural way.
An alternative notion of convergence for RPM to LQG is provided by the so-

called peanosphere topology. Convergence of RPM to LQG in this topology has been
established for RPM in several universality classes. The idea of this topology is to
decorate the RPMwith a statistical physics model (see e.g. [7,17,39,41,54]), and show
that the decorated map is encoded by a 2d walk which converges in the scaling limit
to a correlated Brownian motion. By [12], the correlated Brownian motion encodes
an instance of SLE-decorated LQG in a same manner as in the discrete.

Our main motivations from LQG/planar maps are the following:

1. First, as mentioned above, the Cardy embedding is a discrete conformal embed-
ding which is based on percolation crossing probabilities on planar maps. In [18]
(based on [2,7,12,20] and other works) it is proved that a uniform percolated tri-
angulation converges as a loop-decorated metric measure space to a

√
8/3-LQG

surface decorated by an independent CLE6. By applying the mixing result of our
Theorem 1.4, it is shown in [33] that the convergence to CLE6 is quenched, i.e.,
the limiting CLE6 is independent of the randomness of the planar maps. This
allows us to conclude that the Cardy embedded random planar maps converge to√
8/3-LQG.

2. Second, the study of the conjectural scaling limit of dynamical percolation on
randomplanarmaps. In [33] it is proved that dynamical percolation (with a certain
cut-off) on a uniformly chosen triangulation converges to the process built in
this paper, namely Liouville dynamical percolation with parameter γ = 1/

√
6.

For general values of γ ∈ (0,
√
3/2), Liouville dynamical percolation should

represent the scaling limit of dynamical percolation on random planar maps in
other universality classes.
Note that dynamical percolation on uniform planar maps do not correspond in
this setting to LDP for γ = 1/

√
6 rather than γ = √

8/3. The reason for such
a smaller γ value here is that the dynamical percolation is driven by an LQG
measure on a lower-dimensional fractal rather than an open subset of the complex

123



Liouville dynamical percolation 631

plane. In fact, the relationship between the Euclidean dimension d = 3/4 of the
fractal and γ = 1/

√
6 is a consequence of the coordinate change formula for

LQG. See (2.21) and the text around it for further explanation.
The relationship between γ and its corresponding matter central charge c = c(γ )

is discussed in detail in Sect. 2.5. Let us point out that in this correspondence
we have c < 1 (resp. c ∈ (1, 16)) if and only if γ (c) ∈ (0, 2 − √

5/2) (resp.
γ (c) ∈ (2 − √

5/2,
√
3/2)). In particular, note that our paper studies a non-

trivial dynamical percolation process even when c ∈ (1, 16), which lies outside
the more classical range c ≤ 1 for Liouville quantum gravity surfaces.

3. Finally, we conjecture that the near-critical percolation and the minimal spanning
tree studied in Corollaries 1.11 and 1.12 represent the scaling limit of the associ-
ated models on random planar maps. In particular, this work falls into the class
of works that study natural continuum processes inspired by statistical physics
models on random planar maps. Other works of this type are the works of Miller
and Sheffield on the Quantum Loewner evolution (QLE) [45,46]. QLE represents
the conjectural scaling limit of growth models such as the Eden model and DLA
on random planar maps.

Organization of the paper

The paper is organised in the followingway.We present some preliminaries on dynam-
ical percolation and LQG in Sect. 2. In Sect. 3 we prove convergence in Skorokhod
topology of dLDP for γ ∈ (0, 2 − √

5/2), adapting the techniques in [26]. Based on
this technique along with Fourier analysis, we prove convergence in law of the spectral
measure in Sect. 4. Section 5 is the main technical contribution of the paper. After
establishing convergence of the modified dLDP, we prove that this process is close
to true dLDP in the scaling limit, and we prove that the limiting process is càdlàg.
In Sect. 6 we prove mixing for cLDP via Fourier analysis techniques, and in Sect. 8
we upgrade to quantitative mixing using [19]. In Sect. 7 we prove Theorem 1.3 for
the supercritical case. In Appendix A we prove various convergence results for LQG
measures, and in Appendix Bwe prove upper and lower bounds for the spectral sample
associated with the crossing of multiple quads.

2 Preliminaries and further background

2.1 Fourier analysis for Boolean functions

In this subsection, we present theory of Fourier analysis of Boolean functions. A
function f is said to be Boolean if for some finite set I it is a function from {−1, 1}I
to {−1, 1}. We endow {−1, 1}I with the uniform probability measure.

Firstwewill define an appropriate orthonormal basis for the inner product ( f , g) 	→
E[ f g]. For any S ⊆ I, letχS be the Boolean function defined byχS = ∏

i∈S χi , where
χi is the Boolean function defined by projection onto the i th coordinate. Note that
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(χS)S⊆I is an orthonormal basis for the functions on {−1, 1}I . Therefore, defining
f̂ (S) = E[ f χS] for any Boolean function f : {−1, 1}I → {−1, 1},

f =
∑
S⊆I

f̂ (S)χS .

By Parseval’s formula,

∑
S⊆I

( f̂ (S))2 = 1.

This allows us to define, for every Boolean function f , a random variableS such that
P(S = S) = ( f̂ (S))2. We call S the spectral sample associated with f .

In this paper, we are interested in Boolean functions whose domain are D ∩ Tη

for D ⊂ C a bounded domain. This motivates us to abuse notation and identify its
spectral sample Sη with the measure7

Sη(d
2z) := α

η
4 (η, 1)−1

∑
x∈Sη

1z∈Bh
η (x)d

2z . (2.1)

Then we can talk about weak convergence ofSη in the space of measures, and define

μ
Sη

γ h , the LQG measure with base measureSη. In the remainder of the paper (except
in Appendix B) we refer to this measure (rather than the subset of C) when we talk
aboutSη andS . ForC ∈ N and 
 > 0 as in Lemma 2.13 we also define the following
truncated Liouville measure

μ̃
C,Sη

γ h (d2z) = α
η
4 (η, 1)−1

∑
x∈Sη

1z∈Bh
η (x)∩MC

μγ h(d2z) , (2.2)

whereMC is as in (1.5). Let us note that for any set E ⊆ D, μ̃
C,Sη

γ h (E) = μ
Sη

γ h (E ∩
MC ).

The following key identities express the covariance between f (ω
γ
η (0)) and

f (ω
γ
η (t)) (and with ω̃

C,γ
η (·) instead of ω

γ
η (·)) in terms of the spectral measure.

Lemma 2.1 Let f be a Boolean function defined on D∩Tη and letSη be the associated
spectral measure. Then

Cov
[

f (ωγ
η (0)), f (ωγ

η (t)) | h
]
= E

[
e−tμ

S η
γ h (D)1Sη(D) �=0 | h

]
, (2.3)

Cov
[

f (ω̃C,γ
η (0)), f (ω̃C,γ

η (t)) | h
]
= E

[
e−tμ̃

C,S η
γ h (D)1Sη(D) �=0 | h

]
. (2.4)

7 In [23], the distinction is made between the spectral sampleSη viewed as a random set and the counting
measure λη on the spectral sample Sη . Here we identify the concepts for convenience.

123



Liouville dynamical percolation 633

(See Sects. 1.2 and 5 for the definition of the process ω̃
C,γ
η (t)). Furthermore, the

function ( f , g) 	→ Cov[ f (ω̃C,γ (0)), g(ω̃C,γ (t)) | h] is an inner product if we identify
functions that differ by a constant,8 so the Cauchy-Schwarz inequality gives that for
any Boolean function g,

Cov[ f (ω̃C,γ
η (0)), g(ω̃C,γ

η (t)) | h] ≤ Cov[ f (ω̃C,γ
η (0)), f (ω̃C,γ

η (t)) | h]1/2 . (2.5)

Proof Let us first note that if S �= S′, then E
[
χS(ω

γ
η (0))χS′(ωγ

η (t)) | h
] = 0. If

ω
γ
η,x (t) ∈ {−1, 1} describes whether x ∈ Tη is open or closed for any x ∈ S then we

have E[ωγ
η,x (0)ω

γ
η,x (t) | h] = exp(−tαη

4 (η, 1)−1μγ h(Bh
η (x))); recall when deriving

this identity that when the Poisson clock of some vertex rings then the status of the
vertex is resampled rather than changed, so it remains unchanged with probability 0.5.
Therefore

E

[
χS(ωγ

η (0))χS(ωγ
η (t)) | h

]
= exp

(
−

∑
x∈S

tαη
4 (η, 1)−1μγ h(Bh

η (x))
)

= exp(−tμS
γ h(D)) .

This implies that

E

[
f (ωγ

η (0)) f (ωγ
η (t)) | h

]
=

∑
S⊆I

( f̂ (S))2 exp(−tμS
γ h(D))

= E

[
exp

(
−tμ

Sη

γ h (D)
)
| h

]
. (2.6)

We conclude the proof of (2.3) by noting that f̂ (∅) = E
[

f (ω
γ
η (0))

]
and subtracting

f̂ (∅)2 on both sides. The same proof works for ω̃
C,γ
η (·).

For the second part, by the same calculation,

Cov[ f (ω̃C,γ
η (0)), g(ω̃C,γ

η (t)) | h] =
∑
S �=∅

f̂ (S)ĝ(S) exp(−tμC,S
γ h (D)).

From this identity we see that ( f , g) 	→ Cov[ f (ω̃
C,γ
η (0)), g(ω̃

C,γ
η (t))] is an inner

product if we identify f with the constant function x 	→ 0 if f̂ (S) = 0 for all
S �= ∅; equivalently, we identify f with x 	→ 0 if f ≡ a for some constant a. The
Cauchy-Schwarz inequality gives

Cov[ f (ω̃C,γ
η (0)), g(ω̃C,γ

η (t)) | h]
≤ Cov[ f (ω̃C,γ

η (0)), f (ω̃C,γ
η (t)) | h]1/2 Cov[g(ω̃C,γ

η (0)), g(ω̃C,γ
η (t)) | h]1/2

≤ Cov[ f (ω̃C,γ
η (0)), f (ω̃C,γ

η (t)) | h]1/2 .

��
8 We identify functions that differ by a constant since ( f , g) = 0 if f ≡ a or g ≡ a for some constant a.
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Remark 2.2 By taking expected value in equations (2.3) and (2.4), one obtains

Cov
[

f (ωγ
η (0)), f (ωγ

η (t))
]
= E

[
e−tμ

S η
γ h (D)1Sη(D) �=0

]
, (2.7)

Cov
[

f (ω̃C,γ
η (0)), f (ω̃C,γ

η (t))
]
= E

[
e−tμ̃

C,S η
γ h (D)1Sη(D) �=0

]
. (2.8)

2.2 Quad-crossing space

The idea in [57] is to consider a percolation configuration as the set of all quads crossed
by it. Let us start by defining what a quad is.

Definition 2.3 Let D ⊂ C be bounded. A quad Q in D is a homeomorphism Q :
[0, 1]2 → D. LetQD denote the set of quads, equippedwith the topology generated by
the following (pseudo)metric dQ(Q1, Q2) := infφ supz∈∂[0,1]2 |Q1(φ(z)) − Q2(z)|,
where the infimum is over all homeomorphisms φ : [0, 1]2 → [0, 1]2 which preserve
the four corners of the square. A crossing of a quad Q is a connected closed subset
of Q([0, 1]2) that intersects both boundaries ∂1Q = Q({0} × [0, 1]) and ∂3Q =
Q({1} × [0, 1]).

We say that a quad is rectangular if Q([0, 1]2) is a rectangle and if the four corners
of [0, 1]2 are mapped to the four corners of Q([0, 1]2) by Q.

The space of quads has a natural partial order induced by the crossings. We write
Q1 ≤ Q2 if any crossing of Q2 contains a crossing of Q1. We say that a subset
S ⊆ QD is hereditary if, whenever Q ∈ S and Q′ ∈ QD satisfies Q′ ≤ Q, we have
Q′ ∈ S. Note that if we are given an instance of site percolation on Tη (equivalently,
a percolation on the faces of the hexagonal lattice) and let S be the set of quads which
are crossed by the set of open hexagons, then S is necessarily hereditary.

Definition 2.4 (The spaceH ) LetH be the collection of all closed hereditary subsets
of QD .

In this paper we will consider two different topologies on QD . The first topology
is the so-called Schramm–Smirnov topology, which was also considered in [26] and
originally introduced in [57]. This gives a compact, Polish, and metrizable space, and
we let dH denote a metric which generates the topology. There is not a known natural
explicit form for the metric dH . The following discrete family of quads will be useful.

Definition 2.5 For any k ≥ 1, let Qk be the set of all quads Q satisfying

i) Q is polygonal in D ∩ (2−k
Z
2), i.e., its boundaries are included in D ∩ (2−k

Z
2).

ii) Furthermore, as opposed to [26], we also add the constraint that the inside angles
at each of the 4 corners of ∂1Q and ∂2Q need to be 90 degrees. See Fig. 1 for
an illustration of allowed quads. (This property will make the arm-exponents
analysis in Sect. 5.2 slightly simpler).

We denote by Q∞ the union Q∞ := ∪k∈NQk .
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Fig. 1 The quad Q on the left belongs toQ∞ while Q′ on the right does not because of an inside angle of
180 degrees at the corner of ∂1Q′

Even though our family of quads Q∞ is slightly smaller than in [26] due to i i), it
is immediate to check that the Borel σ -algebra of (H , dH ) is generated by the sets
{Q ∈ ω} for Q ∈ Q∞. We refer to [26, Section 2.2] for further properties of the space
(H , dH ).

The other topology onH is slightly stronger. Define the following distance onH

dmod
H (ω, ω′) := sup{2−k : there is Q ∈ Qk such that Q ∈ ω�ω′} . (2.9)

It is possible to see that thismetric generates a finer topology than the one of Schramm–
Smirnov.9 Additionally, let us note that under this metric, H can be identified with
{0, 1}Q∞ equipped with the product topology and the appropriate metric. The space
H is not complete under the metric dmod

H .10

At several occasions we will use the following lemma to upgrade convergence
statements from dH to dmod

H .

Lemma 2.6 Assume ωη for η ∈ (0, 1] is a collection of random elements in H such
that ωη → ω∞ ∈ H a.s. for the metric dH as η → 0. If ω∞ has the law of the
critical percolation scaling limit, then ωη → ω∞ ∈ H a.s. for the metric dmod

H as
η → 0.

Proof The lemma is a direct consequence of [57, Lemma 5.1]. ��
The metric dmod

H is sometimes easier to work with since it is explicit. However,
when we consider càdlàg processes ω(·) such that ω(t) ∈ H for each t ∈ R+ we
want to use the metric dH due to completeness of the space.

9 One can check that, in the notation of [26], both �c
Q and �c

U are open for the topology generated by

dmod
H . Furthermore, it is possible to see that this topology is also finer than the one presented in [26, Section

2.3] (as long as ∅ is considered to be a quad).
10 For example, consider the sequence of elements in H such that the nth element consists of the quad
Qn((x, y)) = ((1− 1/n)x, y) and all quads Q satisfying Q ≤ Qn . This sequence is Cauchy, but does not
have a limit, since (by the requirement that the elements of H are closed) the limiting object would need
to contain the quad Q(z) ≡ z, while the limit cannot contain this quad by definition of dmod

H .
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Definition 2.7 (Skorokhod space) For T > 0 let (SkT , dSkT ) denote the set of càdlàg
functions ω : [0, T ] → H equipped with the following metric dSkT

dSkT (ω, ω′) = inf
φ

sup
t∈[0,T ]

(
dH (ω(φ(t)), ω′(t)) + |φ(t) − t |

)
,

where φ : [0, T ] → [0, T ] is an increasing homeomorphism.
Let (Sk, dSk) denote the set of càdlàg functions ω : R+ → H equipped with the

following metric dSk

dSk(ω, ω′) =
∞∑

k=1

inf
φ
2−k ∧

(
sup

t∈R+ : t∨φ(t)≤k
dH (ω(φ(t)), ω′(t)) + |φ(t) − t |

)
,

where φ : R+ → R+ is an increasing homeomorphism.

For the case when γ > (2 − √
5/2, 2) \ {√3/2} we do not prove convergence of

ω
γ
η (·) in Skorokhod space, but rather in the following weaker topology.

Definition 2.8 For T > 0 assume ω,ω′ : [0, T ] → H , and define the following
distance

dL1(ω, ω′) =
∫ T

0
dH (ω(t), ω′(t)) dt .

If ω,ω′ : R+ → H define the following distance

dL1(ω, ω′) =
∞∑

k=1

2−k ∧ dL1(ω|[0,k], ω′|[0,k]) .

2.3 Continuum Euclidean dynamical percolation

In the following section, we present the main definitions and results used to prove the
convergence of the classical dynamical percolation to its continuum counterpart (i.e.,
the Euclidean case γ = 0). This element will be important, as the first step in the proof
of convergence of LDP for γ �= 0 follows the same lines as in the classical case. We
refer to Sect. 3 for further details.

Let us start by defining four arm events and the four arm exponent. For a percolation
configuration of Tη we define an arm to be a simple path of vertices such that all the
vertices have the same status (either all open or all close) and consecutive vertices in
the path are adjacent in Tη. Let A1 and A2 be bounded simply connected domains in
D, such that A1 ⊂ A2. Define A = A2\A1, so that A is a topological annulus. We
say that a site z is A-important if z ∈ A1 and if there are four arms of alternating
status connecting z to ∂ A2. We call this event a four arm event. For 0 < r < R
let α

η
4 (r , R) denote the probability that the four arm event happens with A1 (resp.

A2) the square of side length 2r (resp. 2R) centred at z. It was proven in [58] that
α

η
4 (r , R) = (r/R)5/4+o(1).
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Next let us define the set of ε-important pivotal points.

Definition 2.9 (Importance of a point) Let ε > 0 and consider the grid εZ2. For z ∈ R
2

let Az be the topological annulus as defined above, with A1 equal to the square of εZ2

containing11 z, and A2 the square of side length 3ε concentric with A1. We say that z
is ε-important if z is Az-important.

Let us now consider convergence of the ε-important points. Define

λε
η(d

2z) :=
∑
x∈Tη

1z∈Bh
η (x)1x is ε-importantα

η
4 (η, 1)−1d2z . (2.10)

The next theorem follows from [24, Theorem 1.1] (see also [26, Theorem 2.13]).

Theorem 2.10 ([24]) For any ε > 0, there is a measurable map λε from (H , dH )

into the space of finite Borel measures on D such that λε(ωη) is given by (2.10) and
such that as η → 0,

(ωη, λ
ε(ωη))

d→ (ω∞, λε(ω∞)),

where we use the Schramm–Smirnov topology in the first coordinate and the weak
convergence of measures in the second coordinate.

2.4 Liouville quantum gravity

Our presentation of LQG is going to be based on [5], and for more advanced results
we are going to rely on [4] (see also the useful review [51]). Let h be a log-correlated
field on a bounded simply connected domain D. More precisely, let h be a centred
Gaussian field with correlations given by a non-negative definite kernel

K (x, y) := − log(|x − y|) + g(x, y), (2.11)

where g is continuous over D × D. In the rest of the paper we will always assume that
the considered field h satisfies these assumptions. As “K (x, x) = ∞” this definition
does not make rigorous sense, and we obtain a precise mathematical definition by
considering a centred Gaussian process (h, ρ) such that the variance satisfies

E

[
(h, ρ)2

]
=

∫∫
D×D

ρ(x)K (x, y)ρ(y)d2z,

where ρ can take any value such that the right side is finite. In particular, ρ can be any
continuous function in D × D.

The LQG measures may be constructed via an approximation procedure. Take
ε > 0 and define hε = h ∗ θε , where θε is an appropriate mollifier. If hε is a circle

11 In case z lies on the grid (i.e., at least one of its coordinates is an integer multiple of ε), choose A1
arbitrarily among the possible squares.
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average or if θε is smooth, one can argue that hε(·) has a continuous version. We
assume Var(hε(z)) = log ε−1 + O(1) for all z ∈ D with distance at least ε from
C \ D, where O(1) is uniform in the choice of z bounded away from ∂ D.

Let γ ≥ 0, let σ be a positive measure on D, and let h be a log-correlated field. We
define the LQG measure μσ

γ h associated to h with base measure σ and parameter γ

by

μσ
γ h(d2z) = lim

ε→0
εγ 2/2eγ hε (z)σ (d2z), (2.12)

where the limit is taken in the topology of weak convergence of measures. In this
work, we write μγ h when σ is the Lebesgue measure restricted to D.

The non-triviality of the limit depends on the dimension of the measure. For d ≥ 0,
we say that σ has finite d-energy if

Ed(σ ) :=
∫∫

1

|x − y|d σ(d2x)σ (d2y) < ∞ . (2.13)

We define dim(σ ) as the supremum of d such that the d-energy is finite, i.e.,

dim(σ ) = sup{d ≥ 0 : Ed(σ ) < ∞} .

When γ <
√
2dim(σ ) then the limit in (2.12) exists in L1 and is non-trivial a.s.

(see e.g. [5]). By e.g. [35],

μσ
γ h(D) > 0 a.s. (2.14)

Furthermore, we proved the following lower bound for μσ
γ h(D) in [19].

Proposition 2.11 (Corollary 3.2 in [19]) For d, γ ≥ 0 define θ = θ(d, γ ) := d−γ 2

d+γ 2 . If

γ <
√

d, then there exists a K > 0 (depending only on the law of the log-correlated
field h) such that for any

t ≥ t0 := K

[Ed(σ )

σ (D)

]1/θ
(2.15)

we have

E

[
e−tμσ

γ h(D)
]
≤ K

σ(D)tθ
. (2.16)

Let us now discuss the regularity of LQG measures. See e.g. [4, Corollary 6.5] for
the following result. We remark that the constraint γ < 2 − √

5/2 corresponds to
matter central charge c < 1; in particular, the variant of Liouville dynamical percola-
tion corresponding to dynamical percolation on uniformly sampled maps (c = 0) is
covered.
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Lemma 2.12 Let δ > 0 and γ ∈ [0, 2), let h be a log-correlated field, and define
βγ := 2− 2γ + γ 2/2. Then there exists a random C > 0 such that for all r ∈ (0, 1)
and z ∈ D, we have that μγ h(Bh

r (z)) < Crβγ −δ .
In particular, if γ < 2−√

5/2, there is a deterministic δ > 0 and a random C > 0
such that μγ h(Bh

r (z)) ≤ Cα
η
4 (r , 1)r δ = Cr5/4+δ+o(1) a.s.

A variant of this lemma holds for the measure μ̃C
γ h defined in (1.6).

Lemma 2.13 There is a universal constant K > 0 such that for all x ∈ D, C > 0,
r = 2−n ≤ 2−1, and 
 as in the definition of MC ,

μ̃C
γ h(Bh

r (x)) = μγ h(Bh
r (x) ∩MC ) ≤ C Kα

η
4 (r , 1)r
 . (2.17)

Proof If μ̃C
γ h(Bh

r (x)) > 0 then there exists z ∈ D such that z ∈ MC and |x − z| < r .
Thus,

μγ h(Bh
r (x)) ≤ μγ h(Bh

2r (z)) ≤ Cα
η
4 (2r , 1)r
 ≤ C Kα

η
4 (r , 1)r
,

where we use quasi-multiplicativity of the four arm probability [24] in the last step. ��
The γ -LQG measure is supported on so-called γ -thick points.

Lemma 2.14 For C > 0 and 
 > 0 let MC be defined by (1.5). For γ <
√
3/2 and


 sufficiently small as compared to γ ,

lim
C→∞μγ h(D \MC ) = 0.

Proof Let us start by defining

MC,n := {x ∈ D : μγ h(Bh
2−n (x)) < Cα2−n

4 (2−n, 1)2−n
}. (2.18)

Note that MC = ⋂MC,n . Let us first bound the Liouville mass of D\MC,n . To do
this let us first define xn as the element of 2−n

Z
d closest to x and note that

1x /∈MC,n ≤
(

μγ h(Bh
2−(n−1) (xn))

Cα2−n

4 (2−n, 1)2−n


)p

.

This implies that∫
1x /∈MC,n dμγ (dx) ≤ C−p

∑
x∈2−nZd

(μγ h(Bh
2−(n−1) (xn)))p+1(α2−n

4 (2−n, 1))−p2n
p.

Now, we want to use the expected value. To do that, we use [4, Proposition 4.1 and
Corollary 6.2], which states that for any log-correlated field and any q < 4/γ 2,

E

[
μγ h(Bh

r (x))q
]
≤ r−γ 2q2/2+(2+γ 2/2)q+O(1), (2.19)
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where the O(1) is uniform in x . Since γ <
√
3/2 and α2−n

4 (2−n, 1) = 2−5n/4+o(1)

[58] we can find a small 
 > 0 and a constant K > 0 such that for all n ∈ N we have
Kα2−n

4 (2−n, 1) > 2−n(2−γ 2/2−2
). This gives that for n ∈ N,

E

[∫
1x /∈MC,n dμγ (dx)

]

≤ C−p
∑

x∈2−nZd

2
n

(
γ 2(p+1)2

2 −(2+γ 2/2)(p+1)+O(1)

)
(α2−n

4 (2−n, 1))−p2n
p

≤ O(1)K pC−p2n γ 2 p2

2 −nρ p.

Let us note that we can choose p > 0 small enough so that the exponent is negative.
This implies, summing over n ∈ N, that E

[
μγ h(D \MC )

] ≤ O(1)K pC−p. We
conclude by taking C → ∞. ��

2.5 Central charge

This section gives further background to understand the main motivations of this
work (explained in Sect. 1.3). It will not be used in the rest of the paper and can be
skipped at the first reading. Liouville quantum gravity surfaces are associated with
a matter central charge c, a background charge Q, and a coupling constant γ .
These parameters are related to each other by c = 25 − 6Q2 and Q = 2/γ + γ /2.
Most probability literature on LQG considers the range c ∈ (−∞, 1] (corresponding
to Q ≥ 2 and γ ∈ (0, 2]). LQG for c ∈ C is studied in multiple works in the
physics literature [6,9,14,15,34,48–50,59,60], but to our knowledge the only other
papers which study c /∈ (−∞, 1] in a probabilistic setting are [16,22], ?, [3], which
consider the range c ∈ (1, 25) (corresponding to Q ∈ (0, 2) and |γ | = 2).

In [53] a Liouville quantum gravity surface with background charge Q ≥ 2 is
defined to be an equivalence class of pairs (D, h), where h is a distribution on a
domain D ⊂ C. Furthermore, two pairs (D, h) and (D̃, h̃) are equivalent if there
exists a conformal map φ : D̃ → D such that

h̃ = h ◦ φ + Q log |φ′| . (2.20)

It is observed in [16] that this definition of an LQG surface may be extended to
Q ∈ (0, 2).

Let (D, h) be an equivalence class representative for an LQG surface. Let A ⊂ D
and d ∈ (0, 2]. Assume that the d-dimensional Minkowski content of A defines a
locally finite and non-trivial measure λ which is supported on A. Assuming λ has
finite d ′ dimensional energy for all d ′ ∈ (0, d), one may define an LQG measure
μλ

γ h = eγ hdλ supported on A for any γ <
√
2d [5,13,51]. If we want to interpret the

measure μλ
γ h as intrinsic to the LQG surface it is natural to require that the measure is

invariant under coordinate changes, i.e., if μ̃λ̃
γ h̃

= eγ h̃dλ̃ for λ̃ the Minkowski content
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of φ−1(A), then μ̃λ̃
γ h̃

(φ−1(U )) = μλ
γ h(U ) a.s. for any fixedU ⊆ D. By the coordinate

change formula (2.20) for LQG surfaces with a given background charge Q, it is seen
that we need to have

Q = d/γ + γ /2 (2.21)

in order for the LQG measure to be invariant under coordinate changes (see [13,
Proposition 2.1] and [16, Proposition 2.2]).

As we will explain in Sect. 3.1, the continuum Liouville dynamical percolation is
driven by an LQG measure supported on the CLE6 pivotal points. The CLE6 pivotal
points have Hausdorff dimension d = 3/4 [47] and (after applying a cut-off) well-
defined 3/4-dimensional Minkowski content which defines a non-trivial and locally
finite measure [31]. We now see why the case of uniformly sampled planar maps
(which is the case relevant for the Cardy embedding project described in Sect. 1.3)
relies on the particular case of γ = √

1/6 in Theorem 1.3. This is due to the fact that
if one plugs γ = √

1/6 into (3/4)/γ + γ /2 one recovers Qc=0 = √
3/2+ √

2/3.
In greater generality, the γ -LQGmeasure supported on these points may be defined

for γ <
√
3/2. Combining the formulas above, this gives c < 1 (resp., c ∈ (1, 16))

if and only if γ ∈ (0, 2−√
5/2) (resp., γ ∈ (2−√

5/2,
√
3/2)). In other words, the

two transitions points for γ in Theorem 1.3 corresponds to c = 1 and c = 16. See
Remark 1.14 for a discussion of the first of these transition points.

2.6 Mixing for Markov processes

Let (Xt )t≥0 be a stationary càdlàg Markov process taking values in a standard Borel
space (S,F). Let (SR+ ,FR+) denote the measurable space in which (Xt )t≥0 takes
its value. For any E ∈ FR+ define E(T ) := {(Xt+T )t≥0 ∈ E} for T ≥ 0. In ergodic
theory literature one says that (Xt )t≥0 ismixing if for any E1, E2 ∈ FR+ one has

lim
T→∞Cov

(
1E1(0), 1E2(T )

) = 0. (2.22)

We say that E ∈ FR+ is an invariant event if E(0) = E(t) for all t ∈ R+. We say
that (Xt )t≥0 is ergodic if for any invariant event E we have P[E] ∈ {0, 1}. Mixing
implies ergodicity, i.e., if (Xt )t≥0 is mixing then it is also ergodic.

The following proposition says that in the setting of Markov processes, decorrela-
tion of events at times 0 and T as T → ∞ implies mixing (and hence also ergodicity).
We believe the proposition must be known in the literature but since we have not found
it we have added a proof. The assumption that the process is Markov is key for the
result; there exist (non-Markov) stationary processes which satisfy (2.23) but are not
ergodic.

Proposition 2.15 Let (X(t))t≥0 be a càdlàg stationary Markov process defined on a
standard Borel space (S,F). Suppose (X(t))t≥0 pointwise decorrelates, meaning that
for any events B, C ∈ F it holds that
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lim
T→∞Cov(1B(0), 1C(T )) = 0. (2.23)

Then (X(t))t≥0 is mixing in the sense defined right above.

Proof For t0 > 0 let F t0 denote the σ -algebra generated by X |[0,t0]. For B̃, C̃ ∈ F t0

let

B̃(t) = {X |[t,t+t0] ∈ B̃}, C̃(t) = {X |[t,t+t0] ∈ C̃}.

In order to complete the proof it is sufficient by approximation to argue the following
for arbitrary t0, B̃, C̃

lim
T→∞Cov(1B̃(0), 1C̃(T )) = 0. (2.24)

Note that

P[B̃(0)C̃(T )] = E[P[B̃(0)C̃(T ) | X(t0), X(T )]]
= E[P[B̃(0) | X(t0), X(T )]P[C̃(T ) | X(t0), X(T )]]
= E[P[B̃(0) | X(t0)]P[C̃(T ) | X(T )]]

(2.25)

The second and third equalities follow from the Markov property of X , which says
that (X(s))s≥t0 and (X(s))s≤t0 (resp. (X(s))s≥T and (X(s))s≤T ) are independent con-
ditioned on X(t0) (resp. X(T )).

We choose measurable functions D, F : S → [0, 1] such that D(X(t0)) =
P[B̃(0) | X(t0)] and F(X(0)) = P[C̃(0) | X(0)] almost surely. By the stationarity
of X , we have F(X(T )) = P[C̃(T ) | X(T )] almost surely. Therefore (2.25) gives
that P[B̃(0)C̃(T )] = E[D(X(t0))F(X(T ))]. Since D and F can be approximated
arbitrarily well by simple functions, by (2.23) we have

E[D(X(t0))F(X(T ))] → E[D(X(t0))]E[F(X(T ))] as T → ∞. (2.26)

Since the right side here is equal P[B̃(0)]P[C̃(T )] we get (2.24). ��

3 Convergence of the LDP: direct microscopic stability

The proof of convergence of γ -LDP for γ ∈ (0, 2−√
5/2) is based on the proof of [26,

Theorem 1.4]. As many of the techniques are the same in this case, it may be helpful
to the reader to read this chapter alongside with [26]. In many parts, when needed,
we will just cite the results from [26]. We assume γ ∈ (0, 2− √

5/2) throughout the
section so that we can apply Lemma 2.12.
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3.1 Dynamical percolation with cut-off

The first step of the proof, following [26], is to build a suitable approximation of the
limiting dynamics for which only points which are initially (i.e., at time t = 0) pivotal
at least up to a macroscopic distance ε are updated. The reason for introducing such
an ε-cut-off is that otherwise in the scaling limit the set of pivotal points which would
be resampled between times 0 and t would a.s. be some random countable dense set
of the plane. Updating so many points at once would make the construction of the
dynamics nearly intractable. To avoid dealing with this intrinsic explosion of pivotal
pointswhich need to be updated, we thus proceed as follows (see [26] formore details).

1. First, we fix a (small) cut-off scale ε > 0. On the discrete lattice ηT, let
(ω

ε,γ
η (t))t≥0 denote dynamical percolation on Tη, where we only update pivotal

points which are ε-important for ω
γ
η (0) (see Definition 2.9). This process can

be sampled by considering a Poisson point process PPPε,γ
η , {(xε,η

i , tε,ηi , ξ
ε,η
i ) :

i ∈ N} on D × R+ × {−1, 1} with intensity μ
λε

η

γ h × Leb×Uniform where λε
η is

given by (2.10) and μ
λε

η

γ h is its associated LQG measure. We then set the status of

xε,η
i equal to that of ξ

ε,η
i at time tε,ηi for each i ∈ N (such that ξε,n

i = −1 means
closed and ξ

ε,n
i = 1 means open).

2. Then, we wish to let η → 0 and obtain a limiting cut-off dynamics (ω
ε,γ∞ (t))t≥0.

The first observation, exactly as in [26], is that based on [24] one may define a
Poisson Point Process PPPε,γ∞ , {(xε

i , tεi , ξ ε
i ) : i ∈ N} on D ×R+ ×{−1, 1}with

intensity μλε

γ h × Leb×Uniform, where

• λε denote the Euclidean pivotal measure supported on the ε-important pivotal
points of ω

ε,γ∞ (0) (as in Theorem 2.10),
• μλε

γ h is its associated LQG measure.

A key step here is to couple ω
ε,γ
η (0),μ

λε
η

γ h , and PPP
ε,γ
η = {(xε,η

i , tε,ηi , ξ
ε,η
i ) : i ∈

N} such that they are close toω
ε,γ∞ (0),μλε

γ h , andPPP
ε,γ∞ = {(xε

i , tεi , ξ ε
i ) : i ∈ N}.

We use for this Proposition A.1 to argue the existence of an appropriate coupling.
3. Given the initial configuration ω

ε,γ∞ (0) and the set of updates PPPε,γ∞ , one still
has to build a continuum cut-off dynamics t 	→ ω

ε,γ∞ (t). This is far from
being straightforward as one needs to detect in the Schramm–Smirnov space
the uncountably many quads which are affected by flipping the points in PPPε,γ∞ .
This is done in [26] by developing a theory of so-called networks which are
associated to a dense family of quads Q ∈ QN (see [26, Section 6] for more
details). These networks correspond to certain graph structures inside each quad
Q and whose vertices correspond to the pivotal points which shall switch along
the dynamics. (By our choice of cut-off, on a finite time interval [0, T ], note that
this set is a.s. locally finite). The good news is that this whole network technology
from [26] works in the exact same way in our present inhomogeneous setting.
Therefore we will not give more details here on these networks. This gives us a
well-defined dynamics t 	→ ω

ε,λ∞ (t).
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4. The next step, exactly as in [26] is the fact the construction of t 	→ ω
ε,λ∞ (t)

can be made in such a way that it is coupled to the process t 	→ ωε,λ
η (t) and

both processes are very close to each other under the Skorohod topology on the
Schramm–Smirnov space. This step uses a certain stability property of the above
networks as well as the uniform structure from [26, Section 3] to handle the
convergence in Skorohod topology.

Following the above outline, the following theorem is proved exactly as [26, The-
orems 7.3 and 7.10].

Theorem 3.1 Consider the setting above.

• One can define a càdlàg process (ω
ε,γ∞ (t))t∈R+ with values in the quad-crossing

space H , which starts from uniform site percolation ω
γ∞(0), and which is deter-

mined from ω
γ∞(0) and {(xi , ti , ξi ) : i ∈ N} in the exact same way as in [26,

Theorem 7.3].
• As η → 0, the process ω

ε,γ
η (t) converges in law in (Sk, dSk) to the process

(ω
ε,γ∞ (t))t∈R+ . Furthermore, the convergence is a.s. if the coupling is the one

described above.

It now remains to show that things do stabilize as the cut-off ε → 0. This does not
come for free as instabilities such as the one pictured in [26, Figure 1.1] may arise.
We now address this stability property.

3.2 Stability of LDP

In this section we will prove Theorem 1.3(i), i.e., we will prove that for γ ∈ (0, 2 −√
5/2) we have convergence of the dLDP ω

γ
η (·) in the appropriate spaces as η → ∞.

The whole proof works quenched in h, i.e., we prove the result for almost any instance
of h.

The main result of this section is the following proposition. Combined with
Theorem 3.1 and proceeding as in [26, Section 9], it implies Theorem 1.3 when
γ ∈ (0, 2−√

5/2).

Proposition 3.2 Let T > 0, γ ∈ (0, 2 − √
5/2) and some instance h of the log-

correlated field be fixed. There exists a continuous function ψ = ψT ,h : [0, 1] → [0, 1]
with ψ(0) = 0 such that uniformly in 0 < η < ε,

E
[
dSkT (ωγ

η (·), ωε,γ
η (·))] ≤ ψ(ε) .

The proof proceeds similarly as the Euclidean version in [26, Section 8]. We will
therefore omit many details in the proof, and point out only the places at which our
argument differs from the one in [26]. The main new input is Lemma 2.12.

To prove the proposition, we will need to introduce some notations as well as some
preliminary lemmas. Since the entire section is about discrete configurationsωη ∈ H ,
we will often omit the subscript η and denote the percolation configurations simply
by ω. We let X = Xη,T denote the random set of sites of Tη which are updated
along the dynamics t 	→ ωη(t) = ω(t) for t ∈ [0, T ]. Furthermore, we let �(ω, X)
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denote the set of percolation configurations ω′ such that ω′
x = ωx for all x /∈ X ,

where ωx ∈ {−1, 1} represents the status at site x . Finally, let A4(z, r , r ′) denote the
4-arm event in the topological annulus A(z, r , r ′) := Bb

r ′(z)\Bb
r (z), where Bb

r (z) is
the square of side length 2r centered at z.

Lemma 3.3 Let T > 0 and the instance of h be fixed. Set ri := 2i η and N :=
�log2(1/η)�. Let Wz(i, j) denote the event that there is some ω′ ∈ �(ω, X) satisfying
A4(z, ri , r j ). Then for every pair of integers i, j satisfying 0 ≤ i < j < N and every
z ∈ R

2,

P[Wz(i, j) | h] ≤ C1 α
η
4 (ri , r j ) , (3.1)

where C1 = C1(T , h) is a constant that may depend only on T and h.

Proof The proof proceeds exactly in the Euclidean case, except that we use the new
definition of P[x ∈ X | h]. The reader is advised to also read the proof of [26, Lemma
8.4], since many steps are skipped here.

Define An = A(z, rn, rn+1). Note that conditioned on h the events {x1 ∈ X} and
{x2 ∈ X} are independent, similarly as in the Euclidean case. In particular, defining
b j

i := supz P
[Wz(i, j)

]
, we get as before

P
[Wz(i, j), D] ≤ O(T )

j−2∑
n=i+1

μγ h(An ∩MC ) α
η
4 (η, 1)−1 bn−1

1 bn−1
i b j

n+2,

and further for some absolute constant C2 and all i, j with j > i ,

b j
i ≤ C2 α

η
4 (ri , r j )

(
1+ T C3

1

j−1∑
n=i+1

μγ h(An)

α
η
4 (rn, 1)

)
. (3.2)

Note that the latter bound is our variant of [26, equation (8.3)]. As in [26], we show
(3.1) by induction on j , and for a fixed j by induction on j − i . By Lemma 2.12, there
exists 
 > 0 and C(h) > 0 such thatμγ h(An) < Cα

η
4 (rn, 1)r



n . This and Lemma 2.13

imply that we can find a constant M = M(T ) ∈ N such that for N − j ≥ M ,

T (2C2)
3

j−1∑
n=i+1

μγ h(An)

α
η
4 (rn, 1)

≤ 1 . (3.3)

Choosing C1 = 2C2 and inserting into (3.2) complete the proof by induction as in
[26]. ��

For a site z and a percolation ω̃ we will now define a quantity Z(z) = Zω̃(z) which
is closely related to the importance (Definition 2.9) of z. Let Z(z) = Zω̃(z) denote the
maximal radius r such that the four arm event holds from the hexagon of z to distance
r away. This is also the maximum r for which changing the value of ω̃(z) will change
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the closed connectivity in ω̃ between two closed sites at distance r away from z, or
will change the open connectivity between two open sites at distance r away from z.
Then set

Z X (z) := sup
ω′∈�(ω̃,X)

Zω′(z), Z X (z) := inf
ω′∈�(ω̃,X)

Zω′(z).

In the same context as the lemma before we have the following result.

Lemma 3.4 Let δ > 0 be as in Lemma 2.12. For every site z and every ε and r satisfying
2 η < ε < 24 ε < r ≤ 1, we have

P
[
Z X (z) ≥ r , Zω(z) ≤ ε | h

] ≤ OT ,h(1)αη
4 (η, r)εδ,

where OT ,h(1) is a constant depending only on T and h.

Proof Let uswork on the event {ω : Zω(z) ≤ ε} and assumeω′ is such that Zω′(z) ≥ r ,
and let x1, . . . , xm be some enumeration of the sites in Bb

ε (z) where ω′ and ω are
different. For each j = 0, 1, . . . , m, let ω j denote the configuration that agrees with
ω′ on every site different from x j+1, x j+2, . . . , xm , and agreeswith ω̃ on x j+1, . . . , xm .
Then ωm = ω′ and Zω0(z) ≤ ε. Let kω′ be the first j such that Zω j (z) ≥ r .

Let X̂ be the set of sites x ∈ Bb
ε (z) such that x = xkω′ for some ω′ satisfying

Zω′(z) ≥ r . Proceeding as in the proof of [26, Lemma 8.5] we see that

P
[
Z X (z) ≥ r , Z(z) ≤ ε, x ∈ X̂ | h

] ≤ OT (1) α
η
4 (η, r x ) μγ h(Bb

η(x)) α
η
4 (r , 1)−1 .(3.4)

Since X̂ is non-empty if Z X (z) ≥ r and Z(z) ≤ ε both occur,

P
[
Z X (z) ≥ r , Z(z) ≤ ε | h

] ≤
∑

x∈Bb
ε (z)

P
[
Z X (z) ≥ r , Z(z) ≤ ε, x ∈ X̂ | h

]

≤ OT (1)
log2(ε/η)∑

n=0

α
η
4 (η, rn)μγ h(An)α

η
4 (r , 1)−1 .

The lemma now follows fromLemmas 2.12 and 2.13 alongwith quasi-multiplicativity,
i.e., αη

4 (η, 1)αη
4 (r , 1)−1 � α

η
4 (η, r). ��

Next we state a similar result to Lemma 3.4 which will be needed in a later work
of the second and fourth coauthors [33]. Set

Z X (z) := inf
ω̃′∈�(ω̃,X)

Zω̃′(z) .

The proof of the following lemma is omitted, since it is identical to the proof of
Lemma 3.4.
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Lemma 3.5 Let δ > 0 be as in Lemma 2.12. For every site z and every ε and r satisfying
2 η < ε < 24 ε < r ≤ 1, we have

P
[
Z X (z) ≤ ε, Zω(z) ≥ r

] ≤ OT ,h(1)αη
4 (η, r)εδ.

For any quad Q ∈ Qk , if r > 0 is smaller than the minimal distance from ∂1Q to
∂3Q, we will say that Q is r -almost crossed by ω = ωη ∈ H if there is an open path
in the r -neighborhood of Q that comes within distance r of each of the two arcs ∂1Q
and ∂3Q.

The following lemma and proposition are proved exactly as [26, Proposition 8.6
and Lemma 8.7], and the proofs are therefore omitted. Note that there is an exponent δ
in the statement of these results, while the corresponding results in the Euclidean case
have explicit exponents depending on the four-arm exponent. Proposition 3.2 follows
from Lemma 3.7 exactly as in [26].

Proposition 3.6 Let T , h, X, and δ be as above, and fix some quad Q ∈ Q∞. Let
r > 0 be smaller than the minimal distance between ∂1Q and ∂3Q, and suppose
that 0 < η < 2 η < ε < 25 ε < r ≤ 1. Then the probability that there are some
ω′, ω′′ ∈ �(ω, X) such that

(a) Q is crossed by ω′,
(b) Q is not r-almost crossed by ω′′, and
(c) ω′(z) = ω′′(z) for every site z satisfying Zω(z) ≥ ε,

is at most

OT ,Q,h(εδ) α
η
4 (r , 1)−1.

See [24, Definition 3.3] for the notation Ok(·) used in the following lemma. Intu-
itively, for k ∈ N and ω ∈ H , Ok(ω) denotes the set of percolation configurations
which have the same crossing properties as ω for all quads inQk , possibly with some
small deformations of size 2−k .

Lemma 3.7 Let δ > 0 be as in Lemma 2.12, let k ∈ N and T > 0 be fixed, and suppose
that 0 < η < 2η < ε < 2−k−20. Then the probability that there are ω′, ω′′ ∈ �(ω, X)

such that

(a) ω′ /∈ Ok(ω
′′),

(b) ω′′ /∈ Ok(ω
′), and

(c) ω′(z) = ω′′(z) for every site z satisfying Zω(z) ≥ ε,

is at most

OT ,k,h(εδ).

4 Law of the spectral measure via inhomogeneous dynamical
percolations

The spectral sample plays an important role in our proofs, due to the identity (1.7). In
[23] it was proved that the spectral sample associated with the crossing of a single quad
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Q converges for the Hausdorff metric as a set in the complex plane to a conformally
invariant limit with dimension 3/4. Since the size of the spectral sample has the same
first moment as the number of pivotal points (see e.g. [38]), we also have tightness
of the spectral measure. Non-triviality of subsequential limits follows from the bound
on the lower tails of the spectral sample. However, it was not proved in [23] that the
spectral measure converges in law, i.e., the uniqueness of the limit was not proved. We
establish this in the following proposition.

Proposition 4.1 Consider quads Q1, . . . , Qk, let f : H → {0, 1} be the function
which says whether all the quads are crossed, and letSη be the corresponding spectral
measure for percolation on the lattice Tη. Then the measure Sη converges in law in
the scaling limit for the weak topology to a measure S .

Remark 4.2 In [23], the third open problem asked about the convergence in law of
the coupling (Sη, λη), whereSη denoted the spectral sample viewed as a random set
while λη denoted the rescaled counting measure onSη. The convergence in law of the
random setSη (for theHausdorff topology) was proved in [23] but not for the counting
measure λη. In the present paper, Sη in fact denotes the measure λη from [23] (this
slight abuse of notation was motivated by the fact that λη is already used to denote
the weighted counting measure on pivotal points). We thus make significant progress
on this open problem by showing the weak convergence of the second coordinate λη.
It remains to prove the convergence of the joint coupling to fully answer the question
raised in [23].

Wewill prove the proposition by giving a formula forE[exp(−φS )] for all bounded
continuous functions φ : D → R+, where φS is the measure assigning mass∫

U φ dS to any measurable set U ⊆ D. This is sufficient to characterize the law
of S due to the following result, which can be found in e.g. [37, Corollary 2.3].

Theorem 4.3 ([37]) Let S be a Polish space, and let ξ and η be random Borel measures

on S. Then ξ
d= η if and only if E[e−φξ ] = E[e−φη] for all bounded continuous

functions φ : S → R+ with bounded support.

Proof of Proposition 4.1 Let ω
φ
η (·) denote the dynamical percolation on Tη driven by

themeasurewhich has densityφ relative toLebesgue areameasure (seeDefinition 1.1).
By Lemma 2.1,

Cov
[

f (ωφ
η (0)), f (ωφ

η (1))
]
= E

[
e−(φSη)(D)1Sη(D) �=0

]
. (4.1)

Proceeding just as in Sect. 3, ωφ
η (·) converges in law in Skorokhod space to a process

ω
φ∞(·). Furthermore, using that each fixed point (e.g. t = 1) is almost surely a point

of continuity for the limiting process (see [26, Proposition 9.6]) we get that the left

side of (4.1) converges to Cov
[

f (ω
φ∞(0)), f (ω

φ∞(1))
]
as η → 0.

Since lim supη→0 E[Sη(D)] < ∞ (see for example the proof of Theorem 10.4
in [23]), the measures Sη converge subsequentially in law as η → 0. Let S denote
a subsequential limit. The lower bound in Theorem B.1 gives that (Sη, 1Sη(D) �=0)
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converges in law along the considered subsequence to (S , 1S (D) �=0). By the bounded

convergence theorem, the right side of (4.1) converges to E
[
e−(φS )(D)1S (D) �=0

]
, so

Cov
[

f (ω
φ∞(0)), f (ω

φ∞(1))
]
= E

[
e−(φS )(D)1S (D) �=0

]
.

By Theorem 4.3, this is sufficient to uniquely identify the law of S . ��
An alternative proof of Proposition 4.1 can be obtained by using [36, Theorem 4.3],

which says that a random vector X with values in R
d+ for some d ∈ N is uniquely

characterized by E[exp(−X · s)] for all s ∈ R
d+. This result can be used to find the

joint law of {S (Un)}0≤n≤d for any d ∈ N and any finite collection of sets (Un)0≤n≤d ,
which is sufficient to identify the law ofS .

5 Convergence of the LDP: indirect microscopic stability

In this section we prove the convergence of the dLDP in the case when γ ∈ [2 −√
5/2,

√
3/2). It is tempting to use the same proof as in the case γ ∈ (0, 2− √

5/2).
The main problem is that, in the notation of Lemma 3.3, a.s. there exist points z such
that the associated annuli An satisfy

∑
n μγ h(An)α

η
4 (rn, 1)−1 = ∞. This implies that

Proposition 3.2 cannot be proved using the same method. We circumvent this problem
using the modified LDP.

Recall the definition of ω̃C,γ
η (·) as the dynamical percolation (Definition 1.1) driven

by the measure μ̃C
γ h(·) := μγ h(·∩MC ), whereMC is given by (1.5). This additional

cut-off is useful, as Lemma 2.13 implies that
∑

n μγ h(An ∩ MC )α
η
4 (rn, 1)−1 < ∞

a.s.
The section is organized as follows. We start by observing that the modified LDP

converges in the Skorokhod topology for any fixed C > 0 to a limit ω̃
C,γ∞ (·). Then,

in order to show that ω̃
C,γ∞ (·) converges when C → ∞ to a limiting process ω

γ∞(·),
we control via a coupling argument the amount of times a given quad changes from
being crossed to not being crossed and vice versa. Once the convergence as C →
∞ is achieved, we show how this implies that the finite-dimensional laws of ω

γ
η (·)

converge. To show that we have stronger convergence, we introduce a topology on
càdlàg processes in the quad-crossing space (namely, the L1 topology in Theorem 1.3
andDefinition 2.8) for whichω

γ
η (·) converges.We finish by showing that conditionally

on h, ωγ∞(·) is a Markov process.

5.1 Convergence of themodified LDP

The following proposition follows from the same proof as the convergence of the LDP
in the case γ ∈ (0, 2−√

5/2).

Proposition 5.1 For any 0 ≤ γ <
√
3/2, the dynamics ω̃

C,γ
η (·) converge in law to a

limiting dynamic ω̃
C,γ∞ (·) in the Skorokhod topology. Furthermore, this convergence

holds jointly for any countable collection of C ∈ (0,∞).

123



650 C. Garban et al.

Proof The proof for fixed C has two differences as compared to the proof for γ ∈
(0, 2 − √

5/2). The first is that to prove the equivalent of Theorem 3.1, we need to
rely on Proposition A.6 instead of Proposition A.1. The second difference is that one
needs to change μγ h to μ̃C

γ h in (3.2), (3.3), and (3.4), and then use Lemma 2.13 to
conclude the equivalent result of (3.3).

To get joint convergence for different C , let us for simplicity focus on the case of
two values: C ′ and C with C ′ < C . By the analog of Proposition 3.2 for a cutoff
C , it is sufficient to show that for any fixed ε > 0, the processes (ω̃ε,C,γ (t))t∈[0,T ]
and (ω̃ε,C ′,γ (t))t∈[0,T ] converge jointly (these processes are defined such that only ε-
important pivotals are updated, similarly as (ωε,γ (t))t≥0). By the argument for fixed
C , we can find a coupling for η ∈ (0, 1) such that the PPP {(xε,C,η

i , tε,C,η
i , ξ

ε,C,η
i ) :

i ∈ N} associatedwith (ω̃ε,C,γ (t))t∈[0,T ] converge as η → 0 and satisfy [26, Corollary
7.6]. The PPP associated with C ′ < C can be obtained by a subsampling of the PPP
associated with C ′, and therefore also satisfies the mentioned corollary. Note that the

spatial measures μλε,C

γ h and μλε,C ′
γ h from which we define these PPP converge jointly

since the limitingmeasures are functions of ω̃ε,C,∞(0) and h. Now joint convergence of
the PPP satisfying the mentioned corollary implies joint convergence of the dynamics
as η → 0, see [26, Sections 7.4 to 7.6]. ��

5.2 Control of the jumps for LDP

Recall thatQ∞ is the set of all quads whose boundaries are contained in (2−k
Z
2)∩ D

(see above (2.9)) for some k ∈ N. We are interested in the study of the jumps of ωγ
η (·).

Proposition 5.2 Let 0 ≤ T1 < T2 and Q ∈ Q∞, and let ωσ
η (·) be a dynamical

percolation driven by a deterministic measure σ . Then

E
[
#{t ∈ [T1, T2] : Q ∈ ωσ

η (t−)�ωσ
η (t+)}]

= (T2 − T1)
∑
x∈Tη

σ (Bh
η (x))α

η
4 (η, 1)−1

P[x is pivotal for the crossing of Q] .(5.1)

Furthermore, in the case of Liouville dynamical percolation for any γ ∈ (0, 2), for
all Q ∈ Q∞ there a.s. exists a random constant C(Q) = c(Q, h) < ∞ such that

sup
η∈(0,1]

E

[
#{t ∈ [T1, T2] : Q ∈ ωγ

η (t−)�ωγ
η (t+)} | h

]
≤ (T2 − T1)C(Q) . (5.2)

Proof The first claim is classical and a direct consequence of the invariance of the
Bernoulli product measure under the dynamics t 	→ ωσ

η (t). The identity (5.1) follows
from the observation that each time a site x flips according to a Poisson clock of
rate σ(Bh

η (x))α
η
4 (η, 1)−1, it sees the invariant uniform measure and the flip adds a

switching time if and only if x is a pivotal point of Q at that moment.
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The second claim follows from the first claim together with the fact that uniformly
in η > 0 and x ∈ Tη, one has

P[x is pivotal for the crossing of Q] ≤ O(1)αη
4 (η, 1) . (5.3)

N.B. This property would not be true without the condition i i) in the definition of
Q∞ from Definition 2.5. Indeed the above upper bound is clear in the bulk of the
quad Q by standard quasi-multiplicativity estimates. Near the boundary, whatever the
local geometry is, the probability to be pivotal is even smaller as one can see from the
different cases below:

• Near an edge and far from the corners of ∂1Q and ∂2Q, the relevant arm-event
for pivotality is the three-arm event in H whose exponent, 2, is larger than the
four-arm event 5/4 in the bulk.

• Near a corner of ∂ Q and far from the corners of ∂1Q and ∂2Q, the three-arm
exponent is in the worse case of an inside angle of 270-degrees given by 4/3
which is still bigger than 5/4.

• Finally, near a corner of ∂1Q or ∂2Q, things may degenerate as the relevant arm-
exponent is now the two-arm event, but thanks to the property i i) in Definition 2.5,
the exponent in this case is 2 which again is confortable enough.

Intermediate cases are treated as usual using quasi-multiplicativity. See for example
[23] or [28] for such analysis of boundaries and 90 degree corners.

Now, claim (5.3) together with the first claim (5.1) lead us to

lim sup
η→0

E

[
#{t ∈ [T1, T2] : Q ∈ ωγ

η (t−)�ωγ
η (t+)} | h

]
= (T2 − T1) lim sup

η→0

∑
x∈Tη

μγ h(Bh
η (x))α

η
4 (η, 1)−1

P[x is pivotal for the crossing of Q]

≤ OQ(1)(T2 − T1) lim sup
η→0

∑
x∈Tη

μγ h(Bh
η (x))1x∈ηT∩Q

≤ OQ(1)(T2 − T1)μγ h(Q(0.1)) ,

where Q(0.1) is the 0.1-neighborhood of Q. ��

5.3 Modified LDP is close to dLDP

Let us start by noting that μ̃C
γ h(·) is increasing in C . Thus, for fixed η > 0 one

can couple (ω̃
C,γ
η (·))1≤C≤∞ in a natural way (note that ω̃

∞,γ
η (·) = ω

γ
η (·)). In this

coupling, for a fixed t > 0 and C < C ′, the times before t where the clock of

x ∈ Tη rings for ω̃
C ′,γ
η (·) but not for ω̃

C,γ
η (·) follows a law of a PPP with rate

μγ h(Bh
η (x) ∩ (MC ′ \MC )).

Proposition 5.3 For any γ ∈ (0,
√
3/2), take Q ∈ Qk , t > 0, and C, C ′ ∈ [1,∞]

satisfying C < C ′. Then there exists a function ϒt,Q : [1,∞] → [0, 1] such that
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limC→∞ ϒt,Q(C) = ϒt,Q(∞) = 0 and

P

(
Q ∈ ω̃C,γ

η (t)�ω̃C ′,γ
η (t)

)
≤ ϒt,Q(C) .

Proof Fix t > 0.AsC gets large, the natural idea here is to proceed as inProposition 5.2
by first sampling the configuration ω̃

C,γ
η (t) and then arguing that there are very few

remaining possible switches (in expectation) because going from ω̃
C,γ
η (t) to ω̃

C ′,γ
η (t)

is governed by a dynamical percolation driven by a measure μγ h(MC ′ \MC ) of very
small total mass as C → ∞.

This intuition is mostly correct except that once ω̃
C,γ
η (t) is sampled, it is not correct

that one can obtain ω̃
C ′,γ
η (t) by starting the dynamics at time s = 0 from ω̃

C,γ
η (t) and

then updating sites forward in time along s ∈ [0, t] according to the PPP driven by
μγ h(MC ′ \MC ). One way to see what might go wrong is as follows: suppose you

run forward in time from the initial con3uration ω̃
C,γ
η (t) and a site x rings at time s.

If that same site x had been already updated when constructing ω̃
C,γ
η (t) at some later

time s′ > s, then in order to build ω̃
C ′,γ
η (t) one should NOT update the site x at time

s.
To deal with this issue, we shall condition both on the final configuration ω̃

C,γ
η (t)

as well as the PPP PC,γ
η,t ⊂ [0, t]T used to define s 	→ ω̃

C,γ
η (s). Given the pair

(ω̃
C,γ
η (t), PC,γ

η,t )wewill sample the pair (ω̃C,γ
η (t), ω̃C ′,γ

η (t))using adynamical process
s 	→ ω̂(s) for s ∈ [0, t] constructed as follows.

1. We initialize ω̂(0) := ω̃
C,γ
η (t).

2. As s ∈ [0, t] increases, we update ω̂(s) dynamically according to Poisson clocks
governed by the measure μγ h(MC ′ \MC ) as follows: when a site x rings at time
s, this site is updated if and only if that same site x had not been updated along
the construction of ω̃

C,γ
η (t) between times s and t (or in other words {(x, u), s ≤

u ≤ t} ∩ PC,γ
η,t = ∅).

3. We let s 	→ ω(s) denote the dynamical process which updates points without
any restriction coming from the knowledge of PC,γ

η,t . As such, ω(s) is updated

more often than ω̂(s) but has the advantage that given ω(0) = ω̂(0) = ω̃
C,γ
η (t),

it follows a regular dynamical percolation.

It is easy to check that (ω̂(0), ω̂(t)) has the desired law, namely (ω̂(0), ω̂(t))
d=

(ω̃
C,γ
η (t), ω̃C ′,γ

η (t)). Note also that for all s ∈ [0, t), the law of (ω̂(s), ω̂(t)) is NOT the

same as (ω̃
C ′,γ
η (s), ω̃C ′,γ

η (t)). Therefore our setup does not allow us to say anything

about ω̃
C ′,γ
η (s) for s ∈ (0, t); in particular, we do not get convergence in Skorokhod

space since this requires us to consider all s ∈ [0, t] simultaneously.
A crucial point for what follows is for all s ∈ [0, t], the marginal law of the

configuration ω̂(s) is i.i.d. percolation. This gives that for a constant C > 0,

P

(
Q ∈ ω̃C,γ

η (t)�ω̃C ′,γ
η (t)

)
≤ P

[
#{s ∈ [0, t] : Q ∈ ω̂(s−)�ω̂(s+)} ≥ 1

]
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≤ E
[
#{s ∈ [0, t] : Q ∈ ω̂(s−)�ω̂(s+)}] ≤ E

[
#{s ∈ [0, t] : Q ∈ ω(s−)�ω(s+)}]

≤ Cμγ h(D \MC ), (5.4)

where we proceed as in Proposition 5.2 to justify the last inequality. Since the right
side converges to zero a.s. as C → ∞ by Lemma 2.14, this concludes our proof. ��

Let us now see how Proposition 5.3 implies the fact that the finite-dimensional laws
of ω

γ
η converge.

Proposition 5.4 Let γ ∈ (0,
√
3/2). Then the finite-dimensional distribution of ω

γ
η (·)

converge in law in (H , dH ).

Proof We will only prove that (ωγ
η (q))q∈Q+ converges, since the case ofQ+ replaced

by some other countable set can be treated in the same way. By Proposition 5.1 and
Skorokhod embedding there is a coupling of ω̃

C,γ
η (·) for C ∈ N and η ∈ (0, 1) such

that each ω̃
C,γ
η (·) converge almost surely to some limit ω̃C,γ∞ (·) as η → 0. Let us first

prove that for any fixed q ∈ Q+, the sequence (ω̃
C,γ∞ (q))C∈N is a Cauchy sequence

as C → ∞. For C < C ′,

P

(
dmod
H (ω̃

C,γ∞ (q), ω̃
C ′,γ∞ (q)) > 2−k

)
≤

∑
Q∈Qk

P

(
Q ∈ ω̃

C,γ∞ (q)�ω̃
C ′,γ∞ (q)

)

≤ lim
η→0

∑
Q∈Qk

P

(
Q ∈ ω̃C,γ

η (q)�ω̃C ′,γ
η (q)

)

≤ (#Qk) sup
Q∈Qk

ϒq,Q(C) → 0 as C, C ′ → ∞ .

In the second inequality we use that q is almost surely a point of continuity for the
limiting process, and in the third inequality we use Proposition 5.3. It follows that
(ω̃

C,γ∞ (q))C∈N is a Cauchy sequence for dmod
H , so it is a Cauchy sequence for dH . By

completeness of (H , dH ), it has a limit in probability ω
γ∞(q) for the metric dH .

Let us continue using the same coupling, and show that the finite-dimensional
distribution of ω

γ
η (·) converge to those of ω

γ∞(·). We will show convergence of the
law of (ω

γ
η (q))q∈Q+ to that of (ω

γ∞(q))q∈Q+ ; the case of Q+ replaced by some other
countable set follows from the same argument. Note that for any q ∈ Q+, the triangle
inequality gives

dH (ω
γ∞(q), ωγ

η (q)) ≤ dH
(
ω

γ∞(q), ω̃
C,γ∞ (q)

)
+ dH

(
ω̃

C,γ∞ (q), ω̃C,γ
η (q)

)
+ dH

(
ω̃C,γ

η (q), ωγ
η (q)

)
.

(5.5)

The first term does not depend on η and converges to 0 in probability as C → ∞ by
the previous paragraph. For any fixed C ∈ N the second term converges a.s. to 0 as
η → 0 by our choice of coupling. It remains to bound the third term. As before, we
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can bound

P

(
dmod
H

(
ωγ

η (q), ω̃C,γ
η (q)

)
> 2−k

)
≤ (#Qk) sup

Q∈Qk

ϒq,Q(C) → 0 as C → ∞ .

We conclude that for all q ∈ Q+ the following convergence holds in probability as
η → 0 for dH

ωγ
η (q) → ω

γ∞(q) as η → 0.

This implies that the finite-dimensional distribution of ω
γ
η (·) converge in probability

(and therefore also in law) to those of ω
γ∞(·). ��

5.4 Liouville dynamical percolation is càdlàg

Let us define

I := { f : [0, 1) → {0, 1} : f càdlàg and lim
t↑1 f (t) exists}.

Let M([0, 1)) denote the set of all signed measures on [0, 1). Each function f ∈ I
may be associated with a unique measure ν f ∈ M([0, 1)), namely the measure ν

such that ν([0, t]) = f (t). Note that this measure will have a point mass ±1 at each
point where the value of f changes from 0 to 1 or vice versa. This will allow us to
work with the convergence of ν+

fn
and ν−

fn
, the positive and negative part of the Jordan

decomposition of ν fn .
In the next lemma we consider a deterministic process (�̂ (t))t∈[0,1) in (H , dH ).

We give a criterion which guarantees that (�̂ (t))t∈[0,1) is càdlàg. We identify H
with a subset of {0, 1}Q∞ by identifying ω ∈ H with ( fQ(ω))Q∈Q∞ for fQ(ω) =
1Q∈ω. This allows us to see a H -valued process ω(·) as a sequence of functions
( fQ(ω(·)))Q∈Q∞ from [0, 1) to {0, 1}.
Lemma 5.5 Let (�n(t))t∈[0,1) be a sequence of processes with value in H such that

for all Q ∈ Q∞, fQ(�n(·)) ∈ I. Define ν
Q
n as the measure associated to fQ(�n(·)).

Assume that for all Q ∈ Q∞, (νQ
n )+ and (ν

Q
n )− converge weakly to certain measures

(νQ)+ and (νQ)−. Furthermore, suppose there exists a dense set S ⊆ (0, 1) such that
for all t ∈ S, �n(t) converges to some �(t) in (H , dH ) and

S ∩ {t ∈ (0, 1) : t is in the support of (νQ)+ or (νQ)− for some Q ∈ Q∞} = ∅.

Then, �̂ (t) = lim s↓t
s∈S

�(s) is a càdlàg process in the space of Schramm–Smirnov and

�̂ (s) = �(s) for all s ∈ S.

Proof Let us take Q ∈ Q∞ and note that for any t ∈ (0, 1) that is not in the support
of (νQ)+ or (νQ)−, we have fQ(�n(t)) → νQ([0, t]). This implies that for all s ∈ S,
fQ(�(s)) = νQ([0, s]).
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We show now that �̂ (t) exists and is right-continuous in t . To do that, it is enough
to show that for any t ∈ [0, 1) and k ∈ N there exists a δ > 0 such that

sup{dH (�(s1),�(s2)) : s1, s2 ∈ [t, t + δ) ∩ S} ≤ 2−k .

This follows simply from the fact that t 	→ (νQ)±([0, t)) for Q ∈ Q∞ are càdlàg
functions with finitely many jumps, which implies for all k ∈ N, Q ∈ Qk , and
t ∈ (0, 1), there exists δ > 0 such that f Q(�̂ (·)) is constant in [t, t + δ) ∩ S.

To conclude we just need to prove that �̂ (·) has a left limit. To do that, it is enough
to show that for any t ∈ [0, 1] and k ∈ N there exists a δ > 0 such that

sup{dH (�(s1),�(s2)) : s1, s2 ∈ (t − δ, t) ∩ S} ≤ 2−k .

This follows by a similar argument. ��
Remark 5.6 Note that the conditions of the lemma do not imply that �n → � in the
Skorokhod topology. For example, assume t /∈ S, that (tn)n∈N and (t ′n)n∈N are two
sequences converging to t such that tn < t ′n for all n ∈ N, and that for two distinct

quads Q, Q′ ∈ Q∞ the measure (ν
Q
n )+ (resp. (ν

Q′
n )+) has a point mass at tn (resp.

t ′n) for all n ∈ N. Then �n(·) does not converge in the Skorokhod topology, while
(assuming all assumptions of the lemma are satisfied) the process �̂ (·) is càdlàg such
that both (νQ)+ and (νQ′

)+ have a point mass at t . Another example is the case when
fQ = 1[tn ,t ′n) for the same sequences (tn)n∈N and (t ′n)n∈N and some quad Q.

The process f Q
η (·) := 1Q∈ω

γ
η (·) is càdlàg and, thus, belongs to I. By Lemma 5.4,

there exists a collection of random variables (ω
γ∞(q))q∈Q+ such that the following

convergence holds in law

(ωγ
η (q))q∈Q+ → (ω

γ∞(q))q∈Q+ . (5.6)

We want to use these two results and Lemma 5.5 to argue that (ω
γ∞(q))q∈Q+ has an

extension to R+ which is càdlàg.

Lemma 5.7 Let γ ∈ (0,
√
3/2) and let (ωγ∞(q))q∈Q+ be as in (5.6). Then the following

process is well-defined as a càdlàg function

t 	→ lim
q↓t

ω
γ∞(q) . (5.7)

Remark 5.8 In the remainder of the paper we let (ω
γ∞(t))t∈R+ denote the function in

(5.7).

Proof of Lemma 5.7 Let us take S = Q+ and treat

xη :=
(
(ωγ

η (s))s∈S, (ν+
fQ(ω

γ
η (·)))Q∈Q∞ , (ν−

fQ(ω
γ
η (·)))Q∈Q∞

)
(5.8)
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as a sequence inH S × (M([0, 1)))Q∞ × (M([0, 1)))Q∞ endowed with the product
topology induced by dH and the weak topology. Note that the first coordinate is
tight, as we have finite-dimensional convergence by Proposition 5.4. Furthermore, the
second and the third terms are also tight thanks to Proposition 5.2. This implies that
the law of xη is tight. By the Skorokhod embedding theorem, we have a coupling of
(a subsequence of) xη such that for all s ∈ S and Q ∈ Q∞, a.s. ωγ

η (s) → ω
γ∞(s) for

dH , ν+
fQ(ω

γ
η (·)) → (νQ)+, and ν−

fQ(ω
γ
η (·)) → (νQ)− for some randommeasures (νQ)+

and (νQ)− inM([0, 1)). Thanks to Lemma 5.5, we see that it is enough to show that
a.s. there is no point in S in the support of (νQ)+ or (νQ)−. This follows, because for
a given Q ∈ Q and a given s ∈ S, the probability that s is in the support of either
(νQ)+ or (νQ)− is 0 as it can be computed from Proposition 5.2. ��

The following proposition implies the convergence of (ω
γ
η (t))t∈R+ in the L1 topol-

ogy of Definition 2.8.

Proposition 5.9 For any T > 0, ω
γ
η (·) converges in law to ω

γ∞(·) for the topology of
L1([0, T ], (H , dH )).

Proof To prove this proposition, we use Skorohod‘s embedding theorem to find a
coupling such that ω

γ
η (q) → ω

γ∞(q) for the metric dH for all q ∈ Q+. Let us now
measure the expected value of the L1 distance between ω

γ
η (·) and ω

γ∞(·).

E

[∫ T

0
dH (ωγ

η (t), ωγ∞(t))dt

]
=

∫ T

0
E

[
dH (ωγ

η (t), ωγ∞(t))
]

dt .

As dH is bounded, we only need to show that E
[
dH (ω

γ
η (t), ωγ∞(t))

]
converges to 0

for each fixed t ∈ [0, T ]. By the triangle inequality, for arbitrary q ∈ Q+,

dH (ω
γ∞(t), ωγ

η (t))≤dH (ω
γ∞(t), ωγ∞(q))+dH (ω

γ∞(q), ωγ
η (q))+dH (ωγ

η (q), ωγ
η (t)) .

Since ω
γ∞(·) is càdlàg we can find δ > 0 such that for all q ∈ [t, t + δ] the expected

value of the first term is smaller than ε > 0. For any fixed q the second term also
converges to 0 a.s. as ω

γ
η (q) → ω

γ∞(q) by the choice of coupling. Thus, to finish the
proof we have to show that for sufficiently small δ′ > 0 and all q ∈ [t, t + δ′],

sup
η∈(0,1]

E

[
dH (ωγ

η (q), ωγ
η (t))

]
< ε.

This follows from Proposition 5.2. ��
We finish this section with the proof of Theorem 1.3 (ii).

Proof of Theorem 1.3 (ii) Let us first note that the limiting process ω∞(·) is defined in
(5.7) and is càdlàg thanks to Lemma 5.7. The convergence of the finite-dimensional
laws is proven in Proposition 5.4 and the convergence in L1 is done in Proposition 5.9.

��
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5.5 Markov property

This section concerns the (conditional on h) Markov property of ω
γ∞(·). Let us first

remark that the process ω
γ
η (·) is not a Markov process, as the past of the process gives

us information about the underlying field h. However, when one conditions on h then
ω

γ
η (·) isMarkov. The following proposition says that same is true forωγ∞(·). The proof

is identical to the proof of [26, Theorem 11.1] and is therefore omitted.

Proposition 5.10 (Markov property) For any t > 0 the law of (ω
γ∞(t))t≥0 given h is

that of a simple Markov process, reversible with respect to the law of ω
γ∞(0).

6 Mixing of Liouville dynamical percolation

In this section we discuss mixing properties of LDP. We study the covariance between
the crossings of a given collection of finitely many quads at two different times for the
limiting dynamic. These estimates are useful to prove the convergence of the finite-
dimensional laws in the supercritical regime and to understand the mixing properties
of the limiting dynamics in the subcritical regime.

6.1 Convergence of the quantum spectral measure

In the following we are going to see that the modified Liouville spectral measure,
defined in (2.2), converges in law as η → 0. This allows us to use Lemma 2.1 to
understand the covariances of ω

γ∞(·).
Proposition 6.1 For η > 0 and γ ∈ (0,

√
3/2), let fη be a Boolean function and let

Sη be the corresponding spectral measure (see (2.1)). Assume that (Sη, 1Sη(D) �=0)

converges in law to (S , 1S (D) �=0), where we use the topology of weak convergence
in the first coordinate. Furthermore, assume supη∈(0,1] E[Ed(Sη)] < ∞ for some
d > γ 2/2. Then

lim
η→0

Cov
[

fη(ω
γ
η (0)), fη(ω

γ
η (t)) | h

]
= E

[
exp(−tμS

γ h(D))1S (D) �=0 | h
]
.

(6.1)

Furthermore, for any γ ∈ (0, 2) such that μ
Sη

γ h (D) converges in law to 0,

lim
η→0

E

[
fη(ω

γ
η (0)) fη(ω

γ
η (t))

]
= 1 . (6.2)

Proof For the first part, thanks to Skorokhod embedding we can assume that
(Sη, 1Sη=∅) → (S , 1S=∅) a.s. Let h be the samefield for allη. Thanks toLemma2.1
and bounded convergence, it is enough to prove that the following convergence holds
in probability

lim
η→0

μ
Sη

γ h (D) = μS
γ h(D).
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This follows from Proposition A.1.
For the second part, we note that by (2.6) and bounded convergence,

lim
η→0

E

[
f (ωγ

η (0)) f (ωγ
η (t))

]
= lim

η→0
E

[
exp(−tμ

Sη

γ h (D))
]
→ 1 . (6.3)

��
The importance of the latter proposition is that it can be applied for crossings.

Corollary 6.2 Let γ ∈ (0,
√
3/2), let Q1, . . . , Qn ∈ Qk be a collection of quads, and

let f : H → {0, 1} be the function which says whether all quads Q1, . . . , Qn are
crossed. Let Sη be the spectral measure associated with f on the lattice Tη, and let
S be the weak limit in law of Sη as in Proposition 4.1. Then, almost surely

Cov
[

f (ω
γ∞(0)), f (ω

γ∞(t)) | h
] = E

[
exp(−tμS

γ h(D))1S (D) �=0 | h
]

t→∞−→ 0 .(6.4)

Proof By Proposition 4.1, we know that the measures Sη converges in law for the
weak topology to some measure S , and by the lower bound in Theorem B.1 we see
that (Sη, 1Sη(D) �=0) converges in law to (S , 1S (D) �=0).

lim
η→0

Cov
[

f (ωγ
η (0)), f (ωγ

η (t)) | h
]
= E

[
exp(−tμS

γ h(D))1S (D) �=0 | h
]

.

Note that thanks toProposition5.2, ( f (ω
γ
η (0)), f (ω

γ
η (t))) → ( f (ω

γ∞(0)), f (ω
γ∞(t)))

in law. Therefore

Cov
[

f (ω
γ∞(0)) f (ω

γ∞(t)) | h
] = E

[
exp(−tμS

γ h(D))1S (D) �=0 | h
]

. (6.5)

By (2.14), μS
γ h(D) > 0 a.s. ifS (D) �= 0. Thus, the right side of (6.5) converges to 0

as t → ∞. ��

6.2 Mixing properties of the subcritical regime

After understanding the correlations of quad crossings, we can obtain information
about the mixing in the subcritical regime. The following proposition gives the non-
quantitative mixing results of Theorem 1.4 for the case where the event C(t) can
be expressed in terms of a finite number of quad crossings. The proof combines
Corollary 6.2 and the inclusion-exclusion principle.

Proposition 6.3 Consider Liouville dynamical percolation (ω
γ∞(t))t≥0 of parameter

γ ∈ (0,
√
3/2). Let k be a natural number, and let Q1, . . . , Qk be quads. For some

j ≤ k and any t ≥ 0 let A(t) be the event that Q1, . . . , Q j are not crossed at time
t, and that Q j+1, . . . , Qk are crossed at time t. Then for any event B(0) measurable
with respect to ω

γ∞(0), we have that a.s.

lim
t→∞P[A(t); B(0) | h] = P[A(0)]P[B(0)] . (6.6)
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Proof Corollary 6.2 gives that if j = 0 then

P[A(t); A(0) | h] → P[A(0)]2 .

Applying (2.5) we get that (6.6) holds for j = 0.
Consider the lexicographical ordering on pairs (k, j) with k ∈ N, j ∈ N ∪ {0},

and j ≤ k. We will prove (6.6) by induction on (k, j) with this ordering. The case
(k, j) = (1, 0) is immediate since (6.6) holds for j = 0. Consider some (k, j), and
assume (6.6) has be proved for all (k′, j ′) < (k, j). To conclude the proof by induction
it is sufficient to argue that (6.6) also holds for (k, j). If j = 0 this is immediate by
the previous paragraph, so we assume that j > 0.

Let Ã(t) be the event that Q2, . . . , Q j are not crossed at time t , and that
Q j+1, . . . , Qk are crossed at time t . Let A′(t) be the event that Q1 is not crossed
at time t . Then A(t) = Ã(t) ∩ A′(t). Using this identity and the induction hypothesis
for (k − 1, j − 1) and (k, j − 1), we get

P[A(t); B(0) | h] = P[ Ã(t); B(0) | h] − P[ Ã(t); (A′(t))c; B(0) | h]
t→∞−→ P[ Ã(t)] · P[B(0)] − P[ Ã(t); (A′(t))c] · P[B(0)]
= P[A(t)] · P[B(0)],

which concludes the proof by induction. ��
Proof of Theorem 1.4(i) and the non-quantitative assertion of Theorem 1.4(iii) For any t ≥
0, the set of the events A(t) fromProposition6.3 generates the sameσ -algebra asωγ∞(t)
viewed as an element of (H , dH ) (see [57, Theorem 1.13]). Therefore, by [30, The-
orem D, Section 13], given any η > 0 we can find an event A(t) as in Proposition 6.3
such that P[A(t)�C(t)] < η. It follows that

lim sup
t→∞

|P[C(t); B(0) | h] − P[C(t)] · P[B(0)]|
≤ lim sup

t→∞
|P[A(t); B(0) | h] − P[A(t)] · P[B(0)]| + 2η = 2η .

Since η was arbitrary this concludes the proof of the quenched result. To obtain the
annealed result, we average over h and use the bounded convergence theorem. ��

7 Convergence in the supercritical regime

In this sectionwewill proveTheorem1.3 for the supercritical case, i.e., γ ∈ (
√
3/2, 2).

We start by proving convergence of the finite-dimensional distribution, which is imme-
diate by the following proposition.

Proposition 7.1 Let γ ∈ (
√
3/2, 2). Then for any t > 0 and ε > 0,

P

(
dmod
H (ωγ

η (0), ωγ
η (t)) ≤ ε

)
→ 1 as η → 0.

123



660 C. Garban et al.

Thus, the finite-dimensional distribution of ω
γ
η (·) converge to those of the constant

process ω
γ∞(t) ≡ ω

γ∞(0).

Proof Note that when γ ∈ (
√
3/2, 2), PropositionA.3 implies that ifSη is the spectral

measure for the crossing of a quad Q, then μ
Sη

γ h → 0 in law as η → 0. Thus, if fQ is
the Boolean function encoding the crossing of Q,

P

(
dmod
H (ω

γ
η (0), ωγ

η (t)) > 2−k
)
≤

∑
Q∈Qk

P(Q ∈ ω
γ
η (0)�ω

γ
η (t j ))

≤ (#Qk) · sup
Q∈Q∞

(1− E
[

fQ(ω
γ
η (0)) fQ(ω

γ
η (t))

]
) → 0.

as η → 0, thanks to (6.2). ��
We can now finish the proof of Theorem 1.3.

Proof of Theorem 1.3(iii) Let us take a coupling of ω
γ
η (·) such that ωγ

η (0) converges in
probability toω

γ∞(0) for dH . Now, Proposition 7.1 implies that the finite-dimensional
distributions of ω

γ
η (·) converges as η → 0 to those of the constant process ω

γ∞(0). To
show convergence in L1([0, T ], (H , dH )), we study the expected value of the L1

distance between ω
γ
η (·) and ω

γ∞(0).

E

[∫ T

0
dH (ωγ

η (t), ωγ∞(0)) dt

]
=

∫ T

0
E[dH (ωγ

η (t), ωγ∞(0))] dt . (7.1)

For any t ∈ [0, T ],

dH (ωγ
η (t), ωγ∞(0)) ≤ dH (ωγ

η (t), ωγ
η (0)) + dH (ωγ

η (0), ωγ∞(0)) .

The first term on the right side converges to 0 in probability thanks to Proposition 7.1,
and the second term converges to 0 in probability because ω

γ
η (0) converges to ω

γ∞(0).
Since t was arbitrary, this implies that the right side of (7.1) converges to 0 as η → 0.
��

8 Quantitative decorrelation bounds

In this section, we obtain explicit decorrelation bounds in the case γ ∈ (0,
√
3/4).

We use Proposition 2.11 to obtain a quantitative estimates on the decorrelation of
the crossings for cLDP. In Proposition 8.2 right below we have rewritten (ii) and the
quantitative assertions of (iii) in Theorem1.4 to bemore explicit. The following lemma
will be used in the proof.

Lemma 8.1 Let Q be a rectangular quad and consider critical site percolation on Tη

for some η > 0. Let Sη denote the spectral measure associated with the crossing of
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Q. Then for any d ∈ (0, 3/4),

sup
η∈(0,1)

E[Ed(Sη)] < ∞. (8.1)

Proof Consider the double integral over x, y in (2.13). Recall that the spectral sample
has the same one- and two-point functions as the pivotal points (see e.g. [38] and [23,
Section 1.1]). By Proposition A.2, (8.1) holds if we restrict the integral to points where
x, y are bounded away from the boundary. By an analysis of boundary and corner arm
exponents, the integral is also finite if the points are near the boundary. See the last
two paragraphs in proof of Proposition 5.2 for a similar estimate. ��
Proposition 8.2 Let us work in the context of Theorem 1.4. For all γ ∈ (0,

√
3/4) and

any ξ < 2θ/5 (recall from Proposition 2.11 that θ = θ(d, γ ) := d−γ 2

d+γ 2 ), we have that

(P[A(0)A(t)] − P[A(0)]2)tξ → 0,

and

(P[B(0)A(t)] − P[B(0)]P[A(0)])tξ/2 → 0 . (8.2)

Furthermore, for all ξ < 2θ/5 and almost surely in h, we have the following quenched
decorrelation bound

(P[A(0)A(t) | h] − P[A(0)]2)tξ → 0 and

(P[B(0)A(t) | h] − P[B(0)]P[A(0)])tξ/2 → 0 .

Proof We can use Corollary 6.2 and Proposition 2.11 to get that for some K > 0,

Cov[A(0), A(t)] = E

[
exp(−tμS

γ h(D))1S (D) �=0

]

≤ P

(
K

[Ed(S )

S (D)

]1/θ
≥ t

)
+ E

[
K

S (D)tθ
∧ 1

]
. (8.3)

Let us control the first term on the right side. Take a ∈ R, and upper bound the first
term on the right side of (8.3) by

P
(Ed(S ) ≥ ta) + P

(
S (D) ≤ K θ ta−θ

) ≤ E [Ed(S )] t−a + O(1)t−2(θ−a)/3+ot (1) ,

where we used [23, equation (1.7)], i.e., that P(S (d) ≤ u) ≤ u−2/3+oe(1). Further-
more, note that the first term on the right side is finite by Lemma 8.1.

Now for any b > 0, we can bound the second term on the right side of (8.3) by

t−b + P

[
S (D)tθ ≤ tb K

]
≤ t−b + O(1)t−2(θ−b)/3.
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By taking a = b = 2θ/5, we obtain

Cov[A(0), A(t)] ≤ O(1) t−
2θ
5 .

Equation (8.2) is obtained by using (2.5) and this result.
Finally, to conclude the proof, we obtain the quenched results thanks to the claim

below. ��
Claim 8.3 Let Xt be a random decreasing process such that E [Xt ] tξ → 0 as t → ∞.
Then a.s. for all ξ ′ < ξ , Xt tξ

′ → 0 as t → ∞.

Before proving the claim let us note that this is exactly what is needed as
P[A(0)A(t) | h]−P[A(0)]2 is decreasing in t and its expected value is P[A(0)A(t)]−
P[A(0)]2. Note that the second equation also follows the same argument.

Proof Let us note that as Xt is decreasing it is enough to prove the claim for the
sequence tn = 2n . First let us take δ > 0 and use Markov’s inequality to see that for
n sufficiently large,

P[Xt t
ξ > tδ] ≤ E

[
Xt t

ξ
]

t−δ ≤ 2−nδ.

We conclude by applying the Borel-Cantelli lemma. ��
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Appendix

A Limit properties of LQGmeasures

A.1 Continuity of LQGmeasures

Let γ ≥ 0, let σ n be a sequence of random measures in a bounded domain D ⊂ C

converging in probability for the Prokhorov topology to a measure σ with finite total
mass, and letμn

γ h = μσ n

γ h be the sequence of γ -LQGmeasures of h with respect to σn .
The goal of this section is to give a sufficient condition for μn

γ h to converge to μσ
γ h ,

the γ -LQG of h with respect to σ .
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We will use several estimates from [5], where it was proved that μσ
γ h is the limit of

μσ
γ hε

in L1 for hε a smooth approximation to h (see (2.12)). Many notations will be
borrowed from that paper, and it is advisable that the reader is familiar with that paper
before reading the proof.

Proposition A.1 Take d > 0 and assume that supn E[Ed(σ n)] < ∞. Then, for all
γ 2 < 2d and deterministic sets O ⊆ C such that σ(∂O) = 0 a.s., the LQG mea-
sures considered above are well-defined and we have that μn

γ h(O) → μσ
γ h(O) in L1.

Furthermore, μn
γ h |O converges in probability to μσ

γ h |O in the topology of weak con-

vergence of measures on O. If γ 2 < d and σ n → σ in L2, then μn
γ h(O) → μσ

γ h(O)

in L2.

Proof Fix γ 2 < 2d. For simplicity we write μn
γ h as μn . For some smooth approxima-

tion hε to h (e.g. the circle average approximation) we writeμn
γ hε

asμn
ε . Similarly, we

write μ and με when the base measure is σ instead of σ n . By the triangle inequality,
for n ∈ N,

E|μn(O) − μ(O)| ≤ E|μn(O) − μn
ε (O)| + E|μn

ε (O) − με(O)| + E|με(O) − μ(O)| .

Since hε is smooth, σ(∂O) = 0, and σ n → σ in probability, we get that μn
ε (O) →

με(O) in probability. Using supn E[Ed(σ n)] < ∞, this gives that the second term on
the right side converges to 0 as n → ∞ for any fixed ε. The third term converges to 0
as ε → 0 by e.g. the main result of [5]. Therefore, to show that μn

γ h(O) → μσ
γ h(O)

in L1 it is sufficient to handle the first term, i.e., to show that

lim
ε→0

sup
n∈N

E
[|μn(O) − μn

ε (O)|] = 0.

This result follows from a close inspection of [5].
For some ε0 ≤ 1 to be determined right below, define the following event Gα

ε (x),
which, roughly speaking, says that the field h is not too large close to x :

Gα
ε (x) = {hr (x) ≤ α log(1/r) for all r ∈ [ε, ε0]} .

Then define

I n
ε :=

∫
O
1(Ga

ε )c(x)μ
n
ε (d

2x), J n
ε :=

∫
O
1Ga

ε (x)μ
n
ε (d

2x),

and note that μn
ε (O) = I n

ε + J n
ε . By [5, Lemma 3.2], for all η > 0 there exists ε0 > 0

such that supn∈N E
[
I n
ε

] ≤ η for all ε ∈ (0, ε0); we fix ε0 > 0 such that this condition
is satisfied. It is sufficient to show the following:

lim
ε,ε′→0

sup
n∈N

E[(J n
ε − J n

ε′)
2] = 0 .
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We will prove this by showing the existence of a function F : O ×O → R such that
uniformly in n,

E

[
(J n

ε )2
]
, E

[
J n
ε J n

ε′
] →

∫∫
O×O

F(x, y) σ n(d2x)σ n(d2y) as ε, ε′ → 0.

We just treat E
[
(J n

ε )2
]
, since E

[
J n
ε J n

ε′
]
is treated in the same way. We have

E

[
(J n

ε )2
]
=

∫∫
|x−y|≤δ

eγ 2
E[hε (x)hε (y)]

P̃(Gε(x) ∩ Gε(y)) σ n(d2x)σ n(d2y)

+
∫∫

|x−y|≥δ

eγ 2
E[hε (x)hε (y)]

P̃(Gε(x) ∩ Gε(y)) σ n(d2x)σ n(d2y),

(A.1)

where P̃ is a certain probability measure absolutely continuous with respect to P

(defined above [5, equation (3.8)]). Now [5, equation (3.12)] shows that we can find
β < d (which corresponds to choosing a nice α > 0 in [5]) such that for all n ∈ N,
the first term on the right side of (A.1) is smaller than a constant depending only on
the correlation kernel of h times∫∫

|x−y|≤δ

|x − y|−βσ n(d2x)σ n(d2y) ≤ δβ−β sup
n

Eβ(σ n),

where β is chosen such that β ∈ (β, d). Given η > 0, let us choose δ > 0 such that the
first term on the right side of (A.1) is smaller than η. Now, as in [5, Lemma 4.1], when
|x − y| ≥ δ, we have that eγ 2

E[hε (x)hε (y)]
P̃(Gε(x)∩Gε(y)) converges in the topology

of uniform convergence to a function F(x, y). Thus, uniformly in n, the second term
on the right side of (A.1) converges to

∫∫
|x−y|≥δ

F(x, y)σ n(d2x)σ n(d2y). Since η

was arbitrary, this concludes the proof that μn
γ h(O) → μσ

γ h(O) in L1.
The next assertion of the lemma is that μn

γ h |O converges in probability to μσ
γ h |O

in the topology of weak convergence of measures on O. The proof can be carried out
exactly as in [5] and is therefore omitted.

To conclude the proof of the lemma,wewill argue that we also have L2 convergence
if γ 2 < d and σ n → σ in L2. We have

E|μn(O) − μ(O)|2
≤ 3E|μn(O) − μn

ε (O)|2 + 3E|μn
ε (O) − με(O)|2 + 3E|με(O) − μ(O)|2 .

The second term on the right side converges to 0 since hε is smooth and by the
assumption that σ n → σ in L2. The third term on the right side converges to 0 by e.g.
[5]. The proof that the first term converges to 0 can be done as in the L1 case, except
that we may choose α > 2, which implies that Gα

ε (x) does not occur for any x a.s.,
so I n

ε = 0 a.s. ��
It is possible to bound uniformly the expected energy of the measure λε and its

approximations.
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Proposition A.2 For any ε > 0 and d < 3/4,

sup
η∈(0,1]

E
[Ed(λε(ωη))

]
< ∞.

Proof This follows by the argument in the proof of [23, Lemma 4.5], where it is proved
via quasi-multiplicativity that E[λε(ωη)

2] < ∞. ��

A.2 Convergence to 0 of Liouville measures

Let β > 0 and assume that ση is a sequence of measures that can be written as

ση(d
2z) = Cηη

−β
∑

x∈Iη⊆Tη

1z∈Bh
η (x) d2z, (A.2)

where Cη = ηo(1) is a deterministic sequence and Iη is a (possibly random) set
independent of h. Furthermore, assume that the expected total mass of the measure is
bounded uniformly in η, i.e.,

sup
η>0

Cηη
2−β

∑
z∈Tη

P[z ∈ Iη] < ∞ . (A.3)

We are interested in seeing when the Liouville measure associated to this measure
converges to 0. In particular, we are interested in proving the following proposition.

Proposition A.3 Assume 0 ≤ 2−β < γ 2/2. Then the sequence of Liouville measures
μ

ση

γ h converges to 0 in probability as η → 0.

Proof We just need to prove that μ
ση

γ h(D) → 0 in probability. To do that, let us define

Aη := {z ∈ D : μγ h(Bh
η (z)) < η2−γ 2/2+δ}

for some δ > 0 to be determined. We have

μ
ση

γ h(D) = Cηη
−β

∑
z∈Iη⊆Tη

1z∈Aημγ h(Bh
η (z))

+Cηη
−β

∑
z∈Iη⊆Tη

1z /∈Aημγ h(Bh
η (z)) . (A.4)

First we show that the first term on the right side of (A.4) converges to 0 in L1. To
do that, let us recall [4, Proposition 4.1 and Corollary 6.2], which say that for any
log-correlated field and any q < 4/γ 2,

E

[
μγ h(Bh

r (z))q
]
≤ r−γ 2q2/2+(2+γ 2/2)q+O(1), (A.5)
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where the O(1) is uniform in z. Thus, for any p > 0 the expected value of the first
term on the right side of (A.4) is upper bounded by

E

⎡
⎣Cηη

−β
∑

z∈Iη⊆Tη

μγ h(Bh
η (z))1−pη(2−γ 2/2+δ)p

⎤
⎦

≤ η−γ 2(1−p)2/2+(2+γ 2/2)(1−p)+o(1)η(2−γ 2/2+δ)pη−β
∑
z∈T

P[z ∈ Iη]

= η−γ 2 p2/2+δ p+O(1).

Therefore, for any δ > 0 we can find p > 0 sufficiently small such that the first term
on the right side of (A.4) goes to 0 in probability.

Now, we will show that the second term on the right side of (A.4) converges to 0
in probability. By Markov’s inequality,

P(μγ h(Bh
η (z)) > η2−γ 2/2+δ) ≤ η

2−
(
2+δ− γ 2

2

)
+O(1) = η

γ 2

2 −δ+O(1),

where again, the O(1) can be taken uniformly for all z ∈ Iη. Therefore we can upper
bound the probability that the second term on the right side of (A.4) is bigger than 0
by

P(Iη\Aη �= ∅) ≤ E

⎡
⎣E

⎡
⎣∑

z∈Iη

1Az,η

∣∣∣ Iη

⎤
⎦

⎤
⎦ ≤ E

[|Iη|] sup
z

P(Ac
z,η)

≤ η−2+βη
γ 2

2 −δ+O(1) η→0−→ 0,

where we have taken 2δ = γ 2/2− 2+ β > 0. This is enough to conclude. ��

A.3 Convergence of themodified Liouville measure

As in the section before, we work with measures of the type (A.2). However, we
now assume that γ ∈ (0,

√
3/2). We add the assumption that ση → σ a.s, and that

supη E[Ed(ση)] < ∞ for a fixed d > γ 2/2. Let us note that Proposition A.1 implies

thatμ
ση

γ h → μσ
γ h in probability for the weak topology as η → 0. The issue we address

in this section is the convergence of the measure

μ̃
C,ση

γ h (d2z) := Cηη
−β

∑
x∈Iη

1z∈Bh
η (x)∩MC

μγ h(d2z) .

To do this, let us introduce the following set, where 
 is as in (1.5),

Mr
C := {x ∈ D : μγ h(Bh

2−n (x)) < Cα2−n

4 (2−n, 1)(2−n)
, for all n ≤ �log2(r)�},
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and show the following lemmas.

Lemma A.4 A.s. for any n ∈ N, the function x 	→ μγ h(Bh
2−n (x)) is continuous.

Proof To see this let us define

f (r) := sup
x∈D

μγ h(∂ Bh
r (x) ∩ D).

Note that the lemma follows from just showing that P( f (2−n) = 0) = 1 for all n ∈ N.
First, let us see that f (r) is a measurable function of h. This follows because

f (r) = inf
ε>0

sup
x∈Q2∩D

μγ h((Bh
r+ε(x)\Bh

r−ε(x)) ∩ D).

The edges of the hexagonal lattice dual to Tη have angle with the y-axis equal to 0,
2π/3, or 4π/3. Therefore, to conclude it is sufficient to show that a.s. no line in one
of these three directions has positive mass. We will show this for lines parallel to the
y-axis, but the two other directions can be treated by the exact same argument.

For simplicity we assume that D ⊂ [0, 1]2; the exact same argument works for D
contained in a larger square. For each n ∈ N let In be a collection of 2n rectangles
with disjoint interior contained in [0, 1]2 of the form [k2−n, (k + 1)2−n] × [0, 1]. By
a union bound, in order to conclude it is sufficient to show that for any s > 0 and for
all I ∈ In ,

P[μγ h(I ) > s] < on(1)2−ns−1, (A.6)

where the on(1) is uniform in I . Let � =  2n/2!, and divide I into � disjoint rectangles
of width 2n and height 2n/�. Define a new log correlated field h̃ in D̃n = [0, �] ×
[0, 2n/�] as follows. Divide D̃n into � disjoint rectangles of width 2n and height 2n/�,
and let Ĩn denote this collection of rectangles. For some arbitrary enumeration of Ĩn

and In and j = 1, . . . , �, set h̃ restricted to the j th rectangle of Ĩn equal to h restricted
to the j th rectangle of In . Let ȟ be equal to 1+ r times a log-correlated field in [0, 1]2
of the form (2.11) which is independent of n, where r > 0 is some small parameter
to be determined; then the covariance kernel of ȟ is equal to −(1+ r)2 log |x − y| +
(1+ r)2g(x, y). For sufficiently large n, the covariance kernel of h̃ will be pointwise
smaller than the covariance kernel of ȟ|D̃n

, so the by Kahane’s convexity inequality
[35] (see also [4,51]), we have E[μγ h(I )1+r ] = E[μγ h̃(D̃n)

1+r ] ≤ E[μ
γ ȟ(D̃n)

1+r ].
Proceeding as in e.g. [4, Corollary 6.5] we have E[μ

γ ȟ(D̃n)
1+r ] � 2n(1+r)/2 for r

sufficiently small, so we get (A.6) by an application of Chebyshev’s inequality. ��
Lemma A.5 For any r > 0, we have that μσ

γ h(∂Mr
C ) = 0 a.s.

Proof Let us define the set

En
C := {x ∈ D : μγ h(Bh

2−n (x)) = Cα2−n

4 (2−n, 1)2−n
},
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and note that Lemma A.4 implies that μσ
γ h(∂Mr

C ) ⊆ ⋃
En

C . Thus, it is enough to
show that μσ

γ h(En
C ) = 0. Thanks to Fubini’s theorem, it is sufficient to show that for

any fixed x ∈ D, a.s.,

P[μγ h(Bh
2−n (x)) = Cα2−n

4 (2−n, 1)2−n
] = 0. (A.7)

By the proof of [5, Lemma 5.1] we can write h on the form h = αg + h′, where g is a
deterministic continuous function, α is a standard normal random variable, and h′ is a
random log-correlated field independent of α. We may assume that g is not identically
equal to zero in Bh

2−n (x). Condition on h′ and define the following random function

Gh′(a) = μγ(ag+h′)(Bh
2−n (x)) =

∫
Bh
2−n (x)

eγ ag(z)dμγ h′(z).

By expanding eγ ag(z) pointwise as a power series in a, we get that, conditioned on h′,
the function a 	→ Gh′(a) is real analytic. By calculating the second derivative of a 	→
Gh′(a), we see that the function is not constant. For any constant c, the set of points
at which a non-constant analytic function is equal to c cannot have any accumulation
points; otherwise all derivatives of the function would be zero at this accumulation
point, and the function would be constant. In particular, the set of points at which the

function is equal to c has zero Lebesgue measure. Since Gh′(α)
d= μγ h(Bh

2−n (x)) and
α is a standard normal independent of h′, this implies (A.7). ��

Let us use this lemma to prove the following proposition.

Proposition A.6 For all γ ∈ (0,
√
3/2) and all open O ⊂ D such that σ(O) < ∞

and σ(∂O) = 0 a.s., we have that μ̃
C,ση

γ h (O) = μ
ση

γ h(O ∩MC ) → μσ
γ h(O ∩MC ) =

μ̃
C,σ
γ h (O) in L1 as η → 0. Furthermore μ̃

C,ση

γ h |O converges in probability to μ̃
C,σ
γ h |O

in the topology of weak convergence of measures on O.

Proof Let us start by fixing r > 0 and upper bounding |μσ
γ h(MC ∩O) − μ̃

C,ση

γ h (O)|
by

|μσ
γ h(MC ∩O) − μσ

γ h(Mr
C ∩O)| + |μσ

γ h(Mr
C ∩O) − μ

ση

γ h(Mr
C ∩O)|

+ |μση

γ h(Mr
C ∩O) − μ̃

C,ση

γ h (O)| .
(A.8)

Let us first note that as r → 0 the first term converges to 0 a.s. thanks to the fact that
Mr

C ↓ MC as r ↓ 0. For the second term, we need to show is that for fixed r > 0,

μ̃
C,ση

γ h (Mr
C ∩O) = μ

ση

γ h(Mr
C ∩O) → μσ

γ h(Mr
C ∩O) as η → 0. This is true thanks

to the last assertion of Proposition A.1 and Lemma A.5. For the last term, we use that
Mr

C is decreasing in r to show that it is equal to

Cηη
−β

∑
x∈Iη

μγ h(Bh
η (x) ∩ (Mr

C\MC ) ∩O) .
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Thus, its expected value is bounded by a constant times

E
[
μγ h(Mr

C\MC )
]

. (A.9)

Note that this term is independent of η, and that Mr
C ↓ MC as r ↓ 0. Thus, we can

use dominated convergence to show that this term converges to 0 uniformly in η.
The last assertion is proved similarly as the last assertion of Proposition A.1. ��

B Size of the spectral sample for multiple quad crossings

Let Q be a collection of finitely many quads. For R > 1 let RQ denote the same set
of quads rescaled by R, i.e.,

RQ := {RQ : Q ∈ Q}.

Let T denote the triangular lattice where adjacent vertices have distance 1. For an
instance ω of critical site percolation on T let f (ω) = fRQ(ω) be the indicator
function describing whether all the quads of RQ have an open crossing. Throughout
this sectionwe do not rescale the triangular lattice; to be consistentwith [23]we instead
rescale the quads by R. Several observables throughout the section will depend on R,
and by simplicity we will often omit the R dependence in notations.

For any set V ⊂ C let A�(V ,Q) denote the event that the vertices in V ∩ T are
pivotal forQ, i.e., there exists a percolation configurationω′ such thatω|T\V = ω′|T\V

and f (ω) �= f (ω′). LetQo ⊂ C denote the union of the complementary components
V of the quad boundaries which are such that P[A�(RV , RQ)] > 0 for sufficiently
large R. We assume throughout this and the next section that Qo has finitely many
connected components and the boundaries of the quads are piecewise smooth.12 Let
I denote the sites of T which are contained in at least one quad in RQ. Throughout
the section we let α4(R) be defined by α4(R) = α

η
4 (8, R) for η = 1, where the right

side is defined as in Sect. 2.3. For r < R we write α4(r , R) instead of α1
4(r , R) since

we work with lattice η = 1 throughout the appendix.
The following is the main result of this appendix. In other words, we prove that the

size of the spectral sampleS is of order R2α4(R). Note that the theorem was proved
in [23] for the case where Q consists of a single quad.

Theorem B.1

lim
s→∞ inf

R>1
P

[
|S f | ∈ [s−1R2α4(R), s R2α4(R)) ∪ {0}

]
= 1,

where | · | denotes cardinality.

12 Notice thatQo is always non-empty: There exist configurations where all the quads are crossed (e.g. if
all sites of T are open) and there exist configurations where the quads are not all crossed (e.g. if all sites of
T are closed). By moving from one configuration to the other by changing the sites one by one, we see that
there exist configurations where we have a pivotal point.
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Proof Our proof follows very closely the strategy from [23]. The main focus here is
to extend the key arguments from that paper to the present multi-quads setting. In
particular, the theorem will follow from Theorem B.2 and Proposition B.3 below by
exactly the same argument as in the proof of [23, Theorem 7.4]. ��
Theorem B.2 Let U ⊂ Qo be open, and let U ′ ⊂ U ′ ⊂ U. Then, for some constants
r = r(U ′, U ,Q) > 0 and q(U ′, U ,Q) > 0, for any r ∈ [r , Rdiam(U )],

P
[
0 < |S f ∩ RU | ≤ r2 α4(r), S f ∩ RU ⊂ RU ′]
≤ q(U ′, U ,Q)

R2 α4(R)2

r2 α4(r)2
. (B.1)

Proof The theorem follows from Propositions B.5 and B.6, and from [23, Proposition
6.1]. See the proof of [23, Theorem 7.1] for a similar argument. ��
Proposition B.3 Given any δ > 0 we can find an open set U ⊂ U ⊂ Qo, such that
P[S f ⊂ RU ] > 1− δ.

Proof Let γ = ⋃
Q∈Q ∂ Q ⊂ C be the union of the quad boundaries. Given s > 0 let

g : � → {−1, 1} be measurable with respect to the σ -algebra Fs of quad crossing
information at distance > Rs from Rγ , such that

g(ω) =
{
−1 if P[ f = −1 |Fs] > 1/2,

1 otherwise.

By [57, Theorem 1.5], given any ε > 0 and a quad Q it holds for all s and sufficiently
small and R sufficiently large that P[ε < P[ω(Q) |Fs] < 1− ε] < ε, where ω(Q) ∈
{0, 1} indicates whether Q is crossed. (Note that it is important here to assume that
the boundaries of our quads are piecewise smooth.) Therefore, for sufficiently small
s and sufficiently large R,

P[ε < P[ f = −1 |Fs] < 1− ε] < ε.

It follows that for sufficiently small s and sufficiently large R,

P[ f �= g] ≤ P[ f �= g; ε < P[ f = −1 |Fs] < 1− ε]
+ P[ f = 1;P[ f = −1 |Fs] > 1− ε]
+ P[ f = −1;P[ f = 1 |Fs] > 1− ε] < 3ε,

which implies that with ‖ · ‖ denoting the L2 norm we have ‖ f − g‖ < 10
√

ε. With
tv denoting total variation distance,

tv(S f ,Sg) ≤
∑
S⊂I

| f̂ (S)2 − ĝ(S)2| ≤ ‖ f − g‖‖ f + g‖ < 20
√

ε,
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Liouville dynamical percolation 671

where the second inequality follows from [23, equation (2.7)]. The spectral sample of
Sg has distance at least Rs from Rγ , so we see that the proposition holds with U ′
instead of U if we let U ′ ⊂ C be the points which have distance at least s from γ . We
have thatS ∩(U ′ \Qo) = ∅, and we obtain the proposition by definingU = U ′ ∩Qo.

��

Remark B.4 Note that a possibly more direct proof of this proposition would consist
in decomposing the α-neighborhood of the boundaries of each quads into O(α−1)

squares of side length α and then argue through a first moment bound by noticing that

P
[
S f intersects the α-neighbourhood of the boundaries of quads

]
is dominated by the sum over all these squares of the probability that the spectral
sample intersects the fixed given square. In the bulk this probability is O(α5/4+o(1))

and one can conclude the proof along those lines after dealing with boundary issues.
In some sense such boundary issues are already dealt with in the work [57], which
explains why we have chosen this other approach.

As in [23], the proof of Theorem B.2 relies on two key properties: few squares
intersect the spectral sample and partial independence in the spectral sample. In the
single quad case these properties are established in [23, Section 4] and [23, Section 5],
respectively. The proof given in [23, Section 4] generalizes without difficulty to our
multiple quads setting, while the argument in [23, Section 5] requires slightly more
work. Therefore we will simply state our variant of [23, Proposition 4.2] right below,
while we provide a more detailed adaption of [23, Section 5] in Sect. B.1. For a set
S ⊂ T and r > 0 define Sr to be the collection of squares in rZ2 that intersect S.

Proposition B.5 Consider a collection Q of finitely many quads, and let S be the
spectral sample of fQ. Let U ′ ⊂ U ⊂ Qo, let R̂ denote the diameter of U, let
a ∈ (0, 1), and suppose that the distance from U ′ to the complement of U is at least
a R̂. Let S(r , k) be the collection of all sets S ⊆ I such that

∣∣(S ∩ U )r
∣∣ = k and

S ∩ (U\U ′) = ∅. Then for g(k) := 2ϑ log22(k+2), with ϑ > 0 large enough, and
γr (R̂) := (R̂/r)2α4(r , R̂)2, we have

∀k, r ∈ N+ P
[
S ∈ S(r , k)

] ≤ ca g(k) γr (R̂) ,

where ca is a constant that depends only on a and Q.

Proof The proposition is proved by adapting the techniques of [23, Section 4]. In
particular, we construct so-called annulus structures for the collection of quads Q by
defining annulus structures for each component of Qo with diameter at least a R̂. ��

We also point out here that another generalization of the techniques needed here
have been analyzed in the work [29], where the needed extension of [23, Section 4]
happened to be more substantial and was thus written with more details.
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B.1 Partial independence in the spectral sample

Proposition B.6 Let Q be a collection of finitely many quads, and let U be an open
set whose closure is contained in Qo. For R > 0, let S := S fRQ be the spectral
sample of fRQ, the ±1 indicator function for the crossing event in RQ. Then, there is
a constant r = r(U ,Q) such that for any box B ⊂ R U of radius r ∈ [r , Rdiam(U )]
and any set W with W ∩ B = ∅, we have

P
[
S fRQ ∩ B ′ ∩ Z �= ∅ ∣∣ S fRQ ∩ B �= ∅, S fRQ ∩ W = ∅] ≥ a(U ,Q) ,

where B ′ is concentric with B and has radius r/3, the random set Z contains each
element of I independently with probability 1/(α4(r)r2), and a(U ,Q) > 0 is a
constant that depends only on U and Q.

Proof The proof is identical to the proof of [23, Proposition 5.11]. Propositions B.10
and B.11 below give the required first and second moment estimates. ��
Remark B.7 Aswe outline below, it is not too difficult to extend the proof of [23] to our
present multiple-quad setting. Yet, one crucial property of our multiple-quad Boolean
function f = fRQ is that it is a monotone Boolean function. Otherwise the techniques
from [23] break down completely. See Remark 5.5 in [23]. This is the reason why we
only control via Fourier analysis the intersection of several monotone events (crossing
events) and deal with the more general ones via an inclusion-exclusion argument.

Let B, W ⊂ I be disjoint. Let �B = � f ,B be the event that B is pivotal for f .
More precisely, �B is the set of ω ∈ � such that there is some ω′ ∈ � that agrees
with ω on Bc while f (ω) �= f (ω′). Also define λB,W = �(B, W ) := P

[
�B

∣∣ FW c
]
.

The following lemma is derived as in [23, Section 5.3, equation (5.10)].

Lemma B.8 Consider the setting of Proposition B.6. Let f̂ be a monotone function of a
percolation configuration on I such that f̂ takes values in {−1, 1}, and let Ŝ denote
the associated spectral sample. Let ω,ω′ be instances of critical percolation on T

which are the same on W c and independent on W . Then the following two inequalities
are equivalent for any constant c1 > 0

P
[
ω′, ω′′ ∈ A�(x,Q)

] ≥ c1 P
[
ω′, ω′′ ∈ A4(x, B)

]
P
[
ω′, ω′′ ∈ A�(B,Q)

]
,

P
[
x ∈ Ŝ , Ŝ ∩ W = ∅] ≥ c1 E

[
λ2B,W

]
α4(r).

Recall Definition 2.3. We call the boundary arcs ∂1Q and ∂3Q (resp. ∂2Q and ∂4Q)
the open boundary arcs (resp. closed boundary arcs) of Q. For an instance of site
percolation on T the quad Q is crossed (resp. not crossed) if and only if there is a path
of open (resp. closed) sites connecting the two open (resp. closed) boundary arcs. See
Fig. 2 for an illustration of the following lemma.

Lemma B.9 Let V be a connected component of Qo. For any V ′ ⊂ V such that
V ′ ⊂ V , we can find quads q1, . . . , q4, q̂1, q̂3 and a collection of quads A(Q) for
each Q ∈ Q such the following hold.
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Fig. 2 Illustration of the quads defined in Lemma B.9. The bold black boundary arcs of the quads
Q1, Q2, Q3, q1, . . . , q4, q̂1, q̂3 indicate the boundary arcs which are connected on the event that the quads
have an open crossing. For the quads Q1 and Q2 we are in case (b) of Lemma B.9(ii), while for the quad
Q3 we are in case (a). Therefore A(Q1) and Q(Q2) consist of two quads each, while A(Q3) consists of a
single quad

(i) The quads q1, . . . , q4 are bounded away from V ′ and each other, and they are
contained in V . One of the open boundary arcs of q1 (resp. q3) is equal to a
boundary arc of V , while the other boundary arcs of q1 (resp. q3) are in the
interior of V . The same property holds for q2 and q4, but with closed instead of
open. The quads q1, . . . , q4 are in counterclockwise order around ∂V .

(ii) For each quad Q ∈ Q one of the following properties (a) or (b) holds.

(a) A(Q) consists of a single quad q contained in Q, which is such that the open
boundary arcs of q are contained in each of the open boundary arcs of Q.

(b) A(Q) consists of two quads q ′, q ′′ contained in Q, which are such that one
open boundary arc of q ′ is contained in an open boundary arc of Q and the
other open boundary arc of q ′ is contained in the closed boundary arc of either
q2 or q4 which does not intersect ∂V . The same property holds for q ′′, except
that q ′′ intersects the other open boundary arc of Q.

(iii) There is a quad Q̂ ∈ Q such that q̂1 and q̂3 are contained in Q̂. Furthermore,
one closed boundary arc of q̂1 is contained in a closed boundary arc of Q̂ and
the other closed boundary arc of q̂1 is contained in the open boundary arc of
q1 which does not intersect ∂V . The same property holds for q̂3, except that the
closed boundary arcs intersect the other closed boundary arc of Q̂ and an open
boundary arc of q4, respectively.

(iv) q1 ∪ q3 ∪ q̂1 ∪ q̂3 and q2 ∪ q4 ∪ (∪Q∈QA(Q)) are disjoint.

Observe that V is pivotal for Q if all the quads in {q2, q4} ∪
( ⋃

Q∈Q A(Q)
)
have

open crossings, and none of the quads in {q1, q3, q̂1, q̂3} have open crossings. (N.B.
obviously this is not an iff).

Proof Choose R large and consider a percolation configuration such that there is a
pivotal point x ∈ V for the event that all the quads in RQ are crossed. Let x be closed.
We may assume R−1x is bounded away from ∂V and choose V ′ such that x ∈ V ′ and
V ′ ⊂ V . For quads for which there is an open crossing define A(Q) and q as in (ii)(a)
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by using the open crossing, e.g. consider a path of open hexagons in the dual lattice
connecting the two open sides of Q and let q be contained in these hexagons.

For the remaining quads Q ∈ Q the vertex x is pivotal. Define Q̂ to be one of these
remaining quads (in Fig. 3 we chose Q̂ = Q2). If Q is a quad which is not crossed
(including, among others, the particular quad Q̂), define A(Q) as in (ii)(b) by using
two open arms from V to the open boundary arcs of Q. At this point we have not yet
defined q2 and q4, so instead of the requirement involving q2, q4 in (ii)(b) we assume
that one of the open sides of each quad in A(Q) is contained in V . We may assume
that the quads in A(Q) do not enter and exit V multiple times in the sense that for
each q ′ ∈ A(Q) the set q ′ \ V has one connected component (viewing q ′ as a subset
of C). If q ′ does not satisfy this property then it will hold for some quad q̃ contained
in q ′ (such that q̃ still satisfies the requirements as specified in (ii)(b)), and we replace
q ′ by q̃ .

Define q̂1, q̂3 satisfying (iii) by using two closed arms fromV to the closed boundary
arcs of Q̂. Again we assume that q̂1 \ V and q̂2 \ V have one connected component.

Note that (iv) is satisfied if we let the quads in A(Q) for all Q ∈ Q along with q̂1, q̂3
be contained in the interior of the hexagons which define the crossings. Finally, we can
find quads q1, . . . , q4 satisfying (i), (ii)(b), and (iii) (after doing local deformations of
the parts of the quads in A(Q)∪ {̂q1, q̂3} intersecting V ) since ∂V can be divided into
four arcs such that with these arcs in counterclockwise order, the first (resp. third) arc
contains q̂1 ∩ ∂V (resp. q̂3 ∩ ∂V ), and the union of the remaining two arcs contain
q ∩ ∂V for each q in some set A(Q). ��

The following is our first moment estimate. It is an analogue of [23, Proposition
5.2] for the case of multiple quads.

Proposition B.10 Consider the setup of Proposition B.6. There is a constant c1 > 0
(depending on U and Q) such that for any x ∈ B ′ ∩ I,

P
[
x ∈ S , S ∩ W = ∅] ≥ c1 E

[
λ2B,W

]
α4(r) . (B.2)

Proof In the proof below, we will rely on the notations introduced in [23, Section 5]. It
is sufficient to prove thefirst inequality ofLemmaB.8 (which is a quasi-multiplicativity
type of estimate). We will use for this the construction provided by Lemma B.9, where
V is the component ofQo containing R−1x . Let V ′′ be the connected component ofU
which contains the point R−1x , and set d = R dist(V ′′, V c). Then define V ′ = {y ∈
V : R dist(y, V c) > d/3}, so that V ′′ ⊂ V ′ ⊂ V .

Let B̂ ⊂ RV (resp. B̂ ′ ⊂ RV ) be the square concentric with B of side length
d/3 + r (resp. d/6 + r ). Note that B̂ has distance at least d/3 from (RV ′)c. Let
L0, . . . , L7 be defined as in [23, Section 5] with the annulus B̂ \ B̂ ′. Let E be the
event ω′, ω′′ ∈ A4(x, B̂), with the additional requirement that the two open (resp.
closed) arms cross the annulus B̂ \ B̂ ′ inside L0, L4 (resp. L2, L6), and that there are
open (resp. closed) paths that separate ∂ B̂ ∩ L j from ∂ B̂ ′ ∩ L j inside L j for j = 0, 4
(resp. j = 2, 6). Let E ′ be the event that the quads

⋃
Q∈Q A(Q), q2, q4 rescaled by

R have open crossings, and that q1, q3, q̂1, q̂3 rescaled by R have closed crossings.
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Fig. 3 Illustration of the events
E and E ′′ in the proof of
Proposition B.10. Open arms are
blue and closed arms are orange

Let E ′′ be the event that there is an open crossing from ∂ B̂ ′ to R(∂q2 ∩ ∂V ) inside
L0 ∪ ((RV ) \ B̂), that there is a similar crossing with L4 and q4, and that there are
similar closed crossings. We have

P[ω′, ω′′ ∈ A4(x, B)]P[ω′, ω′′ ∈ A�(B, RQ)]
≤ P[ω′, ω′′ ∈ A4(x, B)]P[ω′, ω′′ ∈ A4(B, B̂)] (a)

% P[ω′, ω′′ ∈ A4(x, B̂)] (b)

% P[ω′, ω′′ ∈ A4(x, B̂) ∩ E ∩ E ′ ∩ E ′′] (c)

≤ P[ω′, ω′′ ∈ A�(x, RQ)]. (d)

Here (a) and (d) are immediate by inclusion of events, (b) is [23, Proposition 5.6],
and (c) follows by using the Russo-Seymour-Welsh theorem, the FKG inequality, and
compactness. ��

The following is the (easier) second moment estimate. It is an analogue of [23,
Proposition 5.3] for the case of multiple quads.

Proposition B.11 LetS be the spectral sample of f = fRQ, whereQ is a collection of
finitely many quads. Let z be a point in one of the quads and let r > 0. Set B := B(z, r)

and B ′ := B(z, r/3). Suppose that B(z, r/2) ⊂ RQo and that B and W are disjoint.
Then for every x, y ∈ B ′ ∩ I we have

P
[
x, y ∈ S , S ∩ W = ∅] ≤ c2 E

[
λ2B,W

]
α4(|x − y|) α4(r) ,

where c2 < ∞ is an absolute constant.

Proof The proof is identical to the proof in [23]. Note that [23, Lemmas 2.1 and
2.2], which are used in the proof, hold for the spectral sample of general real-valued
functions f of the percolation configuration. For an arbitrary set A ⊂ I we let �A be
the event that A is pivotal for our quad crossing event. One key geometric argument
in the proof which still holds in our setting is that if we condition on ω restricted to
the complement of W ∪ {x, y} and if flipping ωx affects f (ω), then we must have a
four arm event from x to distance |x − y|/4, and four arms in an annulus with outer
boundary ∂ B and inner boundary defined by a box centered at (x + y)/2 with radius
2|x − y|. ��
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