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Abstract:  Using IBM’s publicly accessible quantum computers, we have analyzed the entropies 

of Schrödinger’s cat states, which have the form Y = (1/2)1/2 [ | 0 0 0 . . . 0  ñ +   | 1 1 1 . . . 1  ñ ].  
We have obtained the average Shannon entropy SSo of the distribution over measurement 

outcomes from 75 runs of 8,192 shots, for each of the numbers of entangled qubits, on each of 

the quantum computers tested.  For the distribution over N fault-free measurements on pure cat 

states, SSo would approach one as N ® ¥, independent of the number of qubits; but we have 

found that SSo varies nearly linearly with the number of qubits n. The slope of SSo versus the 

number of qubits differs among computers with the same quantum volumes.  We have developed 

a two-parameter model that reproduces the near-linear dependence of the entropy on the number 

of qubits, based on the probabilities of observing the output 0 when a qubit is set to | 0 ñ and 1 

when it is set to | 1 ñ.  The slope increases as the error rate increases.  The slope provides a 

sensitive measure of the accuracy of a quantum computer, so it serves as a quickly determinable 

index of performance.  We have used tomographic methods with error mitigation as described in 

the qiskit documentation to find the density matrix r and evaluate the von Neumann entropies of 

the cat states.  From the reduced density matrices for individual qubits, we have calculated the 

entanglement entropies.  The reduced density matrices represent mixed states with approximately 

50/50 probabilities for states | 0 ñ and | 1 ñ.  The entanglement entropies are very close to one.  
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I.  Introduction 

We have evaluated the von Neumann entropy1 and two forms of the Shannon entropy2,3 

for n-qubit Schrödinger’s “cat” states4 constructed on IBM’s publicly accessible quantum 

computers.5  In this work, we compare the empirical results with the predicted results for pure cat 

states and fault-free measurements.  The qubits in the cat states are entangled, with wave 

functions of the form  

Y = (1/2)1/2 [ | 0 0 0 × × × 0  ñ + | 1 1 1 × × × 1  ñ ] , (1) 

where | 0 0 0 × × × 0 ñ denotes the tensor product of the state | 0 ñ for qubits q[0] through q[n-1], 

and similarly | 1 1 1 × × × 1 ñ denotes the tensor product of the state | 1 ñ for q[0] through q[n – 1].  

The von Neumann entropy1 SvN is derived from the density matrix r.  For the cat states, 

we cast SvN in the form, 

SvN = - Tr (r log2 r)  . (2) 

We have used the base-2 logarithm and omitted multiplication by the Boltzmann constant, 

because that allows for a more intuitive interpretation of the numerical value of SvN.  In Eq. 2, Tr 

denotes the trace of the matrix that follows it, and the base-2 logarithm of the matrix r is the 

matrix r such that 2r = r.  A pure cat state has a von Neumann entropy of zero.   

By use of quantum state tomography6-29 on the 5-qubit quantum computers ibmq_lima,30 

ibmq_manila,31 and ibmq_belem,32 we have found non-zero values of the von Neumann entropy 

for cat states with n = 2 to 5.  The entropy is reduced by the error-mitigation method suggested in 

the qiskit documentation.6  We have obtained the reduced density matrices for individual qubits 

by taking the partial traces of the density matrix over the remaining qubits.33,34  In an entangled 

system, the reduced density matrix often characterizes a mixed state, even when the system as a 

whole is in a pure state.35-44  The von Neumann entropy of a reduced density matrix for an 

individual qubit in an entangled state is termed the entanglement entropy.35-44 We have found 

that the entanglement entropy comes very close to the ideal value of one, for each of the qubits in 

the cat states we have tested. 
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We have also used the density matrices to evaluate the Shannon entropy2,3 SSd of the cat 

states as they reside on a quantum computer; SSd is determined by the probabilities pj for the 

quantum system to be found in each particular state | j ñ = | s0 s1 s2 . . . sn ñ, where sk = | 0 ñ or | 1 ñ, 

and j runs from 1 to 2n for an n-qubit state. The probability pj is given by the jth diagonal element 

of the density matrix in the basis {| s0 s1 s2 . . . sn ñ}, and then SSd is obtained from2,3  
   2n 

SSd = - Sj pj log2 pj  . (3) 
                j = 1 

The Shannon entropy SSd for a pure cat state is one, independent of the number of entangled 

qubits, because the two components | 0 0 0 × × × 0  ñ and | 1 1 1 × × × 1  ñ are equally probable, and 

no other component contributes.   

We have used Eq. 3 to determine a second Shannon entropy SSo, which is defined as the 

average entropy of the distribution of measurement outcomes, based on multiple runs with 8,192 

shots.  In computing the entropy in an individual run, we set pj equal to the probability of the jth 

measurement outcome.  When the wave function of a pure cat state collapses upon measurement, 

no outcomes other than 0 0 0 × × × 0 and 1 1 1 × × × 1  would be observed in the absence of 

measurement errors.  Thus, the Shannon entropy SSo derived from N fault-free measurements of 

a pure cat state would approach one in the limit as N ® ¥, independent of the number of 

entangled qubits.  If the measurement outcomes were entirely random, then pj would equal 1/2n 

for each j, and SSo would be equal to n.  

We have obtained SSo from 75 runs of 8,192 shots for each n value, up to the available 

number of qubits, on each of the IBM computers that were publicly accessible during this study.5  

The slope of SSo versus n should be zero, for fault-free measurements on pure cat states.  

Empirically we have found that SSo for the cat states increases nearly linearly with the number of 

qubits in the state, and we have obtained high values of R2 for the linear fits. 

We have developed a model for the entropy SSo as a function of the number of qubits, 

based on the probability a of observing an outcome of 0 when a qubit is prepared in state | 0 ñ 

and the probability b of observing an outcome of 1 when a qubit is prepared in state | 1 ñ.  This 
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model predicts a near-linear dependence of the entropy on the number of qubits, as observed.  In 

the model, the slope of SSo versus n is smaller when the accuracy is higher.  From our 

measurements, the slope of SSo versus n is smaller for the more accurate quantum computers; it 

differs among computers with the same quantum volumes.  Our results show that the slope 

provides a sensitive and quickly computable index of performance for the quantum computers. 

The qubit states | 0 ñ and | 1 ñ on the publicly accessible IBM quantum computers are not 

the states of a spin-1/2 particle.  Instead, these computers have superconducting transmon qubits 

based on Josephson junctions operated at a temperature of 15 mK.45-49  Quantum gates induce 

transitions between the two lowest states | 0 ñ and | 1 ñ, which are effectively isolated from the 

rest of the states by the anharmonicity of the circuit and the choice of the frequency of the gate 

pulses.  These qubits respond to quantum gates for rotation and inversion and to the Hadamard 

gate50-52 just as spin-1/2 particles would.  They are coupled in the same way by the CNOT 

(CX)50,51,53 and Toffoli gates,50,51,54 so they are conveniently described with the spin-state 

terminology.  Thus, the n-qubit cat states generalize the Bell state (1/2)1/2 [ | a1 a2 ñ + | b1 b2 ñ ] for 

two spin-1/2 particles55,56 and the Greenberger, Horne, Zeilinger (GHZ) state (1/2)1/2 [ | a1 a2 a3 ñ

+ | b1 b2 b3 ñ ] for three spin-1/2 particles.4

We have experimented with two different circuit algorithms to produce the cat states.  

When preparing the two different types of circuits, we have started by applying an H gate50-52 to 

one qubit.  In the “harpsichord” circuit, that qubit is linked directly via a CNOT gate50,51,53 (also 

labeled as a CX gate53) to each of the remaining qubits.  In the “stair-step” circuit, an H gate is 

applied to one qubit, that qubit is linked via a CNOT gate to a second qubit, the second qubit is 

linked via a CNOT gate to the next qubit, and sequential CNOT linkages between successive 

qubits continue until all of the qubits have been linked.  The stair-step circuit typically transpiles 

with fewer gates than the harpsichord circuit, and the slopes of the linear fits tend to be lower for 

the stair-step.  The stair-step and harpsichord circuits are identical for the 2-qubit Bell states. 

While multiple studies of the von Neumann and Shannon entropies have been carried out 

for quantum systems, to our knowledge there has been no systematic investigation of the 
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entropies of cat states, of the type reported here.  Quantum Shannon theory, the von Neumann 

entropy and entanglement have been reviewed in lectures notes by Preskill.57 In earlier studies 

involving the Shannon entropy, Fai et al. have determined the Shannon entropy experimentally 

for polarons in quantum dots.58,59 In one study, an external electric field was applied.60  The 

Shannon entropy of the distribution over electronic states accompanying an SN2 reaction has 

been modeled computationally.61  Bera et al. have analyzed the relaxation dynamics of the 

Shannon entropy of dipolar bosons in a harmonic trap.62     

 Other entropy functions have been used to characterize quantum systems as well, most 

notably the Rényi entropy SR(q),63-72 which is defined in terms of the density matrix by  

 SR(q) = 1/(1 – q) log2(Tr rq) . (4) 

The von Neumann, Shannon, and Rényi entropies are additive for independent systems.  The 

Shannon entropy SSo generally differs from the standard thermodynamic entropy.  But for a 

system in thermal equilibrium with pj given by exp(-Ej/kT)/Q(N, V, T), in terms of the energy Ej 

of state j, the temperature T, the Boltzmann constant k, and the partition function Q(N, V, T), SSo 

= SvN and the thermodynamic entropy is equal to SSo (or SvN) multiplied by k/log2e.  The Rényi 

entropy SR(q) reduces to the Shannon entropy in the limit as q ® 1.63   

The Wehrl information entropy73,74 has been analyzed for cat states by Miranowicz et 

al.75 The Tsallis entropy,71,76,77 which is non-additive, has been applied in work on entanglement 

detection,78 entanglement characterization,79 and decoherence of qubits.80,81  Brukner and 

Zeilinger have suggested a quadratic function of the probabilities of measurement outcomes as a 

new measure of information.82,83  Based on studies of entropy production when a time-dependent 

external force acts on a spin system that is strongly coupled to a non-Markovian heat bath, 

Sakamoto and Tanimura84 have suggested replacing the von Neumann entropy with the entropy 

derived from Boltzmann’s H theorem,85 because Boltzmann’s H function accounts explicitly for 

the entropy changes due to the system-bath interactions.84 

Experimental measurements on entangled qubits and entangled photons have established 

the quantum mechanical behavior of Bell states, first with the work of Freedman and Clauser in 
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1972,86 work by Fry and Thompson in 1976,87 and then a series of studies in 1981 and 1982 by 

Aspect and co-workers,88-90 who closed a number of the detection loopholes in their work on the 

violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality.91  Subsequent research has 

focused on closing coincidence-time, fair-sampling, detector efficiency, and “clumsiness” 

loopholes,92-100 ensuring randomness of the measurement settings,101,102 and demonstrating 

entanglement between widely separated photons.103,104  The experiments show violations of the 

Bell55,56 and CHSH inequalities91 that rule out local hidden variable theories.105 Violations of 

these inequalities, the related Mermin inequalities106,107 and a Leggett-Garg inequality108,109 have 

been demonstrated on quantum computers110-112 (see also Refs. 113 and 114).  An entropic 

variant of the Bell inequalities is also violated quantum mechanically, though for different angles 

than the standard inequalities.115 Chang et al. have formulated a multi-qubit variant of the Bell 

inequalities; they connected the maximal violation to the topological entanglement entropy.116 

Elben et al. have demonstrated a method of detecting entanglement in mixed states, based on 

local randomized measurements.117 

In work on the preparation of cat states, Pan et al.118 first reported the experimental 

preparation of a GHZ state for photons, and Lavoie, Kaltenbaek, and Resch119 proved that a GHZ 

state exhibits nonlocality.  Six-ion cat states that generalize the GHZ state have been prepared by 

Leibfried et al., using two hyperfine ground states of the beryllium ion as the individual-qubit 

basis states.120 Wei et al. have verified multipartite entanglement of an 18-qubit GHZ state with 

an entanglement metric based on multiple quantum coherences; they found a fidelity of 0.5165 ± 

0.0036.121  Later, Mooney et al.122 have generated and verified 27-qubit GHZ states with a 

fidelity of 0.546 ± 0.017 on the quantum computer ibmq_montreal123 after quantum readout error 

mitigation, with a detectable improvement in fidelity after parity verification.  The same 

investigators124 have demonstrated entanglement of all 53 qubits on ibmq_rochester125 and all 65 

qubits on ibmq_manhattan.126 Earlier, Sager, Smart, and Mazziotti127 had prepared states 

interpretable as exciton condensates of photon particles and holes on ibmq_rochester, using 53 

qubits.  They proved that a condensate state had formed, because they found several eigenvalues 
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larger than one, for the reduced particle-hole density matrix, modified to remove the ground state 

resolution.  Their simulations showed the predicted result of 26.5 for the largest eigenvalue in the 

case of the 53-qubit condensate, though the eigenvalue obtained directly from the quantum 

computer was not as large.127 The experimentally feasible formation of GHZ states with 2,000 

atoms in a high-finesse optical cavity via an entanglement amplification technique has been 

proposed by Zhao et al.128  

As a counterpart to the GHZ state, Dür, Vidal, and Cirac129 have identified the W state, 

which is given by (1/3)1/2 [ | a(1) a(2) b(3) ñ + | a(1) b(2) a(3) ñ + | b(1) a(2) a(3) ñ ]. The W 

state has been studied experimentally by Eibl et al.130  Like the Bell and GHZ states, the W state 

shows non-classical behavior. In W states, entanglement persists even after particle loss.131 

Häffner et al. have prepared a generalized W state with up to eight 40Ca+ ions in a linear Paul 

trap; the qubit states were represented by the 2S1/2 ground state and a metastable 2D5/2 state.131 

Omran et al. have produced and manipulated cat states of the form (1/2)1/2 [ | 0 1 0  1 × × × ñ + | 1 0 

1  0 × × × ñ ] in a one-dimensional array of 87Rb atoms with up to twenty qubits.132  They encoded 

qubit-state | 0 ñ with the ground state of the atom and encoded | 1 ñ with a Rydberg state.132   

J. M. Deutsch and co-workers have used the entanglement entropy to investigate the 

development of statistical distributions within a subsystem of an entangled system in a pure 

state.35,38,133  The rest of the system effectively acts as a bath for the smaller subsystem, allowing 

the distribution over the eigenstates of the subsystem to thermalize.35,38,133 Then the 

entanglement entropy becomes equal to the thermodynamic entropy. Working with a Bose-

Einstein condensate of 87Rb atoms,134,135 Greiner, Lukin, and co-workers have examined the 

development of thermal distributions of the occupancies of sites in an optical lattice, when the 

coupling between sites is changed abruptly.41  Similar behavior has been observed for one 

fermion in an entangled multi-fermion system, with a sudden change in the Hamiltonian.136-138 

Localization due to disorder may prevent thermalization, however;139 on the other hand, in 

many-body systems with power-law interactions, even when localization occurs, algebraic 

growth of entanglement entropy has been found.140    
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D. Deutsch has used the Shannon entropy SSo of the distribution over measurement 

outcomes to develop an alternate version of the uncertainty principle, with the goal of providing 

a fixed lower bound for the uncertainty.141 His suggestion has been explored further by Jizba, 

Dunningham, and Joo,142 Majernik and Opatrný,143 Chen et al.,144 and Veeren and de Melo.145  

Deutsch showed that if A and B are non-commuting operators for observables with sets of 

eigenvalues {ai} and {bj}, then the sum of the distribution entropies SSoA({ai}) and SSoB({bj}) is 

bounded below,141 although the greatest lower bound has not yet been identified.  Bergh and 

Garttner have suggested the use of entropic uncertainty relations to detect entanglement.146,147  

In Section II of the current work, we describe one construction of the Schrödinger’s cat 

states and then present results for the von Neumann entropies of n-qubit states and the 

entanglement entropies of single qubits.  In Section III, we present our results for the Shannon 

entropies SSd and SSo.  We show that SSo is nearly linear in the number of qubits in the cat state.  

We describe a second circuit that we have used to construct the cat states and show how the 

slope of the near-linear relationship differs for the two circuits.  The entropy depends on the 

number of gates used to implement the circuits, when transpiled.  In Section IV, we present a 

simple model that yields a nearly linear relationship between the Shannon entropy SSo and the 

number of qubits n, based on the average probabilities of observing the values 0 and 1 upon 

measurement, when the qubits have been prepared in the states | 0 ñ and | 1 ñ.  In Section V, we 

discuss an algorithm-specific variant of the quantum volume148-151 that applies to cat states, and 

we provide a brief summary.  We conclude that the variation of the entropy with the number of 

qubits provides a useful index of performance for current quantum computers.     
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II.  Circuit for Schrödinger’s cat states, von Neumann entropy, and entanglement entropy 

We have prepared the n-qubit Schrödinger’s cat states on IBM’s public quantum 

computers using qiskit. First, a Hadamard gate,51 listed as h(q0), was applied to qubit q[0].  The 

remaining qubits were coupled sequentially via controlled-not (CNOT) gates,51 so that q[0] acts 

as the control for q[1], then q[1] acts as the control for q[2], continuing until q[n - 2] acts as the 

control for q[n - 1].  The CNOT gates are listed as cx[qi, qj] where qi is the control qubit and qj 

is the target.  For example, the three-qubit cat states with | Y ñ = (1/2)1/2 ( | 0 0 0 ñ + | 1 1 1 ñ ) are 

coded as 

 h(q0) 

 cx([q0, q1], [q1, q2]) , 

 corresponding to the stair-step algorithm. 

We have determined the density matrices for the cat states using the code for 

entanglement verification provided in qiskit.  Quantum tomography6-29 relies on production and 

measurement of many states that are identical except for the effects of faults in their preparation.  

A GHZ state without transpilation or measurement is set up by get_ghz_layout; get_ghz_simple 

sets up a GHZ state with measurement.  Both codes are included in Class BConfig, which  

parallelizes the CNOT gates to produce a circuit of less depth.152 Theoretical state counts are 

determined from the ideal state vector produced by get_ghz_layout.  For the actual GHZ states, 

tomography is carried out with state_tomography_circuits,153 which requires 3n circuits for an n-

qubit state.154 The codes in StateTomographyFitter155 including fit156 and state_fitter157 apply the 

maximum likelihood method158-161 to reconstruct the quantum state by convex optimization with 

CVXPY.162,163 

Alternatives to the maximum likelihood method have been suggested, including a hedged 

maximum likelihood method,164,165 a method involving an accuracy matrix,166 maximization of 

the mean fidelity,167 a method based on Bayesian inference,168-170 and a maximal entropy 

approach that is well suited to reconstructing the density matrix when not all measurements can 

be performed with high fidelity.28,171 Special considerations for the tomography of pure states 
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have been described by Bagan et al.,168 Jupp et al.,172 and Gross et al.173  The tomography of 

permutationally invariant states has been discussed by Tóth et al.174 and by Moroder et al.175   

The fidelity F of the density matrix is defined by F = [Tr (rp1/2 rT rp1/2)1/2]2, where rp is 

the density matrix of the pure cat state, and rT is the matrix found by tomographic 

experiments.176 For the cat states, the fidelity is simply the sum of the four corner elements of the 

density matrix.6  The fidelity may be improved by an error mitigation method that is included in 

the qiskit procedure for tomography.  The raw density matrix is converted into a vector vraw, a 

calibration matrix A is constructed based on measurements, and then the error-mitigated density 

matrix vcal in vectorized form is obtained by minimizing || A vcal – vraw ||2.176   The fitted density 

matrix may be constrained to be positive semi-definite.177 The IBM documentation directs that 

tomography should not be performed on states with more than five qubits.   

The computational time required for tomography grows exponentially with the number of 

qubits, because 3n circuits are needed for quantum state tomography on an n-qubit cat state.  We 

have examined the timing of runs with 2-5 entangled qubits on lima,30 manila,31 and belem.32  

The time is fit well as a function of the number of qubits n by the form k1 3n + k2.  The constant 

k2 appears to reflect the overhead associated with the set-up time for the runs. Its inclusion 

improves the fit to the required times for 2- and 3-qubit cat states, but it is small compared with 

k1 3n for the 4- and 5-qubit cat states.  Further information and plots of the “time in system” are 

included in the supplementary material.   

As an example, the density matrix that we obtained for a 3-qubit GHZ state for a run on 

ibmq_santiago178 is shown in Fig. 1.  This density matrix is Hermitian, but not idempotent.  We 

found the largest entries for the outer products | 0 0 0 ñ á 0 0 0 |, | 0 0 0 ñ á 1 1 1 |, | 1 1 1 ñ á 0 0 0 |, 

and | 1 1 1ñ á 1 1 1 | , but additional coherences are present.  The trace of the printed density 

matrix is 0.99998, reflecting rounding errors.  The ratio of the sum of the two largest entries on 

the diagonal to the sum of the remaining entries on the diagonal is 9.7267.  The trace of the 

square of the density matrix, which is an indicator of the purity of the state,179,180 is 0.74926.  The 

eigenvalues of the density matrix are 0.86210, 0.06038, 0.04157, 0.02152, 0.01442, -0.00001, 
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0.00000, and 0.00000; their sum is 0.99998, as expected.  The negative eigenvalue almost 

certainly results from truncation error, based on the number of figures in the printed density 

matrix.  For a pure quantum state, one of the eigenvalues of the density matrix is one, and the 

rest are zero.  

The error-mitigated version of the density matrix rm from the same run is also shown in 

Fig. 1.  The trace of rm is 1.00000.  The ratio of the sum of the two largest entries on the 

diagonal to the sum of the other entries on the diagonal has been increased to 18.109 by the error 

mitigation procedure.  Additional coherences are still present, as shown by the non-zero entries 

in the density matrix for outer products of non-identical states, in addition to | 0 0 0 ñ á 1 1 1 | and  

| 1 1 1 ñ á 0 0 0 |.  The trace of the square of the error-mitigated density matrix has risen to 

0.86761.  The eigenvalues of the error-mitigated density matrix rm are 0.93033, 0.03690, 

0.02626, 0.00650, 0.00001, – 0.00001, – 0.00001, and 0.00000, and the sum of the eigenvalues is 

1.00000.  Again, the negative eigenvalues result from truncation errors.        

The von Neumann entropy of the density matrix is zero for a pure quantum state, but the 

observed value for the matrix r is 0.82720.  The von Neumann entropy of the error-mitigated 

density matrix rm drops to 0.45771.  The apparent presence of negative eigenvalues is not 

reflected in the value of the von Neumann entropy SvN found with the qiskit procedure, since the 

negative eigenvalues would otherwise lead to an imaginary component of SvN.   

Reduced density matrices for individual qubits are obtained by taking a partial trace over 

the states of the remaining entangled qubits.33,34  Labeling the first qubit as A and taking IA as the 

identity operator for that qubit, labeling the two remaining qubits as B and C, and using Ä to 

denote a tensor product, the partial trace over B and C for a three-qubit density matrix rT is given 

by 

rA = (IA Ä á aB aC |) rT (IA Ä | aB aC ñ) + (IA Ä á aB bC |) rT (IA Ä | aB bC ñ) 

  + (IA Ä á bB aC |) rT (IA Ä | bB aC ñ) + (IA Ä á bB bC |) rT (IA Ä | bB bC ñ)  . (5)  

For pure cat states, the reduced density matrices represent mixed states, with vanishing 

coherences.  The reduced density matrices for qubits A, B, and C (corresponding to q[0], q[1], 
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and q[2]) are shown in Fig. 1.  These density matrices are also Hermitian, with a trace of 1.00000 

in each case. They represent mixed states with nonzero coherences.  The trace of rA2 is 0.50214, 

the trace of rB2 is 0.50085, and the trace of rC2 is 0.50095.  The traces of the squares of the error-

mitigated reduced density matrices rAm2 , rBm2 , and rCm2 are similar.  For a pure cat state, all of 

the r2 values for individual qubits would be 0.5.   

The von Neumann entropies of the reduced density matrices are all very close to one.  

For rA, the von Neumann entropy is 0.99691; for rB, the entropy is 0.99877; and for rC, the 

entropy is 0.99863.  The entropies of the error-mitigated reduced density matrices formed from 

the error-mitigated multi-qubit density matrix are not appreciably closer to one and may in fact 

be smaller.  For rAm, the von Neumann entropy is 0.99823; for rBm, the entropy is 0.99724; and 

for rCm, the entropy is 0.99793.  For a mixed state with two possible measurement outcomes—0 

or 1 for a single qubit—and no coherences, the von Neumann entropy would equal one if the two 

outcomes were equally probable.  If the probabilities are not equal, the von Neumann entropy is 

given by 

SvN = - (1/2 + x) log2 (1/2 + x) - (1/2 – x) log2 (1/2 – x)  

  = 1 - (1/2 + x) log2 (1 + 2x) - (1/2 – x) log2 (1 – 2x)  

  = 1 – log2 (1 - 4x2)1/2 – log2 [(1 + 2x)/(1 – 2x)]x  , (6) 

which applies in the current case.  We note that Anaya-Contreras et al. have proposed a method 

to calculate the von Neumann entropy of a larger system from the entropy of a subsystem that is 

initially in a mixed state.181    

In Table 1, we list the averages of five results for the von Neumann entropies of cat states 

coded with the stair-step algorithm, for numbers of qubits from 2 to 5.  We also list the average 

Shannon entropies SSd derived from diagonal elements of the density matrices.  Both the raw 

values and the error-mitigated values of SvN and SSd are listed, along with the raw fidelities.  The 

difference between the average values and the expected results for a pure cat state increases and 

the fidelity drops off as the number of qubits increases, monotonically in all cases.  The standard 

deviations are also listed in Table 1.  The results were obtained from runs on lima,30 manila,31 
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and belem.32  We have observed appreciable variability in the von Neumann entropies from runs 

at different times, particularly for the 5-qubit cat states on belem.  
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III. Shannon entropies SSd and SSo for Schrödinger’s cat states

We have derived the Shannon entropies SSd of the cat states as they are resident in the 

computer by determining the density matrix in the basis {| j ñ = | s0 s1 s2 . . . sn ñ} by quantum 

state tomography.6-29  We have used Eq. 3, with pj equal to the diagonal element of the density 

matrix for the state | j ñ.  If the density matrix were diagonal in the basis { | j ñ = | s0 s1 s2 . . . sn ñ }, 

then SvN and SSd would be identical; but since the basis states | j ñ are not the eigenstates of the 

density matrix, SvN ¹ SSd. 

For the 3-qubit GHZ state taken as an example in Fig. 1, SSd = 1.5833.  The Shannon 

entropy derived from the error-mitigated density matrix is denoted by SSd,m and its value is 

1.3668.  Both are larger than the value of 1 expected for a pure cat state.  In contrast, the 

Shannon entropies SSd of the reduced density matrices are all very close to their ideal value of 1:  

SSd,A = 0.99997, SSd,B = 0.99996, and SSd,C = 0.99956.  The connection of the Shannon entropy to 

tomography has also been discussed by Chernega et al.14  

Figure 2 shows the spread of raw and error-mitigated values of SSd for two sets of twenty 

runs on 3-qubit cat states on jakarta182 with 1024 shots per circuit, along with twenty values of 

SSo also obtained from runs of jakarta182 with 1024 shots per job.   The average value of SSo 

differs relatively little from the average of the raw values of SSd obtained from the two sets of 

runs, although the spread of SSo is somewhat greater.  As expected, the error mitigation 

procedure reduces SSd noticeably, with a few outliers.  We have found that the imaginary parts of 

the entries for | 0 0 0 ñá  1 1 1 | and  | 1 1 1 ñá 0 0 0 |  in the raw density matrices are relatively 

large ( ~12-14% of the largest entries on the diagonal), and the imaginary parts are increased by 

the error mitigation procedure.     

Direct calculations of SSo, which is defined as the average Shannon entropy of the 

distribution over measurement outcomes, require appreciably less time than the tomography to 

find SvN and SSd.  As a result, we were able to obtain a more extensive set of results for SSo from 

multiple quantum computers.  We generated cat states in individual jobs, each consisting of 75 

circuits with 8192 shots (the maximum number of circuits per job when this work was carried 
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out, and the maximum number of shots per circuit).  All of these jobs were executed on the 

quantum computers within the same calibration period, to ensure consistency between runs.  

Each circuit was tested on the simulator_statevector183 to confirm that the circuit was interpreted 

as the intended fully entangled state.  The simulator_statevector was used to confirm that SSo is 

very close to one for fault-free n-qubit cat states.  Deviations from SSo = 1 for the cat states on 

the simulator result from random statistical effects that cause the measurement outcomes 0 0 × × × 

0 and 1 1 × × × 1 to differ slightly in number, reducing SSo.    

In the executed versions of the code, the transpiler selected the activated qubits, so that 

the H gate was sometimes applied to qubits other than q[0], though the overall coupling scheme 

was maintained.  The transpiled Hadamard gate51 was implemented by three operations, RZ SX 

RZ, where RZ is a rotation by p/2 around the Z axis and SX is the square-root of the Pauli spin 

matrix sX.51   The operation RZ is accomplished by a change of basis, without the application of 

a pulse.  The combination RZ SX RZ differs from the H gate by a phase, but the results of 

measurements are unaffected by the phase difference.  The CNOT gates51 were typically applied 

directly to qubits that were adjacent in the architecture of a particular quantum computer.  If 

qubits qi and qj were not adjacent, however, the transpiler implemented a sequence of CNOT 

gates to accomplish the coupling between qi and qj as designated in the input circuit.   

As an alternative to the stair-step circuits described in Sec. II, we also coded harpsichord 

circuits, in which each of the qubits after q[0] is coupled back to q[0] via CNOT gates.  Thus 

q[0] acts as the control qubit for all of the others.  We have found that the transpilation of the 

harpsichord circuits is not unique.  Figure 3 shows the circuit diagram after transpilation of the 

stair-step algorithm and three different circuit diagrams for the harpsichord algorithm, for 4-qubit 

cat-states on manila.31 

The entropy SSo for each set of outcomes with 8192 shots was calculated using Eq. 3.  

Table 2 shows the entropy values averaged over the 75 circuits in each job.  The averages are 

listed for each of the computers, each of the numbers of entangled qubits n, and the two coupling 

algorithms.  In Fig. 4, the entropy SSo is plotted versus the number of qubits n for the stair-step 
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algorithm run on ibmq_yorktown,184 ibmq_belem,32 ibmq_manila,31 ibmq_athens,185 and 

ibmq_santiago,178 with n from 2 to 5.  In Fig. 5, SSo is plotted versus n for the stair-step 

algorithm and the harpsichord algorithm on yorktown, athens, and santiago, to illustrate the 

difference between the entropies found with the two different algorithms.  For both algorithms 

on all of the quantum computers we used, we have found nearly linear relationships between SSo 

and the number of qubits n.  The dashed lines in Figs. 4 and 5 show the least-squares fits of 

straight lines to the results, weighted by the inverses of the variances. 

Table 3 shows the linear least-squares fits and the coefficients of determination (the R2 

values) for each fit, for ibmq_santiago,178 ibmq_athens,185 ibmq_manila,31 ibmq_belem,32 

ibmq_lima,30 ibmq_quito,186 ibmq_yorktown,184 and ibmq_melbourne.187  In the fitting 

procedure, the data have been weighted by the inverses of the variances.  The fit of SSo versus n 

to a straight line is good in all cases, with R2 values ranging from 0.9617 to 0.9998.  For 

perfectly constructed cat states with no measurement errors, the slopes would be zero.  A smaller 

value of the slope indicates better performance of the quantum computer.  We have found the 

smallest slope for the stair-step algorithm on santiago (m = 0.1565, R2 = 0.9746), and the largest 

slope for the harpsichord algorithm on melbourne (m = 0.8055, R2 = 0.9974).  Fewer gates are 

typically needed to implement the stair-step algorithm than the harpsichord algorithm.  The value 

of SSo is lower for the stair-step algorithm than for the harpsichord algorithm in all but one of the 

cases. 

We have also found differences in the outcomes depending on the connectivity of the 

qubits on the quantum computers.  The two most common layouts on IBM’s publicly accessible 

5-qubit quantum computers are linear (santiago,178 manila,31 and athens185) with connections 0-1-

2-3-4, and T-shaped (belem,32 lima,30 and quito186), with qubits 0-1-2 connected on the 

horizontal cross-bar of the T and qubits 1-3-4 connected on the vertical bar.  The qubits on 

yorktown184 have a more connected “bow-tie” layout.  The qubit layout on melbourne187 has two 

parallel rows connected linearly in each row, with paired connections from row to row; the two 
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qubits at the opposite ends of the top row and the bottom row are connected only to the other 

qubits of that same row.  

For the 5-qubit cat states, more gates are needed to implement the stair-step algorithm for 

a T-shaped layout than for a linear layout, because extra gates are needed to entangle q2 and q3 

in the T-shape.  The stair-step algorithm still requires fewer CNOT gates than the harpsicord 

algorithm, but the differences between the SSo values for the two algorithms are less dramatic for 

the T-shaped layouts than for the linear layouts. The best pairing of the quantum algorithm with 

the qubit layout generally reduces the entropy of the measured outcomes and leads to better 

performance of the quantum computers on the current task. 

Because the entanglement entropy has a direct connection to the thermodynamic 

entropy,35,38,133 it is interesting to compare the entanglement entropy with the Shannon entropy 

SSo of the distribution over measurement outcomes.  The relationship between the two depends 

on the quality of the cat states.  If the cat states and measurements are fault-free, then the 

Shannon entropy SSo is identical to the entanglement entropy (i.e., the von Neumann entropy of 

the reduced density matrices).  Otherwise, SSo differs from the entanglement entropy.  For 

example, the entanglement entropy of each of the qubits in the 3-qubit cat state in Fig. 1 is very 

close to one, while we have obtained an average Shannon entropy of the distribution over 

measurement outcomes for these 3-qubit cat states that is closer to 1.4.   

The Shannon entropy SSo of an ideal state is not always equal to the entanglement 

entropy, however.  For an ideal three-qubit W state, (1/3)1/2 [ | a(1) a(2) b(3) ñ + | a(1) b(2) a(3) ñ 

+ | b(1) a(2) a(3) ñ], SSo = log23, while the entanglement entropy is log23 – 2/3.  The n-qubit 

generalization of the W state contains n terms, with a different qubit in the b spin state in each of 

the terms and the remaining qubits all in the a spin state.  For an ideal n-qubit W state SSo = 

log2n, while the entanglement entropy is log2n – [(n – 1)/n] log2(n – 1). 
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IV.  Model for the entropy as a function of the number of qubits 

We have developed a simple model for SSo based on the probability a that an outcome of 

0 will be observed when a qubit has been prepared in state | 0 ñ and the probability b that an 

outcome of 1 will be observed when a qubit has been prepared in state | 1 ñ.  When an n-qubit cat 

state is prepared, the probability p(q, n – q) of obtaining a measurement outcome with q entries 

of 0 and n – q entries of 1 is  

 p(q, n – q) = (1/2) C(n, q) [ aq (1 – a)n-q + (1 – b)q bn-q ]  , (7) 

where C(n, q) denotes the number of combinations of n items taken q at a time.  The Shannon 

entropy SSm(n) of the distribution over measurement outcomes for an n-qubit cat state is 

therefore 
          n 
 SSm(n) =  - S p(q, n – q) log2[p(q, n – q)]  . (8) 
                  q = 0  

In Fig. 6a and 6b, the entropy is plotted as a function of a and b, for various values of n.  

Fig. 6a shows SSo for a 4-qubit cat state, while Fig. 6b shows SSo(n) for n = 2, 5, 10, and 15, with 

the plots stacked on each other.  In each, case, the maximum Shannon entropy is SSo(n) = n, 

which is found when a = b = 1/2.  It is apparent from the plots that the entropy is close to n over 

a range of values of (a, b), because the plots are almost flat near their maxima.  This is especially 

evident in Fig. 6a.  The range of values of (a, b) where SSo(n) is close to n becomes narrower as n 

increases.  The entropy SSo(n) =1 when a = b = 1, which would yield a fault-free cat state. In an 

extreme case where a = 0 and b = 1 or a = 1 and b = 0, only one measurement outcome would be 

observed, giving SSo(n) = 0.  The function SSo(n) is symmetric in a and 1 – a and in b and 1 – b.  

It is also symmetric with respect to interchange of a and b. 

In the first version of this model, we used the average values of a and b for the qubits on 

each of the computers to find SSo(n) as a function of n.  The values for each qubit are tabulated 

by IBM and updated after the calibration runs on the computers.  While it would be possible to 

develop a more detailed model based on the accuracy of producing states | 0 ñ and | 1 ñ on 

individual qubits, it would be necessary to track the specific qubits activated in each of the 75 
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runs, after the circuits have been transpiled.  It would also be necessary to disaggregate the 

probabilities in Eq. 7 by identifying the particular qubits in states | 0 ñ and | 1 ñ since (for 

example) the probabilities of the outcomes 0 0 1, 0 1 0, and 1 0 0 would be distinct, rather than 

identical.  Additionally, the specifics of the CNOT gates would need to be included in a more 

detailed model, along with a representation of the crosstalk between qubits and the effects of 

stray fields.   

Our simple model suffices to account for the near linearity of the plots of SSo(n) versus n, 

which is the principal objective of the model.  As expected, the slopes are smaller when a and b 

are closer to one.  As shown by comparison of entries in Tables 3 and 4, the slopes calculated 

with the average a and b values differ from the observed slopes for the stair-step algorithm; 

however, the slopes are correlated.  In all but one case, the observed slopes are larger, probably 

due to additional error sources that are not included in the model with the average a and b values. 

In a second version of the model, we have identified effective values a¢  and b¢ for each 

computer, by matching the modeled and observed slopes of SSo versus n to four figures.  The 

values of a¢ and b¢ tend to be smaller than a and b.  We have constrained a¢  and b¢, so that the 

ratio a¢/b¢  = a/b for each computer.  Fits to the empirical and model results for SSo vs. n on the 5-

qubit computers yorktown,184 belem,32 manila,31 athens,185 and santiago178 are shown in Fig. 7.  

The model results for yorktown are in excellent agreement with the empirical results.  We have 

examined the difference D between the intercept of the linear fit to the model for SSo(n) and the 

intercept of the weighted linear least-squares fit to the empirical results for SSo(n).  For yorktown, 

D is only 0.0018, which accounts for the high quality of the fit with the model.  For manila and 

athens, SSo(n) from the quantum computer runs lies very nearly on a straight line. The 

discrepancies between the model and the quantum computer results are mainly due to larger D 

values, 0.0569 on manila and 0.1544 on athens. The model fit for santiago is good, though not as 

good as for yorktown, primarily due to the slight deviation of SSo(n) from a straight line.  Still, 

the R2 value for the stair-step algorithm on santiago is 0.9746.  On quito and lima (not shown), 

the fit of the model is slightly better than on athens, but not as good as on santiago.  For belem, 
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the empirical averages for SSo(n) are furthest from the model; belem has the largest D value of 

the 5-qubit computers, at 0.2464.  On belem, the variance in the values of SSo(n = 5) is more than 

one hundred times the variance in SSo(n = 2), while for yorktown and santiago, the ratio of these 

variances is less than five. 

Figure 8 shows the comparison of the model and the weighted linear least-squares fit to 

the averages of SSo(n) found with the stair-step and harpsichord algorithms on melbourne.187  The 

standard deviation of SSo(n) increases with n; the lower weight for the points with larger n causes 

those points to lie further from the straight-line fit.  Even though D for melbourne is the largest 

we have found (at 0.4897), the model and the empirical results agree reasonably well, due to the  

comparatively large values of SSo(n) in this case.     

Extrapolating the linear fits obtained from the models based on (a, b) and (a¢ , b¢) to 

obtain SSo(n = 1) tends to yield larger values than those obtained by extrapolation of the linear 

fits of the empirical results to SSo(n = 1).  For an ideal single-qubit state (1/2)1/2 ( | 0 ñ + | 1 ñ ), the 

entropy of the distribution over measurement outcomes should be equal to one.  Values lower 

than one for the Shannon entropy SSo(n = 1) reflect an imbalance between the probabilities of 

obtaining 0 or 1 for a qubit prepared in the state (1/2)1/2 ( | 0 ñ + | 1 ñ ), with 0 usually being more 

common.  Errors in the production and measurement of the cat states may cause the extrapolated 

empirical values of SSo(n = 1) to exceed one.  

Based on the fits with (a¢ , b¢), the extrapolated values of SSo(n = 1) in the model range 

from 1.0952 on santiago178 to 1.1665 on yorktown.184  The extrapolated values of SSo(n) for n = 

1, based on the least-squares fit to the empirical results for the stair-step algorithm, cover a 

broader range from 0.8254 (on melbourne187) to 1.1647 on yorktown,184 but the remaining results 

are clustered in the range from 0.9135 to 1.0868.  For the harpsichord algorithm, extrapolations 

of SSo(n) to n = 1 based on the empirical results typically give values smaller than one, in the 

range from 0.7841 (on lima30) to 0.9261 (on manila31).  Only yorktown184 gives a value greater 

than one, at 1.0617. 
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V. Discussion and summary

Based on the results in this work, we suggest that the slope of a least-squares fit to SSo, 

the average Shannon entropy of the distribution over measurement outcomes for Schrödinger’s 

cat states, provides a useful index of performance for noisy intermediate-scale quantum (NISQ) 

computers.  The designation NISQ was introduced by Preskill.188  The slope can be obtained 

quickly and its values differentiate among computers that have identical quantum volumes. The 

quantum volume148-151 indicates the suitability of a quantum computer for a much wider range of 

applications, since it is defined by considering the square circuits and heavy outputs of at least 

100 different circuits.148  A circuit is square if the number of qubits is equal to the instruction 

depth.  By definition, the heavy outputs are those whose probability exceeds the median output 

probability.  The quantum volume is based on the largest square circuits for which 2/3 or more of 

the outputs are heavy at the 97. 5% confidence level.  If the largest such square circuits have n 

qubits, then the quantum volume is 2n (Ref. 147).  The more recent 5-qubit computers have a 

quantum volume of 32, which is the largest possible value for a 5-qubit device.  Yet the 

performance of the computers in this group differs, and the slopes that we have found for SSo(n) 

versus n indicate the differences. 

Blume-Kohout and Young have suggested an alternative to the quantum volume, based 

on circuits with the depth and number of qubits uncoupled.189  Another alternative based on a 

specific suite of application-oriented benchmarks has recently been suggested by Lubinksi et 

al.190 We have explored a variant of the quantum volume that is specific to the cat-state 

algorithms.  We identify the two outputs that should be observed for these states as the heavy 

outputs (either 0 for all qubits or 1 for all qubits).  We have found the quantum volume as 

usual—but limited to the cat-state algorithm.   

In Table 5, we illustrate the algorithm-specific quantum volume calculations by listing 

the percentages of the heavy outputs for 25 runs on lima30 for various numbers of qubits, the 

averages for those 25 runs and for 75 runs, and the standard deviations.  We have worked with 

the standard deviation of the percentage of heavy outputs in the individual runs, rather than the 
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standard deviation of the mean, which is smaller.  Thus our estimates of the algorithm specific 

quantum volumes are conservative, but they are applicable to the likelihood of obtaining at least 

2/3 heavy outputs in an individual run.   For n = 2, 3, and 4, the value 2/3 lies 125. 10, 84. 75, and 

10. 22 standard deviations below the mean percentage of the heavy outputs, respectively; but for 

n = 5, 2/3 lies only 1.728 standard deviations below the mean percentage, so in this case, the 

quantum volume specific to the cat states is 16, which is larger than the quantum volume of 8 

listed by IBM.  (The z scores listed in Table 5 are based on all figures in the means and standard 

deviations, not just the rounded figures.)

We have compared the general-purpose quantum volumes Vg with the cat-state specific 

quantum volumes Vc for the stair-step algorithm on other quantum computers:  Vc agrees with 

Vg at 32 for santiago,178 athens,185 and manila.31  For belem32 and quito,186 Vc is 32, although Vg 

is 16.  For yorktown184 as for lima,30 Vc is 16 for the stair-step algorithm, but Vg is 8.  For 

melbourne,187 Vc and Vg both equal 8.  For the harpsichord circuits, the cat-state specific 

quantum volumes agree with the general-purpose quantum volumes on santiago, athens, and 

manila (at 32), and on belem and quito (at 16).  The value of Vg is 8 for lima, yorktown, and 

melbourne, but the Vc values for the harpsichord circuits are 16, 8, and 4, respectively..   

To summarize, we have evaluated the von Neumann entropies of n-qubit Schrödinger’s 

cat states (for n  £ 5) by use of tomography on IBM’s publicly accessible quantum computers.  

The von Neumann entropies exceed the expected value of zero for pure cat states, but error 

mitigation reduces the value of the von Neumann entropy.  We have evaluated the entanglement 

entropies for individual qubits.  As indicated by the reduced density matrices, the individual 

qubits are in mixed states with nearly equal populations of | 0 ñ and | 1 ñ; the off-diagonal 

elements of the density matrices are small.   We have evaluated two forms of the Shannon 

entropy: SSd is derived from the diagonal elements of the density matrices, while SSo is obtained 

from the distribution over measurement outcomes for the projection of the “spins” along the z 

axis in the n-qubit cat states.  For pure cat states, SSd(n) = 1, and for fault-free measurements on 

pure cat states, SSo(n) = 1, independent of n.  On IBM’s publicly accessible quantum computers, 
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we have found that SSo actually increases nearly linearly with n.  A simple two-variable model 

that employs the probabilities of observing outcomes 0 and 1 when the states | 0 ñ and | 1 ñ are 

initialized on a quantum computer accounts for the near linearity.  The slope of SSo(n) versus n 

provides a comparatively sensitive index of performance for NISQ computers.     
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Table 1.  The calculated von Neumann entropies SvN of cat states with qubit numbers n from 2 to 5, the von Neumann entropies SvN,m
after error mitigation, the Shannon entropies SSd derived from the diagonal elements of the density matrices, the Shannon entropies 
SSd,m after error mitigation, and the fidelities raw F.  The averages of five values from runs on lima,30 manila,31 and belem32 are listed 
along with the standard deviations.  

SvN SvN,m SSd SSd,m F 

lima 
2 0.4176 ± 0.0281 0.1293 ± 0.0223 1.2703 ± 0.0254 1.1177 ± 0.0385 0.9255 ± 0.0031 
3 0.6592 ± 0.0140 0.2313 ± 0.0297 1.4828 ± 0.0174 1.2139 ± 0.0166 0.8850 ± 0.0032 
4 1.0558 ± 0.0247 0.2664 ± 0.0336 1.8558 ± 0.0112 1.3312 ± 0.0208 0.7989 ± 0.0062 
5 1.5143 ± 0.0411 0.4003 ± 0.0664 2.2828 ± 0.0271 1.4981 ± 0.0539 0.6468 ± 0.0045 

manila 
2 0.4300 ± 0.0381 0.0788 ± 0.0216 1.2411 ± 0.0104 1.0588 ± 0.0129 0.9286 ± 0.0048 
3 0.8575 ± 0.0246 0.2200 ± 0.0367 1.5838 ± 0.0160 1.2093 ± 0.0324 0.8530 ± 0.0059 
4 1.2552 ± 0.0192 0.4684 ± 0.0356 1.9277 ± 0.0129 1.4163 ± 0.0266 0.7792 ± 0.0061 
5 1.5823 ± 0.0357 0.7166 ± 0.0476 2.2249 ± 0.0266 1.6021 ± 0.0240 0.6785 ± 0.0116 

belem 
2 0.7032 ± 0.0391 0.5278 ± 0.0516 1.3925 ± 0.0281 1.2902 ± 0.0333 0.8471 ± 0.0098 
3 1.0247 ± 0.0341 0.6848 ± 0.0422 1.7013 ± 0.0144 1.4886 ± 0.0134 0.7909 ± 0.0072 
4 1.4081 ± 0.0199 0.6810 ± 0.0407 2.1023 ± 0.0204 1.6454 ± 0.0483 0.7240 ± 0.0070 
5 1.9810 ± 0.3303 0.9224 ± 0.3237 2.6981 ± 0.3363 1.8533 ± 0.1817 0.4977 ± 0.1668 
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Table 2. The Shannon entropy SSo of the distribution over measurement outcomes on the santiago,178 athens,185 manila,31 belem,32 
lima,30 quito,185 yorktown,184 and melbourne,187 for cat states with the number n of entangled qubits between 2 and 5.  Averages over 
75 runs of 8192 shots each are shown.  Results are listed separately for the stair-step algorithm and the harpsichord algorithm for n = 
3-5.  All of these computers have 5 qubits, except for melbourne which has 15 qubits.

n santiago athens manila belem lima quito yorktown melbourne 

2 1.24663 1.19388 1.35080 1.31211 1.25082 1.36915 1.63605 1.62569 

Stair-step 
3 1.40940 1.42986 1.60570 1.62277 1.54037 1.67788 2.12485 2.30840 
4 1.50907 1.60819 1.90407 2.09768 2.08562 1.97081 2.58539 2.79829 
5 1.76001 1.87863 2.14523 2.67256 2.55860 2.46671 3.05493 3.64332 

Harpsichord 
3 1.55625 1.53848 1.69420 1.85174 1.59762 1.74380 2.19417 2.36785 
4 1.84393 1.96953 2.24983 2.35573 2.05140 2.23695 2.79926 3.52877 
5 2.28568 2.38577 2.68380 2.78272 2.78139 2.76136 3.55477 4.25426 
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Table 3.  Slopes, intercepts, and R2 values for the linear least-squares fits to SSo for santiago,178 athens,185 manila,31 belem,32 lima,30
quito,186 yorktown,184 and melbourne.187  The data have been weighted by the inverse of the variances of the entropies, based on 75 
runs of 8192 shots each, on each computer.  Results are shown for both the stair-step and harpsichord algorithms.   

Stair-step algorithm Harpsichord algorithm 

Slope Intercept R2 Slope Intercept R2 

santiago 0.1565 0.9303 0.9746 0.3285 0.5797 0.9917 
athens 0.2204 0.7539 0.9956 0.3749 0.4421 0.9955 
manila 0.2689 0.8115 0.9987 0.4216 0.5045 0.9882 
belem 0.3823 0.5324 0.9831 0.5146 0.2837 0.9982 
lima 0.3269 0.5866 0.9576 0.4625 0.3216 0.9765 
quito 0.3106 0.7460 0.9936 0.3895 0.5869 0.9923 

yorktown 0.4739 0.6908 0.9998 0.5720 0.4897 0.9976 
melbourne 0.7315 0.0939 0.9881 0.8055 0.0170 0.9974 
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Table 4.  Average values of the accuracy of single-qubit state production a and b (see text), and the slopes, intercepts, and R2 values 
for linear least-squares fits to the entropy SSo as a function of the number of qubits.  Values a¢ and b¢ reproduce the observed slopes of 
SSo from the stair-step algorithm to four figures.  The slopes, intercepts and R2 values for the fits with a¢ and b¢ are listed.  The 
intercepts should be compared with the intercepts for SSo for the stair-step algorithm listed in Table 3.  

a b Slope Intercept R2 a¢ b¢ Slope Intercept R2 

santiago 0.9901 0.9795 0.1216 0.9574 0.9997 0.9848 0.9743 0.1565 0.9387 0.9976 
athens 0.9792 0.9428 0.2563 0.9641 0.9996 0.9854 0.9488 0.2204 0.9083 0.9982 
manila 0.9898 0.9682 0.1551 0.9439 0.9981 0.9704 0.9492 0.2689 0.8684 0.9977 
belem 0.9874 0.9499 0.2103 0.9161 0.9983 0.9546 0.9183 0.3823 0.7788 0.9981 
lima 0.9900 0.9589 0.1782 0.9347 0.9983 0.9633 0.9331 0.3269 0.8251 0.9979 
quito 0.9896 0.9583 0.1814 0.9327 0.9983 0.9667 0.9361 0.3106 0.8384 0.9979 

yorktown 0.9591 0.9186 0.3964 0.7907 0.9981 0.9353 0.8958 0.4739 0.6926 0.9985 
melbourne 0.9839 0.9298 0.8055 0.0170 0.9974 0.8329 0.7871 0.7315 0.5826 0.9995 
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Table 5.  Percentages of heavy outputs for the cat states on lima.30  Values are listed for 25 runs 
for qubit numbers 2 through 5.  Cat states were constructed with the stair-step algorithm for n = 
3-5.  The averages and standard deviations of the 25 listed values are shown in the table, and the
averages and standard deviations for a total of 75 runs are also shown.  The z-score of 2/3 is
listed at the end of the table.

n 
2 3 4 5 

Percentages of heavy outputs 

Results of runs 95.813 90.967 84.802 68.396 
95.862 90.576 81.458 68.286 
95.410 91.199 81.799 74.133 
95.703 90.845 82.251 75.073 
95.544 90.771 81.604 69.128 
95.886 91.223 80.200 75.122 
95.801 90.710 79.358 68.762 
95.435 90.906 82.654 69.519 
95.837 91.223 80.298 74.780 
95.288 91.235 79.785 68.665 
95.581 90.515 83.740 72.119 
95.703 90.918 79.883 75.659 
95.581 91.284 80.762 74.194 
95.886 91.309 81.702 69.421 
95.654 91.162 82.422 72.192 
95.605 91.235 81.750 75.342 
96.021 91.089 80.444 72.681 
95.874 91.260 84.009 68.909 
95.850 90.820 80.420 69.373 
95.605 90.955 83.801 74.951 
95.923 90.991 81.714 69.348 
95.715 90.771 81.433 74.487 
95.813 91.016 84.155 67.798 
95.886 90.845 79.785 68.982 
95.862 91.455 81.409 74.817 

Average of 25 runs 95.726 91.011 81.666 71.686 
Standard deviation 0.182 0.244 1.527 2.897 

Average of 75 runs 95.758 91.016 81.946 71.232 
Standard deviation 0.233 0.287 1.495 2.642 

z-score for 2/3 125.10 84.75 10.22 1.728 



Fig. 1.  Density matrix r, error-mitigated density matrix rm and reduced density matrices rA, rB, and rC from one run for a GHZ 
state on santiago.17�� The basis for density matrices r and rm is { | 0 0 0 ñ, | 0 0 1 ñ, | 0 1 0 ñ, | 0 1 1 ñ, | 1 0 0 ñ, | 1 0 1 ñ, | 1 1 0 ñ, 
| 1 1 1 ñ }. The basis for the reduced density matrices is { | 0 ñ, | 1 ñ}.  



Fig. 2.  The Shannon entropies SSo obtained from the distribution of measurement outcomes�IRU�LQGLYLGXDO�UXQV�and the Shannon 
entropies SSd derived from the diagonal elements of the density matrix, obtained via tomography for 3-qubit cat states 
on jakarta.18� The Shannon entropies SSd,m� have been derived from the density matrices after error mitigation with 
routines from IBM’s qiskit documentation.��3RLQWV�LQ�UHG�LQGLFDWH�WKH�DYHUDJHV�RI�WKH�UHVXOWV��



Fig. 3. D��Transpiled circuits for the stair-step algorithm�IRU���TXELW�FDW�VWDWHV� and�E�G��three different transpiled circuits for the 
harpsichord algorithm IRU���TXELW�FDW�VWDWHV, JHQHUDWHG�within a single job�RQ�PDQLOD�����  



Fig. 4. The Shannon� entropy� SSo of the distribution over measurement outcomes� for the stair-step� algorithm,� SORWWHG�
DV�D�IXQFWLRQ�RI�WKH�QXPEHU�RI�entangled qubits on WKH���TXELW�FRPSXWHUV�yorktown,18��belem,���manila,���athens,18��and�santiago.17�� 



Fig. 5. Comparison of the Shannon entropies SSo for the two algorithms on IBMQ’s yorktown,����athens,����and santiago����
FRPSXWHUV���x:  Harpsichord algorithm, o: Stair-step algorithm.  The error bars indicate one standard deviation from the average 
values of 75 runs.     



Fig. 6.  Entropy S as a function of a and b, the accuracy of production and measurement of qubit 
states | 0 ñ and | 1 ñ.  a)  S for a 4-qubit cat state and b) S for cat states with 2, 5, 10, and 15 qubits 
(stacked from bottom to top).  A maximum value of the entropy equal to the number of qubits is 
found when a = b = 0.5.  



Fig. 7.  Plot of SSo(n) vs. n for the quantum computer outputs, compared with linear fits based on a¢ and b¢ (see 
text)����5HVXOWV�REWDLQHG�RQ�\RUNWRZQ�����EHOHP����PDQLOD����DWKHQV�����DQG�VDQWLDJR��������



Figure 8

Fig. 8.  Entropy of cat-states on melbourne, for the harpsichord and stair-step algorithms, with 
predictions based on accuracies a' and b'.



Supplementary Material 
 

Shannon and von Neumann entropies of multi-qubit Schrödinger’s cat states  
Nathan D. Jansen, Matthew Loucks, Scott Gilbert, Corbin Fleming-Dittenber, Julia Egbert, and 
Katharine L. C. Hunt, Department of Chemistry, Michigan State University, East Lansing, 
Michigan, USA 48824 
CP-ART-11-2021-005255 
 
Computational time scaling for state tomography 

The computational time required for tomography grows exponentially with the number of 
qubits, because 3n circuits are needed for quantum state tomography on an n-qubit cat state.  We 
have examined the timing of runs with 2-5 entangled qubits on  the IBM quantum computers lima, 
belem, and manila.  Timing data are provided in Tables S.1-S.3.  All currently available timing 
data are listed in the tables.  The times in the first five data rows come from the more recent runs, 
with 100 circuits per job, rather than 75.  Tomography on a 4-qubit cat state, which requires 81 
circuits, can be now completed in a single job, rather than two.  Tomography on a 5-qubit cat state, 
which requires 243 circuits, can be completed in three jobs, rather than four.  Timing data in the 
subsequent rows comes from our earlier runs, which were limited to 75 circuits per job.  These 
typically ran longer, for the 4- and 5-qubit tomography. 

 
Table S.1.  Times for quantum tomography of cat states on lima.  The “time in system” is 
listed in seconds, depending on the number of entangled qubits, n. 
 

n = 2 n = 3 n = 4 n = 5 
5.2 11.1 28.1 82.7 
6.2 11.2 27.3 83.9 
5.2 11.1 27.5 85.4 
5.2 11.4 27.4 83.0 
5.1 11.0 27.3 85.4 
5.2 10.8 30.8 86.6 
5.3 12.4 31.2 87.3 
5.2 10.9 31.7 89.5 
6.3 10.9 30.8 87.3 
5.2 10.9 30.6 91.8 
  31.4 89.5 
  37.1 88.6 

Average of times in top five data rows (s) 
5.38 11.16 27.52 84.08 

 
 
 
 
 



Table S.2.  Times for quantum tomography of cat states on belem.  The “time in system” is 
listed in seconds, depending on the number of entangled qubits, n. 
 

n = 2 n = 3 n = 4 n = 5 
5.2 11.4 26.9 82.3 
5.2 11.1 27.1 84.4 
6.3 11.0 27.9 83.3 
5.4 11.5 26.9 84.6 
5.3 11.1 28.0 84.3 
5.1 11.2 30.6 87.0 
5.1 10.9 32.8 86.7 
5.1 11.1 30.5 86.5 
5.1 10.9 30.3 86.5 
5.1 10.9 30.7 88.8 

Average of times in the top five data rows (s) 
5.48 11.22 27.36 83.78 

 
Table S.3.  Times for quantum tomography of cat states on manila.  The “time in system” is 
listed in seconds, depending on the number of entangled qubits, n. 
  

n = 2 n = 3 n = 4 n = 5 
7.6 12.7 28.3 88.9 
7.7 12.6 29.1 85.2 
7.6 12.7 28.3 86.0 
7.6 12.6 28.1 85.7 
7.6 12.9 28.3 85.9 
7.9 13.0 28.1 85.4 
8.7 13.1 28.6 84.9 
8.1 13.1 28.2 84.8 
7.8 13.1 28.2 85.3 
7.9 12.9 28.8 85.5 
8.5 13.1 35.5 95.7 
8.4 13.3 35.3 95.5 
 13.1   
 13.2   
 13.2   

Average of times in the top five data rows (s) 
7.62 12.70 28.42 86.34 

 
 



We have used the average timing data from the more recent runs to find fits to the “time in 
system” as a function of the number of qubits.  We note that the “Running” time and the “Total 
completion time” are both longer than the “time in system.” 

The times for n-qubit tomography are fit well by the form k1 3n + k2, where k1 and k2 are 
constants. The constant k2 appears to reflect the overhead associated with the set-up time for the 
runs.  Its inclusion improves the fit to the required times for 2- and 3-qubit cat states, but it is small 
compared with k1 3n for the 4- and 5-qubit cat states.  The values for k1 and k2 that we obtained 
with the FindFit function in Mathematica are listed in Table S.4.   

Table S.4.  Parameters k1 and k2 in the fits of time in system for quantum state tomography 
of n-qubit cat states on IBM quantum computers. 
 

Computer k1 k2 
lima 0.33738 1.67071 
belem 0.33572 1.74476 
manila 0.33912 3.24905 

 

The parameters k1 is quite similar for all three quantum computers; k2 is quite similar for lima and 
belem, close to twice as large on manila. 

Figures F.1-F.3 show the fit to the average times, along with data points from the five most 
recent runs shown in red.  Data points from the earlier runs, with 75 circuits per job, are shown in 
green.   All of the points lie fairly close to the functional fits.   

 
Figure F.1.  Fit of the average times in system T(n) for the five most recent runs on lima, to 
the form T(n) = k1 3n + k2 as a function of the number of qubits n.  Individual data points 
from the five most recent runs are plotted in red and data from the remaining runs are 
plotted in green.  
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Figure F.2.  Fit of the average times in system T(n) for the five most recent runs on belem, to 
the form T(n) = k1 3n + k2, as a function of the number of qubits n.  Individual data points 
from the five most recent runs are plotted in red and data from the remaining runs are 
plotted in green.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure F.3.  Fit of the average times in system T(n) for the five most recent runs on manila, 
to the form T(n) = k1 3n + k2, as a function of the number of qubits n.  Individual data points 
from the five most recent runs are plotted in red and data from the remaining runs are 
plotted in green.  
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As expected, tomography on 4- and 5-qubit cat states took slightly longer for the older runs, with 
75 circuits per job rather than 100. 

If the same functional form of the time requirements continues to hold for additional qubits, 
then it appears that results could be obtained reasonably for more than five entangled qubits, if 
considered on this basis alone. For example, based on the fit to the timing data from lima, with 10 
qubits, the “time in system” is predicted to be about 5.5 hours.  Due to the exponential growth, the 
time requirements become unwieldy for the larger quantum computers, though.  For a 16-qubit cat 
state with the same system-time function as lima, about 168 days would be required; for a 27-qubit 
cat state, this would jump to ~81,525  years; for a 65-qubit cat state, ~1.101 × 1023 years; and for a 
127-qubit cat state, ~4.202 × 1052 years.  In brief, it is clear why IBM would not allow state 
tomography for all the qubits that are currently available.  There may be additional engineering or 
access considerations that account for the IBM limit of 5 qubits. 

 
Computational time scaling for finding the algorithm-specific quantum volume, based on the 
Shannon entropy 
 Calculating the algorithm-specific quantum volume is always faster than calculating the 
standard quantum volume if other conditions are held constant, because the latter requires at least 
100 different circuits.  The first step in finding the quantum volume involves a set of runs to 
determine the Shannon entropy of measurement outcomes.  This is followed by brief post-
processing to determine the per cents of “heavy” outputs and then to determine the probability that 
the percentage of heavy outputs is greater than two-thirds. 

In analyzing the scaling of the algorithm-specific quantum volume with the number of 
qubits, we have determined the “time in system” for runs on bogota, to find the Shannon entropy 
of the distribution measurement outcomes, with 2-5 entangled qubits.  To offer a balanced 
comparison with the times for tomography, we have determined the times for 9, 27, 81, and 243 
identical circuits (as would be needed for tomography on 2-5 qubits).  The results for “time in 
system” are listed in Table S.5, for various numbers of circuits, 1024 or 8192 shots, and qubits.  
We used 1024 shots in the quantum state tomography runs. 
  
Table S. 5.  “Time in system” for calculation of the Shannon entropy of the distribution over 
measurement outcomes, for different numbers of shots and circuits. 

Number of circuits Number of shots Number of qubits Time in system (s) 

9 1024 2 8.7 

9 1024 3 9.6 

9 1024 4 8.8 
9 1024 5 8.9 

9 8192 2 26.3 

9 8192 3 26.3 
9 8192 4 26.2 
9 8192 5 26.4 



Number of circuits Number of shots Number of qubits Time in system (s) 
27 1024 2 13.8 
27 1024 3 14.7 
27 1024 4 13.8 
27 1024 5 14.4 
27 8192 2 66.9 
27 8192 3 66.2 
27 8192 4 66.5 
27 8192 5 67.1 
81 1024 2 29.0 
81 1024 3 28.8 
81 1024 4 30.6 
81 1024 5 29.3 
81 8192 2 184.6 
81 8192 3 186.7 
81 8192 4 186.8 
81 8192 5 188.1 
243 1024 2  89.0 
243 1024 3 88.8 
243 1024 4 89.4 
243 1024 5 90.9 
243 8192 2 555.8 
243 8192 3 556.1 
243 8192 4 557.0 
243 8192 5 558.8 

  
The  required times are virtually independent of the number of qubits, for the range of qubit 

numbers from 2 to 5.  Significantly, the times shown in Table S.5 for 9 circuits of 1024 shots are 
quite similar to the times for quantum state tomography of 2 qubits.  For the runs with 1024 shots, 
the times in Table S.5 are also quite similar for 27 circuits vs. tomography for 3 qubits, 81 circuits 
vs. tomography for 4 qubits, and 243 circuits vs. tomography for 5 qubits.  This makes it clear that 
the time required for quantum state tomography is exponential in the number of qubits n, because 
the number of circuits needed to carry out the tomography is 3n, not because extra time is required 
for operations on more qubits.  The “time in system” (in seconds) scales as s1 c + s2 in the number 
of circuits c.  For 1024 shots, s1 = 0.3472 and s2 = 4.287; for 8192 shots, s1 = 2.269 and s2 = 4.880. 

  



Interestingly, the time does not scale linearly with the number of shots.  For example, the 
average time required for 9 circuits with 1024 shots per circuit is 9.0 s, while the average time 
required for 9 circuits with 8192 shots per circuit is 26.3 s. If the time required scaled linearly in 
the number of shots, then 8192 shots would require 8 times the time needed for 1024 shots.  Instead 
the time increase is smaller, with factors of 2.92 going from 1024 shots to 8192 shots for 9 circuits; 
4.70 going from 1024 shots to 8192 shots for 27 circuits; 6.34 going from 1024 shots to 8192 shots 
for 81 circuits; and 6.22 going from 1024 shots to 8192 shots for 243 circuits. 

For scaling of the algorithm-specific calculations of quantum volume as the number of 
qubits increases, the relation between the number of qubits and the number of circuits needed is 
therefore the key.  From Table 5 (in the paper), the percentages of heavy outputs appear to be 
reasonably well determined with 25 runs.  The z-score for the 2/3 in the case with 5 qubits is 1.733 
after 25 runs and 1.728 after 75 runs.  In a case where the z-score is quite close to the cut-off for 
the 97.5% confidence interval, additional runs may be needed, but here there is little difference; 
and the z-scores in the cases with 2, 3, and 4 qubits are well above that needed for the 97.5% 
confidence level.    

It is not yet clear how the number of circuits required to determine the percentage of heavy 
outputs will be affected by a large increase in the number of qubits, but in the range from 2 to 5 
qubits, 25 circuits appear to be sufficient for the algorithm-specific quantum volume of the cat 
states. 

 




