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Abstract: Using IBM’s publicly accessible quantum computers, we have analyzed the entropies
of Schrodinger’s cat states, which have the form ¥ = (1/2)"2[|000...0 Y+ |111...1 )].
We have obtained the average Shannon entropy Sso of the distribution over measurement
outcomes from 75 runs of 8,192 shots, for each of the numbers of entangled qubits, on each of
the quantum computers tested. For the distribution over N fault-free measurements on pure cat
states, Sso would approach one as N — oo, independent of the number of qubits; but we have
found that Ss, varies nearly linearly with the number of qubits n. The slope of Sso versus the
number of qubits differs among computers with the same quantum volumes. We have developed
a two-parameter model that reproduces the near-linear dependence of the entropy on the number
of qubits, based on the probabilities of observing the output 0 when a qubit is set to | 0 ) and 1
when it is set to | 1 ). The slope increases as the error rate increases. The slope provides a
sensitive measure of the accuracy of a quantum computer, so it serves as a quickly determinable
index of performance. We have used tomographic methods with error mitigation as described in
the qiskit documentation to find the density matrix p and evaluate the von Neumann entropies of
the cat states. From the reduced density matrices for individual qubits, we have calculated the
entanglement entropies. The reduced density matrices represent mixed states with approximately

50/50 probabilities for states | 0 ) and | 1 ). The entanglement entropies are very close to one.



I. Introduction
We have evaluated the von Neumann entropy! and two forms of the Shannon entropy?>
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for n-qubit Schrodinger’s “cat” states* constructed on IBM’s publicly accessible quantum
computers.’ In this work, we compare the empirical results with the predicted results for pure cat
states and fault-free measurements. The qubits in the cat states are entangled, with wave
functions of the form

¥Y=>1/2)"211000---0)+|111---1)7, (1)
where | 0 0 0 - - - 0 ) denotes the tensor product of the state | 0 ) for qubits q[0] through q[n—1],
and similarly |1 1 1 - - - 1 ) denotes the tensor product of the state | 1 ) for q[0] through gq[n — 1].

The von Neumann entropy! Sy~ is derived from the density matrix p. For the cat states,
we cast Sy~ in the form,

Siww=—-Tr(plog2p) . (2)
We have used the base-2 logarithm and omitted multiplication by the Boltzmann constant,
because that allows for a more intuitive interpretation of the numerical value of Syn. In Eq. 2, Tr
denotes the trace of the matrix that follows it, and the base-2 logarithm of the matrix p is the
matrix r such that 2" = p. A pure cat state has a von Neumann entropy of zero.

6-29 on the 5-qubit quantum computers ibmq_lima,*°

By use of quantum state tomography
ibmq_manila,*! and ibmq_belem,*? we have found non-zero values of the von Neumann entropy
for cat states with n =2 to 5. The entropy is reduced by the error-mitigation method suggested in
the giskit documentation.® We have obtained the reduced density matrices for individual qubits
by taking the partial traces of the density matrix over the remaining qubits.’*** In an entangled
system, the reduced density matrix often characterizes a mixed state, even when the system as a
whole is in a pure state.>>* The von Neumann entropy of a reduced density matrix for an
individual qubit in an entangled state is termed the entanglement entropy.>>** We have found

that the entanglement entropy comes very close to the ideal value of one, for each of the qubits in

the cat states we have tested.



We have also used the density matrices to evaluate the Shannon entropy®? Ssq of the cat
states as they reside on a quantum computer; Ssq is determined by the probabilities p; for the
quantum system to be found in each particular state | j ) =|so s1 2. .. Sn ), where sk =|0)or|1),
and j runs from 1 to 2" for an n-qubit state. The probability pj is given by the j* diagonal element
of the density matrix in the basis {| so 81 s2. . . sn )}, and then Ssq is obtained from?*?

n
Ssd = - Zjlpj logz pj - (3)
j=
The Shannon entropy Ssa for a pure cat state is one, independent of the number of entangled
qubits, because the two components |0 00 ---0 Yand|111---1 ) are equally probable, and
no other component contributes.

We have used Eq. 3 to determine a second Shannon entropy Sso, which is defined as the
average entropy of the distribution of measurement outcomes, based on multiple runs with 8,192
shots. In computing the entropy in an individual run, we set pj equal to the probability of the j"
measurement outcome. When the wave function of a pure cat state collapses upon measurement,
no outcomes other than 0 0 0 - - - 0and 1 1 1 ---1 would be observed in the absence of
measurement errors. Thus, the Shannon entropy Sso derived from N fault-free measurements of
a pure cat state would approach one in the limit as N — oo, independent of the number of
entangled qubits. If the measurement outcomes were entirely random, then p; would equal 1/2"
for each j, and Sso would be equal to n.

We have obtained Sso, from 75 runs of 8,192 shots for each n value, up to the available
number of qubits, on each of the IBM computers that were publicly accessible during this study.’
The slope of Sso versus n should be zero, for fault-free measurements on pure cat states.
Empirically we have found that Ss, for the cat states increases nearly linearly with the number of
qubits in the state, and we have obtained high values of R? for the linear fits.

We have developed a model for the entropy Ss, as a function of the number of qubits,
based on the probability a of observing an outcome of 0 when a qubit is prepared in state | 0 )

and the probability b of observing an outcome of 1 when a qubit is prepared in state | 1 ). This



model predicts a near-linear dependence of the entropy on the number of qubits, as observed. In
the model, the slope of Sso versus n is smaller when the accuracy is higher. From our
measurements, the slope of Sso versus n is smaller for the more accurate quantum computers; it
differs among computers with the same quantum volumes. Our results show that the slope
provides a sensitive and quickly computable index of performance for the quantum computers.
The qubit states | 0 ) and | 1 ) on the publicly accessible IBM quantum computers are not
the states of a spin-1/2 particle. Instead, these computers have superconducting transmon qubits
based on Josephson junctions operated at a temperature of 15 mK.#*#° Quantum gates induce
transitions between the two lowest states | 0 ) and | 1 ), which are effectively isolated from the
rest of the states by the anharmonicity of the circuit and the choice of the frequency of the gate
pulses. These qubits respond to quantum gates for rotation and inversion and to the Hadamard

30-52 just as spin-1/2 particles would. They are coupled in the same way by the CNOT

gate
(CX)*03133 and Toffoli gates,®*'3* so they are conveniently described with the spin-state
terminology. Thus, the n-qubit cat states generalize the Bell state (1/2)"2[| i a2 ) + | B1 B2 )] for
two spin-1/2 particles’**® and the Greenberger, Horne, Zeilinger (GHZ) state (1/2)"?[ | ot ¢z 3 )
+ | B1 B2 B3 ) ] for three spin-1/2 particles.*

We have experimented with two different circuit algorithms to produce the cat states.
When preparing the two different types of circuits, we have started by applying an H gate>*-3? to
one qubit. In the “harpsichord” circuit, that qubit is linked directly via a CNOT gate’*>!-33 (also
labeled as a CX gate>®) to each of the remaining qubits. In the “stair-step” circuit, an H gate is
applied to one qubit, that qubit is linked via a CNOT gate to a second qubit, the second qubit is
linked via a CNOT gate to the next qubit, and sequential CNOT linkages between successive
qubits continue until all of the qubits have been linked. The stair-step circuit typically transpiles
with fewer gates than the harpsichord circuit, and the slopes of the linear fits tend to be lower for
the stair-step. The stair-step and harpsichord circuits are identical for the 2-qubit Bell states.

While multiple studies of the von Neumann and Shannon entropies have been carried out

for quantum systems, to our knowledge there has been no systematic investigation of the



entropies of cat states, of the type reported here. Quantum Shannon theory, the von Neumann

1.°7 In earlier studies

entropy and entanglement have been reviewed in lectures notes by Preskil
involving the Shannon entropy, Fai ef al. have determined the Shannon entropy experimentally
for polarons in quantum dots.’®*° In one study, an external electric field was applied.®® The
Shannon entropy of the distribution over electronic states accompanying an Sn2 reaction has
been modeled computationally.®! Bera et al. have analyzed the relaxation dynamics of the
Shannon entropy of dipolar bosons in a harmonic trap.5?

Other entropy functions have been used to characterize quantum systems as well, most

notably the Rényi entropy Sr(q),%"2

Sr(q) = 1/(1 —q) loga(Tr p9) . 4)

The von Neumann, Shannon, and Rényi entropies are additive for independent systems. The

which is defined in terms of the density matrix by

Shannon entropy Sso generally differs from the standard thermodynamic entropy. But for a
system in thermal equilibrium with p; given by exp(—Ei/kT)/Q(N, V, T), in terms of the energy E;
of state j, the temperature T, the Boltzmann constant k, and the partition function Q(N, V, T), Sso
= S\~ and the thermodynamic entropy is equal to Ss, (or Syn) multiplied by k/logze. The Rényi
entropy Sr(q) reduces to the Shannon entropy in the limit as q — 1.6

The Wehrl information entropy’®’# has been analyzed for cat states by Miranowicz et

al.”® The Tsallis entropy,’!7677

which is non-additive, has been applied in work on entanglement
detection,”® entanglement characterization,” and decoherence of qubits.’*%!  Brukner and
Zeilinger have suggested a quadratic function of the probabilities of measurement outcomes as a
new measure of information.®>#} Based on studies of entropy production when a time-dependent
external force acts on a spin system that is strongly coupled to a non-Markovian heat bath,
Sakamoto and Tanimura® have suggested replacing the von Neumann entropy with the entropy
derived from Boltzmann’s H theorem,® because Boltzmann’s H function accounts explicitly for
the entropy changes due to the system-bath interactions.®*

Experimental measurements on entangled qubits and entangled photons have established

the quantum mechanical behavior of Bell states, first with the work of Freedman and Clauser in



1972,8¢ work by Fry and Thompson in 1976,%” and then a series of studies in 1981 and 1982 by

Aspect and co-workers, 3%

who closed a number of the detection loopholes in their work on the
violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality.’’ Subsequent research has
focused on closing coincidence-time, fair-sampling, detector efficiency, and ‘“clumsiness”

loopholes,??-100

ensuring randomness of the measurement settings,'°’!%2 and demonstrating
entanglement between widely separated photons.'*»1%* The experiments show violations of the
Bell»~% and CHSH inequalities® that rule out local hidden variable theories.!* Violations of
these inequalities, the related Mermin inequalities'%®'%7 and a Leggett-Garg inequality'%%1% have
been demonstrated on quantum computers''%!1? (see also Refs. 113 and 114). An entropic
variant of the Bell inequalities is also violated quantum mechanically, though for different angles
than the standard inequalities.!!> Chang et al. have formulated a multi-qubit variant of the Bell
inequalities; they connected the maximal violation to the topological entanglement entropy.''
Elben et al. have demonstrated a method of detecting entanglement in mixed states, based on
local randomized measurements.'!”

In work on the preparation of cat states, Pan et al.''® first reported the experimental
preparation of a GHZ state for photons, and Lavoie, Kaltenbaek, and Resch!' proved that a GHZ
state exhibits nonlocality. Six-ion cat states that generalize the GHZ state have been prepared by
Leibfried et al., using two hyperfine ground states of the beryllium ion as the individual-qubit
basis states.'? Wei et al. have verified multipartite entanglement of an 18-qubit GHZ state with
an entanglement metric based on multiple quantum coherences; they found a fidelity of 0.5165 +
0.0036.21  Later, Mooney et al.'** have generated and verified 27-qubit GHZ states with a
fidelity of 0.546 + 0.017 on the quantum computer ibmq montreal'?* after quantum readout error
mitigation, with a detectable improvement in fidelity after parity verification. The same

investigators'?*

have demonstrated entanglement of all 53 qubits on ibmq_rochester!? and all 65
qubits on ibmq manhattan.'?® Earlier, Sager, Smart, and Mazziotti'?’ had prepared states
interpretable as exciton condensates of photon particles and holes on ibmq rochester, using 53

qubits. They proved that a condensate state had formed, because they found several eigenvalues



larger than one, for the reduced particle-hole density matrix, modified to remove the ground state
resolution. Their simulations showed the predicted result of 26.5 for the largest eigenvalue in the
case of the 53-qubit condensate, though the eigenvalue obtained directly from the quantum

127 The experimentally feasible formation of GHZ states with 2,000

computer was not as large.
atoms in a high-finesse optical cavity via an entanglement amplification technique has been
proposed by Zhao et al.'?®

As a counterpart to the GHZ state, Diir, Vidal, and Cirac'?® have identified the W state,
which is given by (1/3)"2 [ | a(1) au2) B(3) ) + | a(1) B(2) a(3) ) + | B(1) a(2) c(3) ) ]. The W
state has been studied experimentally by Eibl et al.!** Like the Bell and GHZ states, the W state
shows non-classical behavior. In W states, entanglement persists even after particle loss.'3!
Hiffner et al. have prepared a generalized W state with up to eight “°Ca* ions in a linear Paul
trap; the qubit states were represented by the Sy ground state and a metastable *Dsy, state.!3!
Omran et al. have produced and manipulated cat states of the form (1/2)"2[|010 1---)+|10
1 0---)]in a one-dimensional array of 3’Rb atoms with up to twenty qubits.!**> They encoded

qubit-state | 0 ) with the ground state of the atom and encoded | 1 ) with a Rydberg state.'*?

J. M. Deutsch and co-workers have used the entanglement entropy to investigate the
development of statistical distributions within a subsystem of an entangled system in a pure
state.’>*%133 The rest of the system effectively acts as a bath for the smaller subsystem, allowing
the distribution over the eigenstates of the subsystem to thermalize.’>*%!3 Then the
entanglement entropy becomes equal to the thermodynamic entropy. Working with a Bose-
Einstein condensate of ®’Rb atoms,!3*!'33 Greiner, Lukin, and co-workers have examined the
development of thermal distributions of the occupancies of sites in an optical lattice, when the
coupling between sites is changed abruptly.*! Similar behavior has been observed for one

fermion in an entangled multi-fermion system, with a sudden change in the Hamiltonian.'3¢!38

139 on the other hand, in

Localization due to disorder may prevent thermalization, however;
many-body systems with power-law interactions, even when localization occurs, algebraic

growth of entanglement entropy has been found.'*



D. Deutsch has used the Shannon entropy Sso of the distribution over measurement
outcomes to develop an alternate version of the uncertainty principle, with the goal of providing
a fixed lower bound for the uncertainty.!*! His suggestion has been explored further by Jizba,
Dunningham, and Joo,'*> Majernik and Opatrny,'** Chen et al.,'** and Veeren and de Melo.!#
Deutsch showed that if A and B are non-commuting operators for observables with sets of
eigenvalues {a;} and {b;}, then the sum of the distribution entropies Ssoa({ai}) and Ssor({bj}) is
bounded below,!#! although the greatest lower bound has not yet been identified. Bergh and
Garttner have suggested the use of entropic uncertainty relations to detect entanglement. 46147

In Section II of the current work, we describe one construction of the Schrodinger’s cat
states and then present results for the von Neumann entropies of n-qubit states and the
entanglement entropies of single qubits. In Section III, we present our results for the Shannon
entropies Ssa and Sso. We show that Ss, is nearly linear in the number of qubits in the cat state.
We describe a second circuit that we have used to construct the cat states and show how the
slope of the near-linear relationship differs for the two circuits. The entropy depends on the
number of gates used to implement the circuits, when transpiled. In Section IV, we present a
simple model that yields a nearly linear relationship between the Shannon entropy Sso and the
number of qubits n, based on the average probabilities of observing the values 0 and 1 upon
measurement, when the qubits have been prepared in the states | 0 ) and | 1 ). In Section V, we
discuss an algorithm-specific variant of the quantum volume!#¥-15! that applies to cat states, and
we provide a brief summary. We conclude that the variation of the entropy with the number of

qubits provides a useful index of performance for current quantum computers.



II. Circuit for Schrodinger’s cat states, von Neumann entropy, and entanglement entropy

We have prepared the n-qubit Schrodinger’s cat states on IBM’s public quantum
computers using qiskit. First, a Hadamard gate,”! listed as h(q0), was applied to qubit q[0]. The
remaining qubits were coupled sequentially via controlled-not (CNOT) gates,’! so that q[0] acts
as the control for q[1], then q[1] acts as the control for q[2], continuing until q[n — 2] acts as the
control for q[n — 1]. The CNOT gates are listed as cx[qi, qj] where qi is the control qubit and qj
is the target. For example, the three-qubit cat states with | ¥ )= (1/2)"2 (| 000 )+ |11 1)) are
coded as

h(q0)

cx([q0, q1], [q1, q2]) ,
corresponding to the stair-step algorithm.

We have determined the density matrices for the cat states using the code for

6-29

entanglement verification provided in qiskit. Quantum tomography® = relies on production and

measurement of many states that are identical except for the effects of faults in their preparation.
A GHZ state without transpilation or measurement is set up by get ghz layout; get ghz simple
sets up a GHZ state with measurement. Both codes are included in Class BConfig, which
parallelizes the CNOT gates to produce a circuit of less depth.!>? Theoretical state counts are

determined from the ideal state vector produced by get ghz layout. For the actual GHZ states,

153

tomography is carried out with state tomography circuits,'>> which requires 3" circuits for an n-

154 t156

qubit state.!>* The codes in StateTomographyFitter!> including fit!*>¢ and state_fitter'>” apply the
maximum likelihood method!>#1%! to reconstruct the quantum state by convex optimization with
CVXPY.162’163

Alternatives to the maximum likelihood method have been suggested, including a hedged

maximum likelihood method,!®*1% a method involving an accuracy matrix,'® maximization of

7 168-170

the mean fidelity,'®” a method based on Bayesian inference, and a maximal entropy
approach that is well suited to reconstructing the density matrix when not all measurements can

be performed with high fidelity.?®!7! Special considerations for the tomography of pure states

10



have been described by Bagan et al.,'®® Jupp et al.,'”> and Gross et al.'’® The tomography of
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permutationally invariant states has been discussed by Toth ef a and by Moroder ef a

The fidelity F of the density matrix is defined by F = [Tr (pp'? pr pp'?)?]%, where p, is
the density matrix of the pure cat state, and pr is the matrix found by tomographic
experiments.'’® For the cat states, the fidelity is simply the sum of the four corner elements of the
density matrix.® The fidelity may be improved by an error mitigation method that is included in
the qiskit procedure for tomography. The raw density matrix is converted into a vector viaw, a
calibration matrix A is constructed based on measurements, and then the error-mitigated density
matrix veal in vectorized form is obtained by minimizing || A Veal — Vraw ||>.!7® The fitted density
matrix may be constrained to be positive semi-definite.!”” The IBM documentation directs that
tomography should not be performed on states with more than five qubits.

The computational time required for tomography grows exponentially with the number of
qubits, because 3" circuits are needed for quantum state tomography on an n-qubit cat state. We
have examined the timing of runs with 2-5 entangled qubits on lima,*® manila,*' and belem.?
The time is fit well as a function of the number of qubits n by the form ki 3" + k,. The constant
k> appears to reflect the overhead associated with the set-up time for the runs. Its inclusion
improves the fit to the required times for 2- and 3-qubit cat states, but it is small compared with
ki 3" for the 4- and 5-qubit cat states. Further information and plots of the “time in system” are
included in the supplementary material.

As an example, the density matrix that we obtained for a 3-qubit GHZ state for a run on
ibmq_santiago!”® is shown in Fig. 1. This density matrix is Hermitian, but not idempotent. We
found the largest entries for the outer products [0 00)(000[,|000)(111],]111)¢(000]|,
and |1 1 1) (1 11|, butadditional coherences are present. The trace of the printed density
matrix is 0.99998, reflecting rounding errors. The ratio of the sum of the two largest entries on
the diagonal to the sum of the remaining entries on the diagonal is 9.7267. The trace of the

square of the density matrix, which is an indicator of the purity of the state,'7-'% is 0.74926. The

eigenvalues of the density matrix are 0.86210, 0.06038, 0.04157, 0.02152, 0.01442, —0.00001,
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0.00000, and 0.00000; their sum is 0.99998, as expected. The negative eigenvalue almost
certainly results from truncation error, based on the number of figures in the printed density
matrix. For a pure quantum state, one of the eigenvalues of the density matrix is one, and the
rest are zero.

The error-mitigated version of the density matrix pm from the same run is also shown in
Fig. 1. The trace of pm is 1.00000. The ratio of the sum of the two largest entries on the
diagonal to the sum of the other entries on the diagonal has been increased to 18.109 by the error
mitigation procedure. Additional coherences are still present, as shown by the non-zero entries
in the density matrix for outer products of non-identical states, in additionto |0 00 ) (111 |and
|111)(000]. The trace of the square of the error-mitigated density matrix has risen to
0.86761. The eigenvalues of the error-mitigated density matrix pm are 0.93033, 0.03690,
0.02626, 0.00650, 0.00001, — 0.00001, — 0.00001, and 0.00000, and the sum of the eigenvalues is
1.00000. Again, the negative eigenvalues result from truncation errors.

The von Neumann entropy of the density matrix is zero for a pure quantum state, but the
observed value for the matrix p is 0.82720. The von Neumann entropy of the error-mitigated
density matrix pm drops to 0.45771. The apparent presence of negative eigenvalues is not
reflected in the value of the von Neumann entropy Sy~ found with the qiskit procedure, since the
negative eigenvalues would otherwise lead to an imaginary component of Sy.

Reduced density matrices for individual qubits are obtained by taking a partial trace over
the states of the remaining entangled qubits.’*-** Labeling the first qubit as A and taking I as the
identity operator for that qubit, labeling the two remaining qubits as B and C, and using ® to
denote a tensor product, the partial trace over B and C for a three-qubit density matrix pr is given
by

pa=(Ia®(apsac)pra®|asac)) +Ia® (asBcl|) pr(Ia ® | o Be))

+(Ia®(Brac) pr(a®|Prac)) +Ta®(PePc|) pr(Ia®|PsPc)) - ()
For pure cat states, the reduced density matrices represent mixed states, with vanishing

coherences. The reduced density matrices for qubits A, B, and C (corresponding to q[0], q[1],
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and q[2]) are shown in Fig. 1. These density matrices are also Hermitian, with a trace of 1.00000
in each case. They represent mixed states with nonzero coherences. The trace of pa? is 0.50214,
the trace of pg? is 0.50085, and the trace of pc? is 0.50095. The traces of the squares of the error-
mitigated reduced density matrices pam’ , pBm” , and pcm?® are similar. For a pure cat state, all of
the p? values for individual qubits would be 0.5.

The von Neumann entropies of the reduced density matrices are all very close to one.
For pa, the von Neumann entropy is 0.99691; for pg, the entropy is 0.99877; and for pc, the
entropy is 0.99863. The entropies of the error-mitigated reduced density matrices formed from
the error-mitigated multi-qubit density matrix are not appreciably closer to one and may in fact
be smaller. For pam, the von Neumann entropy is 0.99823; for psm, the entropy is 0.99724; and
for pcm, the entropy is 0.99793. For a mixed state with two possible measurement outcomes—0
or 1 for a single qubit—and no coherences, the von Neumann entropy would equal one if the two
outcomes were equally probable. If the probabilities are not equal, the von Neumann entropy is
given by

Sw=-(1/2+x) logz (1/2 + x) — (1/2 — x) logz (1/2 — x)

=1-(1/2+x)logz (1 +2x) — (1/2 —x) logz (1 — 2x)

=1—1log (1 —4x?)"2 —log> [(1 +2x)/(1 — 2x)]*, (6)
which applies in the current case. We note that Anaya-Contreras et al. have proposed a method
to calculate the von Neumann entropy of a larger system from the entropy of a subsystem that is
initially in a mixed state.!8!

In Table 1, we list the averages of five results for the von Neumann entropies of cat states
coded with the stair-step algorithm, for numbers of qubits from 2 to 5. We also list the average
Shannon entropies Ssq derived from diagonal elements of the density matrices. Both the raw
values and the error-mitigated values of Syn and Ssq are listed, along with the raw fidelities. The
difference between the average values and the expected results for a pure cat state increases and
the fidelity drops off as the number of qubits increases, monotonically in all cases. The standard

deviations are also listed in Table 1. The results were obtained from runs on lima,** manila,’!
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and belem.’? We have observed appreciable variability in the von Neumann entropies from runs

at different times, particularly for the 5-qubit cat states on belem.
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ITI. Shannon entropies Ssa and Ss, for Schrodinger’s cat states

We have derived the Shannon entropies Ssq of the cat states as they are resident in the
computer by determining the density matrix in the basis {| j ) = So S1 S2 . . . sn )} by quantum
state tomography.®? We have used Eq. 3, with pj equal to the diagonal element of the density
matrix for the state | j ). If the density matrix were diagonal in the basis {|j)=|sos1s2...sn) },
then Sy~ and Ssq¢ would be identical; but since the basis states | j ) are not the eigenstates of the
density matrix, Syn # Ssa.

For the 3-qubit GHZ state taken as an example in Fig. 1, Ssq = 1.5833. The Shannon
entropy derived from the error-mitigated density matrix is denoted by Ssqm and its value is
1.3668. Both are larger than the value of 1 expected for a pure cat state. In contrast, the
Shannon entropies Ssq of the reduced density matrices are all very close to their ideal value of 1:
Ssda,a=0.99997, Ssas = 0.99996, and Ssa,c = 0.99956. The connection of the Shannon entropy to
tomography has also been discussed by Chernega et al.'*

Figure 2 shows the spread of raw and error-mitigated values of Ssq for two sets of twenty
runs on 3-qubit cat states on jakarta'3? with 1024 shots per circuit, along with twenty values of

Sso also obtained from runs of jakarta's?

with 1024 shots per job. The average value of Ss,
differs relatively little from the average of the raw values of Ssq¢ obtained from the two sets of
runs, although the spread of Ss, is somewhat greater. As expected, the error mitigation
procedure reduces Ssq noticeably, with a few outliers. We have found that the imaginary parts of
the entries for [0 00 ) 111 ]and |111)(00O0| inthe raw density matrices are relatively
large ( ~12-14% of the largest entries on the diagonal), and the imaginary parts are increased by
the error mitigation procedure.

Direct calculations of Sso, which is defined as the average Shannon entropy of the
distribution over measurement outcomes, require appreciably less time than the tomography to
find Sy~ and Ssq. As a result, we were able to obtain a more extensive set of results for Ss, from

multiple quantum computers. We generated cat states in individual jobs, each consisting of 75

circuits with 8192 shots (the maximum number of circuits per job when this work was carried
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out, and the maximum number of shots per circuit). All of these jobs were executed on the
quantum computers within the same calibration period, to ensure consistency between runs.
Each circuit was tested on the simulator_statevector'83 to confirm that the circuit was interpreted
as the intended fully entangled state. The simulator statevector was used to confirm that Ss, is
very close to one for fault-free n-qubit cat states. Deviations from Sso, = 1 for the cat states on
the simulator result from random statistical effects that cause the measurement outcomes 0 0 - - -
Oand 11 ---1 to differ slightly in number, reducing Sso.

In the executed versions of the code, the transpiler selected the activated qubits, so that
the H gate was sometimes applied to qubits other than q[0], though the overall coupling scheme
was maintained. The transpiled Hadamard gate®! was implemented by three operations, RZ SX
RZ, where RZ is a rotation by n/2 around the Z axis and SX is the square-root of the Pauli spin
matrix ox.>! The operation RZ is accomplished by a change of basis, without the application of
a pulse. The combination RZ SX RZ differs from the H gate by a phase, but the results of
measurements are unaffected by the phase difference. The CNOT gates®' were typically applied
directly to qubits that were adjacent in the architecture of a particular quantum computer. If
qubits qi and qj were not adjacent, however, the transpiler implemented a sequence of CNOT
gates to accomplish the coupling between qi and qj as designated in the input circuit.

As an alternative to the stair-step circuits described in Sec. II, we also coded harpsichord
circuits, in which each of the qubits after q[0] is coupled back to q[0] via CNOT gates. Thus
q[0] acts as the control qubit for all of the others. We have found that the transpilation of the
harpsichord circuits is not unique. Figure 3 shows the circuit diagram after transpilation of the
stair-step algorithm and three different circuit diagrams for the harpsichord algorithm, for 4-qubit
cat-states on manila.?!

The entropy Ss, for each set of outcomes with 8192 shots was calculated using Eq. 3.
Table 2 shows the entropy values averaged over the 75 circuits in each job. The averages are
listed for each of the computers, each of the numbers of entangled qubits n, and the two coupling

algorithms. In Fig. 4, the entropy Ss, is plotted versus the number of qubits n for the stair-step
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4 2

algorithm run on ibmq_yorktown,'®* ibmq belem,*?> ibmq manila,>! ibmgq_athens,!®> and

8 with n from 2 to 5. In Fig. 5, Sso is plotted versus n for the stair-step

ibmq_santiago,!’
algorithm and the harpsichord algorithm on yorktown, athens, and santiago, to illustrate the
difference between the entropies found with the two different algorithms. For both algorithms
on all of the quantum computers we used, we have found nearly linear relationships between Sso
and the number of qubits n. The dashed lines in Figs. 4 and 5 show the least-squares fits of

straight lines to the results, weighted by the inverses of the variances.

Table 3 shows the linear least-squares fits and the coefficients of determination (the R?

5 31

values) for each fit, for ibmgq_santiago,!”® ibmq_athens,!®> ibmq manila,®! ibmq_belem,>?

186 4

ibmq lima,*® ibmq quito,'®® ibmq yorktown,'®* and ibmq melbourne.!®” In the (fitting
procedure, the data have been weighted by the inverses of the variances. The fit of Ss, versus n
to a straight line is good in all cases, with R? values ranging from 0.9617 to 0.9998. For
perfectly constructed cat states with no measurement errors, the slopes would be zero. A smaller
value of the slope indicates better performance of the quantum computer. We have found the
smallest slope for the stair-step algorithm on santiago (m = 0.1565, R? = 0.9746), and the largest
slope for the harpsichord algorithm on melbourne (m = 0.8055, R? = 0.9974). Fewer gates are
typically needed to implement the stair-step algorithm than the harpsichord algorithm. The value
of Sso 1s lower for the stair-step algorithm than for the harpsichord algorithm in all but one of the
cases.

We have also found differences in the outcomes depending on the connectivity of the
qubits on the quantum computers. The two most common layouts on IBM’s publicly accessible
5-qubit quantum computers are linear (santiago,!’® manila,*! and athens'®) with connections 0-1-
2-3-4, and T-shaped (belem,*? lima,*® and quito'®¢), with qubits 0-1-2 connected on the
horizontal cross-bar of the T and qubits 1-3-4 connected on the vertical bar. The qubits on

yorktown!®* have a more connected “bow-tie” layout. The qubit layout on melbourne!®” has two

parallel rows connected linearly in each row, with paired connections from row to row; the two
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qubits at the opposite ends of the top row and the bottom row are connected only to the other
qubits of that same row.

For the 5-qubit cat states, more gates are needed to implement the stair-step algorithm for
a T-shaped layout than for a linear layout, because extra gates are needed to entangle q2 and q3
in the T-shape. The stair-step algorithm still requires fewer CNOT gates than the harpsicord
algorithm, but the differences between the Ss, values for the two algorithms are less dramatic for
the T-shaped layouts than for the linear layouts. The best pairing of the quantum algorithm with
the qubit layout generally reduces the entropy of the measured outcomes and leads to better
performance of the quantum computers on the current task.

Because the entanglement entropy has a direct connection to the thermodynamic
entropy,*>-%133 it is interesting to compare the entanglement entropy with the Shannon entropy
Sso of the distribution over measurement outcomes. The relationship between the two depends
on the quality of the cat states. If the cat states and measurements are fault-free, then the
Shannon entropy Sso is identical to the entanglement entropy (i.e., the von Neumann entropy of
the reduced density matrices). Otherwise, Sso differs from the entanglement entropy. For
example, the entanglement entropy of each of the qubits in the 3-qubit cat state in Fig. 1 is very
close to one, while we have obtained an average Shannon entropy of the distribution over
measurement outcomes for these 3-qubit cat states that is closer to 1.4.

The Shannon entropy Sso of an ideal state is not always equal to the entanglement
entropy, however. For an ideal three-qubit W state, (1/3)" [ | ou(1) au(2) B(3) Y+ | (1) B(2) a(3) )
+ | B(1) a(2) a(3) )], Sso = logz3, while the entanglement entropy is logz3 — 2/3. The n-qubit
generalization of the W state contains n terms, with a different qubit in the 3 spin state in each of
the terms and the remaining qubits all in the a spin state. For an ideal n-qubit W state Sso =

logon, while the entanglement entropy is logon — [(n — 1)/n] logz(n — 1).
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IV. Model for the entropy as a function of the number of qubits

We have developed a simple model for Ss, based on the probability a that an outcome of
0 will be observed when a qubit has been prepared in state | 0 ) and the probability b that an
outcome of 1 will be observed when a qubit has been prepared in state | 1 ). When an n-qubit cat
state is prepared, the probability p(q, n — q) of obtaining a measurement outcome with q entries
of 0 and n — q entries of 1 is

p(q,n—q)=(1/2) C(n, @) [aT (1 —a)™ 1+ (1 =b)T15™1] , (7)
where C(n, q) denotes the number of combinations of n items taken q at a time. The Shannon
entropy Ssm(n) of the distribution over measurement outcomes for an n-qubit cat state is

therefore
n

Ssm(n) = — X p(q, n — q) loga[p(q, n —q)] . (8)
q=0

In Fig. 6a and 6b, the entropy is plotted as a function of a and b, for various values of n.
Fig. 6a shows Ss, for a 4-qubit cat state, while Fig. 6b shows Sso(n) for n =2, 5, 10, and 15, with
the plots stacked on each other. In each, case, the maximum Shannon entropy is Sso(n) = n,
which is found when @ = b = 1/2. It is apparent from the plots that the entropy is close to n over
a range of values of (a, b), because the plots are almost flat near their maxima. This is especially
evident in Fig. 6a. The range of values of (a, b) where Sso(n) is close to n becomes narrower as n
increases. The entropy Sso(n) =1 when a = b = 1, which would yield a fault-free cat state. In an
extreme case where a =0 and b =1 or a =1 and b = 0, only one measurement outcome would be
observed, giving Sso(n) = 0. The function Sso(n) is symmetric ina and 1 —a and in » and 1 — b.
It is also symmetric with respect to interchange of @ and b.

In the first version of this model, we used the average values of a and b for the qubits on
each of the computers to find Sso(n) as a function of n. The values for each qubit are tabulated
by IBM and updated after the calibration runs on the computers. While it would be possible to
develop a more detailed model based on the accuracy of producing states | 0 ) and | 1 ) on

individual qubits, it would be necessary to track the specific qubits activated in each of the 75
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runs, after the circuits have been transpiled. It would also be necessary to disaggregate the
probabilities in Eq. 7 by identifying the particular qubits in states | 0 ) and | 1 ) since (for
example) the probabilities of the outcomes 0 0 1, 0 1 0, and 1 0 0 would be distinct, rather than
identical. Additionally, the specifics of the CNOT gates would need to be included in a more
detailed model, along with a representation of the crosstalk between qubits and the effects of
stray fields.

Our simple model suffices to account for the near linearity of the plots of Sso(n) versus n,
which is the principal objective of the model. As expected, the slopes are smaller when a and b
are closer to one. As shown by comparison of entries in Tables 3 and 4, the slopes calculated
with the average a and b values differ from the observed slopes for the stair-step algorithm;
however, the slopes are correlated. In all but one case, the observed slopes are larger, probably
due to additional error sources that are not included in the model with the average a and b values.

In a second version of the model, we have identified effective values a' and b’ for each
computer, by matching the modeled and observed slopes of Sso versus n to four figures. The
values of @’ and &' tend to be smaller than @ and 5. We have constrained @’ and &', so that the
ratio a'/b" = a/b for each computer. Fits to the empirical and model results for Ss, vs. n on the 5-

31 athens,!® and santiago!'’® are shown in Fig. 7.

qubit computers yorktown,!®* belem,*? manila,
The model results for yorktown are in excellent agreement with the empirical results. We have
examined the difference A between the intercept of the linear fit to the model for Sso(n) and the
intercept of the weighted linear least-squares fit to the empirical results for Sso(n). For yorktown,
A is only 0.0018, which accounts for the high quality of the fit with the model. For manila and
athens, Sso(n) from the quantum computer runs lies very nearly on a straight line. The
discrepancies between the model and the quantum computer results are mainly due to larger A
values, 0.0569 on manila and 0.1544 on athens. The model fit for santiago is good, though not as
good as for yorktown, primarily due to the slight deviation of Sso(n) from a straight line. Still,

the R? value for the stair-step algorithm on santiago is 0.9746. On quito and lima (not shown),

the fit of the model is slightly better than on athens, but not as good as on santiago. For belem,
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the empirical averages for Sso(n) are furthest from the model; belem has the largest A value of
the 5-qubit computers, at 0.2464. On belem, the variance in the values of Sso(n = 5) is more than
one hundred times the variance in Sso(n = 2), while for yorktown and santiago, the ratio of these
variances is less than five.

Figure 8 shows the comparison of the model and the weighted linear least-squares fit to
the averages of Sso(n) found with the stair-step and harpsichord algorithms on melbourne.'®” The
standard deviation of Sso(n) increases with n; the lower weight for the points with larger n causes
those points to lie further from the straight-line fit. Even though A for melbourne is the largest
we have found (at 0.4897), the model and the empirical results agree reasonably well, due to the
comparatively large values of Sso(n) in this case.

Extrapolating the linear fits obtained from the models based on (a, b) and (a’, b) to
obtain Sso(n = 1) tends to yield larger values than those obtained by extrapolation of the linear
fits of the empirical results to Sso(n = 1). For an ideal single-qubit state (1/2)"2 (|0 ) +| 1)), the
entropy of the distribution over measurement outcomes should be equal to one. Values lower
than one for the Shannon entropy Sso(n = 1) reflect an imbalance between the probabilities of
obtaining 0 or 1 for a qubit prepared in the state (1/2)"2 (| 0 ) + | 1)), with 0 usually being more
common. Errors in the production and measurement of the cat states may cause the extrapolated
empirical values of Sso(n = 1) to exceed one.

Based on the fits with (a', b'), the extrapolated values of Sso(n = 1) in the model range
from 1.0952 on santiago!”® to 1.1665 on yorktown.!84 The extrapolated values of Sso(n) for n =
1, based on the least-squares fit to the empirical results for the stair-step algorithm, cover a
broader range from 0.8254 (on melbourne'®”) to 1.1647 on yorktown,!34 but the remaining results
are clustered in the range from 0.9135 to 1.0868. For the harpsichord algorithm, extrapolations
of Sso(n) to n = 1 based on the empirical results typically give values smaller than one, in the
range from 0.7841 (on lima®’) to 0.9261 (on manila®!). Only yorktown'3* gives a value greater

than one, at 1.0617.
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V. Discussion and summary

Based on the results in this work, we suggest that the slope of a least-squares fit to Sso,
the average Shannon entropy of the distribution over measurement outcomes for Schrodinger’s
cat states, provides a useful index of performance for noisy intermediate-scale quantum (NISQ)
computers. The designation NISQ was introduced by Preskill.!®® The slope can be obtained
quickly and its values differentiate among computers that have identical quantum volumes. The

148-151 indicates the suitability of a quantum computer for a much wider range of

quantum volume
applications, since it is defined by considering the square circuits and heavy outputs of at least
100 different circuits."*® A circuit is square if the number of qubits is equal to the instruction
depth. By definition, the heavy outputs are those whose probability exceeds the median output
probability. The quantum volume is based on the largest square circuits for which 2/3 or more of
the outputs are heavy at the 97.5% confidence level. If the largest such square circuits have n
qubits, then the quantum volume is 2" (Ref. 147). The more recent 5-qubit computers have a
quantum volume of 32, which is the largest possible value for a 5-qubit device. Yet the
performance of the computers in this group differs, and the slopes that we have found for Sso(n)
versus n indicate the differences.

Blume-Kohout and Young have suggested an alternative to the quantum volume, based
on circuits with the depth and number of qubits uncoupled.!®® Another alternative based on a
specific suite of application-oriented benchmarks has recently been suggested by Lubinksi et
al.'® We have explored a variant of the quantum volume that is specific to the cat-state
algorithms. We identify the two outputs that should be observed for these states as the heavy
outputs (either 0 for all qubits or 1 for all qubits). We have found the quantum volume as
usual—but limited to the cat-state algorithm.

In Table 5, we illustrate the algorithm-specific quantum volume calculations by listing
the percentages of the heavy outputs for 25 runs on lima®® for various numbers of qubits, the
averages for those 25 runs and for 75 runs, and the standard deviations. We have worked with

the standard deviation of the percentage of heavy outputs in the individual runs, rather than the
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standard deviation of the mean, which is smaller. Thus our estimates of the algorithm specific
quantum volumes are conservative, but they are applicable to the likelihood of obtaining at least
2/3 heavy outputs in an individual run. For n =2, 3, and 4, the value 2/3 lies 125.10, 84.75, and
10.22 standard deviations below the mean percentage of the heavy outputs, respectively; but for
n =5, 2/3 lies only 1.728 standard deviations below the mean percentage, so in this case, the
quantum volume specific to the cat states is 16, which is larger than the quantum volume of 8
listed by IBM. (The z scores listed in Table 5 are based on all figures in the means and standard
deviations, not just the rounded figures.)

We have compared the general-purpose quantum volumes V, with the cat-state specific
quantum volumes V. for the stair-step algorithm on other quantum computers: V. agrees with

178 athens,'®> and manila.*' For belem® and quito,'3¢ V. is 32, although V,

V., at 32 for santiago,
is 16. For yorktown'®* as for lima,>® V. is 16 for the stair-step algorithm, but V, is 8. For
melbourne,'®” V. and V, both equal 8. For the harpsichord circuits, the cat-state specific
quantum volumes agree with the general-purpose quantum volumes on santiago, athens, and
manila (at 32), and on belem and quito (at 16). The value of V; is 8 for lima, yorktown, and
melbourne, but the V. values for the harpsichord circuits are 16, 8, and 4, respectively.-

To summarize, we have evaluated the von Neumann entropies of n-qubit Schrodinger’s
cat states (for n < 5) by use of tomography on IBM’s publicly accessible quantum computers.
The von Neumann entropies exceed the expected value of zero for pure cat states, but error
mitigation reduces the value of the von Neumann entropy. We have evaluated the entanglement
entropies for individual qubits. As indicated by the reduced density matrices, the individual
qubits are in mixed states with nearly equal populations of | 0 ) and | 1 ); the off-diagonal
elements of the density matrices are small. We have evaluated two forms of the Shannon
entropy: Ssq is derived from the diagonal elements of the density matrices, while Ss, is obtained
from the distribution over measurement outcomes for the projection of the “spins” along the z

axis in the n-qubit cat states. For pure cat states, Ssq(n) = 1, and for fault-free measurements on

pure cat states, Sso(n) = 1, independent of n. On IBM’s publicly accessible quantum computers,
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we have found that Ss, actually increases nearly linearly with n. A simple two-variable model
that employs the probabilities of observing outcomes 0 and 1 when the states | 0 ) and | 1 ) are
initialized on a quantum computer accounts for the near linearity. The slope of Sso(n) versus n

provides a comparatively sensitive index of performance for NISQ computers.
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Table 1. The calculated von Neumann entropies Syx of cat states with qubit numbers n from 2 to 5, the von Neumann entropies Syn,m
after error mitigation, the Shannon entropies Ssa derived from the diagonal elements of the density matrices, the Shannon entropies
Ssam after error mitigation, and the fidelities raw F. The averages of five values from runs on lima,*® manila,’! and belem?? are listed
along with the standard deviations.

SwN SvN,m Ssd Ssd,m F
lima
2 0.4176 £0.0281 0.1293 £ 0.0223 1.2703 £ 0.0254 1.1177 £0.0385 0.9255 +£0.0031
3 0.6592 +0.0140 0.2313 £ 0.0297 1.4828 £0.0174 1.2139 £ 0.0166 0.8850 + 0.0032
4 1.0558 +£0.0247 0.2664 + 0.0336 1.8558 £0.0112 1.3312 £ 0.0208 0.7989 + 0.0062
5 1.5143 £0.0411 0.4003 + 0.0664 2.2828 £0.0271 1.4981 £ 0.0539 0.6468 + 0.0045
manila
2 0.4300 + 0.0381 0.0788 £ 0.0216 1.2411 £ 0.0104 1.0588 £ 0.0129 0.9286 + 0.0048
3 0.8575 £ 0.0246 0.2200 + 0.0367 1.5838 £ 0.0160 1.2093 +0.0324 0.8530 + 0.0059
4 1.2552 £0.0192 0.4684 + 0.0356 1.9277 £ 0.0129 1.4163 £ 0.0266 0.7792 £ 0.0061
5 1.5823 +£0.0357 0.7166 + 0.0476 2.2249 + 0.0266 1.6021 £ 0.0240 0.6785+0.0116
belem
2 0.7032 £ 0.0391 0.5278 £ 0.0516 1.3925 +£0.0281 1.2902 +0.0333 0.8471 £ 0.0098
3 1.0247 £0.0341 0.6848 + 0.0422 1.7013 £ 0.0144 1.4886 +£0.0134 0.7909 + 0.0072
4 1.4081 £ 0.0199 0.6810 + 0.0407 2.1023 +£ 0.0204 1.6454 +0.0483 0.7240 + 0.0070
5 1.9810 +0.3303 0.9224 + 0.3237 2.6981 +0.3363 1.8533 £0.1817 0.4977 £ 0.1668
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Table 2. The Shannon entropy Ss, of the distribution over measurement outcomes on the santiago,'’® athens,'®> manila,*' belem,

lima,*° quito,'® yorktown,'®* and melbourne,'¥” for cat states with the number n of entangled qubits between 2 and 5. Averages over
75 runs of 8192 shots each are shown. Results are listed separately for the stair-step algorithm and the harpsichord algorithm for n =
3-5. All of these computers have 5 qubits, except for melbourne which has 15 qubits.

n santiago athens manila belem lima quito yorktown  melbourne
2 1.24663 1.19388 1.35080 1.31211 1.25082 1.36915 1.63605 1.62569
Stair-step
3 1.40940 1.42986 1.60570 1.62277 1.54037 1.67788 2.12485 2.30840
4 1.50907 1.60819 1.90407 2.09768 2.08562 1.97081 2.58539 2.79829
5 1.76001 1.87863 2.14523 2.67256 2.55860 2.46671 3.05493 3.64332
Harpsichord
3 1.55625 1.53848 1.69420 1.85174 1.59762 1.74380 2.19417 2.36785
4 1.84393 1.96953 2.24983 2.35573 2.05140 2.23695 2.79926 3.52877
5 2.28568 2.38577 2.68380 2.78272 2.78139 2.76136 3.55477 4.25426
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Table 3. Slopes, intercepts, and R? values for the linear least-squares fits to Ss, for santiago,!’® athens,'®> manila,’! belem,*? lima,°

quito, '8¢ yorktown,!8* and melbourne.'®” The data have been weighted by the inverse of the variances of the entropies, based on 75
runs of 8192 shots each, on each computer. Results are shown for both the stair-step and harpsichord algorithms.

Stair-step algorithm Harpsichord algorithm

Slope Intercept R? Slope Intercept R?
santiago 0.1565 0.9303 0.9746 0.3285 0.5797 0.9917
athens 0.2204 0.7539 0.9956 0.3749 0.4421 0.9955
manila 0.2689 0.8115 0.9987 0.4216 0.5045 0.9882
belem 0.3823 0.5324 0.9831 0.5146 0.2837 0.9982
lima 0.3269 0.5866 0.9576 0.4625 0.3216 0.9765
quito 0.3106 0.7460 0.9936 0.3895 0.5869 0.9923
yorktown 0.4739 0.6908 0.9998 0.5720 0.4897 0.9976
melbourne 0.7315 0.0939 0.9881 0.8055 0.0170 0.9974
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Table 4. Average values of the accuracy of single-qubit state production a and b (see text), and the slopes, intercepts, and R? values
for linear least-squares fits to the entropy Sso as a function of the number of qubits. Values a’ and b’ reproduce the observed slopes of
Sso from the stair-step algorithm to four figures. The slopes, intercepts and R? values for the fits with @' and b’ are listed. The
intercepts should be compared with the intercepts for Ss, for the stair-step algorithm listed in Table 3.

a b Slope  Intercept R? a' b’ Slope  Intercept R?

santiago 0.9901 0.9795 0.1216 0.9574 0.9997 0.9848  0.9743 0.1565 0.9387 0.9976
athens 0.9792 0.9428 0.2563 0.9641 0.9996 0.9854  0.9488 0.2204 0.9083 0.9982
manila 0.9898 0.9682 0.1551 0.9439 0.9981 0.9704  0.9492 0.2689 0.8684 0.9977
belem 0.9874 0.9499 0.2103 0.9161 0.9983 0.9546 09183 0.3823 0.7788 0.9981

lima 0.9900 0.9589 0.1782 0.9347 0.9983 0.9633  0.9331 0.3269 0.8251 0.9979
quito 0.9896 0.9583 0.1814 0.9327 0.9983 0.9667  0.9361 0.3106 0.8384 0.9979
yorktown  0.9591 0.9186 0.3964 0.7907 0.9981 0.9353  0.8958 0.4739 0.6926 0.9985
melbourne  0.9839 0.9298 0.8055 0.0170 0.9974 0.8329  0.7871 0.7315 0.5826 0.9995
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Table 5. Percentages of heavy outputs for the cat states on lima.’® Values are listed for 25 runs
for qubit numbers 2 through 5. Cat states were constructed with the stair-step algorithm for n =
3-5. The averages and standard deviations of the 25 listed values are shown in the table, and the
averages and standard deviations for a total of 75 runs are also shown. The z-score of 2/3 is
listed at the end of the table.

n
2 3 4 5
Percentages of heavy outputs

Results of runs 95.813 90.967 84.802 68.396
95.862 90.576 81.458 68.286

95.410 91.199 81.799 74.133

95.703 90.845 82.251 75.073

95.544 90.771 81.604 69.128

95.886 91.223 80.200 75.122

95.801 90.710 79.358 68.762

95.435 90.906 82.654 69.519

95.837 91.223 80.298 74.780

95.288 91.235 79.785 68.665

95.581 90.515 83.740 72.119

95.703 90.918 79.883 75.659

95.581 91.284 80.762 74.194

95.886 91.309 81.702 69.421

95.654 91.162 82.422 72.192

95.605 91.235 81.750 75.342

96.021 91.089 80.444 72.681

95.874 91.260 84.009 68.909

95.850 90.820 80.420 69.373

95.605 90.955 83.801 74.951

95.923 90.991 81.714 69.348

95.715 90.771 81.433 74.487

95.813 91.016 84.155 67.798

95.886 90.845 79.785 68.982

95.862 91.455 81.409 74.817

Average of 25 runs 95.726 91.011 81.666 71.686
Standard deviation 0.182 0.244 1.527 2.897
Average of 75 runs 95.758 91.016 81.946 71.232
Standard deviation 0.233 0.287 1.495 2.642
z-score for 2/3 125.10 84.75 10.22 1.728
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Fig. 1. Density matrix p, error-mitigated density matrix pm and reduced density matrices pa, ps, and pc from one run for a GHZ
state on santiago.!’®” The basis for density matrices p and pmis {|000),[/001),[010),]011),[100),|101),[110),

| 111)}. The basis for the reduced density matricesis { | 0), | 1 )}.
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Fig. 2. The Shannon entropies Ss, obtained from the distribution of measurement outcomes for individual runs)and the Shannon

entropies Ssq derived from the diagonal elements of the density matrix, obtained via tomography for 3-qubit cat states
on jakarta.'®> The Shannon entropies Ssam have been derived from the density matrices after error mitigation with
routines from IBM’s qiskit documentation. Points in red indicate the averages of the results..
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Fig. 3. a) Transpiled circuits for the stair-step algorithm for 4-qubit cat states, and b-d) three different transpiled circuits for the
harpsichord algorithm for 4-qubit cat states, generated within a single job on manila.3!3!
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Fig. 4. The Shannon entropy Sso of the distribution over measurement outcomes for the stair-step algorithm, plotted
as a function of the number of entangled qubits on the 5-qubit computers yorktown,'®* belem,3**manila,*'*athens,'%3*and santiago.!”®’
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Fig. 5. Comparison of the Shannon entropies Ss, for the two algorithms on IBMQ’s yorktown,!#4!'athens,'®>!and santiago'”®
computers. X: Harpsichord algorithm, o: Stair-step algorithm. The error bars indicate one standard deviation from the average

values of 75 runs.
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Fig. 6. Entropy S as a function of @ and b, the accuracy of production and measurement of qubit
states | 0 ) and | 1 ). a) S for a 4-qubit cat state and b) S for cat states with 2, 5, 10, and 15 qubits

(stacked from bottom to top). A maximum value of the entropy equal to the number of qubits is
found when a =5 =0.5.




Fig. 7. Plot of Sso(n) vs. n for the quantum computer outputs, compared with linear fits based on @’ and b’ (see
text).. Results obtained on yorktown,'# belem,3? manila,3!3athens, '3’ and santiago.!”8.17
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Figure 8

Fig. 8. Entropy of cat-states on melbourne, for the harpsichord and stair-step algorithms, with
predictions based on accuracies a' and b'.
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Computational time scaling for state tomography

The computational time required for tomography grows exponentially with the number of
qubits, because 3" circuits are needed for quantum state tomography on an n-qubit cat state. We
have examined the timing of runs with 2-5 entangled qubits on the IBM quantum computers lima,
belem, and manila. Timing data are provided in Tables S.1-S.3. All currently available timing
data are listed in the tables. The times in the first five data rows come from the more recent runs,
with 100 circuits per job, rather than 75. Tomography on a 4-qubit cat state, which requires 81
circuits, can be now completed in a single job, rather than two. Tomography on a 5-qubit cat state,
which requires 243 circuits, can be completed in three jobs, rather than four. Timing data in the
subsequent rows comes from our earlier runs, which were limited to 75 circuits per job. These
typically ran longer, for the 4- and 5-qubit tomography.

Table S.1. Times for quantum tomography of cat states on lima. The “time in system” is
listed in seconds, depending on the number of entangled qubits, n.

n=2 n=3 n=4 n=>5
52 11.1 28.1 82.7

6.2 11.2 273 83.9

52 11.1 27.5 85.4

52 11.4 274 83.0

5.1 11.0 273 85.4

52 10.8 30.8 86.6

5.3 12.4 31.2 87.3

52 10.9 31.7 89.5

6.3 10.9 30.8 87.3

52 10.9 30.6 91.8

31.4 89.5

37.1 88.6

Average of times in top five data rows (s)
5.38 11.16 27.52 | 84.08




Table S.2. Times for quantum tomography of cat states on belem. The “time in system” is
listed in seconds, depending on the number of entangled qubits, n.

n=2 n=3 n=4 n=>5
5.2 11.4 26.9 82.3
5.2 11.1 27.1 84.4
6.3 11.0 27.9 83.3
5.4 11.5 26.9 84.6
53 11.1 28.0 84.3
5.1 11.2 30.6 87.0
5.1 10.9 32.8 86.7
5.1 11.1 30.5 86.5
5.1 10.9 30.3 86.5
5.1 10.9 30.7 88.8
Average of times in the top five data rows (s)
5.48 11.22 27.36 83.78

Table S.3. Times for quantum tomography of cat states on manila. The “time in system” is
listed in seconds, depending on the number of entangled qubits, n.

n=2 n=3 n=4 n=>5
7.6 12.7 28.3 88.9
7.7 12.6 29.1 85.2
7.6 12.7 28.3 86.0
7.6 12.6 28.1 85.7
7.6 12.9 28.3 85.9
7.9 13.0 28.1 85.4
8.7 13.1 28.6 84.9
8.1 13.1 28.2 84.8
7.8 13.1 28.2 85.3
7.9 12.9 28.8 85.5
8.5 13.1 35.5 95.7
8.4 13.3 35.3 95.5

13.1

13.2

13.2

Average of times in the top five data rows (s)

7.62 12.70 28.42 ‘ 86.34




We have used the average timing data from the more recent runs to find fits to the “time in
system” as a function of the number of qubits. We note that the “Running” time and the “Total
completion time” are both longer than the “time in system.”

The times for n-qubit tomography are fit well by the form ki 3" + k», where k; and k> are
constants. The constant k» appears to reflect the overhead associated with the set-up time for the
runs. Its inclusion improves the fit to the required times for 2- and 3-qubit cat states, but it is small
compared with k; 3" for the 4- and 5-qubit cat states. The values for k; and k> that we obtained
with the FindFit function in Mathematica are listed in Table S.4.

Table S.4. Parameters k; and k: in the fits of time in system for quantum state tomography
of n-qubit cat states on IBM quantum computers.

Computer ki k2
lima 0.33738 1.67071
belem 0.33572 1.74476
manila 0.33912 3.24905

The parameters ki is quite similar for all three quantum computers; ko is quite similar for lima and
belem, close to twice as large on manila.

Figures F.1-F.3 show the fit to the average times, along with data points from the five most
recent runs shown in red. Data points from the earlier runs, with 75 circuits per job, are shown in
green. All of the points lie fairly close to the functional fits.

Figure F.1. Fit of the average times in system T(n) for the five most recent runs on lima, to
the form T(n) = k; 3" + k; as a function of the number of qubits n. Individual data points
from the five most recent runs are plotted in red and data from the remaining runs are
plotted in green.

150

Time

®) ool

50

Off | | | |
1 2 3 4 5

Number of qubits n




Figure F.2. Fit of the average times in system T(n) for the five most recent runs on belem, to
the form T(n) = k; 3" + k2, as a function of the number of qubits n. Individual data points
from the five most recent runs are plotted in red and data from the remaining runs are
plotted in green.
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Figure F.3. Fit of the average times in system T(n) for the five most recent runs on manila,
to the form T(n) = k; 3" + k2, as a function of the number of qubits n. Individual data points
from the five most recent runs are plotted in red and data from the remaining runs are
plotted in green.
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As expected, tomography on 4- and 5-qubit cat states took slightly longer for the older runs, with
75 circuits per job rather than 100.

If the same functional form of the time requirements continues to hold for additional qubits,
then it appears that results could be obtained reasonably for more than five entangled qubits, if
considered on this basis alone. For example, based on the fit to the timing data from lima, with 10
qubits, the “time in system” is predicted to be about 5.5 hours. Due to the exponential growth, the
time requirements become unwieldy for the larger quantum computers, though. For a 16-qubit cat
state with the same system-time function as lima, about 168 days would be required; for a 27-qubit
cat state, this would jump to ~81,525 years; for a 65-qubit cat state, ~1.101 - 10> years; and for a
127-qubit cat state, ~4.202 - 10°? years. In brief, it is clear why IBM would not allow state
tomography for all the qubits that are currently available. There may be additional engineering or
access considerations that account for the IBM limit of 5 qubits.

Computational time scaling for finding the algorithm-specific quantum volume, based on the
Shannon entropy

Calculating the algorithm-specific quantum volume is always faster than calculating the
standard quantum volume if other conditions are held constant, because the latter requires at least
100 different circuits. The first step in finding the quantum volume involves a set of runs to
determine the Shannon entropy of measurement outcomes. This is followed by brief post-
processing to determine the per cents of “heavy” outputs and then to determine the probability that
the percentage of heavy outputs is greater than two-thirds.

In analyzing the scaling of the algorithm-specific quantum volume with the number of
qubits, we have determined the “time in system” for runs on bogota, to find the Shannon entropy
of the distribution measurement outcomes, with 2-5 entangled qubits. To offer a balanced
comparison with the times for tomography, we have determined the times for 9, 27, 81, and 243
identical circuits (as would be needed for tomography on 2-5 qubits). The results for “time in
system” are listed in Table S.5, for various numbers of circuits, 1024 or 8192 shots, and qubits.
We used 1024 shots in the quantum state tomography runs.

Table S. 5. “Time in system” for calculation of the Shannon entropy of the distribution over
measurement outcomes, for different numbers of shots and circuits.

Number of circuits Number of shots Number of qubits Time in system (s)
9 1024 2 8.7
9 1024 3 9.6
9 1024 4 8.8
9 1024 5 8.9
9 8192 2 26.3
9 8192 3 26.3
9 8192 4 26.2
9 8192 5 26.4




Number of circuits Number of shots Number of qubits Time in system (s)
27 1024 2 13.8
27 1024 3 14.7
27 1024 4 13.8
27 1024 5 14.4
27 8192 2 66.9
27 8192 3 66.2
27 8192 4 66.5
27 8192 5 67.1
81 1024 2 29.0
81 1024 3 28.8
81 1024 4 30.6
81 1024 5 29.3
81 8192 2 184.6
81 8192 3 186.7
81 8192 4 186.8
81 8192 5 188.1
243 1024 2 89.0
243 1024 3 88.8
243 1024 4 89.4
243 1024 5 90.9
243 8192 2 555.8
243 8192 3 556.1
243 8192 4 557.0
243 8192 5 558.8

The required times are virtually independent of the number of qubits, for the range of qubit
numbers from 2 to 5. Significantly, the times shown in Table S.5 for 9 circuits of 1024 shots are
quite similar to the times for quantum state tomography of 2 qubits. For the runs with 1024 shots,
the times in Table S.5 are also quite similar for 27 circuits vs. tomography for 3 qubits, 81 circuits
vs. tomography for 4 qubits, and 243 circuits vs. tomography for 5 qubits. This makes it clear that
the time required for quantum state tomography is exponential in the number of qubits n, because
the number of circuits needed to carry out the tomography is 3", not because extra time is required
for operations on more qubits. The “time in system” (in seconds) scales as s ¢ + s2 in the number
of circuits ¢. For 1024 shots, s; =0.3472 and s, = 4.287; for 8192 shots, s; =2.269 and s, = 4.880.



Interestingly, the time does not scale linearly with the number of shots. For example, the
average time required for 9 circuits with 1024 shots per circuit is 9.0 s, while the average time
required for 9 circuits with 8192 shots per circuit is 26.3 s. If the time required scaled linearly in
the number of shots, then 8192 shots would require 8 times the time needed for 1024 shots. Instead
the time increase is smaller, with factors of 2.92 going from 1024 shots to 8192 shots for 9 circuits;
4.70 going from 1024 shots to 8192 shots for 27 circuits; 6.34 going from 1024 shots to 8192 shots
for 81 circuits; and 6.22 going from 1024 shots to 8192 shots for 243 circuits.

For scaling of the algorithm-specific calculations of quantum volume as the number of
qubits increases, the relation between the number of qubits and the number of circuits needed is
therefore the key. From Table 5 (in the paper), the percentages of heavy outputs appear to be
reasonably well determined with 25 runs. The z-score for the 2/3 in the case with 5 qubits is 1.733
after 25 runs and 1.728 after 75 runs. In a case where the z-score is quite close to the cut-off for
the 97.5% confidence interval, additional runs may be needed, but here there is little difference;
and the z-scores in the cases with 2, 3, and 4 qubits are well above that needed for the 97.5%
confidence level.

It is not yet clear how the number of circuits required to determine the percentage of heavy
outputs will be affected by a large increase in the number of qubits, but in the range from 2 to 5
qubits, 25 circuits appear to be sufficient for the algorithm-specific quantum volume of the cat
states.





