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Abstract—The integration of intermittent renewable energy 
resources is increasing the volatility of electricity prices and is 
changing the way power systems are operated. Price volatility 
creates a unique business opportunity for energy storage owners 
to perform energy arbitrage: buying low cost energy and selling 
it back when the price is high. This paper provides a method to 
determine the expected revenue of energy arbitrage in the day-
ahead energy market using the statistics of realistic market data.  
The proposed method uses an optimization model to calculate 
the maximum daily revenue from energy arbitrage. Clustering is 
used to differentiate among seasonal prices, and a regression 
model is used to fit the revenues to the price statistics for each 
cluster. The R-squared value for the goodness of fit is used to 
verify the observation. Results for the PJM market exhibit a 
linear correlation between the revenue and the price statistics of 
dispersion, mainly the price range and its standard deviation 
and hence the paper provides a straightforward method to 
estimate revenues. Winter prices provide more energy arbitrage 
opportunities due to their two-peak daily price data pattern with 
higher sensitivities to price statistics.  

Index Terms—Clustering, Energy arbitrage, Energy market, 
Energy storage, Linear optimization. 

I. INTRODUCTION 
The intermittent nature of renewable energy resources is an 

important challenge in power system operation. This 
intermittency in generation translates into rapid net load 
changes resulting in electricity price volatility in power system 
markets. The reliable integration of  renewable energy 
resources at high penetration levels requires flexible resources 
[1] such as energy storage systems. These resources provide 
rapid ramp rates that can compensate the intermittency of 
renewables. Privately-owned (merchant) storage systems can 
also benefit from the price volatility by buying energy when 
the price is low and selling it back when the price is high. This 
is known as the energy arbitrage service. 

 Energy storage systems are being deployed at a fast pace 
in the United States and worldwide [2]. With the estimated 

decrease in the investment cost up to 49% in the next five 
years [3], the private storage business model outlook is 
promising. Private storage systems can participate in energy 
and balancing markets and collect revenues, as well as to offer 
other services [4].The benefit analysis of energy arbitrage is 
not fully-understood, with few references addressing realistic 
data. This paper provides a method based on the statistics of 
realistic market data for the evaluation of the energy arbitrage 
service as a market-based revenue stream for privately-owned 
storage systems. No prior work has been found that analyzes 
the price data statistics to determine energy arbitrage revenue, 
which is the main contribution of this paper. 

The evaluation of energy arbitrage service revenue is 
studied in the literature using different methodologies. One of 
the main assumptions is related to the market power of energy 
storage. If the operation of energy storage does not impact the 
market prices, the storage is a price-taker, and if it does, it is a 
price-maker. In price-maker models, the storage bids into the 
market, and the cleared price becomes a function of all the 
power suppliers’ bids. Strategic bidding approaches are 
proposed to find the optimal scheduling of energy storage 
maximizing the revenue from energy arbitrage and other 
market-based services [5]–[10]. These approaches are based 
on bi-level optimization problems. The process of clearing the 
market is the lower level problem, and it requires the bidding 
information of the other market actors. Since the bids are not 
publicly available data, the actual applicability of these 
analyses for realistic storage service evaluation is limited. 

Energy arbitrage service evaluation under a price-taker 
model is analyzed in [11]–[19]. The service revenue is 
optimized separately [11]–[13], or co-optimized with other 
market products, such as frequency regulation [14]–[19]. 
Linear and mixed integer optimization are used to determine 
the maximum revenue. Realistic market data of CAISO, 
ERCOT, PJM, and ISONE is used in [15]–[18], taking the 
market data as inputs to the optimization models. While the 
market prices contain valuable information about the potential 
revenue from energy arbitrage, no analysis is yet conducted on 
the price data statistics for the evaluation of energy arbitrage 
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service. This research gap is investigated in this paper. In order 
to analyze the statistics, price data is clustered into summer 
and winter prices using a novel correlation-based algorithm. 
The proposed algorithm chooses the base price for each cluster 
and classifies the daily prices within a couple of iterations. A 
linear regression model is then deployed to fit the maximum 
daily revenue to the statistics of each cluster price.  

The rest of the paper is organized as follows. Section II 
describes the problem that the private storage systems are 
facing. This problem is addressed in Section III, which is 
dedicated to the proposed methodology. A linear optimization 
model, a novel clustering algorithm for daily prices, and a 
linear regression model are introduced. Section IV provides 
the simulation results and suggests a linear correlation 
between the optimum daily revenue from energy arbitrage and 
the price statistics of dispersion. Finally, section IV concludes 
and discusses future work.   

II. PROBLEM DESCRIPTION 
Analyzing the benefits of energy storage is very important 

for electric utilities, as well as private storage owners who 
need accurate estimates of revenues on their investments. 
Market-based services provide the means for private storage 
systems to participate and collect revenues. These services 
include energy arbitrage, which can be day-ahead and real-
time. This paper focuses on the energy arbitrage service in the 
day-ahead energy market. We seek to understand the expected 
revenue from this service given a daily price data, and to gain 
insight on the correlation of the optimal revenue with respect 
to price data statistics. While it is known that the price changes 
would increase the revenue from energy arbitrage, no measure 
of “favorable” volatility is provided that can be used to 
determine the expected revenue. The proposed method can 
substitute the complex and computationally cumbersome 
calculations for this analysis, especially in the case of long 
time-horizon market data for multiple pricing nodes. The rest 
of this Section introduces the day-ahead energy arbitrage 
service and the energy storage market participation model. 

Day-ahead energy markets are developed in restructured 
power systems so that market actors (power producers, 
consumers, and traders) buy/sell their consumed/produced 
energy for the next day. The independent system operator 
(ISO) operates the energy market by receiving the buyers’ bids 
and sellers’ offers. Maximizing the social welfare, the ISO 
clears the market and sets the electricity price for every hour 
of the next day. Both the demand and the cost of generation 
change during the day, and the resulting daily electricity price 
spread creates a unique business model for energy storage 
owners. They can buy low-cost energy during off-peak hours 
and sell it back at higher costs during peak hours.  

Energy storage owners can participate in the day-ahead 
market to perform energy arbitrage and earn revenues. Since 
energy storage can operate both as generation and load, 
owners submit both bids and offers to the day-ahead market. 
Specifically, for the energy arbitrage, they submit bids for off-
peak hours when they are expected to be charging, and submit 
offers for peak hours when they expect to be discharging. In 
order to maximize the energy arbitrage service revenue, 
storage owners forecast day-ahead prices, and optimize the 
dispatch using optimization models. To guarantee that the bids 
and offers will be cleared, they can submit zero prices for 

both. In this way, all the quantities are cleared in the market 
and will be paid or charged based on the market price of that 
hour. Traditional optimization modeling and calculation 
process is computationally demanding for long time-horizon 
price data and multiple pricing nodes. Moreover, there is little 
insight on the expected revenue with respect to the input price 
data. The proposed methodology described in the next Section 
overcomes these difficulties. 

III. PROPOSED METHODOLOGY 
In this Section, a linear optimization model is developed to 

calculate the owner’s maximum revenue from the energy 
arbitrage given a price data. In order to analyze the revenue 
with respect to price statistics, a novel clustering algorithm 
that classifies the realistic price data is proposed. This step is 
necessary since seasonal prices are different in shape and their 
statistics. The algorithm determines when summer and winter 
start and when they end in terms of electricity prices. 
A. Linear Optimization Model 

The linear optimization model for the owner’s maximum 
revenue from energy arbitrage is developed in (1)–(5). The 
optimization problem maximizes the energy storage owner’s 
revenue from the energy arbitrage service given the day-ahead 
prices tπ . The storage is assumed to be price-taker, and its 
operation does not impact market prices. It is also assumed 
that prices are known with a perfect foresight. The analysis of 
forecast errors is out of the scope of this paper and is being 
studied by the authors. The time period is set to one hour, 
i.e. 1t hrΔ = , and hence power and energy are used 
interchangeably. The charging and discharging powers, 

and ch ig s
t t

dP P , are limited by their minimum (both assumed to 
be zero) and maximum values max max,chg disP P  as in (2) and (3). The 
energy level is also within its limits min max,E E as in (4) to 
ensure a reliable operation. The net exchanged energy is zero 
during the time horizon, modeled by (5) where the final energy 
level TE equals the initial one 0E . The charging and 
discharging efficiencies are denoted by chgη  and disη , 
respectively. The storage energy loss over time is modeled by 
the self-discharging efficiency denoted by sη . 
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( )min max1 /ch dig
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disE E P tP Eη η η− + Δ ≤−≤  (4) 

0TE E=  (5) 
B. Price Clustering 

The revenue from the energy arbitrage service is highly 
dependent on the input price data and its statistics. Seasonal 
prices have different patterns and statistics. This subsection 
describes the patterns in historical realistic price data of PJM 
used in this study, and proposes a novel clustering method. 

The energy demand varies continuously creating temporal 
price spreads. One of the key factors is the seasonal weather 
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change resulting energy demand and price variations. Figure 1 
shows a 3D plot of annual prices of 2017 in the PJM market at 
the aggregate node [20]. Besides the daily changes, different 
price shapes are also seen for summer and winter seasons 
where the former has one peak in the evening, and the latter 
has two daily peaks: one in the morning and the other one in 
the evening. 

 
Fig. 1  Temporal price variations in the PJM market during 2017. 

The optimization problem in (1) is expressed as a linear 
function of electricity prices. In other words, if the price is 
doubled while maintaining the same shape, so does the 
revenue while the charging/discharging pattern does not 
change. Leveraging on this fact, any set of daily price data 
with high linear correlation (i.e., similar shapes) would result 
in identical dispatch, and the revenues would be proportional 
to the correlation coefficient. Accordingly, based on the price 
pattern observation, we classify the prices into summer and 
winter prices using a novel clustering method. Specifically, we 
want to determine when each season starts (in terms of 
electricity prices) and how long it lasts. Thus, we developed a 
clustering algorithm inspired by the k-means algorithm used in 
machine learning [21]. In this algorithm, we used the Pearson 
correlation coefficient (PCC) to measure the linear correlation 
of two daily price data. Generally, for two data samples x and 
y with respective means of x and y , the PCC is expressed as: 

( )( )

( ) ( )
1

2 2

1 1

n

i i
i

n n

i i
i i

x x y y
PCC

x x y y

=

= =

− −
=

− −
 (6) 

The flowchart of the proposed clustering algorithm is 
illustrated in Fig. 2. The algorithm starts by choosing two 
initial base prices for the two seasons. In this paper, we chose 
Jan. 15th and July 15th for winter and summer initial base 
prices, respectively. This choice is arbitrary, however, in order 
to reduce the number of iterations, we chose distinct summer 
and winter prices rather than boundary prices in April and 
October. Then, the algorithm rolls on a daily basis, and for 
each day, it calculates the PCC of the price with the two base 
prices. The day is then added to the set with greater PCC (set 

 for summer and set  for winter). The total sum of PCCs 
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Fig. 2  The flowchart of the proposed clustering algorithm. 

in each cluster is updated afterwards. This process iterates 
until all the days are clustered. After this process, all the two 
by two PCCs within each cluster are calculated and the daily 
price with the greatest sum of PCCs is chosen as the new base 
price. If either of the new base prices is different from the old 
ones, the algorithm reiterates from day 1, otherwise 
terminates. The final results are two clusters including summer 
and winter daily prices, as well as two base prices for each 
cluster. 
C. The Linear Regression Model 

In order to quantify the value of energy arbitrage with 
respect to price statistics, a first order polynomial (straight 
line) is fitted to the price data statistics of each cluster using 
the linear regression model:  

y X β ε= +  (7) 
where y is the vector of daily energy arbitrage revenues, X is 
the matrix of regressors with the first column of all ones and 
the second column of daily price statistics,  is a two-element 
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parameter vector (intercept and slope), and  is the error term. 
The best estimate of the  parameters that minimizes the 
squared errors is given by least-squares as in (8). 

( ) 1ˆ T TX X X yβ
−

=  (8) 
Using these parameters, we can find the linear relationship 

between the daily price statistics (X) and the estimated daily 
revenues ( ŷ ). 

( ) 1
ˆ T TX Xy X X y

−
=  (9) 

The estimation error is given by: 

( )( )1
ˆ T Te y y I X X X X y

−
= − = −  (10) 

where I is the identity matrix. The goodness of linear fitting 
models can be expressed by several measures. In this paper, 
the R-squared value (also known as coefficient of 
determination) is used. The R-squared value is calculated as:  

2 1 res

tot

SS
R

SS
= −  (11) 

where 

( )22 ˆi i
i

res
i

iSS e y y= = −  (12) 

( )2

tot i
i

SS y y= −  (13) 

IV. SIMULATION RESULTS AND DISCUSSION 
This Section provides the results of the proposed 

methodology. The storage owner’s maximum revenue is 
calculated first. The clustering algorithm results are then 
provided. Prices statistics of dispersion are introduced next, 
and the results of the linear regression model are presented 
lastly. 
A. Optimization Resuslts    

Using the optimization model (1)–(5) and the PJM 
historical prices, the owner’s revenue from the EA service is 
computed for the day-ahead market of the last five years. 
Hourly day-ahead market prices at the aggregate node were 
analyzed from 2013 to October of 2017 [20]. Data was 
cleaned, and the missing days without the price data were 
removed from the dataset. The missing hours are linearly 
interpolated using the adjacent hours. The simulation 
parameters corresponding to the energy storage device are 

max max 100dis chgP P MW= = , max 100 ,E MWh=  m0 ax0.5 ,E E=  

min 0,E = 0.95chg disη η= = , 1sη = .  
As an example, the day-ahead prices and the optimal 

dispatch for two sample days (1/9/2017 and 9/21/2017) are 
shown in Fig. 3. These two days result in maximum winter and 
minimum summer revenues in the year 2017 (until October 
17th). The price shapes are different such that the winter day 
has two peaks, one in the morning and the other in the evening 
with the price range of 72$ during the day. However, the price 
shape of the summer day has only one peak during the evening 
with the price range of 8$. The charging and discharging 
patterns are different due to different price shapes. The 
revenue in the winter day is 7,785$ while the summer day 
provides only 490.5$, which is 6.3% of that for the winter day. 
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Fig. 3  Daily price and optimal dispatch for a) Jan. 9th and b) Sept. 21th 2017. 

B. Clustering Results 

The proposed clustering algorithm is run on the five-year 
historical price data of PJM and converged within 3, 2, 3, 3, 
and 4 iterations for 2013 to 2017, respectively. The results are 
shown in Fig. 4. It can be clearly seen that the proposed 
algorithm is capable of clustering seasonal prices based on 
their shapes. Fig. 4(a) and 4(b) show the sets of summer and 
winter prices. Final base prices in Fig. 4(c) show that the peak 
prices of the two clusters are almost equal while the minimum 
price of summer is lower than that of winter. Each of these 
prices has a favorable feature for energy arbitrage service. 
While the daily price spread is greater in summer, the winter 
prices have two peaks providing opportunities for two 
charging and discharging cycles in a day. The analysis of 
results provided later shows that the two-peak feature of 
winter prices is more favorable for energy arbitrage resulting 
in higher revenues in winter days. 

Clustering results for each year are shown in Fig. 5. The 
range of the boxplots shows the middle 95% of the clustered 
summer days in each year. There are few days in summer and 
winter months with the price of the other shape. These days 
are considered outliers, and are not considered in determining 
the set of summer and winter days. Apart from 2017, the 
summer days for each year overlaps greatly. Using these 
results, we consider the set of summer days to include days 
101 to 282. The set of winter days include the rest of the days 
in a year.  

Once daily prices are clustered, we use each cluster’s 
statistics to find a linear relationship with the maximum daily 
revenue calculated from (1)–(5). Therefore, the following 
daily price statistics of dispersion are tested: 
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Fig. 4  Results of the proposed clustering algorithm: a) summer, and b) 
winter daily price clusters, and c) base prices of clusters. 
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Fig. 5  Boxplot of summer days in each year clustered by the proposed 
algorithm. 
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average of absolute difference from the mean price. 
C. Linear Regression Results 

The linear regression model is applied to both summer and 
winter clusters for different price statistics. The tuples of 
revenue and statistics for each cluster are plotted in Fig. 6, as 
well as the fitted lines. In these plots, red crosses are for 
summer and blue circles are for winter. The estimated 
parameters of the fitted lines, and the R-squared values are 
reported in Table I for different clusters and price statistics.  
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Fig. 6  Linear regression results: revenue vs. price a) range, b) MAD, and c) 
standard deviation. 

TABLE I.  LINEAR REGRESSION MODEL RESULTS 

Season Range MAD  

0 summer 
winter 

-2.55 
-4.16 

-2.98 
-5.01 

-1.77 
-5.08 

1 summer 
winter 

0.92 
1.21 

3.67 
5.77 

2.96 
4.53 

R-squared summer 
winter 

0.9868 
0.9486 

0.9415 
0.9253 

0.9619 
0.9484 

 
The results show that winter revenues are in general higher 

than summer revenues. The sensitivity of winter revenues with 
respect to price data statistics is always larger than those of 
summer. This is justified by the general price shape of winter 
daily prices. Because winter prices have two daily peaks, there 
is more opportunity for energy arbitrage in those days. 
Furthermore, the results reveal that the energy arbitrage 
revenue is linearly correlated with the electricity price data 
statistics of dispersion. Among the tested statistics, the revenue 
shows the best linear relationship with the price range. 
Therefore, given the electricity price data of a node, its 
expected revenue from the energy arbitrage can be easily 
expressed as a linear function of the price range. This 
simplifies the service benefit analysis for the utilities and 
investors. In addition, with the prices of different pricing 
nodes in a region, the problem of the optimal placement of 
energy storage in terms of the highest energy arbitrage value is 
simplified to finding the node with the highest sum of daily 
price ranges. 

The results provided are for fixed energy storage 
parameters, such as efficiency and capacity. Sensitivity 
analysis can be performed within the same framework. While 
linear sensitivities change by varying energy storage 
parameters, the greater winter revenues and their sensitivities 
remain unchanged. Also, if the capacity of the energy storage 
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is high enough to impact the energy market price (price-maker 
energy storage), the optimization model in [22] can again be 
used in our proposed framework to determine the service 
value. It is expected that higher extreme prices will emerge in 
the future energy markets with more renewables integrated 
into the grid. This adds to the value of energy arbitrage service 
from energy storage projects promising a unique business 
opportunity for the future grid. 

V. CONCLUSION 
A novel method is developed to determine the expected 

revenue of energy storage systems from the energy arbitrage 
service in the day-ahead market based on the statistics of 
realistic market price data. A machine-learning-based 
clustering algorithm is proposed to classify the prices into 
summer and winter clusters based on their correlation with a 
base price for each cluster that updates iteratively. The revenue 
in each cluster is fitted to the daily price statistics using a 
linear regression model. The proposed method was tested on 
the five-year PJM historical day-ahead energy market prices. 
The daily revenue is calculated using an optimization problem. 
It is observed that the service revenue is mainly determined by 
the price data shape. Using the clustering algorithm, two 
general price data patterns (summer and winter) are clustered 
in this market. The results of the linear regression model show 
that the clusters revenue is linearly dependent on the 
dispersion statistics of the price data, mostly the range. Winter 
prices result in higher revenues with more sensitivity to price 
dispersion. The results can benefit utilities and investors to 
analyze the energy arbitrage revenue in a straightforward 
manner using simple statistics of the energy market prices. 
The proposed clustering method is also a useful tool for other 
applications, such as an offline suboptimal dispatch and where 
there is no communication infrastructure so that ESS knows 
the actual day-ahead prices.  
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