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Abstract—The integration of intermittent renewable energy
resources is increasing the volatility of electricity prices and is
changing the way power systems are operated. Price volatility
creates a unique business opportunity for energy storage owners
to perform energy arbitrage: buying low cost energy and selling
it back when the price is high. This paper provides a method to
determine the expected revenue of energy arbitrage in the day-
ahead energy market using the statistics of realistic market data.
The proposed method uses an optimization model to calculate
the maximum daily revenue from energy arbitrage. Clustering is
used to differentiate among seasonal prices, and a regression
model is used to fit the revenues to the price statistics for each
cluster. The R-squared value for the goodness of fit is used to
verify the observation. Results for the PJM market exhibit a
linear correlation between the revenue and the price statistics of
dispersion, mainly the price range and its standard deviation
and hence the paper provides a straightforward method to
estimate revenues. Winter prices provide more energy arbitrage
opportunities due to their two-peak daily price data pattern with
higher sensitivities to price statistics.

Index Terms—Clustering, Energy arbitrage, Energy market,
Energy storage, Linear optimization.

L INTRODUCTION

The intermittent nature of renewable energy resources is an
important challenge in power system operation. This
intermittency in generation translates into rapid net load
changes resulting in electricity price volatility in power system
markets. The reliable integration of renewable energy
resources at high penetration levels requires flexible resources
[1] such as energy storage systems. These resources provide
rapid ramp rates that can compensate the intermittency of
renewables. Privately-owned (merchant) storage systems can
also benefit from the price volatility by buying energy when
the price is low and selling it back when the price is high. This
is known as the energy arbitrage service.

Energy storage systems are being deployed at a fast pace
in the United States and worldwide [2]. With the estimated
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decrease in the investment cost up to 49% in the next five
years [3], the private storage business model outlook is
promising. Private storage systems can participate in energy
and balancing markets and collect revenues, as well as to offer
other services [4].The benefit analysis of energy arbitrage is
not fully-understood, with few references addressing realistic
data. This paper provides a method based on the statistics of
realistic market data for the evaluation of the energy arbitrage
service as a market-based revenue stream for privately-owned
storage systems. No prior work has been found that analyzes
the price data statistics to determine energy arbitrage revenue,
which is the main contribution of this paper.

The evaluation of energy arbitrage service revenue is
studied in the literature using different methodologies. One of
the main assumptions is related to the market power of energy
storage. If the operation of energy storage does not impact the
market prices, the storage is a price-taker, and if it does, it is a
price-maker. In price-maker models, the storage bids into the
market, and the cleared price becomes a function of all the
power suppliers’ bids. Strategic bidding approaches are
proposed to find the optimal scheduling of energy storage
maximizing the revenue from energy arbitrage and other
market-based services [5]-[10]. These approaches are based
on bi-level optimization problems. The process of clearing the
market is the lower level problem, and it requires the bidding
information of the other market actors. Since the bids are not
publicly available data, the actual applicability of these
analyses for realistic storage service evaluation is limited.

Energy arbitrage service evaluation under a price-taker
model is analyzed in [11]-[19]. The service revenue is
optimized separately [11]-[13], or co-optimized with other
market products, such as frequency regulation [14]-[19].
Linear and mixed integer optimization are used to determine
the maximum revenue. Realistic market data of CAISO,
ERCOT, PJM, and ISONE is used in [15]-[18], taking the
market data as inputs to the optimization models. While the
market prices contain valuable information about the potential
revenue from energy arbitrage, no analysis is yet conducted on
the price data statistics for the evaluation of energy arbitrage
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service. This research gap is investigated in this paper. In order
to analyze the statistics, price data is clustered into summer
and winter prices using a novel correlation-based algorithm.
The proposed algorithm chooses the base price for each cluster
and classifies the daily prices within a couple of iterations. A
linear regression model is then deployed to fit the maximum
daily revenue to the statistics of each cluster price.

The rest of the paper is organized as follows. Section II
describes the problem that the private storage systems are
facing. This problem is addressed in Section III, which is
dedicated to the proposed methodology. A linear optimization
model, a novel clustering algorithm for daily prices, and a
linear regression model are introduced. Section IV provides
the simulation results and suggests a linear correlation
between the optimum daily revenue from energy arbitrage and
the price statistics of dispersion. Finally, section IV concludes
and discusses future work.

II.  PROBLEM DESCRIPTION

Analyzing the benefits of energy storage is very important
for electric utilities, as well as private storage owners who
need accurate estimates of revenues on their investments.
Market-based services provide the means for private storage
systems to participate and collect revenues. These services
include energy arbitrage, which can be day-ahead and real-
time. This paper focuses on the energy arbitrage service in the
day-ahead energy market. We seek to understand the expected
revenue from this service given a daily price data, and to gain
insight on the correlation of the optimal revenue with respect
to price data statistics. While it is known that the price changes
would increase the revenue from energy arbitrage, no measure
of “favorable” volatility is provided that can be used to
determine the expected revenue. The proposed method can
substitute the complex and computationally cumbersome
calculations for this analysis, especially in the case of long
time-horizon market data for multiple pricing nodes. The rest
of this Section introduces the day-ahead energy arbitrage
service and the energy storage market participation model.

Day-ahead energy markets are developed in restructured
power systems so that market actors (power producers,
consumers, and traders) buy/sell their consumed/produced
energy for the next day. The independent system operator
(ISO) operates the energy market by receiving the buyers’ bids
and sellers’ offers. Maximizing the social welfare, the ISO
clears the market and sets the electricity price for every hour
of the next day. Both the demand and the cost of generation
change during the day, and the resulting daily electricity price
spread creates a unique business model for energy storage
owners. They can buy low-cost energy during off-peak hours
and sell it back at higher costs during peak hours.

Energy storage owners can participate in the day-ahead
market to perform energy arbitrage and earn revenues. Since
energy storage can operate both as generation and load,
owners submit both bids and offers to the day-ahead market.
Specifically, for the energy arbitrage, they submit bids for off-
peak hours when they are expected to be charging, and submit
offers for peak hours when they expect to be discharging. In
order to maximize the energy arbitrage service revenue,
storage owners forecast day-ahead prices, and optimize the
dispatch using optimization models. To guarantee that the bids
and offers will be cleared, they can submit zero prices for

both. In this way, all the quantities are cleared in the market
and will be paid or charged based on the market price of that
hour. Traditional optimization modeling and calculation
process is computationally demanding for long time-horizon
price data and multiple pricing nodes. Moreover, there is little
insight on the expected revenue with respect to the input price
data. The proposed methodology described in the next Section
overcomes these difficulties.

III. PROPOSED METHODOLOGY

In this Section, a linear optimization model is developed to
calculate the owner’s maximum revenue from the energy
arbitrage given a price data. In order to analyze the revenue
with respect to price statistics, a novel clustering algorithm
that classifies the realistic price data is proposed. This step is
necessary since seasonal prices are different in shape and their
statistics. The algorithm determines when summer and winter
start and when they end in terms of electricity prices.

A. Linear Optimization Model

The linear optimization model for the owner’s maximum
revenue from energy arbitrage is developed in (1)—(5). The
optimization problem maximizes the energy storage owner’s
revenue from the energy arbitrage service given the day-ahead
prices 7z, . The storage is assumed to be price-taker, and its
operation does not impact market prices. It is also assumed
that prices are known with a perfect foresight. The analysis of
forecast errors is out of the scope of this paper and is being
studied by the authors. The time period is set to one hour,
ie.At=1hr, and hence power and energy are used
interchangeably. The charging and discharging powers,
P and P™ , are limited by their minimum (both assumed to

be zero) and maximum values P P as in (2) and (3). The

energy level is also within its limits E , ,E, as in (4) to

ensure a reliable operation. The net exchanged energy is zero
during the time horizon, modeled by (5) where the final energy
level £, equals the initial one £E,. The charging and

discharging efficiencies are denoted by 77,,

and 77, ,
respectively. The storage energy loss over time is modeled by
the self-discharging efficiency denoted by 77, .
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B.  Price Clustering

The revenue from the energy arbitrage service is highly
dependent on the input price data and its statistics. Seasonal
prices have different patterns and statistics. This subsection
describes the patterns in historical realistic price data of PJM
used in this study, and proposes a novel clustering method.

The energy demand varies continuously creating temporal
price spreads. One of the key factors is the seasonal weather
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change resulting energy demand and price variations. Figure 1
shows a 3D plot of annual prices of 2017 in the PJM market at
the aggregate node [20]. Besides the daily changes, different
price shapes are also seen for summer and winter seasons
where the former has one peak in the evening, and the latter
has two daily peaks: one in the morning and the other one in
the evening.
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Fig. | Temporal price variations in the PJIM market during 2017.

The optimization problem in (1) is expressed as a linear
function of electricity prices. In other words, if the price is
doubled while maintaining the same shape, so does the
revenue while the charging/discharging pattern does not
change. Leveraging on this fact, any set of daily price data
with high linear correlation (i.e., similar shapes) would result
in identical dispatch, and the revenues would be proportional
to the correlation coefficient. Accordingly, based on the price
pattern observation, we classify the prices into summer and
winter prices using a novel clustering method. Specifically, we
want to determine when each season starts (in terms of
electricity prices) and how long it lasts. Thus, we developed a
clustering algorithm inspired by the k-means algorithm used in
machine learning [21]. In this algorithm, we used the Pearson
correlation coefficient (PCC) to measure the linear correlation
of two daily price data. Generally, for two data samples x and
vy with respective means of X and y , the PCC is expressed as:

Z(xi _f)(yi _J_/)
PCC=—"~4 (6)
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The flowchart of the proposed clustering algorithm is
illustrated in Fig. 2. The algorithm starts by choosing two
initial base prices for the two seasons. In this paper, we chose
Jan. 15 and July 15" for winter and summer initial base
prices, respectively. This choice is arbitrary, however, in order
to reduce the number of iterations, we chose distinct summer
and winter prices rather than boundary prices in April and
October. Then, the algorithm rolls on a daily basis, and for
each day, it calculates the PCC of the price with the two base
prices. The day is then added to the set with greater PCC (set
S for summer and set VW for winter). The total sum of PCCs
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Fig. 2 The flowchart of the proposed clustering algorithm.

in each cluster is updated afterwards. This process iterates
until all the days are clustered. After this process, all the two
by two PCCs within each cluster are calculated and the daily
price with the greatest sum of PCCs is chosen as the new base
price. If either of the new base prices is different from the old
ones, the algorithm reiterates from day 1, otherwise
terminates. The final results are two clusters including summer
and winter daily prices, as well as two base prices for each
cluster.

C. The Linear Regression Model
In order to quantify the value of energy arbitrage with
respect to price statistics, a first order polynomial (straight

line) is fitted to the price data statistics of each cluster using
the linear regression model:

y=XpB+e (7)

where y is the vector of daily energy arbitrage revenues, X is
the matrix of regressors with the first column of all ones and
the second column of daily price statistics, f is a two-element
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parameter vector (intercept and slope), and ¢ is the error term.
The best estimate of the f parameters that minimizes the
squared errors is given by least-squares as in (8).

N -1
B=(x"x) X'y @®)
Using these parameters, we can find the linear relationship

between the daily price statistics (X) and the estimated daily
revenues ( 7 ).
p=x(x"x) X'y (9)
The estimation error is given by:
e=y—y=(1—X(XTX)’1XT)y (10)

where [ is the identity matrix. The goodness of linear fitting
models can be expressed by several measures. In this paper,
the R-squared value (also known as coefficient of
determination) is used. The R-squared value is calculated as:

2 _ _ SSres
R =1 5 (11
where
SS. =Y =2 (v -5) (12)
88, =2 (v -7) (13)

i

IV. SIMULATION RESULTS AND DISCUSSION

This Section provides the results of the proposed
methodology. The storage owner’s maximum revenue is
calculated first. The clustering algorithm results are then
provided. Prices statistics of dispersion are introduced next,
and the results of the linear regression model are presented
lastly.

A. Optimization Resuslts

Using the optimization model (1)~(5) and the PJM
historical prices, the owner’s revenue from the EA service is
computed for the day-ahead market of the last five years.
Hourly day-ahead market prices at the aggregate node were
analyzed from 2013 to October of 2017 [20]. Data was
cleaned, and the missing days without the price data were
removed from the dataset. The missing hours are linearly
interpolated using the adjacent hours. The simulation
parameters corresponding to the energy storage device are

P =P =100MW , E,, =100 MWh, E,=0.5E

Emin = 0’ nn'hg = 77dis = 095 > ns = 1 N

As an example, the day-ahead prices and the optimal
dispatch for two sample days (1/9/2017 and 9/21/2017) are
shown in Fig. 3. These two days result in maximum winter and
minimum summer revenues in the year 2017 (until October
17M). The price shapes are different such that the winter day
has two peaks, one in the morning and the other in the evening
with the price range of 72$ during the day. However, the price
shape of the summer day has only one peak during the evening
with the price range of 8. The charging and discharging
patterns are different due to different price shapes. The
revenue in the winter day is 7,785$ while the summer day
provides only 490.5%, which is 6.3% of that for the winter day.
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Fig. 3 Daily price and optimal dispatch for a) Jan. 9 and b) Sept. 21" 2017.

B.  Clustering Results

The proposed clustering algorithm is run on the five-year
historical price data of PJM and converged within 3, 2, 3, 3,
and 4 iterations for 2013 to 2017, respectively. The results are
shown in Fig. 4. It can be clearly seen that the proposed
algorithm is capable of clustering seasonal prices based on
their shapes. Fig. 4(a) and 4(b) show the sets of summer and
winter prices. Final base prices in Fig. 4(c) show that the peak
prices of the two clusters are almost equal while the minimum
price of summer is lower than that of winter. Each of these
prices has a favorable feature for energy arbitrage service.
While the daily price spread is greater in summer, the winter
prices have two peaks providing opportunities for two
charging and discharging cycles in a day. The analysis of
results provided later shows that the two-peak feature of
winter prices is more favorable for energy arbitrage resulting
in higher revenues in winter days.

Clustering results for each year are shown in Fig. 5. The
range of the boxplots shows the middle 95% of the clustered
summer days in each year. There are few days in summer and
winter months with the price of the other shape. These days
are considered outliers, and are not considered in determining
the set of summer and winter days. Apart from 2017, the
summer days for each year overlaps greatly. Using these
results, we consider the set of summer days to include days
101 to 282. The set of winter days include the rest of the days
in a year.

Once daily prices are clustered, we use each cluster’s
statistics to find a linear relationship with the maximum daily
revenue calculated from (1)—(5). Therefore, the following
daily price statistics of dispersion are tested:
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Fig. 4 Results of the proposed clustering algorithm: a) summer, and b)
winter daily price clusters, and c) base prices of clusters.
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Fig. 5 Boxplot of summer days in each year clustered by the proposed
algorithm.
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- mean absolute deviation (MAD):
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average of absolute difference from the mean price.

C. Linear Regression Results

The linear regression model is applied to both summer and
winter clusters for different price statistics. The tuples of
revenue and statistics for each cluster are plotted in Fig. 6, as
well as the fitted lines. In these plots, red crosses are for
summer and blue circles are for winter. The estimated
parameters of the fitted lines, and the R-squared values are
reported in Table I for different clusters and price statistics.
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Fig. 6 Linear regression results: revenue vs. price a) range, b) MAD, and c)
standard deviation.

TABLE L LINEAR REGRESSION MODEL RESULTS
Season Range MAD ¢
80 summer -2.55 -2.98 -1.77
winter -4.16 -5.01 -5.08
81 summer 0.92 3.67 2.96
winter 1.21 5.77 4.53
R-squared summer 0.9868 0.9415 0.9619
q winter 0.9486 0.9253 0.9484

The results show that winter revenues are in general higher
than summer revenues. The sensitivity of winter revenues with
respect to price data statistics is always larger than those of
summer. This is justified by the general price shape of winter
daily prices. Because winter prices have two daily peaks, there
is more opportunity for energy arbitrage in those days.
Furthermore, the results reveal that the energy arbitrage
revenue is linearly correlated with the electricity price data
statistics of dispersion. Among the tested statistics, the revenue
shows the best linear relationship with the price range.
Therefore, given the electricity price data of a node, its
expected revenue from the energy arbitrage can be easily
expressed as a linear function of the price range. This
simplifies the service benefit analysis for the utilities and
investors. In addition, with the prices of different pricing
nodes in a region, the problem of the optimal placement of
energy storage in terms of the highest energy arbitrage value is
simplified to finding the node with the highest sum of daily
price ranges.

The results provided are for fixed energy storage
parameters, such as efficiency and capacity. Sensitivity
analysis can be performed within the same framework. While
linear sensitivities change by varying energy storage
parameters, the greater winter revenues and their sensitivities
remain unchanged. Also, if the capacity of the energy storage
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is high enough to impact the energy market price (price-maker
energy storage), the optimization model in [22] can again be
used in our proposed framework to determine the service
value. It is expected that higher extreme prices will emerge in
the future energy markets with more renewables integrated
into the grid. This adds to the value of energy arbitrage service
from energy storage projects promising a unique business
opportunity for the future grid.

V. CONCLUSION

A novel method is developed to determine the expected
revenue of energy storage systems from the energy arbitrage
service in the day-ahead market based on the statistics of
realistic market price data. A machine-learning-based
clustering algorithm is proposed to classify the prices into
summer and winter clusters based on their correlation with a
base price for each cluster that updates iteratively. The revenue
in each cluster is fitted to the daily price statistics using a
linear regression model. The proposed method was tested on
the five-year PJM historical day-ahead energy market prices.
The daily revenue is calculated using an optimization problem.
It is observed that the service revenue is mainly determined by
the price data shape. Using the clustering algorithm, two
general price data patterns (summer and winter) are clustered
in this market. The results of the linear regression model show
that the clusters revenue is linearly dependent on the
dispersion statistics of the price data, mostly the range. Winter
prices result in higher revenues with more sensitivity to price
dispersion. The results can benefit utilities and investors to
analyze the energy arbitrage revenue in a straightforward
manner using simple statistics of the energy market prices.
The proposed clustering method is also a useful tool for other
applications, such as an offline suboptimal dispatch and where
there is no communication infrastructure so that ESS knows
the actual day-ahead prices.
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