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Plastic viscosity is a key property of ultra-high-performance concrete (UHPC) and must be controlled during the
mixing to achieve desired fresh and hardened properties. This paper presents a video recognition technology for
real-time assessment of plastic viscosity using a video captured by a camera during the mixing of UHPC. A long-
term recurrent convolutional network is proposed to extract spatial and temporal features of flowing UHPC from
the video and correlate the features with plastic viscosity measured from a rheometer, thus enabling assessment
of plastic viscosity using videos. This research also investigates the effects of plastic viscosity on the fiber
dispersion and orientation, air content, and flexural properties of UHPC. The results show that the plastic vis-

cosity significantly influences fiber distribution and air void content, thus affecting the flexural properties of
UHPC. The presented method enables real-time assessment of plastic viscosity for control of flexural properties
and air void content of UHPC. This study will greatly facilitate quality control for production of UHPC.

1. Introduction

Ultra-high-performance concrete (UHPC) features superior flow-
ability, compressive strength (>120 MPa at 28 days), and long-term
durability [1,2]. Many UHPC mixtures have the self-consolidating
property, high tensile strengths (>15 MPa at 28 days), and high flex-
ural strengths (>25 MPa at 28 days) [3,4]. The exceptional mechanical
properties and durability are mainly attributed to the dense micro-
structures, which result from the very low water-to-binder ratio (w/b <
0.25) and finely designed particle packing density [5]. In addition, the
use of steel fibers tends to intrinsically embody crack resistance and
strain-hardening properties because the steel fibers can bridge cracks
that pass through the fibers [6]. Previous studies have shown that when
steel fibers are uniformly dispersed and appropriately oriented, they
could greatly increase the tensile and flexural strengths, reduce the crack
width, and improve the durability of UHPC [7]. Therefore, it is essential
to improve the fiber dispersion and orientation in order to improve the
mechanical properties and durability of UHPC [8].

Previous studies showed that the dispersion and orientation of steel
fibers in UHPC could be effectively modified through a rheology control
method, as elaborated in references [9-11]. It was reported that the
plastic viscosity influenced the dispersion and orientation of steel fibers
and air content, in turn influencing the tensile and flexural properties of
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UHPC. Previous research showed that the plastic viscosity of UHPC
could be adjusted by using viscosity modifying admixtures (VMAs) [10].
It was found that using 1% VMA by the volume of binder increased the
plastic viscosity of a UHPC mixture from 12 Pa-s to 53 Pa-s, and
increased the flexural strength from 10 MPa to 18 MPa at 28 days [9].
However, as the dosage of VMA was further increased from 1% to 2%,
the flexural strength was reduced. The viscosity should be controlled to
optimize the flexural properties of UHPC.

Currently, the rheological properties of UHPC are characterized
using rheometers or viscometers, such as torque rheometer [12], inter-
face rheometer [13], rotational viscometer [14], and vibrational
viscometer [15]. The rheometers and viscometers measure the plastic
viscosity according to theoretical models, such as the Bingham model,
the Herschel-Buckley model, the modified Bingham model, and the
Krieger-Dougherty model [16]. The rheometers or viscometers provide
reliable results, but they are costly and interfere with the concrete
production process because concrete sample is taken out of the mixer for
measurement of plastic viscosity using a rheometer or viscometer. A
single measurement takes tens of minutes (e.g., 20-30 min). When the
viscosity of a mixture needs to be adjusted, the measurement will be
performed for multiple times. An alternative method is to perform a flow
test using the mini V-funnel, and a linear relationship was established
between flow time and plastic viscosity [9]. Although the flow test is
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Table 1
Comparison of the methods for assessing the plastic viscosity.

Method Time Human action

Measurement using rheometer 10-30 min. Need manual operation
Measurement using mini V-funnel 10 min. Need manual operation

The proposed method <1s Without human intervention

feasible for field application, it still interferes with the concrete mixing
process. Such interference is more relevant for UHPC that has shorter
workability retention time than conventional concrete [17]. In short, it
is desired to develop a more efficient and convenient method to assess
the viscosity of UHPC for quality control.

Under such circumstances, this study aims to develop a real-time
assessment method for plastic viscosity of UHPC using a video of mix-
ing the UHPC, without interrupting the mixing. Table 1 compares the
proposed method with existing methods for assessing the plastic vis-
cosity. This idea was inspired by visual observation of the mixing of
UHPC because it was found that as the plastic viscosity of the mixture
was changed, the flow features of the mixture was changed. However,
bare eyes can only roughly and qualitatively distinguish significant
changes of the flow features and cannot distinguish small changes nor
quantify the plastic viscosity. This research tests the hypothesis that the
plastic viscosity of UHPC can be identified from its flow features re-
flected by the dynamics of pixels of the video of mixing the UHPC using a
computer vision technique based on deep learning.

Each video is composed of many frames which are sequential images
that form a long-range time series data [18]. In the literature of com-
puter vision and deep learning, convolutional neural network (CNN) has
been used for image recognition and classification [19], because it can
learn features of objects from their images [20]. At the same time, long
short-term memory (LSTM) has been used to describe the dynamic
features of time series data based on recurrent neural network (RNN)
[21], and LSTM models have been developed to process weather and
text data [22,23]. Recently, CNN and LSTM have been combined to
generate a long-term recurrent convolutional network (LRCN) [24],
which uses CNN for spatial visual recognition and LSTM for long-term
temporal dynamics. LRCN has been applied for human activity recog-
nition [24], but there is no research on using LRCN for materials. It is
hypothesized that a LRCN model can be developed to precisely distin-
guish flow features and assess the plastic viscosity of UHPC during the
mixing.

The remainder of the paper is organized as follows: Section 2 in-
troduces the methodology for development of the LRCN model. Section
3 presents a case study on implementation of the LRCN model to UHPC
mixtures. Section 4 summarizes the conclusions and future
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opportunities.

2. Methodology
2.1. Overview

Fig. 1 shows the flowchart of this research for development and
implementation of the LRCN. First, experiments need to be conducted to
generate the data that are used to develop the LRCN. The experimental
efforts include proportioning and mixing of UHPC mixtures, measure-
ment of plastic viscosity, four-point bending tests of UHPC beams, and
slicing the tested beams. From the experiments, video of the mixing of
mixtures can be obtained using a common digital camera; the plastic
viscosity of the mixture can be measured using a rheometer; the flexural
properties of the mixtures can be evaluated through bending tests; and
the fiber distribution and air voids can be evaluated using the slices of
the test beams. With the video and viscosity data, a LRCN model can be
trained to interpret the video, outputting the plastic viscosity. In the
training of the LRCN model, the video and viscosity data obtained from
the experiments are used to optimize the parameters of the LRCN model
via backpropagation [24]. Once the LRCN model is trained, it can be
operated to output frame-length viscosity using frame-length inputs (i.
e., video frames) of the mixing. The experiments and deep learning
methods are respectively introduced in the following subsections.

2.2. Experimental methods

2.2.1. Fresh properties

Mini-slump spread of the UHPC mixtures can be tested by the flow
table method in accordance with ASTM C230/230M-14 [25]. Mini V-
funnel flow time can be measured in accordance with EFNARC specifi-
cations [26]. The plastic viscosity and yield stress of suspending mortar
can be measured using a rheometer (model: ICAR Plus) [27].

2.2.2. Flexural properties

The flexural properties such as flexural strength and energy dissi-
pation of the UHPC mixtures can be evaluated through four-point
bending tests using beam specimens that measure 304.8 mm x 76.2
mm x 76.2 mm (length x width x depth) in accordance with ASTM C
1609 [28]. The bending tests are conducted under displacement control
with a constant displacement rate of 0.005 mm/s.

2.2.3. Evaluation of fiber distribution
The tested beam specimens can be cut into slices (thickness: about 5
mm) using a diamond saw. The cross section of each slice is the same as

Four-point bending
of beam specimens

1

Cutting tested beams
into slices

ﬂ

Video Viscosity | | Flexural __ Fiber dispersion and
data data properties orientation; air voids
Training & testing I I
of LRCN Training | Testing
| Trained LRCN model |
Input I lOurpm
Application of LRCN

Video of mixing

Viscosity

Fig. 1. Flowchart of research on developing LRCN for assessing the plastic viscosity of UHPC.
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Fig. 2. Illustration of the division of images used to quantify the fiber disper-
sion and orientation.

the cross section (76 mm x 76 mm) of the beams. The cross sections can
be imaged using a high-resolution digital camera (model: Cannon EOS
5DS, resolution: 50.6 Megapixel per image). With the images, a method
developed in the authors’ previous study can be used to evaluate the
fiber dispersion (a), orientation (1), and distribution (¢), as elaborated
in reference [29].
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Fiber distribution refers to the combination of fiber dispersion and
orientation. Fiber distribution refers to the combination of fiber
dispersion and orientation. Fiber dispersion is used to evaluate the
dispersion evenness of steel fibers, and fiber orientation is used to
describe the directions of fibers, consistent with the previous research
[9,29]. Indices were introduced to quantitatively describe fiber disper-
sion and orientation in reference [9], and both indices are in the range of
0 to 1. When the fiber dispersion index is equal to 1, the fibers are
uniformly dispersed in the matrix. When the fiber orientation index is
equal to 1, the fibers are along the loading direction. Therefore, an index
can be defined as the product of the fiber dispersion and orientation
indices, as shown in Eq. (1). When the fiber distribution index is equal to
1, the fibers are uniformly dispersed in the matrix, and the fibers are
along the loading direction.

p=a-n (€]

where a is the fiber dispersion index; # is the fiber orientation index; and
¢ is the fiber distribution index.

The RGB images can be converted into binary images in gray scale
and divided into 21 x 21 sub-images, as depicted in Fig. 2. Each sub-
image has 250 x 250 pixels corresponding to a cross section
measuring 3.4 mm x 3.4 mm.

To facilitate quantification of steel fibers, each fiber in a sub-image
can be contoured [30], and the number of contours is the number of
steel fibers. The fiber diameter is calculated using the equivalent
diameter (Deq) of each contour, as described in Eq. (2) [31]:

(b)

Fig. 3. Image conversion for evaluation of air void: (a) a RGB image, and (b) a binary image.
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Fig. 4. Illustration of the overall architecture of the long-term recurrent convolutional network.
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Flatten the 3D data into 1D

- Convolutional layer + ReLU
. Max-Pooling layer
- Global Max-Pooling

Fig. 5. The architecture of a CNN. The numbers show the size of data in different layers of the CNN. For example, 256 x 256 in the first layer means the data has 256

rows and 256 columns.

2A
Doy =/

where A is the area of the contour.

(2)

2.2.4. Evaluation of air void content

Air voids with diameters>0.1 mm also can be evaluated using binary
images, as shown in Fig. 3. Gaussian filtering and morphological oper-
ation can be applied to remove noises from the images. The area of
contour can be estimated to calculate the actual size of each air void. In
an area measuring 72 mm x 72 mm, the image has 5250 x 5250 pixels,
so each pixel represented an area of 1.88 x 10™* mm?. The actual area of
an air void is equal to 1.88 x 10 mm? times the pixel numbers of
contour of the air void.

2.3. Deep learning methods
2.3.1. Long-term recurrent convolutional network (LRCN)
Fig. 4 shows the architecture of the LRCN. The input of the LRCN is a

video composed of sequential frames, and the output is the plastic vis-
cosity of the mixture. The output is obtained through the feature

Size: 256 x 256

learning and sequence learning processes. In feature learning, each
frame is analyzed by a CNN, which extracts the spatial features of the
pixels of the image. In the sequence learning, a LSTM is used to extract
the temporal features at frame length, and a classifier is used for multi-
classification that outputs the plastic viscosity. More details of the LRCN
are presented in the following subsections. In the training of the LRCN, a
relationship between the video and plastic viscosity is established and
optimized via backpropagation using the experimental data. Finally, the
trained LRCN is used to assess the viscosity using the video.

2.3.2. Feature learning

Fig. 5 shows the architecture of a CNN used for feature learning. The
spatial features of each frame image of the video can be extracted from
the pixels. The feature learning process consists of four convolutional
blocks, and each convolutional block has two convolutional layers and
one max-pooling layer, as elaborated in reference [32]. As the frame
image is sequentially processed by the two convolutional blocks, spatial
features are extracted from the pixels of each image, and the size of the
image is reduced by the max-pooling layers. Different convolutional
kernels are applied to extract different features. The CNN has a global
max-pooling layer, which is used to process the data for sequence

Convolutional operation

1
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Fig. 6. Illustration of a convolutional layer. The convolutional operation is conducted on the whole image, but only a part of an image is shown in the figure as

an example.
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Fig. 7. Illustration of a max-pooling layer used to reduce the volume of convolutional data.
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Fig. 8. Illustration of the sequence learning process incorporating a LSTM layer and a classifier.

learning [33].

The exaction of features from an image through a convolutional layer
is depicted in Fig. 6. The grey scale of each pixel of the input image can
be described using a number, so the input image can be described using a
matrix of numbers, and the size of the matrix is consistent with the size
of the image in pixels. The matrix is used as an input matrix, which is
further processed in four steps: (1) For each of the four edges of the
matrix, a zero line is added as the edge, known as a “padding” operation,
which helps retain the matrix size in sequential processes. (2) A 3 x 3
sliding window with three rows and columns is moved on the padded
image to extract pixel information [34], such as the square windows
shown in red, green, and blue colors. The moving distance of each step is
named as “stride”, which is one, as illustrated by the red and green
windows. (3) For each window, one number can be calculated through
an algebra operation, given a kernel matrix. Different kernel matrices
can be applied to extract different features of the image. For example,
the kernel in Fig. 6 can extract the edge information of the image. (4)
The calculation results from different windows are used to form a new
matrix, known as the output matrix, which contains features of the

image [34].

Since many convolutional kernels are needed to extract different
features from each image, the convolutional layer involves intensive
computation. To improve the computational efficiency, a max-pooling
layer is used to compress the volume of data for every two convolu-
tional layers. Fig. 7 illustrates the function of the max-pooling layer. In
each sliding window, the maximum value is extracted and combined to
form a new matrix [34]. For a 256 x 256 matrix, the max-pooling layer
could reduce it to a 128 x 128 matrix, compressing the dimension of the
data matrix. The last convolutional block of the CNN has a global max-
pooling layer, which converts three-dimensional data into one-
dimensional data that are used for sequence learning [33].

2.3.3. Sequence learning process

Following the extraction of spatial features using CNN, sequence
learning is performed using the LSTM for temporal features at frame
length. Basically, the feature learning data of the different frames of the
video are used to form a sequential data, according to the time of video
frames. The sequential data can be processed by the LSTM layer that can

Fig. 9. Illustration of one-hot encoding operation for labels. The plastic viscosity is classified into five classes and denoted as 1, 2, 3, 4, and 5. The classes 1, 2, 3, 4,
and 5 need to be encoded into one-hot codes, so that the machine can recognize them.

Viscosity range 1 | ——— Marlied as w’ [1,0,0,0,0]
Viscosity range 2 |——> Marl;ed as w’ [0,1,0,0,0]
Viscosity range 3 |——> Marl;ed as w’ [0,0,1,0,0]
Viscosity range 4 |———> Marlzed s w’ [0,0,0,1,0]
Viscosity range 5 |——> Marl;ed as w’ [0,0,0,0, 1]
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Table 2

Chemical composition and physical properties of the raw materials.
Composition Cement Slag LWsS MS RS
Si0 (%) 22.44 36.21 57.60 86.50 80.30
Al,03 (%) 2.76 11.10 19.40 0.39 10.50
Fe,03 (%) 2.24 0.76 9.60 1.47 3.43
CaO (%) 68.05 43.75 3.40 9.42 1.72
MgO (%) 0.91 5.09 2.60 - 1.70
SO3 (%) 2.25 2.21 0.60 - 1.07
Nay0 (eq)* (%) 0.30 0.63 5.60 - -
TiO2 (%) 0.14 0.58 - - -
P,05 (%) 0.09 0.02 - - -

Note: * Na,O (eq) represents the equivalent alkali content, which equals to the
sum of Na,O and 0.658 K50.

extract the temporal features at frame length. Then, a classifier can be
used to establish a correlation between the temporal features and plastic
viscosity, as shown in Fig. 8.

The classifier contains three “dense” layers and a “softmax™ layer
[34]. The “dense” layers are used to establish a relationship between the
sequential data and plastic viscosity. The “softmax” layer is used to
enable multi-classification [35], which is utilized to achieve quantifi-
cation of the viscosity, as discussed in the next subsection.

2.3.4. Coding viscosity data for multi-classification

The LRCN is trained using the categorical crossentropy loss function
to assess the viscosity through multi-classification that can classify the
viscosity in a range, such as 20-25 Pa-s [36]. Reduction of the range
width represents increase of assessment precision. For example, when
the range is changed from 20 to 25 Pa-s to 20-21 Pa-s, the precision is
changed from 5 Pa-s to 1 Pa-s. In general, there is a tradeoff between the
precision and accuracy of classification from deep learning. Therefore,
an appropriate definition of the ranges is essential. Further discussions
of definition of the ranges are provided in Section 3. Once the ranges of
viscosity are defined, each range is designated by a label using one-hot
code [36]. The tested viscosity data are converted into one-hot codes, as
shown in Fig. 9. The one-hot codes are labels that can be recognized by
LRCN that does not recognize the ranges of viscosity. For example, given
five ranges of viscosity, 10-24 Pa-s, 25-34 Pa-s, 35-72 Pa-s, 73-83 Pas,
84-106 Pa-s, these ranges can be respectively converted to one-hot
codes [1, O, O, O, O], [0, 1, O, O, O], [0, O, 1, O, 01, [0, O, 0, 1, 0], and
[0, O, 0, O, 1]. Basically, the labels of the ranges are converted into a
matrix 1 x M [34], where M is the number of ranges (or classes), and M
= 5 in this example.
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3. Case study

A case study has been conducted to implement, validate, and eval-
uate the performance of the proposed video recognition technology for
assessing the plastic viscosity of UHPC. The case study was performed
based on a non-proprietary UHPC mixture developed in a previous
research by the authors [37]. Details of the case study are presented as
follows.

3.1. Raw materials

In this study, the binder included Type I Portland cement and
ground-granulated blast-furnace slag. The specific gravity of the cement
was 3.15. The specific gravity of the slag was 2.90. Three types of sand
were adopted, including an expanded shale lightweight sand (LWS),
masonry sand (MS), and river sand (RS). The specific gravity of LWS,
MS, and RS were 1.80, 2.65, and 2.64, respectively. Table 2 shows the
chemical composition of cement, slag, LWS, MS, and RS. Straight steel
fibers measuring 0.2 mm in diameter and 13 mm in length were used.
The specific gravity, elastic modulus, and tensile strength of the steel
fibers were 7.8, 210 GPa, and 2,850 MPa, respectively.

Fig. 10 shows the particle size distribution of each type of sand. The
water absorption percentages of the LWS, MS, and RS were 23.0%,
0.06%, and 0.14%, respectively. The LWS was soaked with water for 24
h to reach saturated-surface-dry (SSD) condition before mixing. A
polycarboxylate-based high-range water reducer (HRWR) was used to
improve the flowability. The HRWR had a solid content of 34.4% by
mass and a specific gravity of 1.05. A type of ready-to-use VMA (BASF
MasterMatrix VMA 362) was adopted to adjust the plastic viscosity. The
water content and the specific density of the VWA was 95% and 1.002,
respectively.

3.2. Mixture design

Table 3 lists the five mixtures investigated in this research. The five
mixtures are respectively designated as VMAO, VMAO.5, VMA1.0,
VMAL.5, and VMA2.0, whose VMA dosages were 0, 0.5%, 1.0%, 1.5%,
and 2.0% by mass of binder, respectively. In each of the investigated
mixtures, the binder was composed of 40% cement and 60% slag, by
volume. The LWS, MS, and RS respectively occupied 25%, 30%, and
45% of the total volume of aggregate. The water-to-binder ratio was
fixed at 0.23 by mass. The sand-to-binder ratio was fixed at 1:1 by
volume. The steel fibers were 2% of the total volume of the mixture.

100 .
Cement /—'
- Slag
§ 80 River sand
E Masonry sand
é 60 —— Lightweight sand
o0
R=|
2}
@
o 40
=
3
=
= 20
0 L I
0.001 0.01 0.1 1 10

Sieve size (mm)

Fig. 10. Particle size distribution results of the three types of sand adopted in this research.
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Table 3
Ingredient proportioning of the investigated mixtures (kg/m?>).
Mixture Cement Slag LWS MS RS HRWR VMA Water Steel fiber
VMAO 459.0 633.9 163.9 287.4 432.8 7.0 0 246.1 156.0
VMAO0.5 459.0 633.9 163.9 287.4 432.8 7.0 5.5 240.9 156.0
VMAL.0 459.0 633.9 163.9 287.4 432.8 7.0 10.9 235.7 156.0
VMAL.5 459.0 633.9 163.9 287.4 432.8 7.0 16.4 230.5 156.0
VMA2.0 459.0 633.9 163.9 287.4 432.8 7.0 21.9 225.3 156.0
Each video contains 150 frames (images)
¥ "y A
0001 0002 0149 0150
Input data 1
0001
RGB to gray image
Input data 30

0146 0147

0150

Fig. 11. Illustration of data preparation. The 150 video frames with 960 x 544 pixels are resized into images with 256 x 256 pixels. Every five sequential frames are

defined as one data sample.
3.3. Mixing, testing, casting, and curing

3.3.1. Mixing and testing

A Hobart mixer (capacity: 19 L) was used to mix the mixtures. The
whole mixing included three steps: (1) Step 1: The dry ingredients
including the binder and sand were mixed at 61 rpm for 3 min. (2) Step
2: The mixing water, HRWR, and VMA were introduced to the mixer and
mixed at 61 rpm for 6 min. (3) Step 3: The steel fibers were introduced to
the mixer and mixed at 113 rpm for 2 min. In total, each mixture was
mixed for 11 min.

In Step 2 of the mixing process, after the VMA was added and mixed
for 5.5 min, a camera was used to capture videos of the mixing of UHPC
suspending mortar in the remaining 30 s of Step 2. Immediately after
completion of Step 2, the plastic viscosity of the mixture was evaluated
using the rheometer, and the flowability of the mixture was tested. The
test method and adopted rheometer are elaborated in Section 2. The
camera had a resolution of 960 x 544 pixels, and a sampling rate of 30
frames per second. The focal distance was not changed when the videos
were captured. In the 30 s for recording videos in Step 2, five videos
were recorded for each mixture. Each video has a duration of 5 s, so each
video had 150 frames of images. Before the images were used in the deep

learning, they were pre-processed for normalization of image size and
color. Specifically, each RGB image was resized to 256 x 256 pixels, and
converted to gray scale. The use of gray scale images could reduce the
number of parameters and improve the computational efficiency. Five
consecutive images were defined as one input data sample for the LRCN,
and the output data was the viscosity measured using the rheometer.
Therefore, each video has 30 (=150/5) data samples. The data samples
are labeled using their corresponding plastic viscosity that was
measured from the rheometer and encoded using one-hot codes (see
Section 2.3.4), in order to train the LRCN [38], as depicted in Fig. 11.

3.3.2. Casting and curing

The UHPC mixtures were used to cast beam specimens for four-point
bending tests. In the casting, the mixture was poured at one end of the
beam mold and flowed to the other end, as elaborated in the authors’
previous research [9]. In the flow, the steel fibers could be aligned along
the beam. Since the five UHPC mixtures were designed to possess high
flowability, no external vibrator was applied to consolidate the mixtures
after casting. More details of the specimens and tests are elaborated in
Section 2.

Immediately after casting, the molds were covered by wet burlap and
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Table 4
Fresh properties of mortar.
VMA-0 VMA- VMA- VMA- VMA-
0.5 1.0 1.5 2.0
Mini slump spread 310 + 305+5 280+ 270 + 260 + 5
(mm) 5 10 10
Mini V-funnel flow 13+2 25+3 48+ 5 70+ 5 98 +6
time (s)
Plastic viscosity (Pa-s) 17 £ 2 31+3 54+ 4 82+5 105+ 5

plastic sheets. The specimens were demolded after they were kept in
mold for 24 h. After the specimens were demolded, they were cured in
saturated lime solution at room temperature (23 + 2 °C) until 1 day
before the testing at 28 days, when the specimens were placed in air to
dry.

3.4. Experimental results and discussion

3.4.1. Fresh properties

Table 4 lists the test results of mini-slump spread, mini V-funnel flow
time, and plastic viscosity of the five UHPC mixtures. As the VMA dosage
was increased from 0 to 2.0%, the mini-slump spread was decreased
from 310 mm to 260 mm; the mini V-funnel flow time was increased
from 13 s to 98 s; and the plastic viscosity was increased from 17 Pa-s to
105 Pa-s. These results of fresh properties are consistent with the con-
clusions from previous research [9]. The addition of VMA increases the
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Fig. 12. Four-point bending test results of the UHPC mixtures with different VMA dosages at 28 days: (a) load-deflection curves; and (b) equivalent flexural strength

and dissipated energy.
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plastic viscosity of the mixture and reduces the flowability.

3.4.2. Flexural properties

Fig. 12 shows the flexural test results. The methods for the calcula-
tion of flexural strength and dissipated energy are introduced in refer-
ence [9]. As the VMA dosage increased from 0 to 1%, the peak load was
increased from 32.5 kN to 43.7 kN; the flexural strength was increased
from 16.1 MPa to 21.6 MPa; and the dissipated energy was increased
from 38.5 J to 48.3 J. The increase of flexural strength and dissipated
energy can be attributed to the increase of the plastic viscosity that
improved the dispersion and orientation of steel fibers, as discussed in
reference [9]. As the VMA dosage further increased from 1% to 2%, the
peak load was decreased from 43.7 kN to 25.9 kN; the flexural strength
was decreased from 21.6 MPa to 12.8 MPa; and the dissipated energy
was reduced from 48.3 J to 28.8 J. The reduction of flexural strength and
dissipated energy can be attributed to the increase of the plastic viscosity
that could entrap more air and generate more air voids in the matrix, as
discussed in reference [29]. Overall, these test results are consistent with
previous research [9].

3.4.3. Fiber distribution and air voids

Fig. 13(a) shows the test results of fiber dispersion (a) and orienta-
tion (1)) from the tested beams. The definition and evaluation methods of
fiber dispersion and orientation are elaborated in reference [9]. As the
VMA dosage increased from 0 to 1%, o was increased from 0.52 to 0.65,
which indicated that the dispersion uniformity of the steel fibers in the
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Fig. 13. Correlation between: (a) fiber dispersion, orientation coefficient and VMA dosage, and (b) fiber distribution, hardened air voids and VMA dosage.
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Fig. 14. Correlation between the fiber distribution, air void content, and
flexural strength of the UHPC mixtures with different VMA dosages. The di-
ameters of the blue circles indicate the magnitudes of flexural strength.

UHPC matrix was improved. As the VMA dosage increased from 1% to
2%, o was reduced from 0.65 to 0.58, which indicated that the disper-
sion uniformity of the steel fibers in the UHPC matrix was lightly
reduced, likely due to fiber clusters caused by the very high plastic
viscosity (Table 4). As the VMA dosage increased from 0 to 2%, n was
monotonously increased from 0.23 to 0.60, indicating that the increase
of plastic viscosity helped align the steel fibers along the beam and
benefit the mechanical properties.

Fig. 13(b) shows the test results of fiber distribution (¢) and air void
content. As the VMA dosage increased from 0 to 1%, ¢ was increased
from 0.120 to 0.364, which indicated that the fiber distribution was
improved. As the VMA dosage increased from 1% to 2%, ¢ was reduced
from 0.364 to 0.348, which indicated that the fiber distribution was
lightly compromised. Such trend is consistent with the trend of the fiber
dispersion, overall. As the VMA dosage increased from O to 2%, the air
void content was monotonically increased from 1.01% to 4.15%, which
can be attributed to the high plastic viscosity that entrapped more air
during mixing.

The test results indicated that the flexural strength and energy
dissipation resulted from the competing effect of fiber distribution and
air void content that are associated with the viscosity of the mixture. As
the viscosity increased, on one hand, the fiber distribution could be
improved, and the improvement of fiber distribution tended to increase
the flexural properties; on the other hand, the air void content could be
increased, and the increase of air void content introduced more defects
and thus tended to compromise the flexural properties. According to the
trends of the fiber distribution and air void content, further investigation
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Table 5

Determination of the ranges of plastic viscosity.
Class Range 1 Range 2 Range 3 Range 4 Range 5
Plastic viscosity (Pa-s) 12-24 25-34 35-72 73-83 84-106
Designation 1 2 3 4 5

can be conducted to reveal the predominant effects, as detailed in the
next subsection.

3.4.4. Correlation between fiber distribution and air void content

Fig. 14 shows the correlation between the fiber distribution and air
void content of the mixtures with different VMA dosages. The correla-
tion plot shows a transition point at the VMA dosage of 1%. As the VMA
dosage increased from 0 to 1%, the air void content was increased from
1.01% to 2.03% (by 101%), while the fiber distribution index was
greatly increased from 0.120 to 0.364 (by 203%), and the flexural
strength was increased from 16 MPa to 22 MPa. The results indicate that
when the viscosity is relatively low, the fiber distribution is predominant
for the flexural strength. Although the increase of air void content tends
to generate defects in the matrix, the adverse effect is suppressed by the
significant improvement of fiber distribution. As the VMA dosage
further increased from 1% to 2%, the air void content was rapidly
increased from 2.03% to 4.15% (by 104%), while the fiber distribution
was slightly decreased from 0.364 to 0.348 (by 4%), and the flexural
strength was reduced from 22 MPa to 13 MPa. The results indicate that
when the viscosity is high, the air void content is predominant for the
flexural strength because the fiber distribution is relatively retained.

3.4.5. Determination of the ranges of plastic viscosity

Fig. 15 shows the relationship between the flexural strength and
plastic viscosity of UHPC mixtures. Based on the statistics of flexural
strengths and the corresponding plastic viscosity values of UHPC mix-
tures from this research and references [9-11], a fitting curve can be
determined through a regression analysis that minimizes the coefficient
of determination (R?), as plotted in Fig. 15(a). The fitting curve can be
used to determine the ranges of plastic viscosity, as depicted in Fig. 15
(b). According to the flexural strength data, the fitting curve can be
divided into five segments, corresponding to the threshold flexural
strengths 21.9 MPa, 18.6 MPa, 15.3 MPa, and 12.0 MPa, respectively.
These threshold flexural strengths have an interval of 3.3 MPa, or 15%
the peak flexural strength (21.9 MPa).

The plastic viscosity values corresponding to these threshold flexural
strengths are 12 Pa-s, 24 Pa-s, 34 Pas, 72 Pa-s, 83 Pas, and 106 Pas,
respectively, which are used to define the ranges of plastic viscosity in
this case study, as listed in Table 5. Any plastic viscosity lower 12 Pa-s or
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Fig. 15. Determination of the ranges of plastic viscosity: (a) the statistics of the flexural strength versus plastic viscosity [9-11]; and (b) division of the ranges

according to the flexural strength.
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Table 6
Testing results of the trained LRCN model for assessing the viscosity.
No. Sequential data at different time instants* Predicted Measured
Time 1 Time 2 Time 5
1 Code [1,0,0,0, 0] 17 Pa-s
Class 1
Viscosity 12-24 Pa:s
2 Code [0,0,0,0,1] 98 Pa-s
Class 5
Viscosity 84-106 Pa-s
3 Code [0,0,0,1,0] 78 Pa-s
Class 4
Viscosity 73-83 Pa's
4 Code [0, 1,0, 0, 0] 33 Pa's
Class 2
Viscosity 25-34 Pa-s
5 Code [0, 0,1, 0, 0] 54 Pa-s
Class 3
Viscosity 35-72 Pa-s

* Note: The images for Time 3 and Time 4 are not explicitly listed.

higher than 106 Pa-s was not considered because the corresponding
flexural strength was too low.

3.5. Deep learning results and discussion

3.5.1. Data preparation and hardware

In this study, a total of 78 videos were captured and used to generate
2380 data samples. Each data sample had 5 sequential frames (i.e.,
images). The data were shuffled and divided into two data sets, which
are the training data set and validation data set. The training and vali-
dation data sets were respectively composed of 1904 data samples and
476 data samples, which represented 80% and 20% of the total data set.
The proposed deep learning was executed using a laptop with the
following configuration: (1) CPU: intel i7-8750H 2.20 GHz, (2) memory:
32 GB, and (3) GPU: Nvidia Geforce RTX 2080 Max-Q.

10

3.5.2. Training of the deep learning model

In the training of the LRCN model, the learning rate was fixed at
0.0001, and the LRCN model was trained for 50 epochs. An epoch refers
to an execution of the LRCN model using the training or validation data.
The highest accuracy was obtained after training the LRCN model for 47
epochs. Fig. 16 shows the results of the loss and accuracy of the LRCN
with the training and validation data sets [39]. The training loss and
validation loss decreased with the increase of training epochs and fol-
lowed consistent trends, indicating that overfitting or underfitting did
not occur. Similarly, the training accuracy and validation accuracy
increased with the increasing training epochs and followed consistent
trends, indicating a continuous improvement of the prediction perfor-
mance of the LRCN model. Both the training and validation accuracy
approached to 1.0, which represented a high accuracy.
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3.5.3. Testing of the deep learning model

The trained LRCN model was then utilized to assess the viscosity of
mixtures from their videos. Intensive tests have been conducted to
evaluation the performance of the trained LRCN model. Table 6 shows
the results from five representative tests that correspond to five different
mixtures with different ranges of viscosity. For each test, a video was
recorded to generate the sequential images, and three sequential images
are listed to show the dynamics in the mixing of each mixture, as
designated by Time 1 to Time 5. The videos with the sequential images
were input to the trained LRCN model, and the outputs of the LRCN
model were the one-hot codes. Each one-hot code could be converted
into a class number representing a range of viscosity, as detailed in
Table 5. Taking the first test sample in Table 6 for example, the output
one-hot code from the LRCN was [1, 0, 0, 0, 0], which was converted
into Class 1, and Class 1 represented the viscosity range 10-24 Pa-s. The
measured viscosity using the rheometer was 17 Pa-s, well included in the
predicted range. The other test results also show that the predicted
ranges are in reasonable agreement with the measured viscosity,
proving that the trained LRCN model could accurately classify the
ranges of viscosity for the UHPC mixtures.

3.5.4. Discussions on assessment of viscosity

With the adopted laptop with a common configuration, the average
execution time for every five frames of a video was 0.73 s, indicating a
high efficiency of the assessment using the LRCN. To be conservative, an
assessment frequency of 1 Hz could be achieved, meaning that with the
video of a mixture during mixing, the LRCN could provide the viscosity
of the mixture every 1 s, which is sufficient for real-time assessment in
many applications. It is believed that a higher frequency can be achieved
by using a computer with a better CPU and GPU.

It should be noted that the LRCN model was trained using a data set
with limited data size and diversity in terms of the viscosity because only
five different VMA dosages were applied to adjust the plastic viscosity.
In general, the increase of data set helps improve the accuracy and
generalization performance of deep learning models. It is envisioned
that the range width of viscosity can be refined while retaining the ac-
curacy if the data set size is increased, so that a higher precision of the
assessment of viscosity can be achieved.

The developed model is associated with the adopted mixer. When a
different mixer is adopted, the developed model may be inapplicable
since the mixer can affect the fluidity of the mixture. The proposed video
recognition method can be applied to train new models for the adopted
mixers. New videos should be captured and used to train the new model
for the adopted mixer. Further research is needed to test the perfor-
mance of the proposed method for other types of mixers.

When a different type of concrete or cementitious composite is
mixed, such as a self-compacting concrete, the material may involve
different ranges of viscosity. For example, the plastic viscosity of self-
compacting concrete can be lower than 20 Pa-s [40]. In addition, the
presence of coarse aggregates in self-compacting concrete also may
change the flow features. Therefore, it is recommended to re-calibrate
the LRCN model for different types of material.

In real practice, it is possible that the focal distance of videos is
different from the focal distance of the videos used to train the machine
learning model. To improve the generalization performance, videos with
different focal distances can be added to the training dataset. With the
added videos, the machine learning model will learn and mitigate the
effect of focal distance. It is not recommended to record videos far away
from the mixer because the resolution of the videos can be significantly
reduced and compromise the accuracy.

Another consideration for field applications of the proposed method
is that the background brightness of videos can be different from case to
case. The change of background brightness may potentially affect the
pixel information and thus influence the feature learning and sequence
learning processes. Therefore, further research is needed to test the
performance of the proposed method under different brightness
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conditions.
4. Conclusions and prospects

This paper presents a video recognition technology for real-time
assessment of viscosity using a video of the mixing of UHPC. The pro-
posed method is based on a LRCN model that can directly map video
frames to the plastic viscosity and model complex temporal dynamics.
The LRCN model directly connects CNN and LSTM models that can be
jointly trained to simultaneously learn spatial features and temporal
dynamics. Experiments were conducted to develop and evaluate the
LRCN model. According to the above investigations, the following
conclusions are drawn:

e The plastic viscosity of UHPC can be reasonably assessed from a
video of the mixing. The plastic viscosity affects the spatial and
temporal features of flowing mixtures. The features can be recog-
nized by the LRCN model using video frames. The LRCN model es-
tablishes a link between the plastic viscosity and flow features. The
video can be captured using a common camera with a low cost and
high conveniency.

With the five defined ranges of viscosity, the accuracy of the trained

LRCN model for assessing the plastic viscosity of UHPC suspending

mortar was higher than 0.990. With a common laptop configuration,

the assessment time for the plastic viscosity was shorter than 1 s,

enabling real-time assessment of in-site viscosity.

e The flexural strength and energy dissipation of UHPC mixtures
depend on the competing effects of the distribution of steel fibers and
the air void content, which are associated with the plastic viscosity of
UHPC suspending mortar. According to the flexural strength, the
plastic viscosity of UHPC suspending mortar can be categorized into
five ranges, which are 12-24 Pa-s, 25-34 Pa-s, 35-72 Pa-s, 73-83
Pa-s, 84-106 Pa-s. The highest flexural strength is achieved when the
plastic viscosity is in the range of 35-72 Pa-s, which corresponds to
the optimum fiber distribution and a reasonable air void content.

o The addition of VMA significantly affects the plastic viscosity of
UHPC. When the plastic viscosity is lower than the optimum plastic
viscosity, although the air void content is low, the flexural strength
and energy dissipation are compromised by undesired fiber disper-
sion and orientation due to the low plastic viscosity. When the plastic
viscosity is lower than the optimum plastic viscosity, as the plastic
viscosity is further increased, the fiber distribution is retained, while
the air void content is significantly, thus decreasing the flexural
strength and energy dissipation.

It is noted that the developed deep learning model outputs a range of
plastic viscosity, rather than a precise value. To improve the precision,
the size of dataset used to train the model can be increased. Specifically,
more videos corresponding to different plastic viscosity values can be
added to the training dataset. The developed deep learning model is
built on the videos of mixing UHPC using a specific type of mixer. Since
the flow of UHPC is associated with the features of mixers such as the
mixing speed and blade, the trained model is inapplicable to other
mixers. To improve the generalization performance, the proposed
method can be used to train new models using added videos for other
types of mixers. It is interesting to test the proposed method for different
mixing speeds and focal distance of the cameras. Finally, the developed
deep learning model is based on a consistent background brightness
condition in the acquisition of the videos. Further research can be con-
ducted to investigate the robustness of the LRCN model under different
background brightness conditions of the videos. It is also interesting to
test other types of materials, which have different flow features from
UHPC.
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Table Al
Abbreviations.
Abbreviation Full
L Liter
mm Millimeter
Pa Pascal
Pas pascal - seconds
J Joule
Hz hertz
s Second
kN Kilonewton
min Minute
h Hour
MPa Megapascal
rpm Rounds per minute
UHPC Ultra-high-performance concrete
LRCN Long-term recurrent convolutional network
w/b Water-to-binder ratio
CNN Convolutional neural network
LSTM Long-short term memory
VMA Viscosity modifying admixture
LWS Lightweight sand
MS Masonry sand
RS River sand
SSD Saturated-surface-dry
HRWR High-range water reducer
CPU Central processing unit
GPU Graphics processing unit
ASTM American society for testing and materials
EFNARC European federation of national associations representing for

concrete
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