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A B S T R A C T   

Plastic viscosity is a key property of ultra-high-performance concrete (UHPC) and must be controlled during the 
mixing to achieve desired fresh and hardened properties. This paper presents a video recognition technology for 
real-time assessment of plastic viscosity using a video captured by a camera during the mixing of UHPC. A long- 
term recurrent convolutional network is proposed to extract spatial and temporal features of flowing UHPC from 
the video and correlate the features with plastic viscosity measured from a rheometer, thus enabling assessment 
of plastic viscosity using videos. This research also investigates the effects of plastic viscosity on the fiber 
dispersion and orientation, air content, and flexural properties of UHPC. The results show that the plastic vis
cosity significantly influences fiber distribution and air void content, thus affecting the flexural properties of 
UHPC. The presented method enables real-time assessment of plastic viscosity for control of flexural properties 
and air void content of UHPC. This study will greatly facilitate quality control for production of UHPC.   

1. Introduction 

Ultra-high-performance concrete (UHPC) features superior flow
ability, compressive strength (≥120 MPa at 28 days), and long-term 
durability [1,2]. Many UHPC mixtures have the self-consolidating 
property, high tensile strengths (>15 MPa at 28 days), and high flex
ural strengths (>25 MPa at 28 days) [3,4]. The exceptional mechanical 
properties and durability are mainly attributed to the dense micro
structures, which result from the very low water-to-binder ratio (w/b <
0.25) and finely designed particle packing density [5]. In addition, the 
use of steel fibers tends to intrinsically embody crack resistance and 
strain-hardening properties because the steel fibers can bridge cracks 
that pass through the fibers [6]. Previous studies have shown that when 
steel fibers are uniformly dispersed and appropriately oriented, they 
could greatly increase the tensile and flexural strengths, reduce the crack 
width, and improve the durability of UHPC [7]. Therefore, it is essential 
to improve the fiber dispersion and orientation in order to improve the 
mechanical properties and durability of UHPC [8]. 

Previous studies showed that the dispersion and orientation of steel 
fibers in UHPC could be effectively modified through a rheology control 
method, as elaborated in references [9–11]. It was reported that the 
plastic viscosity influenced the dispersion and orientation of steel fibers 
and air content, in turn influencing the tensile and flexural properties of 

UHPC. Previous research showed that the plastic viscosity of UHPC 
could be adjusted by using viscosity modifying admixtures (VMAs) [10]. 
It was found that using 1% VMA by the volume of binder increased the 
plastic viscosity of a UHPC mixture from 12 Pa⋅s to 53 Pa⋅s, and 
increased the flexural strength from 10 MPa to 18 MPa at 28 days [9]. 
However, as the dosage of VMA was further increased from 1% to 2%, 
the flexural strength was reduced. The viscosity should be controlled to 
optimize the flexural properties of UHPC. 

Currently, the rheological properties of UHPC are characterized 
using rheometers or viscometers, such as torque rheometer [12], inter
face rheometer [13], rotational viscometer [14], and vibrational 
viscometer [15]. The rheometers and viscometers measure the plastic 
viscosity according to theoretical models, such as the Bingham model, 
the Herschel-Buckley model, the modified Bingham model, and the 
Krieger-Dougherty model [16]. The rheometers or viscometers provide 
reliable results, but they are costly and interfere with the concrete 
production process because concrete sample is taken out of the mixer for 
measurement of plastic viscosity using a rheometer or viscometer. A 
single measurement takes tens of minutes (e.g., 20–30 min). When the 
viscosity of a mixture needs to be adjusted, the measurement will be 
performed for multiple times. An alternative method is to perform a flow 
test using the mini V-funnel, and a linear relationship was established 
between flow time and plastic viscosity [9]. Although the flow test is 
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feasible for field application, it still interferes with the concrete mixing 
process. Such interference is more relevant for UHPC that has shorter 
workability retention time than conventional concrete [17]. In short, it 
is desired to develop a more efficient and convenient method to assess 
the viscosity of UHPC for quality control. 

Under such circumstances, this study aims to develop a real-time 
assessment method for plastic viscosity of UHPC using a video of mix
ing the UHPC, without interrupting the mixing. Table 1 compares the 
proposed method with existing methods for assessing the plastic vis
cosity. This idea was inspired by visual observation of the mixing of 
UHPC because it was found that as the plastic viscosity of the mixture 
was changed, the flow features of the mixture was changed. However, 
bare eyes can only roughly and qualitatively distinguish significant 
changes of the flow features and cannot distinguish small changes nor 
quantify the plastic viscosity. This research tests the hypothesis that the 
plastic viscosity of UHPC can be identified from its flow features re
flected by the dynamics of pixels of the video of mixing the UHPC using a 
computer vision technique based on deep learning. 

Each video is composed of many frames which are sequential images 
that form a long-range time series data [18]. In the literature of com
puter vision and deep learning, convolutional neural network (CNN) has 
been used for image recognition and classification [19], because it can 
learn features of objects from their images [20]. At the same time, long 
short-term memory (LSTM) has been used to describe the dynamic 
features of time series data based on recurrent neural network (RNN) 
[21], and LSTM models have been developed to process weather and 
text data [22,23]. Recently, CNN and LSTM have been combined to 
generate a long-term recurrent convolutional network (LRCN) [24], 
which uses CNN for spatial visual recognition and LSTM for long-term 
temporal dynamics. LRCN has been applied for human activity recog
nition [24], but there is no research on using LRCN for materials. It is 
hypothesized that a LRCN model can be developed to precisely distin
guish flow features and assess the plastic viscosity of UHPC during the 
mixing. 

The remainder of the paper is organized as follows: Section 2 in
troduces the methodology for development of the LRCN model. Section 
3 presents a case study on implementation of the LRCN model to UHPC 
mixtures. Section 4 summarizes the conclusions and future 

opportunities. 

2. Methodology 

2.1. Overview 

Fig. 1 shows the flowchart of this research for development and 
implementation of the LRCN. First, experiments need to be conducted to 
generate the data that are used to develop the LRCN. The experimental 
efforts include proportioning and mixing of UHPC mixtures, measure
ment of plastic viscosity, four-point bending tests of UHPC beams, and 
slicing the tested beams. From the experiments, video of the mixing of 
mixtures can be obtained using a common digital camera; the plastic 
viscosity of the mixture can be measured using a rheometer; the flexural 
properties of the mixtures can be evaluated through bending tests; and 
the fiber distribution and air voids can be evaluated using the slices of 
the test beams. With the video and viscosity data, a LRCN model can be 
trained to interpret the video, outputting the plastic viscosity. In the 
training of the LRCN model, the video and viscosity data obtained from 
the experiments are used to optimize the parameters of the LRCN model 
via backpropagation [24]. Once the LRCN model is trained, it can be 
operated to output frame-length viscosity using frame-length inputs (i. 
e., video frames) of the mixing. The experiments and deep learning 
methods are respectively introduced in the following subsections. 

2.2. Experimental methods 

2.2.1. Fresh properties 
Mini-slump spread of the UHPC mixtures can be tested by the flow 

table method in accordance with ASTM C230/230M-14 [25]. Mini V- 
funnel flow time can be measured in accordance with EFNARC specifi
cations [26]. The plastic viscosity and yield stress of suspending mortar 
can be measured using a rheometer (model: ICAR Plus) [27]. 

2.2.2. Flexural properties 
The flexural properties such as flexural strength and energy dissi

pation of the UHPC mixtures can be evaluated through four-point 
bending tests using beam specimens that measure 304.8 mm × 76.2 
mm × 76.2 mm (length × width × depth) in accordance with ASTM C 
1609 [28]. The bending tests are conducted under displacement control 
with a constant displacement rate of 0.005 mm/s. 

2.2.3. Evaluation of fiber distribution 
The tested beam specimens can be cut into slices (thickness: about 5 

mm) using a diamond saw. The cross section of each slice is the same as 

Table 1 
Comparison of the methods for assessing the plastic viscosity.  

Method Time Human action 

Measurement using rheometer 10–30 min. Need manual operation 
Measurement using mini V-funnel 10 min. Need manual operation 
The proposed method < 1 s Without human intervention  

Fig. 1. Flowchart of research on developing LRCN for assessing the plastic viscosity of UHPC.  
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the cross section (76 mm × 76 mm) of the beams. The cross sections can 
be imaged using a high-resolution digital camera (model: Cannon EOS 
5DS, resolution: 50.6 Megapixel per image). With the images, a method 
developed in the authors’ previous study can be used to evaluate the 
fiber dispersion (α), orientation (η), and distribution (φ), as elaborated 
in reference [29]. 

Fiber distribution refers to the combination of fiber dispersion and 
orientation. Fiber distribution refers to the combination of fiber 
dispersion and orientation. Fiber dispersion is used to evaluate the 
dispersion evenness of steel fibers, and fiber orientation is used to 
describe the directions of fibers, consistent with the previous research 
[9,29]. Indices were introduced to quantitatively describe fiber disper
sion and orientation in reference [9], and both indices are in the range of 
0 to 1. When the fiber dispersion index is equal to 1, the fibers are 
uniformly dispersed in the matrix. When the fiber orientation index is 
equal to 1, the fibers are along the loading direction. Therefore, an index 
can be defined as the product of the fiber dispersion and orientation 
indices, as shown in Eq. (1). When the fiber distribution index is equal to 
1, the fibers are uniformly dispersed in the matrix, and the fibers are 
along the loading direction. 

φ = α ⋅ η (1)  

where α is the fiber dispersion index; η is the fiber orientation index; and 
φ is the fiber distribution index. 

The RGB images can be converted into binary images in gray scale 
and divided into 21 × 21 sub-images, as depicted in Fig. 2. Each sub- 
image has 250 × 250 pixels corresponding to a cross section 
measuring 3.4 mm × 3.4 mm. 

To facilitate quantification of steel fibers, each fiber in a sub-image 
can be contoured [30], and the number of contours is the number of 
steel fibers. The fiber diameter is calculated using the equivalent 
diameter (Deq) of each contour, as described in Eq. (2) [31]: 

Fig. 2. Illustration of the division of images used to quantify the fiber disper
sion and orientation. 

Fig. 3. Image conversion for evaluation of air void: (a) a RGB image, and (b) a binary image.  

Fig. 4. Illustration of the overall architecture of the long-term recurrent convolutional network.  
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Deq =
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π

√

(2)  

where A is the area of the contour. 

2.2.4. Evaluation of air void content 
Air voids with diameters>0.1 mm also can be evaluated using binary 

images, as shown in Fig. 3. Gaussian filtering and morphological oper
ation can be applied to remove noises from the images. The area of 
contour can be estimated to calculate the actual size of each air void. In 
an area measuring 72 mm × 72 mm, the image has 5250 × 5250 pixels, 
so each pixel represented an area of 1.88 × 10-4 mm2. The actual area of 
an air void is equal to 1.88 × 10-4 mm2 times the pixel numbers of 
contour of the air void. 

2.3. Deep learning methods 

2.3.1. Long-term recurrent convolutional network (LRCN) 
Fig. 4 shows the architecture of the LRCN. The input of the LRCN is a 

video composed of sequential frames, and the output is the plastic vis
cosity of the mixture. The output is obtained through the feature 

learning and sequence learning processes. In feature learning, each 
frame is analyzed by a CNN, which extracts the spatial features of the 
pixels of the image. In the sequence learning, a LSTM is used to extract 
the temporal features at frame length, and a classifier is used for multi- 
classification that outputs the plastic viscosity. More details of the LRCN 
are presented in the following subsections. In the training of the LRCN, a 
relationship between the video and plastic viscosity is established and 
optimized via backpropagation using the experimental data. Finally, the 
trained LRCN is used to assess the viscosity using the video. 

2.3.2. Feature learning 
Fig. 5 shows the architecture of a CNN used for feature learning. The 

spatial features of each frame image of the video can be extracted from 
the pixels. The feature learning process consists of four convolutional 
blocks, and each convolutional block has two convolutional layers and 
one max-pooling layer, as elaborated in reference [32]. As the frame 
image is sequentially processed by the two convolutional blocks, spatial 
features are extracted from the pixels of each image, and the size of the 
image is reduced by the max-pooling layers. Different convolutional 
kernels are applied to extract different features. The CNN has a global 
max-pooling layer, which is used to process the data for sequence 

Fig. 5. The architecture of a CNN. The numbers show the size of data in different layers of the CNN. For example, 256 × 256 in the first layer means the data has 256 
rows and 256 columns. 

Fig. 6. Illustration of a convolutional layer. The convolutional operation is conducted on the whole image, but only a part of an image is shown in the figure as 
an example. 
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learning [33]. 
The exaction of features from an image through a convolutional layer 

is depicted in Fig. 6. The grey scale of each pixel of the input image can 
be described using a number, so the input image can be described using a 
matrix of numbers, and the size of the matrix is consistent with the size 
of the image in pixels. The matrix is used as an input matrix, which is 
further processed in four steps: (1) For each of the four edges of the 
matrix, a zero line is added as the edge, known as a “padding” operation, 
which helps retain the matrix size in sequential processes. (2) A 3 × 3 
sliding window with three rows and columns is moved on the padded 
image to extract pixel information [34], such as the square windows 
shown in red, green, and blue colors. The moving distance of each step is 
named as “stride”, which is one, as illustrated by the red and green 
windows. (3) For each window, one number can be calculated through 
an algebra operation, given a kernel matrix. Different kernel matrices 
can be applied to extract different features of the image. For example, 
the kernel in Fig. 6 can extract the edge information of the image. (4) 
The calculation results from different windows are used to form a new 
matrix, known as the output matrix, which contains features of the 

image [34]. 
Since many convolutional kernels are needed to extract different 

features from each image, the convolutional layer involves intensive 
computation. To improve the computational efficiency, a max-pooling 
layer is used to compress the volume of data for every two convolu
tional layers. Fig. 7 illustrates the function of the max-pooling layer. In 
each sliding window, the maximum value is extracted and combined to 
form a new matrix [34]. For a 256 × 256 matrix, the max-pooling layer 
could reduce it to a 128 × 128 matrix, compressing the dimension of the 
data matrix. The last convolutional block of the CNN has a global max- 
pooling layer, which converts three-dimensional data into one- 
dimensional data that are used for sequence learning [33]. 

2.3.3. Sequence learning process 
Following the extraction of spatial features using CNN, sequence 

learning is performed using the LSTM for temporal features at frame 
length. Basically, the feature learning data of the different frames of the 
video are used to form a sequential data, according to the time of video 
frames. The sequential data can be processed by the LSTM layer that can 

Fig. 7. Illustration of a max-pooling layer used to reduce the volume of convolutional data.  

Fig. 8. Illustration of the sequence learning process incorporating a LSTM layer and a classifier.  

Fig. 9. Illustration of one-hot encoding operation for labels. The plastic viscosity is classified into five classes and denoted as 1, 2, 3, 4, and 5. The classes 1, 2, 3, 4, 
and 5 need to be encoded into one-hot codes, so that the machine can recognize them. 
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extract the temporal features at frame length. Then, a classifier can be 
used to establish a correlation between the temporal features and plastic 
viscosity, as shown in Fig. 8. 

The classifier contains three “dense” layers and a “softmax” layer 
[34]. The “dense” layers are used to establish a relationship between the 
sequential data and plastic viscosity. The “softmax” layer is used to 
enable multi-classification [35], which is utilized to achieve quantifi
cation of the viscosity, as discussed in the next subsection. 

2.3.4. Coding viscosity data for multi-classification 
The LRCN is trained using the categorical crossentropy loss function 

to assess the viscosity through multi-classification that can classify the 
viscosity in a range, such as 20–25 Pa⋅s [36]. Reduction of the range 
width represents increase of assessment precision. For example, when 
the range is changed from 20 to 25 Pa⋅s to 20–21 Pa⋅s, the precision is 
changed from 5 Pa⋅s to 1 Pa⋅s. In general, there is a tradeoff between the 
precision and accuracy of classification from deep learning. Therefore, 
an appropriate definition of the ranges is essential. Further discussions 
of definition of the ranges are provided in Section 3. Once the ranges of 
viscosity are defined, each range is designated by a label using one-hot 
code [36]. The tested viscosity data are converted into one-hot codes, as 
shown in Fig. 9. The one-hot codes are labels that can be recognized by 
LRCN that does not recognize the ranges of viscosity. For example, given 
five ranges of viscosity, 10–24 Pa⋅s, 25–34 Pa⋅s, 35–72 Pa⋅s, 73–83 Pa⋅s, 
84–106 Pa⋅s, these ranges can be respectively converted to one-hot 
codes [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], and 
[0, 0, 0, 0, 1]. Basically, the labels of the ranges are converted into a 
matrix 1 × M [34], where M is the number of ranges (or classes), and M 
= 5 in this example. 

3. Case study 

A case study has been conducted to implement, validate, and eval
uate the performance of the proposed video recognition technology for 
assessing the plastic viscosity of UHPC. The case study was performed 
based on a non-proprietary UHPC mixture developed in a previous 
research by the authors [37]. Details of the case study are presented as 
follows. 

3.1. Raw materials 

In this study, the binder included Type I Portland cement and 
ground-granulated blast-furnace slag. The specific gravity of the cement 
was 3.15. The specific gravity of the slag was 2.90. Three types of sand 
were adopted, including an expanded shale lightweight sand (LWS), 
masonry sand (MS), and river sand (RS). The specific gravity of LWS, 
MS, and RS were 1.80, 2.65, and 2.64, respectively. Table 2 shows the 
chemical composition of cement, slag, LWS, MS, and RS. Straight steel 
fibers measuring 0.2 mm in diameter and 13 mm in length were used. 
The specific gravity, elastic modulus, and tensile strength of the steel 
fibers were 7.8, 210 GPa, and 2,850 MPa, respectively. 

Fig. 10 shows the particle size distribution of each type of sand. The 
water absorption percentages of the LWS, MS, and RS were 23.0%, 
0.06%, and 0.14%, respectively. The LWS was soaked with water for 24 
h to reach saturated-surface-dry (SSD) condition before mixing. A 
polycarboxylate-based high-range water reducer (HRWR) was used to 
improve the flowability. The HRWR had a solid content of 34.4% by 
mass and a specific gravity of 1.05. A type of ready-to-use VMA (BASF 
MasterMatrix VMA 362) was adopted to adjust the plastic viscosity. The 
water content and the specific density of the VWA was 95% and 1.002, 
respectively. 

3.2. Mixture design 

Table 3 lists the five mixtures investigated in this research. The five 
mixtures are respectively designated as VMA0, VMA0.5, VMA1.0, 
VMA1.5, and VMA2.0, whose VMA dosages were 0, 0.5%, 1.0%, 1.5%, 
and 2.0% by mass of binder, respectively. In each of the investigated 
mixtures, the binder was composed of 40% cement and 60% slag, by 
volume. The LWS, MS, and RS respectively occupied 25%, 30%, and 
45% of the total volume of aggregate. The water-to-binder ratio was 
fixed at 0.23 by mass. The sand-to-binder ratio was fixed at 1:1 by 
volume. The steel fibers were 2% of the total volume of the mixture. 

Table 2 
Chemical composition and physical properties of the raw materials.  

Composition Cement Slag LWS MS RS 

SiO2 (%)  22.44  36.21  57.60  86.50  80.30 
Al2O3 (%)  2.76  11.10  19.40  0.39  10.50 
Fe2O3 (%)  2.24  0.76  9.60  1.47  3.43 
CaO (%)  68.05  43.75  3.40  9.42  1.72 
MgO (%)  0.91  5.09  2.60  –  1.70 
SO3 (%)  2.25  2.21  0.60  –  1.07 
Na2O (eq)* (%)  0.30  0.63  5.60  –  – 
TiO2 (%)  0.14  0.58  –  –  – 
P2O5 (%)  0.09  0.02  –  –  – 

Note: * Na2O (eq) represents the equivalent alkali content, which equals to the 
sum of Na2O and 0.658 K2O. 
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3.3. Mixing, testing, casting, and curing 

3.3.1. Mixing and testing 
A Hobart mixer (capacity: 19 L) was used to mix the mixtures. The 

whole mixing included three steps: (1) Step 1: The dry ingredients 
including the binder and sand were mixed at 61 rpm for 3 min. (2) Step 
2: The mixing water, HRWR, and VMA were introduced to the mixer and 
mixed at 61 rpm for 6 min. (3) Step 3: The steel fibers were introduced to 
the mixer and mixed at 113 rpm for 2 min. In total, each mixture was 
mixed for 11 min. 

In Step 2 of the mixing process, after the VMA was added and mixed 
for 5.5 min, a camera was used to capture videos of the mixing of UHPC 
suspending mortar in the remaining 30 s of Step 2. Immediately after 
completion of Step 2, the plastic viscosity of the mixture was evaluated 
using the rheometer, and the flowability of the mixture was tested. The 
test method and adopted rheometer are elaborated in Section 2. The 
camera had a resolution of 960 × 544 pixels, and a sampling rate of 30 
frames per second. The focal distance was not changed when the videos 
were captured. In the 30 s for recording videos in Step 2, five videos 
were recorded for each mixture. Each video has a duration of 5 s, so each 
video had 150 frames of images. Before the images were used in the deep 

learning, they were pre-processed for normalization of image size and 
color. Specifically, each RGB image was resized to 256 × 256 pixels, and 
converted to gray scale. The use of gray scale images could reduce the 
number of parameters and improve the computational efficiency. Five 
consecutive images were defined as one input data sample for the LRCN, 
and the output data was the viscosity measured using the rheometer. 
Therefore, each video has 30 (=150/5) data samples. The data samples 
are labeled using their corresponding plastic viscosity that was 
measured from the rheometer and encoded using one-hot codes (see 
Section 2.3.4), in order to train the LRCN [38], as depicted in Fig. 11. 

3.3.2. Casting and curing 
The UHPC mixtures were used to cast beam specimens for four-point 

bending tests. In the casting, the mixture was poured at one end of the 
beam mold and flowed to the other end, as elaborated in the authors’ 
previous research [9]. In the flow, the steel fibers could be aligned along 
the beam. Since the five UHPC mixtures were designed to possess high 
flowability, no external vibrator was applied to consolidate the mixtures 
after casting. More details of the specimens and tests are elaborated in 
Section 2. 

Immediately after casting, the molds were covered by wet burlap and 

Table 3 
Ingredient proportioning of the investigated mixtures (kg/m3).  

Mixture Cement Slag LWS MS RS HRWR VMA Water Steel fiber 

VMA0  459.0  633.9  163.9  287.4  432.8  7.0 0  246.1  156.0 
VMA0.5  459.0  633.9  163.9  287.4  432.8  7.0 5.5  240.9  156.0 
VMA1.0  459.0  633.9  163.9  287.4  432.8  7.0 10.9  235.7  156.0 
VMA1.5  459.0  633.9  163.9  287.4  432.8  7.0 16.4  230.5  156.0 
VMA2.0  459.0  633.9  163.9  287.4  432.8  7.0 21.9  225.3  156.0  

Fig. 11. Illustration of data preparation. The 150 video frames with 960 × 544 pixels are resized into images with 256 × 256 pixels. Every five sequential frames are 
defined as one data sample. 
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plastic sheets. The specimens were demolded after they were kept in 
mold for 24 h. After the specimens were demolded, they were cured in 
saturated lime solution at room temperature (23 ± 2 ℃) until 1 day 
before the testing at 28 days, when the specimens were placed in air to 
dry. 

3.4. Experimental results and discussion 

3.4.1. Fresh properties 
Table 4 lists the test results of mini-slump spread, mini V-funnel flow 

time, and plastic viscosity of the five UHPC mixtures. As the VMA dosage 
was increased from 0 to 2.0%, the mini-slump spread was decreased 
from 310 mm to 260 mm; the mini V-funnel flow time was increased 
from 13 s to 98 s; and the plastic viscosity was increased from 17 Pa⋅s to 
105 Pa⋅s. These results of fresh properties are consistent with the con
clusions from previous research [9]. The addition of VMA increases the 

plastic viscosity of the mixture and reduces the flowability. 

3.4.2. Flexural properties 
Fig. 12 shows the flexural test results. The methods for the calcula

tion of flexural strength and dissipated energy are introduced in refer
ence [9]. As the VMA dosage increased from 0 to 1%, the peak load was 
increased from 32.5 kN to 43.7 kN; the flexural strength was increased 
from 16.1 MPa to 21.6 MPa; and the dissipated energy was increased 
from 38.5 J to 48.3 J. The increase of flexural strength and dissipated 
energy can be attributed to the increase of the plastic viscosity that 
improved the dispersion and orientation of steel fibers, as discussed in 
reference [9]. As the VMA dosage further increased from 1% to 2%, the 
peak load was decreased from 43.7 kN to 25.9 kN; the flexural strength 
was decreased from 21.6 MPa to 12.8 MPa; and the dissipated energy 
was reduced from 48.3 J to 28.8 J. The reduction of flexural strength and 
dissipated energy can be attributed to the increase of the plastic viscosity 
that could entrap more air and generate more air voids in the matrix, as 
discussed in reference [29]. Overall, these test results are consistent with 
previous research [9]. 

3.4.3. Fiber distribution and air voids 
Fig. 13(a) shows the test results of fiber dispersion (α) and orienta

tion (η) from the tested beams. The definition and evaluation methods of 
fiber dispersion and orientation are elaborated in reference [9]. As the 
VMA dosage increased from 0 to 1%, α was increased from 0.52 to 0.65, 
which indicated that the dispersion uniformity of the steel fibers in the 

Table 4 
Fresh properties of mortar.   

VMA-0 VMA- 
0.5 

VMA- 
1.0 

VMA- 
1.5 

VMA- 
2.0 

Mini slump spread 
(mm) 

310 ±
5 

305 ± 5 280 ±
10 

270 ±
10 

260 ± 5 

Mini V-funnel flow 
time (s) 

13 ± 2 25 ± 3 48 ± 5 70 ± 5 98 ± 6 

Plastic viscosity (Pa⋅s) 17 ± 2 31 ± 3 54 ± 4 82 ± 5 105 ± 5  
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Fig. 12. Four-point bending test results of the UHPC mixtures with different VMA dosages at 28 days: (a) load–deflection curves; and (b) equivalent flexural strength 
and dissipated energy. 
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UHPC matrix was improved. As the VMA dosage increased from 1% to 
2%, α was reduced from 0.65 to 0.58, which indicated that the disper
sion uniformity of the steel fibers in the UHPC matrix was lightly 
reduced, likely due to fiber clusters caused by the very high plastic 
viscosity (Table 4). As the VMA dosage increased from 0 to 2%, η was 
monotonously increased from 0.23 to 0.60, indicating that the increase 
of plastic viscosity helped align the steel fibers along the beam and 
benefit the mechanical properties. 

Fig. 13(b) shows the test results of fiber distribution (φ) and air void 
content. As the VMA dosage increased from 0 to 1%, φ was increased 
from 0.120 to 0.364, which indicated that the fiber distribution was 
improved. As the VMA dosage increased from 1% to 2%, φ was reduced 
from 0.364 to 0.348, which indicated that the fiber distribution was 
lightly compromised. Such trend is consistent with the trend of the fiber 
dispersion, overall. As the VMA dosage increased from 0 to 2%, the air 
void content was monotonically increased from 1.01% to 4.15%, which 
can be attributed to the high plastic viscosity that entrapped more air 
during mixing. 

The test results indicated that the flexural strength and energy 
dissipation resulted from the competing effect of fiber distribution and 
air void content that are associated with the viscosity of the mixture. As 
the viscosity increased, on one hand, the fiber distribution could be 
improved, and the improvement of fiber distribution tended to increase 
the flexural properties; on the other hand, the air void content could be 
increased, and the increase of air void content introduced more defects 
and thus tended to compromise the flexural properties. According to the 
trends of the fiber distribution and air void content, further investigation 

can be conducted to reveal the predominant effects, as detailed in the 
next subsection. 

3.4.4. Correlation between fiber distribution and air void content 
Fig. 14 shows the correlation between the fiber distribution and air 

void content of the mixtures with different VMA dosages. The correla
tion plot shows a transition point at the VMA dosage of 1%. As the VMA 
dosage increased from 0 to 1%, the air void content was increased from 
1.01% to 2.03% (by 101%), while the fiber distribution index was 
greatly increased from 0.120 to 0.364 (by 203%), and the flexural 
strength was increased from 16 MPa to 22 MPa. The results indicate that 
when the viscosity is relatively low, the fiber distribution is predominant 
for the flexural strength. Although the increase of air void content tends 
to generate defects in the matrix, the adverse effect is suppressed by the 
significant improvement of fiber distribution. As the VMA dosage 
further increased from 1% to 2%, the air void content was rapidly 
increased from 2.03% to 4.15% (by 104%), while the fiber distribution 
was slightly decreased from 0.364 to 0.348 (by 4%), and the flexural 
strength was reduced from 22 MPa to 13 MPa. The results indicate that 
when the viscosity is high, the air void content is predominant for the 
flexural strength because the fiber distribution is relatively retained. 

3.4.5. Determination of the ranges of plastic viscosity 
Fig. 15 shows the relationship between the flexural strength and 

plastic viscosity of UHPC mixtures. Based on the statistics of flexural 
strengths and the corresponding plastic viscosity values of UHPC mix
tures from this research and references [9–11], a fitting curve can be 
determined through a regression analysis that minimizes the coefficient 
of determination (R2), as plotted in Fig. 15(a). The fitting curve can be 
used to determine the ranges of plastic viscosity, as depicted in Fig. 15 
(b). According to the flexural strength data, the fitting curve can be 
divided into five segments, corresponding to the threshold flexural 
strengths 21.9 MPa, 18.6 MPa, 15.3 MPa, and 12.0 MPa, respectively. 
These threshold flexural strengths have an interval of 3.3 MPa, or 15% 
the peak flexural strength (21.9 MPa). 

The plastic viscosity values corresponding to these threshold flexural 
strengths are 12 Pa⋅s, 24 Pa⋅s, 34 Pa⋅s, 72 Pa⋅s, 83 Pa⋅s, and 106 Pa⋅s, 
respectively, which are used to define the ranges of plastic viscosity in 
this case study, as listed in Table 5. Any plastic viscosity lower 12 Pa⋅s or 
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Table 5 
Determination of the ranges of plastic viscosity.  

Class Range 1 Range 2 Range 3 Range 4 Range 5 

Plastic viscosity (Pa⋅s) 12–24 25–34 35–72 73–83 84–106 
Designation 1 2 3 4 5  
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higher than 106 Pa⋅s was not considered because the corresponding 
flexural strength was too low. 

3.5. Deep learning results and discussion 

3.5.1. Data preparation and hardware 
In this study, a total of 78 videos were captured and used to generate 

2380 data samples. Each data sample had 5 sequential frames (i.e., 
images). The data were shuffled and divided into two data sets, which 
are the training data set and validation data set. The training and vali
dation data sets were respectively composed of 1904 data samples and 
476 data samples, which represented 80% and 20% of the total data set. 
The proposed deep learning was executed using a laptop with the 
following configuration: (1) CPU: intel i7-8750H 2.20 GHz, (2) memory: 
32 GB, and (3) GPU: Nvidia Geforce RTX 2080 Max-Q. 

3.5.2. Training of the deep learning model 
In the training of the LRCN model, the learning rate was fixed at 

0.0001, and the LRCN model was trained for 50 epochs. An epoch refers 
to an execution of the LRCN model using the training or validation data. 
The highest accuracy was obtained after training the LRCN model for 47 
epochs. Fig. 16 shows the results of the loss and accuracy of the LRCN 
with the training and validation data sets [39]. The training loss and 
validation loss decreased with the increase of training epochs and fol
lowed consistent trends, indicating that overfitting or underfitting did 
not occur. Similarly, the training accuracy and validation accuracy 
increased with the increasing training epochs and followed consistent 
trends, indicating a continuous improvement of the prediction perfor
mance of the LRCN model. Both the training and validation accuracy 
approached to 1.0, which represented a high accuracy. 
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Fig. 16. Computational results from the training and validation of the LRCN model: (a) training and validation loss; and (b) training and validation accuracy.  

Table 6 
Testing results of the trained LRCN model for assessing the viscosity.  

No. Sequential data at different time instants* Predicted Measured 

Time 1 Time 2 Time 5 

1 Code [1, 0, 0, 0, 0] 17 Pa⋅s 
Class 1 
Viscosity 12–24 Pa⋅s 

2 Code [0, 0, 0, 0, 1] 98 Pa⋅s 
Class 5 
Viscosity 84–106 Pa⋅s 

3 Code [0, 0, 0, 1, 0] 78 Pa⋅s 
Class 4 
Viscosity 73–83 Pa⋅s 

4 Code [0, 1, 0, 0, 0] 33 Pa⋅s 
Class 2 
Viscosity 25–34 Pa⋅s 

5 Code [0, 0, 1, 0, 0] 54 Pa⋅s 
Class 3 
Viscosity 35–72 Pa⋅s 

* Note: The images for Time 3 and Time 4 are not explicitly listed. 
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3.5.3. Testing of the deep learning model 
The trained LRCN model was then utilized to assess the viscosity of 

mixtures from their videos. Intensive tests have been conducted to 
evaluation the performance of the trained LRCN model. Table 6 shows 
the results from five representative tests that correspond to five different 
mixtures with different ranges of viscosity. For each test, a video was 
recorded to generate the sequential images, and three sequential images 
are listed to show the dynamics in the mixing of each mixture, as 
designated by Time 1 to Time 5. The videos with the sequential images 
were input to the trained LRCN model, and the outputs of the LRCN 
model were the one-hot codes. Each one-hot code could be converted 
into a class number representing a range of viscosity, as detailed in 
Table 5. Taking the first test sample in Table 6 for example, the output 
one-hot code from the LRCN was [1, 0, 0, 0, 0], which was converted 
into Class 1, and Class 1 represented the viscosity range 10–24 Pa⋅s. The 
measured viscosity using the rheometer was 17 Pa⋅s, well included in the 
predicted range. The other test results also show that the predicted 
ranges are in reasonable agreement with the measured viscosity, 
proving that the trained LRCN model could accurately classify the 
ranges of viscosity for the UHPC mixtures. 

3.5.4. Discussions on assessment of viscosity 
With the adopted laptop with a common configuration, the average 

execution time for every five frames of a video was 0.73 s, indicating a 
high efficiency of the assessment using the LRCN. To be conservative, an 
assessment frequency of 1 Hz could be achieved, meaning that with the 
video of a mixture during mixing, the LRCN could provide the viscosity 
of the mixture every 1 s, which is sufficient for real-time assessment in 
many applications. It is believed that a higher frequency can be achieved 
by using a computer with a better CPU and GPU. 

It should be noted that the LRCN model was trained using a data set 
with limited data size and diversity in terms of the viscosity because only 
five different VMA dosages were applied to adjust the plastic viscosity. 
In general, the increase of data set helps improve the accuracy and 
generalization performance of deep learning models. It is envisioned 
that the range width of viscosity can be refined while retaining the ac
curacy if the data set size is increased, so that a higher precision of the 
assessment of viscosity can be achieved. 

The developed model is associated with the adopted mixer. When a 
different mixer is adopted, the developed model may be inapplicable 
since the mixer can affect the fluidity of the mixture. The proposed video 
recognition method can be applied to train new models for the adopted 
mixers. New videos should be captured and used to train the new model 
for the adopted mixer. Further research is needed to test the perfor
mance of the proposed method for other types of mixers. 

When a different type of concrete or cementitious composite is 
mixed, such as a self-compacting concrete, the material may involve 
different ranges of viscosity. For example, the plastic viscosity of self- 
compacting concrete can be lower than 20 Pa⋅s [40]. In addition, the 
presence of coarse aggregates in self-compacting concrete also may 
change the flow features. Therefore, it is recommended to re-calibrate 
the LRCN model for different types of material. 

In real practice, it is possible that the focal distance of videos is 
different from the focal distance of the videos used to train the machine 
learning model. To improve the generalization performance, videos with 
different focal distances can be added to the training dataset. With the 
added videos, the machine learning model will learn and mitigate the 
effect of focal distance. It is not recommended to record videos far away 
from the mixer because the resolution of the videos can be significantly 
reduced and compromise the accuracy. 

Another consideration for field applications of the proposed method 
is that the background brightness of videos can be different from case to 
case. The change of background brightness may potentially affect the 
pixel information and thus influence the feature learning and sequence 
learning processes. Therefore, further research is needed to test the 
performance of the proposed method under different brightness 

conditions. 

4. Conclusions and prospects 

This paper presents a video recognition technology for real-time 
assessment of viscosity using a video of the mixing of UHPC. The pro
posed method is based on a LRCN model that can directly map video 
frames to the plastic viscosity and model complex temporal dynamics. 
The LRCN model directly connects CNN and LSTM models that can be 
jointly trained to simultaneously learn spatial features and temporal 
dynamics. Experiments were conducted to develop and evaluate the 
LRCN model. According to the above investigations, the following 
conclusions are drawn:  

• The plastic viscosity of UHPC can be reasonably assessed from a 
video of the mixing. The plastic viscosity affects the spatial and 
temporal features of flowing mixtures. The features can be recog
nized by the LRCN model using video frames. The LRCN model es
tablishes a link between the plastic viscosity and flow features. The 
video can be captured using a common camera with a low cost and 
high conveniency.  

• With the five defined ranges of viscosity, the accuracy of the trained 
LRCN model for assessing the plastic viscosity of UHPC suspending 
mortar was higher than 0.990. With a common laptop configuration, 
the assessment time for the plastic viscosity was shorter than 1 s, 
enabling real-time assessment of in-site viscosity.  

• The flexural strength and energy dissipation of UHPC mixtures 
depend on the competing effects of the distribution of steel fibers and 
the air void content, which are associated with the plastic viscosity of 
UHPC suspending mortar. According to the flexural strength, the 
plastic viscosity of UHPC suspending mortar can be categorized into 
five ranges, which are 12–24 Pa⋅s, 25–34 Pa⋅s, 35–72 Pa⋅s, 73–83 
Pa⋅s, 84–106 Pa⋅s. The highest flexural strength is achieved when the 
plastic viscosity is in the range of 35–72 Pa⋅s, which corresponds to 
the optimum fiber distribution and a reasonable air void content.  

• The addition of VMA significantly affects the plastic viscosity of 
UHPC. When the plastic viscosity is lower than the optimum plastic 
viscosity, although the air void content is low, the flexural strength 
and energy dissipation are compromised by undesired fiber disper
sion and orientation due to the low plastic viscosity. When the plastic 
viscosity is lower than the optimum plastic viscosity, as the plastic 
viscosity is further increased, the fiber distribution is retained, while 
the air void content is significantly, thus decreasing the flexural 
strength and energy dissipation. 

It is noted that the developed deep learning model outputs a range of 
plastic viscosity, rather than a precise value. To improve the precision, 
the size of dataset used to train the model can be increased. Specifically, 
more videos corresponding to different plastic viscosity values can be 
added to the training dataset. The developed deep learning model is 
built on the videos of mixing UHPC using a specific type of mixer. Since 
the flow of UHPC is associated with the features of mixers such as the 
mixing speed and blade, the trained model is inapplicable to other 
mixers. To improve the generalization performance, the proposed 
method can be used to train new models using added videos for other 
types of mixers. It is interesting to test the proposed method for different 
mixing speeds and focal distance of the cameras. Finally, the developed 
deep learning model is based on a consistent background brightness 
condition in the acquisition of the videos. Further research can be con
ducted to investigate the robustness of the LRCN model under different 
background brightness conditions of the videos. It is also interesting to 
test other types of materials, which have different flow features from 
UHPC. 
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