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Abstract: The mean shift (MS) algorithm is a nonparametric method
used to cluster sample points and find the local modes of kernel density
estimates, using an idea based on iterative gradient ascent. In this paper
we develop a mean-shift-inspired algorithm to estimate the maxima of re-
gression functions and partition the sample points in the input space. We
prove convergence of the sequences generated by the algorithm and derive
the rates of convergence of the estimated local maxima for the underly-
ing regression model. We also demonstrate the utility of the algorithm for
data-enabled discovery through an application on biomolecular structure
data.
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1. Introduction

The mean-shift (MS) algorithm is a well-known method to cluster sample points
and find the local modes of kernel density estimators (KDE) using a gradient
ascent idea. This algorithm was introduced by Fukunaga and Hostetler (1975),
and was generalized by Cheng (1995). It finds wide applications in image seg-
mentation (Comaniciu and Meer, 2002) and object tracking (Comaniciu et al.,
2003). The algorithm has thus far no counterpart that partitions sample points
in a regression setting and estimates the local maxima of regression functions. In
this paper we propose a regression mean shift algorithm to fill this gap and study
the theoretical properties of our maxima estimators for regression functions.
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Let (X, Y ) ∈ R
d ×R be a random pair, and r(x) = E(Y |X = x) be the regres-

sion function. Suppose that we observe i.i.d. sample points (X1, Y1), · · · , (Xn, Yn)
that have the same joint distribution as (X, Y ). Here the goals are (1) to es-
timate the set of local maxima of r, and (2) to partition the input space or
the points {X1, · · · , Xn} according to their connection with the estimated lo-
cal maxima. The plug-in method is a natural way of achieving goal (1). In
other words, suppose that we have a good estimator rn of r, we can use the
local maxima of rn as the estimators of the local maxima of r. In fact, this
idea has been used in Müller (1985, 1989) using the Gasser-Müller (GM) kernel
regression estimator, and in Ziegler (2002) using the Nadaraya-Watson (NW)
regression estimator. However, the plug-in approach does not directly render an
algorithm to find the local maxima, which is usually challenging because the
local maxima are only implicitly defined through the regression estimators. Re-
lated to goal (2), partition-based regression methods include CART (Breiman
et al., 1993), MARS (Friedman, 1991), and SUPPORT (Chaudhuri et al., 1994),
among others. Different from the above works, the space partitioning idea in our
approach is based on the geometric characteristics of regression functions. More
specifically, we use the basins of attraction associated with the local maxima of
regression functions to define the partition. Input space partitioning for regres-
sion functions has many applications, for example, clustering for house price
(Liu et al., 2016), segregated homogeneous neighborhoods studied in sociology
(Legewie, 2018), and division of disease risk zones in epidemiology (Gaudart et
al., 2005). The regression MS algorithm we propose in this paper uses a modal
clustering idea and is simultaneously useful for the above two goals.

We briefly describe the idea behind the original MS algorithm, in order to
elucidate the main differences and challenges in extending the MS algorithm
to the regression setting. Let f be a differentiable density function on R

d. For
a fixed a > 0, consider a sequence of points, starting from x0 ∈ R

d, defined
iteratively by

x� = x�−1 + a
∇f(x�−1)
f(x�−1) , � ≥ 1. (1.1)

Having f in the denominator quickly moves points in low-density regions to
higher-density locations. Since ∇ log f(x) = ∇f(x)

f(x) for all x ∈ R
d such that

f(x) > 0, the procedure in (1.1) can be understood as a gradient ascent algo-
rithm applied to log f , with x∞ := lim�→∞ x�, if it exists, as a local mode of f
under regularity conditions. With a random sample drawn from f , one can get
a KDE f̂ defined in (2.1) below, replace f by f̂ in the above iterative procedure
and generate a sequence x̂j , j = 0, 1, · · · , with x̂0 = x0, so that x̂∞ := lim�→∞ x̂�

is used as an estimate of x∞. The MS algorithm implicitly uses a ∝ h2, where h
is the bandwidth of the KDE, and groups starting points x0 to the same cluster
(i.e., basin of attraction) if their destination x̂∞ is the same. The gradient ascent
nature of the MS algorithm has been studied in Arias-Castro et al. (2016). See
Fig 1.1 for an illustration.

One appealing feature of the MS algorithm, which is perhaps also why it is
so popular, is that, the convergence of the algorithm can be guaranteed under
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Fig 1.1. Partition of domain for the trimodal function (K) in Wand and Jones (1993). The
black curves are the contour lines of the function; the three local maxima are represented by
× symbols; the red curves are gradient integral curves starting from the solid triangles; the
domain of the function is partitioned into three parts represented by three different colors,
using the modal clustering idea.

some mild conditions when the kernel function is appropriately chosen. There
is no requirement for the step length, i.e., the quantity a in (1.1), which is in
fact implicitly determined by h in the MS algorithm. See Ghassabeh (2015),
and Yamasaki and Tanaka (2020). When the MS algorithm is applied to modal
clustering, the number of clusters does not need to pre-specified, but rather
depends on the chosen bandwidth.

Ideally, the MS algorithm can be extended to a nonparametric regression
setting, by replacing the density f in (1.1) with a regression function estimator
rn, in order to estimate the local maxima of the regression function r and their
associated basins of attraction, which can then be used to naturally partition the
input space. However, this extension does not appear straightforward, related
to the following aspects:

(1) The regression function r and its estimator rn are not always non-negative,
so that it is not always meaningful to consider log r or log rn directly,
while it seems that the logarithm transformation plays a critical role in
the convergence property of the MS algorithm without any requirement
for the bandwidth choice;

(2) The regression function r has a quotient form as a conditional expectation.
The regression estimators that adopt a similar form (such as the NW re-
gression estimator) have more tedious gradients than those of KDE, which
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makes the mean-shift implementation using such estimators no longer en-
joy the same convergence property as the original MS-type algorithm. See
Remark 2.1 below for more discussions.

Briefly speaking, we handle the above two issues in the following way: For (1),
we apply a positive transformation to the observed response variable Y1, · · · , Yn;
For (2), with the transformed response variables we use a regression estimator
developed in Mack and Müller (1989), which is a variant of the NW kernel
estimator, but enjoys a simpler form of gradients (and higher order derivatives).
With this equipment, here is a summary of our contributions in this paper.

1. We present a regression mean shift algorithm that is used to partition the
sample points in the input space and estimate the local maxima of r. We
prove the convergence of the algorithm under mild conditions, which does
not have a requirement for the bandwidth (see Theorem 2.1).

2. We give uniform rates of convergence of the Hausdorff distance of the sets
of local maxima between our estimator and the truth (see Theorems 3.2
and 3.3).

Related literature. For clustering and maxima estimation related to regression
models, there is a MS-type algorithm called the conditional mean shift (CMS)
algorithm, developed by Einbeck and Tutz (2006). The CMS algorithm is used
to estimate the local modes of f(y|x), which is the conditional density function
of Y given X = x. The algorithm searches for local maxima in the space of
y, with its output indexed by x, and has been used in nonparametric modal
regression studied by Chen et al. (2016). Note that the CMS is still an algorithm
of searching for the modes of (conditional) density functions, while the problem
we are studying here is to find the local maxima estimators for the regression
function E(Y |X = x) in the space of x. For this reason, we do not view CMS as
a competitor of the regression mean shift algorithm studied in this paper. The
input space partitioning idea using our regression mean shift can be interpreted
based on the Morse theory (see Milnor, 1963), which is also used in the Morse-
Smale regression developed in Gerber et al. (2013). Their method is specifically
applied to k-nearest neighbor graphs. Estimating the gradient and critical points
of regression functions can be also useful for variable selection (see Mukherjee
and Zhou, 2006).

We organize the paper as follows. First we present our regression mean shift
algorithm in Section 2 with its convergence proved. Section 3 includes theoretical
study for the maxima estimators. It is followed by simulation and case studies
in Section 4, where in particular we show the application of our algorithm to
biomolecular structure datasets. The proofs are given in Section 6.

2. Regression mean shift algorithm

Denote the marginal probability density function of X by f , and let

f̂(x) = 1
nhd

n∑
i=1

K
(x − Xi

h

)
, x ∈ R

d (2.1)
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be the KDE of f , where K is a kernel density function on R
d, and h > 0 is a

bandwidth. Denote Kh(x) = K(x/h). We have the following kernel regression
estimator of r(x), proposed by Mack and Müller (1989):

r̂(x) = 1
nhd

n∑
i=1

YiKh(x − Xi)
f̂(Xi)

. (2.2)

Note that if we take derivatives of r̂, the differential operator only needs to be
applied to the numerator, which helps avoid the tedious form of the derivatives
of, say, the NW regression estimator.

Let K be a spherically symmetric kernel with profile k : R≥0 → R, that is,
K(x) = ck,dk(‖x‖2), where ck,d > 0 is a normalization factor such that c−1

k,d =∫
Rd k(‖x‖2)dx. Examples of K include the Gaussian kernel and Epanechnikov

kernel. Then we can write

r̂(x) = ck,d

nhd

n∑
i=1

Yik(‖x − Xi‖2/h2)
f̂(Xi)

. (2.3)

We will transform Yi, i = 1, · · · , n by applying a strictly increasing positive
function ξ : R → R>0. We consider the following two choices of ξ.

T1 (Transformation 1): ξ is a deterministic bounded function. For example,
ξ(x) = logistic(x).

T2 (Transformation 2): ξ is a random function depending on Y[n] := mini Yi

such that ξ(x) = x + π(Y[n]), where π(Y[n]) = (−Y[n] + c0)1(Y[n] < c0) for
some positive constant c0. Note that mini ξ(Yi) ≥ c0.

Let Ỹ = ξ(Y ) and Ỹi = ξ(Yi) > 0, i = 1, · · · , n. Define

r̂∗(x) = r̂∗,k(x) = ck,d

nhd

n∑
i=1

Ỹik(‖x − Xi‖2/h2)
f̂(Xi)

, (2.4)

which is considered as an estimator of r̃(x) := E(Ỹ |X = x). Define g(x) =
−k′(x) for all x ∈ [0, ∞), assuming that the derivative exists. For any x ∈ R

d,
denote

wi(x) =
g

(
‖x − Xi‖2/h2)

f̂(Xi)
, (2.5)

and define

m̂∗(x) =
∑n

i=1 wi(x)ỸiXi∑n
i=1 wi(x)Ỹi

− x, (2.6)

which is called the regression mean shift. Note that we have the following rela-
tion.

∇r̂∗(x) = ∇r̂∗,k(x) = 2ck,d

nhd+2

n∑
i=1

−Ỹi(x − Xi)g(‖x − Xi‖2/h2)
f̂(Xi)
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= 2ck,d

h2cg,d
r̂∗,g(x)m̂∗(x). (2.7)

Here r̂∗,g is defined as in (2.4) for r̂∗,k, where we replace k by g. In other
words, the regression mean shift m̂∗(x) is proportional to ∇r̂∗,k(x)/r̂∗,g(x) up
to a constant coefficient, so that the following regression MS algorithm can be
understood as a gradient ascent algorithm.

Regression MS algorithm Our regression MS algorithm is as follows. Let
z0 be a starting point in the domain of r (e.g., one of Xi’s). Obtain z1, z2, · · · ,
iteratively from

zj+1 = m̂∗(zj) + zj , j = 0, 1, 2, · · · . (2.8)

The limit of the sequence {z0, z1, · · · } is considered as an estimator of a local
maximum of r. In practice, the algorithm stops when the distance between two
consecutive points ‖zj+1 − zj‖ is less than a pre-specified small threshold.

Lemma 2.1. If k is convex and strictly decreasing such that −∞ < k′(x) < 0
for all x ≥ 0, then we have

(1) r̂∗(zj) converges,
(2) ‖zj+1 − zj‖ → 0, and
(3) ∇r̂∗(zj) → 0, as j → ∞.

Remark 2.1. a). A related and alternative method is to use the discretized
gradient ascent with a constant step length based on a smooth estimator of
the regression function (such as the NW regression estimator). However, this
method requires the step length to be chosen sufficiently small; otherwise it is
well-known that there is an overshooting problem and the sequence can diverge
(see Bertsekas, 1999, Chapter 1). In contrast, the convergence of our regression
MS algorithm does not rely on requirements for step length.
b). It is natural to wonder if a MS-type algorithm can be developed based on the
gradient of the NW regression estimator, in a way similar to (2.7). The analysis
below shows such an algorithm is not effective in general. The NW regression
estimator using {(Xi, Ỹi), i = 1, · · · , n} is given by

r̂NW(x) =
∑n

i=1 Ỹik(‖x − Xi‖2/h2)∑n
i=1 k(‖x − Xi‖2/h2)

. (2.9)

Let wk
i (x) = k(‖x − Xi‖2/h2) and wg

i (x) = g(‖x − Xi‖2/h2). Let

w∗
i (x) = Ỹiw

g
i (x)

[ n∑
i=1

wk
i (x)

]
− wg

i (x)
[ n∑

i=1
Ỹiw

k
i (x)

]
.

It follows from a straightforward calculation that

∇r̂NW(x) = 2
h2

∑n
i=1 w∗

i (x)Xi −
∑n

i=1 w∗
i (x)x

[
∑n

i=1 wk
i (x)]2

. (2.10)
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If g ∝ k (which happens, for example, when K is the Gaussian kernel), then∑n
i=1 w∗

i (x) ≡ 0, which makes it hopeless to get a mean shift form as given in
(2.6). Now suppose a kernel can be chosen such that

∑n
i=1 w∗

i (x) �= 0. Then we
can write

∇r̂NW(x) = 2
h2 ŝ(x)m̂NW(x). (2.11)

where

ŝ(x) =
∑n

i=1 w∗
i (x)

[
∑n

i=1 wk
i (x)]2

and m̂NW(x) =
∑n

i=1 w∗
i (x)Xi∑n

i=1 w∗
i (x)

− x,

the latter corresponding to our regression mean shift. Corresponding to (2.8),
the mean shift algorithm using m̂NW and starting from z0 is given by

zj+1 = m̂NW(zj) + zj =
∑n

i=1 w∗
i (zj)Xi∑n

i=1 w∗
i (zj)

, j = 0, 1, 2, · · · . (2.12)

Note that in general the sign of w∗
i is not always positive, and hence it is

not clear if a similar result as given in Lemma 2.1 holds for r̂NW. In fact, a
simulation we ran shows the converge of the sequence generated by m̂NW using
the Epanechnikov kernel for g is problematic. See Section 4.2. It appears that
the mean shift idea and the quotient form of the NW regression estimator are
not compatible.

We need to additionally assume that the critical points of r̂∗ are isolated, in
order to have the convergence of our regression mean shift algorithm. The proof
of the following theorem is similar to that of Theorem 1 in Ghassabeh (2015)
for the MS algorithm.

Theorem 2.1. Suppose that the assumptions in Lemma 2.1 hold. If the critical
points of r̂∗ are isolated, then the sequence of zj converges to one of the critical
points of r̂∗ as j → ∞.

2.1. Basins of attraction for regression functions

The maxima seeking algorithm in (2.8) can be used to partition the input space
into basins of attraction. This can be understood using the framework of Morse
theory (see Milnor, 1963). A similar perspective has been used to interpret
modal clustering using the MS algorithm. See Chácon (2015). Suppose that X
is a compact set of positive volume contained in the support of the density of
X. Also suppose that r is a twice differentiable Morse function, meaning that
all of its critical points are non-degenerate, that is, the Hessian at each critical
point is nonsingular. Let M be the collection of all local maxima of r, denoted
by x1, · · · , xm, where m is the cardinality of M. For any x ∈ X , let φx : R → X
be the integral curve driven by the gradient of r, starting from x:

dφx(t)
dt

= ∇r(φx(t)), t ∈ R; φx(0) = x.
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Then by the Morse theory, for any x ∈ X , φx(∞) := limt→∞ φx(t) is one of
the critical points of r. In particular, for j = 1, · · · , m, the basins of attraction
associated with xj is

C(xj) := {x ∈ X : φx(∞) = xj},

which is also called a stable manifold, or ascending manifold in Morse theory.
The sets in C := {C(xj), j = 1, · · · , m} are disjoint, and their union covers X
except for a set of zero Lebesgue measure.

Let us first consider the deterministic transformation ξ in T1. Under regu-
larity conditions, one can show that r and r̃ have the same ascending manifolds
(see Lemma 3.1 below). The regression estimator r̂∗ is used to estimate r̃, and
the sequence (2.8) is viewed as discretized estimation of trajectories of the in-
tegral curves driven by ∇ log r̃. Let M̂ be the set of all local maxima of r̂∗,
consisting of x̂1, · · · , x̂

m̂
, where m̂ is its cardinality. For any x ∈ X , let φ̂x(∞)

be the limit of the sequence in (2.8) when z0 = x. Define

Ĉ(x̂j) := {x ∈ X : φ̂x(∞) = x̂j}.

Then Ĉ := {Ĉ(x̂j) : j = 1, · · · , m̂} also gives a partition of X (up to a small set
not covered), and can be used to estimate C.

For the transformation ξ given in T2, the idea is similar. Using this trans-
formation, the regression estimator r̂∗ is used to estimate

sr := r + π(Y[n]). (2.13)

Notice that sr and r has the same ascending manifolds, assuming that π(Y[n]) is
bounded. So again Ĉ gives an approximate partition of X and can be used to
estimate C.

For both transformations, the sample points X1, · · · , Xn in the input space
can be partitioned based on which basins of attraction they belong to, and this
idea is used in the simulation and case studies in Section 4.

3. Theoretical analysis of the maxima estimators

In this section we study the theoretical properties of r̂∗ and its maxima as
direct plug-in estimators of the maxima of r. We derive the uniform rate of
convergence of r̂∗, which further gives the rate of convergence of its local maxima
in Hausdorff distance. The derived rates of convergence for the local maxima
estimation match the minimax rate of mode estimation for density functions up
to a logarithm factor (see Remark 3.3).

We will use the following notation. For any d-tuple α = (α1, · · · , αd) ∈ N
d, let

|α| = α1 + · · · + αd. For an |α| times differentiable function g : Rd → R, denote
∂αg(x) = ∂|α|

∂α1 x1···∂αd xd
g(x), x ∈ Rd. For a composition of functions g1 ◦ g2,

we write ∂α
x g1(g2(x)) = ∂α(g1 ◦ g2)(x). Let ∇g and ∇2g be the gradient and

Hessian of g, respectively. For any real numbers a, b, let a ∧ b = min(a, b) and
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a ∨ b = max(a, b). For simplicity of notation, for any n ≥ 1, h > 0, j ∈ Z+, we
denote γ

(j)
n,h = (nhd+2j)−1/2.

Throughout the paper X denotes a compact subset of Rd with strictly positive
volume. For any δ > 0, let X δ = {x ∈ R

d : inft∈X ‖x − t‖ ≤ δ}. We will use the
following assumptions in our theoretical analysis.

Assumption A1: The marginal density f of X satisfies infx∈X f(x) ≥ ε0 for
a constant ε0 > 0.

Assumption A2: f has three times continuous bounded derivatives on X δ for
some δ > 0.

Assumption A3: r has three times continuous bounded derivatives on X δ for
some δ > 0.

Assumption K: The kernel K is a spherically symmetric density function
with its support contained in the unit ball of Rd. K has three times continuous
bounded derivatives on R

d.

3.1. Transformation 1

We first consider the transformation ξ in T1. We can write the regression model
as follows:

Yi = r(Xi) + εi, i = 1, · · · , n, (3.1)

where εi, i = 1, · · · , n, are i.i.d random errors with mean zero. Note that this is
the regression model before any transformation is applied. We make the follow-
ing assumptions.

Assumption E: For i = 1, · · · , n, each εi is independent of Xi.
Assumption T: ξ is a strictly increasing function on R with three times contin-

uous bounded derivatives. Assume that there exist constants 0 < C� < Cu < ∞
such that ξ(R) ⊂ [C�, Cu].

For a twice differential function g, the index of a critical point xcrit of g is the
number of negative eigenvalues of ∇2g at xcrit. We first show that the critical
points (including the local maxima) of r̃(x) and r(x) are the same under the
above conditions.

Lemma 3.1. Assume that r is twice differentiable. For ξ in T1, under the
assumptions E and T, the critical points of r̃ and r are the same with the same
indices. If r is a Morse function, then (1) r̃ is also a Morse function, and (2)
the ascending manifolds of r and r̃ are the same.

Remark 3.1. The above lemma implies that the local maxima of r can be esti-
mated by the local maxima of r̂∗ as a plug-in approach, because r̂∗ is considered
as an estimator of r̃ as shown in Theorems 3.1 below.

In the following theorem we give the uniform rate of convergence for the
difference between ∂αr̃ and ∂αr̂∗ for all |α| ≤ 2.
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Theorem 3.1. For ξ in T1, under assumptions A1-A3, K, E, and T, there
exist constants C > 0, c > 0 and h0 > 0 such that for all |α| ≤ 2, n ≥ 1,
0 < h ≤ h0, τ > 1 satisfying nhd ≥ c(τ ∨ | log h|) we have

P
n
(

sup
x∈X

|∂αr̂∗(x) − ∂αr̃(x)| ≤ C
√

τ ∨ | log h|γ(|α|)
n,h + Ch(3−|α|)∧2

)
≥ 1 − 3e−τ .

(3.2)

Let λ1(x) be the largest eigenvalue of ∇2r(x), x ∈ X . We can write the set of
local maxima of r as M = {x ∈ X : ∇r(x) = 0, λ1(x) < 0}, which is assumed
to be nonempty. Let M̂ be the set of local maxima of r̂∗. For any two subset
A, B ⊂ R

d, their Hausdorff distance is defined as

dH(A, B) = max
{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

.

To study dH(M, M̂), we will use the following perturbation result for the set
of local maxima.

Lemma 3.2. Let R be a compact subset of Rd with positive volume, ∂R be its
boundary, and U ⊃ R be an open subset of R

d. Suppose that p : U → R be a
three times continuously differentiable Morse function. Let λ1(x) be the largest
eigenvalue of ∇2p(x), x ∈ R, and

M = {x ∈ R : ∇p(x) = 0, λ1(x) < 0)} and C = {x ∈ R : ∇p(x) = 0},

be the sets of local maxima and all critical points, respectively, of p on R. Assume
that η := infx∈C d(x, ∂R) > 0. Let p̃ : U → R be a twice differentiable function,
and M̃ be the set of local maxima of p̃ on R. There exists a constant c0 > 0
such that if

sup
x∈R

max
|α|≤2

|∂αp(x) − ∂αp̃(x)| < c0,

then p̃ has the same number of local maxima as p on R, and

dH(M, M̃) ≤ 4
λ∗

max
x∈M

‖∇p̃(x) − ∇p(x)‖,

where λ∗ := − infx∈M λ1(x) > 0.

Remark 3.2. The Hausdorff distance between the sets of maxima of the true
and estimated functions is also studied in Chen et al. (2016, Theorem 1). As
a comparison, our result is given under weaker conditions. In particular, we do
not require their assumption (M2), which assumes that there exist η1 > 0 and
C3 > 0 such that {x : ‖∇p(x)‖ ≤ η1, 0 > −λ∗/2 ≥ λ1(x)} ⊂ Mλ∗/(2dC3).

The following theorem gives an upper bound for dH(M, M̂), as a direct
consequence of Lemma 3.1, Theorem 3.1, and Lemma 3.2.
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Theorem 3.2. For ξ in T1, under assumptions A1-A3, K, E, and T, if
r is a Morse function and there are no critical points on the boundary of X ,
then there exist constants C > 0, c > 0, and h0 > 0 such that for all n ≥ 1,
0 < h ≤ h0, τ > 1 satisfying nhd+4 ≥ c(τ ∨ | log h|) we have with probability at
least 1 − 2(d + 2)2e−τ that, M and M̂ have the same cardinality, and

dH(M, M̂) ≤ C(
√

τ ∨ | log h|γ(1)
n,h + h2).

Remark 3.3. a). When h = O(n− 1
d+6 ), it is straightforward to show that

dH(M, M̂) = O(n− 2
d+6

√
log n) almost surely, by applying the Borel-Cantelli

Lemma to the above result with τ = 2 log n. This matches the minimax rate
of convergence up to

√
log n of mode estimation for density functions, as given

in Tsybakov (1990, Theorem 3) with the smoothness parameter β = 3 therein.
The minimax rate of maxima estimation for regression functions under a similar
smoothness assumption is unknown to our best knowledge, and it is expected
to be the same as that for density functions. As a side note, in the case of a
unique mode, the maxima estimator using the k-NN regression, which is studied
in Jiang (2019), matches the minimax rate in Tsybakov (1990) with β = 2, when
k is appropriately chosen.
b). It can be seen from the proof that the constants in this theorem in fact do
not depend on the magnitude (e.g. variance) of noise εi. This is unlike the case
for the estimation of regression function itself, because we utilize a bounded
transformation ξ and the property in Lemma 3.1.

3.2. Transformation 2

Next we consider the transformation ξ in T2. We will replace assumption E by
the following assumption in our analysis.

Assumption E′: There exists a constant B ∈ (0, ∞) such that |Y | ≤ B almost
surely.

Under assumption E′, we have 0 ≤ π(Y[n]) ≤ B + c0 almost surely. We can
write r̂∗(x) = r̂(x) + π(Y[n])t̂(x), where

t̂(x) = 1
nhd

n∑
i=1

Kh(x − Xi)
f̂(Xi)

, (3.3)

which is an estimator of unity. Here r̂∗ is considered as an estimator of sr, which
is given in (2.13). We still denote the set of local maxima of r̂∗ by M̂, which
can be used to estimate M, because the set of maxima of sr is the same as that
of r. The following result is similar to Theorem 3.2.

Theorem 3.3. For ξ in T2, under assumptions A1-A3, K, and E′, if r is
a Morse function and there are no critical points on the boundary of X , then
there exist constants C > 0, c > 0, and h0 > 0 such that for all n ≥ 1,
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0 < h ≤ h0, τ > 1 satisfying nhd ≥ c(τ ∨ | log h|) we have with probability at
least 1 − 3(d + 2)2e−τ that, M and M̂ have the same cardinality, and

dH(M, M̂) ≤ C(
√

τ ∨ | log h|γ(1)
n,h + h2).

4. Simulations and applications

4.1. Bandwidth selection

The selection of bandwidth is critical for the finite-sample performance of ker-
nel type estimators. In particular, the bandwidth h determines the number of
maxima and clusters using the regression mean shift. Since our regression mean
shift can be understood as an algorithm tracking the discretized gradient inte-
gral curves of the estimated regression function, a bandwidth producing good
estimators of the gradient of the regression function is expected to be suitable
for our regression MS algorithm. This can also be seen from Lemma 3.2. Based
on this observation, below we propose a bandwidth selection strategy for our re-
gression MS algorithm using a cross validation idea, although it is not meant to
achieve any optimality. There may be other suitable bandwidth selection strate-
gies that we have not explored, such as those based on the regression function
itself or the Hausdorff distance between the estimated and true local maxima
(see Zhou and Huang, 2019).

Let ∇r̂†(x) be a nonparametric kernel estimator of the gradient ∇r̃(x), for
example, the gradient of the NW regression estimator r̂NW(x), or the gradient
component using the local linear (LL) regression estimator. For j = 1, · · · , n,
let ∇r̂∗,(−j)(x) be the gradient estimator as given in (2.7), but using the sample
points excluding (Xj , Ỹj). The leave-one-out cross-validation error is defined as

CV(h) = 1
n

n∑
j=1

‖∇r̂†(Xj) − ∇r̂∗,(−j)(Xj)‖2, (4.1)

which has computational complexity of O(n2). The least square cross validation
bandwidth hLSCV which minimizes CV(h) is proposed to be used for our regres-
sion mean shift algorithm. Note that ∇r̂† itself requires a bandwidth choice. For
LL estimator, one can use the gradient-based method as given in Henderson et
al. (2015). For NW gradient estimator, one can scale the optimal bandwidth
for NW regression estimator by multiplying a factor n1/[(d+4)(d+6)]. See Hen-
derson and Parmeter (2015, Chapter 5.5). We adopt the second method in our
simulation study.

4.2. Simulation studies

We ran simulations to show the effectiveness of our regression mean shift al-
gorithm (2.8) in partitioning the sample points in the input space and iden-
tifying the local maxima of a regression function. We considered the model
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Fig 4.1. Boxplots of the numbers of maxima/clusters across different bandwidths for trans-
formations T1 (left), and T2 (right) when n = 200 for 200 samples, with the overlapping
red curves representing the relative frequency of detecting two maxima. The number of true
maxima is 2, as represented by the horizontal dotted lines.

Yi = r(Xi) + εi as in (3.1), where r is a bivariate function with two local max-
ima. Specifically, r(x) = f1(x)+f2(x), where f1 and f2 are the density functions
of N(μ1, Σ1) and N(μ2, Σ2), respectively, with μ1 = (1, 1)T , Σ1 = diag(0.5, 0.5),
μ2 = (−1, −1)T , Σ2 = diag(0.3, 0.9); for i = 1, · · · , n, εi

i.i.d.∼ N(0, 0.01), and Xi

is i.i.d. truncated bivariate normal such that X1∼N(μ3, Σ3), with μ3 = (0, 0)T

and Σ3 = diag(1.5, 1.5) conditional on X1 ∈ [−2, 2]2. In each run n = 200 data
points were generated from the above model as the input of our algorithm and
we repeated the procedure for 200 times. We used the Epanechnikov kernel for
g, and ξ(x) = 1/(1 + exp(−10x)) + 0.01 for transformation T1 and c0 = 0.1
for transformation T2. Figure 4.1 shows the boxplots of the number of maxima
detected by the algorithm using grid points of bandwidth values, overlapped
with the relative frequency of correct bimodal identification (red curves). Using
the bandwidth selection strategy in Section 4.1, among the 200 replications the
relative frequencies that algorithm can correctly find two maxima are 78% for
T1 and 81% for T2, respectively, which are comparable to the peak values in
Figure 4.1. When we increased the sample size n to 500, the relative frequencies
of correct number of maxima reach 91% and 93.5%, respectively. These numbers
are as high as 94.5% and 97.5% when n = 1000.

To further evaluate the quality of clustering, we use the adjusted Rand index
(ARI) (Hubert and Arabie, 1985) to measure the similarity between the clusters
returned by the regression mean shift and its underlying model. The ARI has a
range [−1, 1], and a larger value represents a better quality of clustering, with
ARI=1 corresponding to a perfect matching. In Table 1 we report the averages
and standard deviations (among 200 replications) of the ARI values for the two
transformations applied to the same regression model as above. There is a clear
trend that ARI approaches to 1 as the sample size n increases. We note that
the result in Table 1 also shows the sensitivity to the distance of the two local
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maxima in the model, in the sense that the effect of decreasing the sample size is
comparable to that of moving data points (and hence the local maxima) closer.

Table 1

The table includes the averages and standard deviations (in parentheses) of the ARI values
using regression mean shift for various sample sizes n and the transformations T1 and T2.

n =100 n =200 n =500 n =1000 n =2000 n = 5000 n =10000
T1 0.40 (0.27) 0.53 (0.24) 0.69 (0.16) 0.78 (0.10) 0.83 (0.07) 0.88 (0.03) 0.89 (0.02)

T2 0.46 (0.27) 0.59 (0.21) 0.70 (0.14) 0.78 (0.10) 0.83 (0.07) 0.87 (0.04) 0.88 (0.02)

In Figure 4.2 we visualize the outcome of the algorithm using a representative
random sample of size 200 based on T1, which shows the paths of the estima-
tion sequence in our regression MS algorithm, as well as the impact of different
bandwidths on the maxima estimation results. Not surprisingly, when the band-
width is small, there tend to be more local maxima (or basins), which can also
be seen from the boxplots in Figure 4.1. The bandwidth selection strategy given
in Section 4.1 works well with this sample.

With the same sample, we also tested the mean shift algorithm (2.12), which
is based on the NW regression estimator. Using the Epanechnikov kernel, the
sequence generated by (2.12) in not convergent and appears to be “chaotic”. In
fact, starting from each sample point, the algorithm has to stop after at most
20 iterations, because the sequence jumps to a location where there is no data
point within the distance of the bandwidth, so that all the weights become zero
in the next iteration. This issue arises because the weights w∗

i are not necessarily
positive, and zj+1 may not be in a neighborhood of zj , as argued in Remark 2.1.

4.3. Examples of applications

4.3.1. Partitions of protein energy landscapes

The proposed algorithm can be useful to obtain deep insight about the structure-
function relationship in biological molecules (biomolecules). In the application
highlighted here, we focus on protein molecules, which are ubiquitous in the
cell, and where the three-dimensional structures accessed at equilibrium (under
physiological conditions) often regulate a rich set of activities. Figure 4.3 relates
the results obtained when the proposed algorithm is employed to organize the
three-dimensional structures of the human H-Ras protein by their potential
energies.

The structures (data sets) of the human H-Ras protein are obtained via the
biophysical methodology described in Maximova et al. (2016) and Maximove
et al. (2018). This work obtains structures for different versions of human H-
Ras, the naturally-occurring, also referred to as the wildtype (WT) version, and
mutated versions, known as variants. In the WT version, the protein accesses
groups of structures that regulate its activity between an “on” and “off” state;
in the on state, H-Ras instigates cellular reactions that signal the cell to grow;
in the off state, such signals stop. In mutated variants, which are found in many
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Fig 4.2. Panel (a): The regression function is represented by the color in the background.
Black dots are the sample points. Red curves are lines connecting sequential points generated
from the algorithm in (2.8) starting from the sample points. The two × symbols are the
points of convergence. Using the method in Section 4.1, the selected bandwidth is 1.6. Panels
(b)–(d) shows the effect of the bandwidth choice. The sample points are partitioned (shown
by different colors) according to their points of convergence (represented by ×). There are 4
basins when h = 1, 2 basins when h = 1.6, and 1 basin when h = 2.5.

disorders, the regulation is disrupted in some manner, but only a view of the
space of structures accessible can reveal exactly what, at the structure level, is
responsible for dysfunction. The proposed algorithm promises to reveal exactly
such organization of structures, as we show here.

From the structures/datasets produced by work in Maximova et al. (2016)
and Maximove et al. (2018) for the WT and a common oncogenic variant, Q61L
(the naming indicates the position where the naturally-occurring amino acid,
“Q”, has been replaced with a different amino acid, “L” in this case), we ran-
domly selected 2000 structures for each, WT and Q61L∗. Each structure (data
point) comes with an associated energy value, which sums the physical inter-
actions among the atoms in a particular structure. These energy values (in the
original data sets) are all negative, and we used their absolute values in the
analysis, so that our regression mean shift algorithm can cluster data points
based on the local minima that they converge to.

∗The data sets are downloadable at https://dx.doi.org/10.21227/331n-7019

https://dx.doi.org/10.21227/331n-7019
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Fig 4.3. Each panel shows 2000 structures (as symbols ✳, �, and ◦) of the human H-Ras
protein, and each type of these symbols represents a cluster (basin) obtained with the proposed
algorithm, for which bandwidths are selected using the gradient-based LSCV method proposed
in Section 4.1. The symbols × are the local minima. To aid visualization, structures are
embedded onto the top two principal components obtained via Principal Component Analysis.
Symbols are color-coded by their potential energies in a red-to-blue color scheme showing high-
to-low energies. The left panel organizes structures accessed under physiological conditions by
WT H-Ras; the right panel does so for the mutated, oncogenic Q61L H-Ras.

Each panel in Figure 4.3 organizes the samples by their energies. Each dot cor-
responds to a three-dimensional structure. The red-to-blue color-coding scheme
indicates high-to-low energies. The left panel shows the WT form/variant of the
human H-Ras protein; the right panel shows the oncogenic variant known as
Q61L.

The proposed algorithm is used to group the structures accessed by each H-
Ras variant into local minima (to which we refer as energy basins). Basins with
many low-energy structures (blue dots in Figure 4.3) correspond to stable and
semi-stable structural states. The left panel in Figure 4.3 shows two such basins,
one on the top left and one on the bottom right. More low-energy structures are
contained in the basin shown in the top left, which indicates this is a wider and so
more stable basin. Blue dots are found in between the basins, which indicate that
the protein can transition between the two basins via low-energy structures; that
is, an energetically feasible pathways exists to regulate the transition between
the basins. Knowledge of the transition between on and off states for WT H-Ras
allows us to speculate that the basins correspond to such states, as revealed by
the proposed algorithm.

A comparison with the right panel in Figure 4.3, which shows the organiza-
tion for Q61L H-Ras, shows two major differences with WT H-Ras. First, both
basins become narrower; that is, they contain fewer low-energy structures. This
suggests that the mutation impacts the structural plasticity of H-Ras. Second,
few to no low-energy structures can be found between the basins, which sug-
gests that the energetic pathway between the basins becomes more energetically
costly. This in turn suggests that the Q61L mutation directly impacts the tran-
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sition between the on and off states and so rigifies H-Ras. Such information
is precious, as it allows formulating a detailed structure-based hypothesis that
links sequence mutations to dysfunction via changes to structure and structure
dynamics.

In addition to the two main basins, a third one is evident in the left panel of
Figure 4.3 for the WT H-Ras. This contains fewer structures and is shallower.
The right panel of Figure 4.3 indicates that the basin becomes even shallower in
Q61L H-Ras. These results are in great agreement with early work in Clausen
et al. (2015), where a Conf1 basin was suggested to exist in WT H-RAS and
correspond to an unanticipated structural state. Specifically, by analyzing crys-
tallographic structures whose projections over PC1 and PC2 fell on this basin,
work in Clausen et al. (2015) suggested that this smaller and shallower basin
corresponded to a structural state that was an intermediate between the known
on and off states between the GTP- and GDP-bound states of WT H-Ras. In
strong agreement with the results presented here, work in Clausen et al. (2015)
additionally reported that this basin all but disappeared in Q61L.

More broadly, the shown application suggests that by organizing an energy
landscape into the major local minima, the proposed algorithm allows under-
standing in great detail the impact of a mutation on the structural basin-to-basin
dynamics that characterizes flexible biomolecules, such as proteins, and even
obtaining an explanation for dysfunction in terms of changes to the underlying
energy landscape and the dynamics on it.

4.3.2. Spatial clustering of malaria episodes

We applied our regression mean shift algorithm to a malaria episodes dataset
available in the R package SPODT (Gaudart et al., 2015) and obtained a spatial
clustering result, as shown in Figure 4.4. The dataset contains 168 observations,
each corresponding to the longitudinal and latitudinal coordinates of a house-
hold, and the mean value of the number of malaria episodes per child in the
household in Bandiagara, Mali, from November to December 2009. Our algo-
rithm returns three clusters using the automatically selected bandwidth. The
estimated maxima represent high-risk locations and different clusters are sepa-
rated by low-risk valleys. In this example there exist wide regions where there
are no data points, but they do not cause any issues to our algorithm, and the
generated sequence still converges.

As a comparison, we also show the partitioning result of the CART algorithm
(Breiman et al., 1993) in Figure 4.4. The same dataset has also been analyzed
using a variant of CART algorithm called spatial oblique decision tree (SpODT).
See Gaudart et al. (2005). The shape of clusters found using our regression MS
algorithm appear different from that obtained from CART and its variant, which
reflects the fundamental difference in the ideas of partitioning: the mathematical
models behind the clusters in our regression MS are the ascending manifolds of
the regression functions (see Section 2.1), while CART and its variants can be
viewed as piecewise constant approximation of the regression function through
their leaf nodes.
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Fig 4.4. The graphs shows the spatial partitioning results for the malaria episodes dataset
available in the R package SPODT, using our regression mean shift algorithm (left panel), and
CART (right panel). The mean value of the malaria episodes at each location is represented
by the size of the dots. The bandwidth in regression MS algorithm is selected using the method
as given in Section 4.1, and the three clusters are represented by different colors (black, red,
and green).

5. Discussions

In this paper we develop a regression mean shift algorithm to partition the input
space and estimate the local maxima of regression functions. The algorithm is
shown to be convergent and we give the rates of convergence for the local maxima
estimators. Our algorithm is shown to be effective in simulations and real data
applications. We note that our mean shift algorithm can also be used to estimate
the local minima of regression functions, by simply replacing Yi with −Yi for all
i = 1, · · · , n, and applying one of the two transformations T1 and T2 to −Yi’s,
as has been done in Section 4.3.1.

Between the two transformations, T2 is linear, which is relatively easy to
determine but requires the boundedness of the response (assumption E′) in our
theoretical analysis; T1 includes a family of nonlinear transformations, which
can potentially sharpen the local maxima of regression functions, and improve
the performance of our algorithm, if ξ is carefully selected. In practice, one can
first obtain the regression function estimator r̂(x) and then choose ξ by assessing
how transformations in T1 or T2 affect the landscape of r̂, in particular, the
sharpness of its local maxima.

The idea of using regression MS to find local maxima can be extended to
extract ridges of regression functions. Ridges are low-dimensional geometric
features where the function values are local maximum in a subspace, which
generalizes the concepts of local maxima and can be used to model filamentary
structures. An algorithm called Subspace Constrained Mean Shift (SCMS) was
developed in Ozertem and Erdogmus (2011) to extract ridges of KDEs. Some
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theoretical analysis of this algorithm can be found in Genovese et al. (2014) and
Qiao and Polonik (2016). We leave the extension of our regression mean shift
algorithm to its subspace constrained version as a future work.

6. Proofs

This section contains the proofs of theoretical results in Sections 2 and 3. Note
that the proof of Theorem 2.1 is very similar to that of Theorem 1 in Ghassabeh
(2015) and is hence omitted. In the proofs we use C to denote a constant that
may change its value depending on where it appears.

6.1. Proof of Lemma 2.1

Proof. Using the expression in (2.3), we have

r̂∗(zj+1) − r̂∗(zj) = ck,d

nhd+2

n∑
i=1

Ỹi

f̂(Xi)

[
k
(

‖zj+1 − Xi

h
‖2

)
− k

(
‖zj − Xi

h
‖2

)]
.

The convexity assumption of k implies that k(x2) − k(x1) ≥ g(x1)(x1 − x2) for
all x1, x2 ∈ [0, ∞) and x1 �= x2. Then using (2.5) we have

r̂∗(zj+1) − r̂∗(zj)

≥ ck,d

nhd+2

n∑
i=1

Ỹiwi(zj)[2(zj+1 − zj)T Xi + ‖zj‖2 − ‖zj+1‖2]

= ck,d

nhd+2

[
2(zj+1 − zj)T

n∑
i=1

Ỹiwi(zj)Xi + (‖zj‖2 − ‖zj+1‖2)
n∑

i=1
Ỹiwi(zj)

]

= ck,d

nhd+2 ‖zj+1 − zj‖2
n∑

i=1
Ỹiwi(zj)

≥ ck,d

nhd+2 ‖zj+1 − zj‖2 inf
z∈C

n∑
i=1

Ỹiwi(z),

where C is the convex hull of {X1, · · · , Xn}. Notice that infz∈C
∑n

i=1 Ỹiwi(z) >
0, which implies that r̂∗(zj+1)− r̂∗(zj) > 0 as long as zj+1 �= zj . Since r̂ is upper
bounded, the sequence r̂(zj) converges, and it follows that ‖zj+1 − zj‖ → 0 as
j → ∞. Since m̂∗(zj) = zj+1 − zj , using (2.7) we then get ∇r̂∗(zj) → 0.

6.2. Proof of Lemma 3.1

Proof. Let ξ′ and ξ′′ be the first two derivatives of ξ, respectively, and define

ρ1(x) = Eξ′(r(x) + ε1), and ρ2(x) = Eξ′′(r(x) + ε1). (6.1)
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We have that ρ1(x) > 0, and both ρ1(x) and ρ2(x) are bounded. Note that for
α ∈ N

d with |α| = 1,

∂αr̃(x) = ρ1(x)∂αr(x), (6.2)

and for α ∈ N
d with |α| = 2 such that α = α1 + α2, where |α1| = |α2| = 1,

∂αr̃(x) = ρ1(x)∂αr(x) + ρ2(x)∂α1r(x)∂α2r(x). (6.3)

In the matrix form, we get

∇r̃(x) = ρ1(x)∇r(x),
∇2r̃(x) = ρ1(x)∇2r(x) + ρ2(x)∇r(x)[∇r(x)]T .

Hence ∇2r̃(x) = ρ1(x)∇2r(x) for all x such that ∇r̃(x) = 0. Since ρ1(x) > 0,
the critical points of r̃(x) and r(x) are the same with the same indices.

When r is a Morse function, the above analysis implies that r̃ is also a Morse
function. To show that the ascending manifolds of r and r̃ are the same, we will
prove that the trajectories of integral curves driven by ∇r and ∇r̃ are the same
when the starting points are the same. To this end, we show that there exists a
reparameterization function η : R≥0 → R≥0 such that φ̃x(t) = φx(η(t)), t ≥ 0,
where φx and φ̃x are integral curves driven by ∇r and ∇r̃ = ρ1∇r, respectively,
defined as the solutions of

φ′
x(t) = ∇r(φx(t)), t ≥ 0; φx(0) = x;

φ̃′
x(t) = ∇r̃(φ̃x(t)), t ≥ 0; φ̃x(0) = x.

Here η is the solution of the ODE η′(t) = ρ1(φx(η(t))); η(0) = 0. Then we have
φ̃x(0) = φx(η(0)) = x and for t ≥ 0,

(φx ◦ η)′(t) = φ′
x(η(t)) η′(t) = ∇r(φx ◦ η(t)) ρ1(φx ◦ η(t)) = ∇r̃(φx ◦ η(t)).

Hence φ̃x(t) = φx(η(t)), t ≥ 0. So the conclusion of this lemma follows.

6.3. Proof of Theorem 3.1

We use empirical process theory in the proofs. Let P be the probability mea-
sure of (X, Y ), and Pn be the empirical probability measure with respect to
{(Xi, Yi) : i = 1, · · · , n} such that we write P(g) = Eg(X, Y ), and Pn(g) =
n−1 ∑n

i=1 g(Xi, Yi), for any measurable function g : Rd × R → R. Let

Gn(g) = 1√
n

n∑
i=1

[Pn(g) − P(g)]. (6.4)

Let G be a set of measurable functions from R
d+1 to R. G is called a uniformly

bounded VC-class if there exists a constant B > 0 such that supx∈Rd+1 |g(x)| ≤
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B for all g ∈ G, and there exist positive numbers A and ν (called the character-
istics) such that for every 0 < ε ≤ B,

sup
Q

N (G, L2(Q), ε) ≤
(AB

ε

)ν

,

where the covering number N (G, L2(Q), ε) denotes the smallest number of L2(Q)-
balls of radius at most ε needed to cover G and the supremum is taken over all
probability measures Q on R

d+1.
The following proposition generalizes Sriperumbudur and Steinwart (2012,

Proposition A.5), based on Talagrand’s inequality. Also see Giné and Guillou
(2002) and Einmahl and Mason (2000). Its proof is given Section 6.6.

Proposition 6.1. Let M is a real-valued function on R
d with bounded support

S such that M ∈ L∞(Rd) ∩ L2(Rd). Suppose that the marginal density f of X
is uniformly bounded on X ηh0 for some constant h0 > 0, where η = supx∈S ‖x‖.
Suppose that

F := {Rd × R � (u, v) �→ M(x − u) : x ∈ R
d} (6.5)

is a uniformly bounded VC-class with characteristics (V, ν). For h > 0, let ζh :
X × R → R a function indexed by h such that

sup
0<h≤h0

sup
x,y∈X ×R

|ζh(x, y)| ≤ L

for some constant L ∈ (0, ∞). Denote Gh = {gx,h(·) : x ∈ X } where for (u, v) ∈
X × R and h > 0,

gx,h(u, v) = 1
hd

ζh(u, v)M
(x − u

h

)
.

Then, there exists a positive constant C only depending on L, M , f , A and ν
such that, for all n ≥ 1, 0 < h < h0, and τ > 0 we have

P
n
( 1√

n
sup

g∈Gh

|Gn(g)| ≤ C

nhd
log C

h
+

√
C

nhd
log C

h
+ τC

nhd
+ C

√
τ√

nhd

)
≥ 1 − e−τ .

The proof of Theorem 3.1 needs an intermediate estimator, as define below.
Denote fh = Ef̂ . Let

r̂0(x) = 1
nhd

n∑
i=1

ỸiKh(x − Xi)
fh(Xi)

, x ∈ X .

Note that

∂αr̂0(x) = 1
nhd+|α|

n∑
i=1

Ỹi∂
αK((x − Xi)/h)

fh(Xi)
. (6.6)
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Then for x ∈ X we can write ∂αr̂∗(x)−∂αr̃(x) = In(x)+IIn(x)+IIIn(x), where

In(x) = ∂αr̂∗(x) − ∂αr̂0(x),
IIn(x) = ∂αr̂0(x) − E∂αr̂0(x),
IIIn(x) = E∂αr̂0(x) − ∂αr̃(x).

The conclusion in Theorem 3.1 is a direct consequence of Propositions 6.2, 6.3,
6.4 given in the sequel, which are used to analyze supx∈X |In(x)|, supx∈X |IIn(x)|,
and supx∈X |IIIn(x)|, respectively. In particular, supx∈X |In(x)|, supx∈X |IIn(x)|
are stochastic terms that are analyzed using Proposition 6.1. We first consider
supx∈X |In(x)|.
Proposition 6.2. Under the same assumptions as in Theorem 3.1, there exist
constants C > 0, c > 0, and h0 > 0 such that for all |α| ≤ 2, n ≥ 1, 0 < h ≤ h0,
τ > 1 satisfying nhd ≥ c(τ ∨ | log h|) we have

P
n
(

sup
x∈X

|∂αr̂∗(x) − ∂αr̂0(x)| < C
√

τ ∨ | log h|γ(|α|)
n,h

)
≥ 1 − 2e−τ . (6.7)

Proof. Assume h ≤ δ. Using Taylor expansion and the assumption that K is
spherically symmetric with its support contained in the unit ball, we have

sup
x∈X

|fh(x) − f(x)|

= sup
x∈X

∣∣∣ ∫
K(u)f(x − hu)du − f(x)

∣∣∣
≤h2d

∫
K(u)‖u‖2du sup

x∈X δ

max
|α|=2

|∂αf(x)|. (6.8)

Hence there exists h0 ∈ (0, δ] such that for all 0 < h ≤ h0,

sup
x∈X

|fh(x) − f(x)| ≤ 1
3ε0,

where 0 < ε0 ≤ infx∈X f(x) is given in assumption A1. This implies that
infx∈X fh(x) ≥ 2

3 ε0. Below we always assume that 0 < h ≤ h0. Notice that

|∂αr̂∗(x) − ∂αr̂0(x)| ≤ sup
x∈X

|sn(x)| sup
x∈X

r̂α
+(x), (6.9)

where sn(x) = [f̂(x)]−1 − [fh(x)]−1 and

r̂α
+(x) = 1

nhd+|α|

n∑
i=1

|Ỹi∂
αKh(x − Xi)|. (6.10)

Notice that

sn(Xi) = fh(Xi) − f̂(Xi)
fh(Xi)2 + (fh(Xi) − f̂(Xi))2

fh(Xi)2f̂(Xi)
. (6.11)
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For |α| ≤ 2, consider the class of functions Kα = {∂αK(x − ·) : x ∈ R
d}. Then

Kα is uniformly bounded under assumption K. Note that K(x−·) = k(‖x−·‖2),
where k and its first two derivatives have bounded variation. It is known from
Nolan and Pollard (1987) that in general F in (6.5) is a VC-class if M(x) =
φ(p(x)), where p is a polynomial and φ is a bounded real function of bounded
variation. When |α| = 0, it is clear that Kα is a VC-class. When |α| = 1, we have
∂αK(x − ·) = k′(‖x − ·‖2)[2αT (x − ·)]. Noice that both {2αT (x − ·) : x ∈ R

d}
and {k′(‖x − ·‖2) : x ∈ R

d} are VC-classes. We then apply Chernozhukov et al.
(2013, Lemma A.6) to conclude that Kα is also a VC-class. A similar argument
also applies to |α| = 2.

For u ∈ R
d, let gx,h(u) = 1

hd K((u − x)/h) and Gh = {gx,h(·) : x ∈ X }. Then
notice that

sup
x∈X

|f̂(x) − Ef̂(x)| = 1√
n

sup
g∈Gh

|Gn(g)|.

Applying Proposition 6.1 we get that there exists a constant C0 > 0 such that
for all n ≥ 1, h ∈ (0, 1), and τ > 1 satisfying nhd ≥ τ and nhd ≥ | log h|, with
probability at least 1 − e−τ ,

sup
x∈X

|f̂(x) − fh(x)| < C0
√

τ ∨ | log h|γ(0)
n,h. (6.12)

Suppose that C0
√

τ ∨ | log h|γ(0)
n,h < 1

3 ε0. On the event in (6.12), we have

sup
x∈X

|f̂(x) − fh(x)| <
1
3ε0 and inf

x∈X
f̂(x) ≥ 1

3ε0.

Therefore supx∈X |sn(x)| ≤ 5ε−2
0 supx∈X |f̂(x) − fh(x)| and with probability at

least 1 − e−τ ,

sup
x∈X

|sn(x)| < 5ε−2
0 C0

√
τ ∨ | log h|γ(0)

n,h. (6.13)

Here for all x ∈ X ,

0 ≤Er̂α
+(x)

= 1
hd+|α|E

∫
Rd

∣∣∣ξ(r(x) + ε1)∂αK
(x − u

h

)∣∣∣f(u)du

= 1
h|α|E

∫
Rd

|ξ(r(x) + ε1)∂αK(w)|f(x − hw)dw

≤ 1
h|α| Cu‖∂αK‖1 sup

x∈X δ

f(x) =: C1
1

h|α| , (6.14)

where ‖ · ‖1 is the L1 norm.
For (u, v) ∈ X ×R, let gα

x,h(u, v) = 1
hd |ξ(v)∂αK((u−x)/h)|. Then notice that

we can write r̂α
+(x) − Er̂α

+(x) = 1√
nh|α| Gn(gα

x,h) and so that

sup
x∈X

|r̂α
+(x) − Er̂α

+(x)| = 1√
nh|α| sup

g∈Gh,α

|Gn(g)|,
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where Gh,α = {gα
x,h(·) : x ∈ X }. Applying Proposition 6.1 we get that for n ≥ 1,

h ∈ (0, 1), and τ > 1 satisfying nhd ≥ τ and nhd ≥ | log h|,

P
n
(

sup
x∈X

|r̂α
+(x) − Er̂α

+(x)| < C2
√

τ ∨ | log h|γ(|α|)
n,h

)
≥ 1 − e−τ , (6.15)

for some constant C2 > 0. So it follows from (6.14) and (6.15) that for C3 =
C1 ∨ C2,

P
n
(

sup
x∈X

r̂α
+(x) < C3(h−|α| +

√
τ ∨ | log h|γ(|α|)

n,h )
)

≥ 1 − e−τ . (6.16)

Combing (6.9), (6.13) and (6.16), we then get the conclusion of this proposition.

Next we consider supx∈X |IIn(x)|.

Proposition 6.3. Under the same assumptions as in Theorem 3.1, there exist
constants C > 0, c > 0, and h0 > 0 such that for all |α| ≤ 2, n ≥ 1, 0 < h ≤ h0,
τ > 1 satisfying nhd ≥ c(τ ∨ | log h|) we have

P
n
(

sup
x∈X

|∂αr̂0(x) − E∂αr̂0(x)| < C
√

τ ∨ | log h|γ(|α|)
n,h

)
≥ 1 − e−τ . (6.17)

Proof. For (u, v) ∈ X × R, let ζh(u, v) = ξ(v)/fh(u) and

pα
x,h(u, v) = 1

hd
ζh(u, v)∂αK((x − u)/h).

Then notice that we can write ∂αr̂0(x) − E∂αr̂0(x) = 1√
nh|α| Gn(pα

x,h) and so
that

sup
x∈X

|∂αr̂0(x) − E∂αr̂0(x)| = 1√
nh|α| sup

p∈Ph,α

|Gn(p)|.

where Ph,α = {pα
x,h(·) : x ∈ X }. Note that using the same h0 in the proof of

Proposition 6.9, we have supu∈X supv∈R
|ζh(u, v)| ≤ 2ε−1

0 Cu. Applying Proposi-
tion 6.1 we then get (6.17).

Next we consider supx∈X |IIIn(x)|.

Proposition 6.4. Under the same assumptions as in Theorem 3.1, there exist
constants C > 0 and h0 > 0 such that for all 0 < h ≤ h0, and |α| ≤ 2 we have

sup
x∈X

|E∂αr̂0(x) − ∂αr̃(x)| ≤ Ch(3−|α|)∧2. (6.18)

Proof. Let

cf = sup
x∈X δ

sup
|β|≤3

|∂βf(x)|,
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cK =
[

max
{ ∫

Rd

K(u)‖u‖jdu : j = 1, 2
}]

∨ 1,

cξ =
[

sup
x∈R

max(ξ(x), ξ′(x), ξ′′(x), ξ′′′(x))
]

∨ 1,

cr =
[

sup
x∈X δ

sup
|β|≤3

|∂βr(x)|
]

∨ 1.

Below we take 0 < h ≤ 1
2 δ so that (X h)h ⊂ X δ. For |α| = 0, 1, using a Taylor

expansion of order 2 and assumption K, we have

sup
x∈X h

|∂αfh(x) − ∂αf(x)|

= sup
x∈X h

|
∫
Rd

K(u)∂αf(x − hu)du − ∂αf(x)|

≤h2
∫
Rd

K(u)‖u‖2du sup
x∈X δ

max
|β|=|α|+2

|∂βf(x)|

≤dcf cKh2. (6.19)

Similarly for |α| = 2, using a Taylor expansion of order 1 we have

sup
x∈X h

|∂αfh(x) − ∂αf(x)|

= sup
x∈X h

|
∫
Rd

K(u)∂αf(x − hu)du − ∂αf(x)|

≤h

∫
K(u)‖u‖du sup

x∈X δ

max
|β|=3

|∂βf(x)|

≤
√

dcf cKh. (6.20)

Let η0 = sup{η ∈ (0, δ] : infx∈X η f(x) ≥ 1
2 ε0}. Under assumptions A1 and

A2, we have η0 > 0. Let

h0 = min
{

η0,
1
2δ,

1√
dcK

,
( ε0

2dcf cK

)1/2}
,

and we take h ∈ (0, h0] below. Using (6.19) and (6.20) we have for all |α| = 1, 2,

sup
x∈X h

|f(x) − fh(x)| ≤ cf ∧ (1
2ε0),

sup
x∈X h

|∂αfh(x) − ∂αf(x)| ≤ cf .

This implies that for all x ∈ X h we have 1
2 ε0 ≤ fh(x) ≤ 2cf , and |∂αfh(x)| ≤ 2cf

for all |α| = 1, 2.
Let qh(x) = f(x)/fh(x). Using (6.19) we have for all x ∈ X h,

|qh(x) − 1| ≤ 2cf cKh2

ε0
:= Cq,0h2. (6.21)
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When |α| = 1,

∂αqh(x) = ∂αf(x) − ∂αfh(x)
fh(x) − [f(x) − fh(x)]∂αfh(x)

fh(x)2 .

Hence using (6.19) we have that for all x ∈ X h,

|∂αqh(x)| ≤ 2cf cKh2

ε0
+

8c2
f cKh2

ε2
0

:= Cq,1h2. (6.22)

When |α| = 2, suppose that α = α1 + α2, where |α1| = |α2| = 1. We have

∂αqh(x) =∂αf(x) − ∂αfh(x)
fh(x)

− [∂α1f(x) − ∂α1fh(x)]∂α2fh(x) + [∂α2f(x) − ∂α2fh(x)]∂α1fh(x)
[fh(x)]2

+ [fh(x) − f(x)]
[2∂α1fh(x)∂α2fh(x)

fh(x)4 − ∂αfh(x)
fh(x)2

]
.

Hence using (6.19) and (6.20) we have that for all x ∈ X h,

|∂αqh(x)| ≤ 2cf cKh

ε0
+

24c2
f cKh2

ε2
0

+
128c3

f cKh2

ε4
0

≤ 2cf cKh

ε0
+

12c2
f cKδh

ε2
0

+
64c3

f cKδh

ε4
0

:= Cq,2h. (6.23)

We can write for |α| = 0, 1, 2,

E∂αr̂0(x)

= 1
hd+|α|E

Ỹ1∂αK( x−X1
h )

fh(X1)

= 1
hd+|α|E

ξ(r(X1) + ε1)∂αK( x−X1
h )

fh(X1)

= 1
hd+|α|E

∫
Rd

ξ(r(u) + ε1)∂αK
(x − u

h

)
qh(u)du

= 1
h|α|E

∫
Rd

ξ(r(x − hw) + ε1)qh(x − hw)∂αK(w)dw

= 1
h|α|E

∫
Rd

∂α
w[ξ(r(x − hw) + ε1)qh(x − hw)]K(w)dw. (6.24)

Here for |α| = 1,

∂α
w[ξ(r(x + hw) + ε1)qh(x + hw)] =hξ′(r(x + hw) + ε1)∂αr(x + hw)qh(x + hw)

+ hξ(r(x + hw) + ε1)∂αqh(x + hw).
(6.25)
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For |α| = 2, suppose that α = α1 + α2, where |α1| = |α2| = 1. We have

∂α
w[ξ(r(x + hw) + ε1)qh(x + hw)]

=h2ξ′′(r(x + hw) + ε1)∂α1r(x + hw)∂α2r(x + hw)qh(x + hw)
+ h2ξ′(r(x + hw) + ε1)∂αr(x + hw)qh(x + hw)
+ h2ξ′(r(x + hw) + ε1)∂α1r(x + hw)∂α2qh(x + hw)
+ h2ξ′(r(x + hw) + ε1)∂α2r(x + hw)∂α1qh(x + hw)
+ h2ξ(r(x + hw) + ε1)∂αqh(x + hw). (6.26)

Using a Taylor expansion of order 2, we have

sup
x∈X

|ξ(r(x + hw) + ε1) − ξ(r(x) + ε1) − hξ′(r(x) + ε1)wT ∇r(x)|

≤h2dcξcr‖w‖2, (6.27)

and

sup
x∈X

|ξ′(r(x + hw) + ε1) − ξ′(r(x) + ε1) − hξ′′(r(x) + ε1)wT ∇r(x)|

≤h2dcξcr‖w‖2. (6.28)

Using a Taylor expansion of order 1, we have

sup
x∈X

|ξ′′(r(x + hw) + ε1) − ξ′′(r(x) + ε1)| ≤ h
√

dcξcr‖w‖. (6.29)

For |α| = 1, using a Taylor expansion of order 2 we have

sup
x∈X

|∂αr(x + hw) − ∂αr(x) + hwT ∇∂αr(x)| ≤ h2dcr‖w‖2. (6.30)

For |α| = 2, using a Taylor expansion of order 1 we have

sup
x∈X

|∂αr(x + hw) − ∂αr(x)| ≤ h
√

dcr‖w‖. (6.31)

Therefore it follows from (6.24), (6.21), and (6.27) that

sup
x∈X

|Er̂0(x) − r̃0(x)| ≤ (Cq,0cξ + dcξcrcK)h2 := Cr,0h2. (6.32)

For |α| = 1, the calculations in (6.24), (6.21), (6.22), (6.25), (6.27), (6.28) and
(6.30) yield

sup
x∈X

|E∂αr̂0(x) − ∂αr̃0(x)| ≤ (Cq,1cξ + Cq,0cξcr + 3dc2
rcKcξ)h2 := Cr,1h2.

(6.33)

For |α| = 2, using 6.24), (6.21) – (6.23), and (6.26) – (6.31) we get

sup
x∈X

|E∂αr̂0(x) − ∂αr̃0(x)|
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≤(Cq,2cξ + Cq,1cξcr + 3Cq,0cξc2
r + 4dcξc2

rcK)h2 + 2
√

dcξc3
rcKh

≤[δ(Cq,2cξ + Cq,1cξcr + 3Cq,0cξc2
r + 4dcξc2

rcK) + 2
√

dcξc3
rcK ]h := Cr,2h.

(6.34)

The proof is completed with a constant C = max{Cr,0, Cr,1, Cr,2}.

6.4. Proofs of Lemma 3.2 and Theorem 3.2

Theorem 3.2 is a direct consequence of the application of Lemma 3.2 and The-
orem 3.1, so we only give the proof of Lemma 3.2 below.

Proof. Let cp = supx∈R sup|β|≤3 |∂βp(x)| and λ† = infx∈C |λ1(x)|. Since p is a
Morse function and R is a compact set, we have λ∗ ≥ λ† > 0. Let κ = λ†

2dcp
∧ η.

Then Mκ ⊂ R. Let Cκ
◦ = {y ∈ R : infx∈C ‖x − y‖ < κ} be the interior of Cκ,

and T = R\Cκ
◦ . Let θ = infx∈T max|α|=1 |∂αp(x)|. Note that θ > 0 when T �= ∅,

because max|α|=1 |∂αp| is a continuous function on R and T is a compact set.
We will show the result in this lemma holds when the following three conditions
are satisfied.

δ̃0 := sup
x∈R

|p(x) − p̃(x)| <
1
8λ∗κ2, (6.35)

δ̃2 := sup
x∈R

max
|α|=2

|∂αp(x) − ∂αp̃(x)| ≤ λ†
4d

, (6.36)

δ̃1 := sup
x∈R

max
|α|=1

|∂αp(x) − ∂αp̃(x)| ≤ 1
2θ, when T �= ∅. (6.37)

Step 1. For any x ∈ M, consider any y ∈ Bκ
x := {y ∈ R : ‖x − y‖ ≤ κ}, and

using Weyl’s inequality (see Serre, 2002, page 15) we have

|λ1(y) − λ1(x)| ≤ d sup
|β|=2

|∂βp(x) − ∂βp(y)|

≤ d sup
z∈R

sup
|β|=3

|∂βp(z)|‖x − y‖ ≤ dcp‖x − y‖.

Therefore for all y ∈ Bκ
x ,

λ1(y) ≤ −λ∗ + dcpκ ≤ −1
2λ∗. (6.38)

In other words, Mκ ⊂ A := {x ∈ R : λ1(x) ≤ −1
2 λ∗}. For all x ∈ M and all

y ∈ Bκ
x , using a Taylor expansion we have

p(y) ≤ p(x) + 1
2 sup

z∈Mκ

λ1(z)‖x − y‖2 ≤ p(x) − 1
4λ∗‖x − y‖2. (6.39)

Then by using (6.35) we must have for all x ∈ M and all y ∈ R such that
‖x − y‖ = κ,

p̃(y) < p(y) + 1
8λ∗κ2 ≤ p(x) − 1

8λ∗κ2 < p̃(x). (6.40)
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Therefore there must exist at least one local maximum of p̃ on Bκ
x for each

x ∈ M.
Step 2a. Let S = C\M the set of critical points of p on R excluding local

maxima. Suppose S �= ∅. Then following a similar calculation in (6.38), we have
that for all y ∈ Sκ, λ1(y) ≥ 1

2 λ† > 0. For any x ∈ R, let λ̃1(x) be the largest
eigenvalue of ∇2p̃(x). For all y ∈ Sκ, by using (6.36) and Weyl’s inequality we
have

λ̃1(y) ≥ λ1(y) − d sup
|β|=2

|∂β p̃(y) − ∂βp(y)| ≥ λ†
4 . (6.41)

So there are no local maxima of p̃ on Sκ. The same statement is trivially true
when S = ∅ because Sκ = ∅ in such a case.

Step 2b. If T = ∅, then we must have M̃ ⊂ Mκ based on the arguments
in Step 1 and Step 2a, since R = Mκ ∪ Sκ ∪ T . Otherwise for all y ∈ T , by
using (6.37) we have that

max
|α|=1

|∂αp̃(y)| ≥ θ − δ̃1 ≥ 1
2θ > 0. (6.42)

This means that there are no local maxima of p̃ on T , and hence M̃ ⊂ Mκ.
Step 2c. Suppose that there exists x ∈ M such that there are at least two

different local maxima x̃1 and x̃2 of p̃ within Bκ
x . For any y ∈ Bκ

x , by using
(6.38), (6.36) and Weyl’s inequality, we have that

λ̃1(y) ≤ λ1(y) + d sup
|β|=2

|∂β p̃(y) − ∂βp(y)| ≤ −λ∗
4 . (6.43)

Using a Taylor expansion we have

0 = (x̃1 − x̃2)T [∇p̃(x̃1) − ∇p̃(x̃2)] ≤ sup
y∈Bκ

x

λ̃1(y)‖x̃1 − x̃2‖2, (6.44)

which leads to a contradiction with (6.43). Hence there exists only one local
maximum x̃ of p̃ in Bκ

x for each x ∈ M. For the same reason, using (6.38) it
can be seen that there exists only one local maximum x of p in Bκ

x . In other
words, we have that the number of maxima of p and p̃ are the same and can be
matched in such a way that

dH(M, M̃) = max
x∈M

‖x̃ − x‖. (6.45)

Step 3. Let us consider any local maximum of p, denoted by x and its
corresponding local maximum x̃ of p̃ in Bκ

x . Let | · |max and ‖ ·‖opbe the element-
wise maximum and the operator norm of a matrix, respectively. Since ∇p(x) =
∇p̃(x̃) = 0, using a Taylor expansion, we have

∇p(x) − ∇p̃(x) = ∇p̃(x̃) − ∇p̃(x) = [∇2p(x) + Δ(x̃, x)](x̃ − x), (6.46)



5652 W. Qiao and A. Shehu

where Δ(x̃, x) is a d × d symmetric matrix such that |Δ(x̃, x)|max ≤ δ̃2 + cp|x̃ −
x|max. Therefore

‖∇p(x) − ∇p̃(x)‖ ≥ ‖∇2p(x)(x̃ − x)‖ − ‖Δ(x̃, x)(x̃ − x)‖
≥ λ∗‖x̃ − x‖ − ‖Δ(x̃, x)‖op‖x̃ − x‖
≥ λ∗‖x̃ − x‖ − d[δ̃2 + cp|x̃ − x|max]‖x̃ − x‖

≥ 1
2λ∗‖x̃ − x‖ − dδ̃2‖x̃ − x‖

≥ 1
4λ∗‖x̃ − x‖,

where in the last step we use (6.36). The conclusion of this lemma follows by
noticing (6.45).

6.5. Proof of Theorem 3.3

Proof. First of all, similar to Theorem 3.1, there exist constants C1 > 0, c1 > 0
and h1 > 0 such that for all |α| ≤ 2, n ≥ 1, 0 < h ≤ h1, τ > 1 satisfying
nhd ≥ c1(τ ∨ | log h|) we have with probability at least 1 − 3e−τ ,

sup
x∈X

|∂αr̂(x) − ∂αr(x)| < C1(
√

τ ∨ | log h|γ(|α|)
n,h + h(3−|α|)∧2). (6.47)

Recall t̂ and sr that have been defined in (3.7) and (2.8), respectively. Note
that t̂(x) corresponds to r̂(x) in the case of Ỹi = 1, for all i = 1, · · · , n. Let

t̂0(x) = 1
nhd

n∑
i=1

Kh(x − Xi)
fh(Xi)

.

Then similar to Proposition 5.2, there exist constants C2 > 0, c2 > 0, and h2 > 0
such that for all |α| ≤ 2, n ≥ 1, 0 < h ≤ h2, τ > 1 satisfying nhd ≥ c2(τ ∨| log h|)
we have with probability at least 1 − 2e−τ ,

sup
x∈X

|∂αt̂(x) − ∂αt̂0(x)| < C2
√

τ ∨ | log h|γ(|α|)
n,h . (6.48)

Similar to Proposition 5.3, there exist constants C3 > 0, c3 > 0, and h3 > 0 such
that for all |α| ≤ 2, n ≥ 1, 0 < h ≤ h3, τ > 1 satisfying nhd ≥ c3(τ ∨ | log h|) we
have with probability at least 1 − e−τ ,

sup
x∈X

|∂αt̂0(x) − E∂αt̂0(x)| < C3
√

τ ∨ | log h|γ(|α|)
n,h . (6.49)

Recall that qh = f/fh. Note that

E∂αt̂0(x) =
∫
Rd

∂αqh(x − hw)K(w)dw
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Similar to Proposition 5.4, there exist constants C4 > 0 and h4 > 0 such that
for all 0 < h ≤ h4, and |α| ≤ 2 we have

sup
x∈X

|E∂αt̂0(x) − b|α|| ≤ C4h(3−|α|)∧2 (6.50)

where b|α| = 0 when |α| = 0 and b|α| = 1 when |α| = 1, 2. Hence combing (6.48),
(6.49) and (6.50), for all |α| ≤ 2 we get with probability at least 1 − 3e−τ that

sup
x∈X

|∂αt̂(x) − b|α|| < C5(
√

τ ∨ | log h|γ(|α|)
n,h + h(3−|α|)∧2), (6.51)

where C5 = (C2 + C3) ∨ C4. Due to the almost sure boundedness of π(Y[n]),
using (6.47), (6.51), and the relations r̂∗(x) = r̂(x) + π(Y[n])t̂(x) and ∂α

sr =
∂αr + b|α|π(Y[n]), for all |α| ≤ 2 we have with probability at least 1 − 6e−τ that

sup
x∈X

|∂αr̂∗(x) − ∂α
sr(x)| < C6(

√
τ ∨ | log h|γ(|α|)

n,h + h(3−|α|)∧2),

where C6 = C1 + C5(B ∨ 1), where B is given in assumption E′. Then the
conclusion of the theorem follows from the application of Lemma 3.2.

6.6. Proof of Proposition 6.1

Proof. For any measurable function g and probability measure Q on R
d+1, let

‖g‖L2(Q) = [
∫
Rd+1 |g(u)|2dQ(u)]1/2 be the L2(Q)-norm of g. We first show that

G̃h := {hd(g − Pg) : g ∈ Gh} is a uniformly bounded VC-class, where Pg =
Eg(X, Y ). For any x ∈ R

d, let mx,h(u, v) = M((x−u)/h) for all (u, v) ∈ R
d ×R.

Let B ∈ (0, ∞) be a constant envelope of F such that supg∈F supx∈Rd+1 |g(x)| ≤
B. Define Fh = {mx,h(·) : x ∈ R

d}, and Fh,X = {mx,h(·) : x ∈ X } for all h > 0.
Using Sriperumbudur and Steinwart (2012, Lemma A.3), we obtain that for all
h > 0, and ε ∈ (0, B],

sup
Q

N (Fh,X , L2(Q), ε) ≤ sup
Q

N (Fh, L2(Q), ε) = sup
Q

N (F, L2(Q), ε) ≤
(AB

ε

)ν

,

(6.52)

where the supremum is taken over all the probability measures Q on R
d+1.

Let
F

(1)
h,X = {X × R � (u, v) �→ ζh(u, v)mx,h(u, v) : x ∈ X }.

Note that B(1) := LB is a constant envelope of F(1)
h,X such that

sup
g∈F

(1)
h

sup
x∈Rd+1

|g(x)| ≤ B(1).

It follows from (6.52) that, for any given probability measure Q on R
d+1 and

any ε ∈ (0, B(1)], there exist x1, · · · , xNε ∈ X with Nε ≤ (AB(1)

ε )ν such that
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{mxj ,h : j = 1, · · · , Nε} is an ( ε
L )-covering of Fh,X with respect to the L2(Q)-

norm. In other words, for any x ∈ X , there exists j ∈ {1, · · · , Nε} such that
‖mx,h − mxj ,h‖L(Q) ≤ ε

L . Hence for any mx,h ∈ F
(1)
x,X ,

‖ζhmx,h − ζhmxj ,h‖L(Q) ≤ L‖mx,h − mxj ,h‖L(Q) ≤ ε.

This means that {ζhmxj ,h : j = 1, · · · , Nε} is an ε-covering of F(1)
h,X with respect

to the L2(Q)-norm. Hence for any mx,h ∈ Fx,X and any ε ∈ (0, B(1)],

sup
Q

N (F(1)
h,X , L2(Q), ε) ≤

(AB(1)

ε

)ν

,

which implies that, for any given probability measure Q on Rd+1 and any ε ∈
(0, 2B(1)], there exist x′

1, · · · , x′
Nε

∈ X with Nε ≤ ( 2AB(1)

ε )ν such that {ζhmx′
j
,h :

j = 1, · · · , Nε} is a (1
2 ε)-covering of F(1)

h,X with respect to the L2(Q)-norm.
Consider the interval [−B(1), B(1)]. For any ε > 0, there exist b1, · · · , bNε

with Nε ≤ �2B(1)/ε� such that b1, · · · , bNε is a ( 1
2 ε)-covering of [−B(1), B(1)],

where �·� is the ceiling function. Let

F
(2)
h = {g(·) − b : g ∈ F

(1)
h,X , |b| ≤ B(1)}.

For any g ∈ F
(1)
h,X and |b| ≤ B(1), there exist mx′

i
,h and bj such that ‖mx,h −

mx′
i
,h‖L(Q) ≤ 1

2 ε and |b − bj | ≤ 1
2 ε. Hence

‖(mx,h − b) − (mx′
i
,h − bj)‖L2(Q) ≤ ‖mx,h − mx′

i
,h‖L2(Q) + |b − bj | ≤ ε. (6.53)

Therefore with A(2) = 2(A ∨ 1) and B(2) = 2B(1) we have

sup
Q

N (F(2)
h,X , L2(Q), ε) ≤

(2AB(1)

ε

)ν

�2B(1)/ε� ≤
(A(2)B(2)

ε

)ν+1
.

Note that sup
g∈F

(2)
h

supx∈Rd+1 |g(x)| ≤ B(2). Since G̃h ⊂ F
(2)
h,X , we have

sup
Q

N (G̃h, L2(Q), ε) ≤ sup
Q

N (F(2)
h,X , L2(Q), ε) ≤

(A(2)B(2)

ε

)ν+1
. (6.54)

This then shows that G̃h is a VC class with characteristics A(2) and ν + 1,
and is uniformly bounded by a constant envelope B(2). For any g ∈ G̃h, for all
h ∈ (0, h0], we have

Pg2 = Eg2(X, Y ) ≤ E

{[
ζh(X, Y )M

(x − X

h

)]2}
≤ L2

E

{[
M

(x − X

h

)]2}
≤ hdL2

∫
Rd

[M(w)]2f(x − hw)dw
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≤ hdL2 sup
x∈X ηh0

|f(x)|‖M‖2
2

:= hdσ2
0 .

Applying Sriperumbudur and Steinwart (2012, Theorems A.1 and A.2) we have
that for all h ∈ (0, h0], n ≥ 1 and τ > 0, with probability at least 1 − e−τ ,

1√
n

sup
g∈Gh

|Gn(g)|

≤4 1√
n
E sup

g∈Gh

|Gn(g)| +
√

2τσ2
0

nhd
+ τB(2)

nhd

≤4C
[ (ν + 1)B(2)

nhd
log A(2)B(2)√

hdσ2
0

+
√

(ν + 1)σ2
0

nhd
log A(2)B(2)√

hdσ2
0

]
+

√
2τσ2

0
nhd

+ τB(2)

nhd
,

where C is a universal constant that is given in Sriperumbudur and Steinwart
(2012, Theorem A.2).
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