2203.05269v1 [cond-mat.stat-mech] 10 Mar 2022

arxiv

Limit shape phase transitions: a merger of arctic

circles.

James S. Pallister

School of Physics and Astronomy, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK

Dimitri M. Gangardt

School of Physics and Astronomy, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK

Alexander G. Abanov

Department of Physics and Astronomy and Simons Center for Geometry and
Physics, Stony Brook, NY 11794, USA

Abstract. We consider a free fermion formulation of a statistical model exhibiting
a limit shape phenomenon. The model is shown to have a phase transition that can
be visualized as the merger of two liquid regions — arctic circles. We show that the
merging arctic circles provide a space-time resolved picture of the phase transition
in lattice QCD known as Gross-Witten-Wadia transition. The latter is a continuous
phase transition of the third order. We argue that this transition is universal and is
not spoiled by interactions if parity and time-reversal symmetries are preserved. We
refer to this universal transition as the Merger Transition.
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1. Introduction

A limit shape phenomenon in statistical mechanics is the appearance of a most probable
macroscopic state. This state is usually characterized by a well-defined boundary
separating frozen and fluctuating (liquid) spatial regions. Other, macroscopically
different states are exponentially suppressed in the thermodynamic limit. The formation
of the limit shape is enforced by domain-wall-type boundary conditions. Well-known
examples of limit shape phenomenon are the problems of emptiness formation probability
in free fermions [!], and the formation of a frozen region in dimer models [2]. In
the former, the macroscopic empty region formed in a system of free one-dimensional
fermions has the shape of an astroid [1]. In the example of dimer coverings of the Aztec
diamond lattice, the curve separating frozen from liquid regions has a shape of a circle
and is a subject of the Arctic Circle Theorem [3]. Remarkably, due to the existence of an
exact mapping between lattice fermion models and dimer systems, one can study both
emptiness and arctic boundary formations using the same set of tools and techniques
from quantum field theory.

The limit shape phenomenon has a long history with earlier works on representation
theory [1] and crystal surfaces [0, 6, 7]. Over the years, it attracted a lot of interest
from physicists, mathematicians, and computer scientists. We refer the reader for recent
reviews on various aspects of limit shape phenomena to Refs. [2, &].

In this work, we focus on the arctic limit shape problem in a free fermion description.
We consider a one-parameter family of arctic shapes. As a function of a control
parameter, A\, two liquid regions merge and form a single liquid domain surrounded
by frozen regions. We identify this transition with the transition known in lattice QCD,
a statistical model of large random matrices. This model undergoes a third-order phase
transition in the distribution of eigenvalues of the Wilson loop operator that occurs as
a function of the t'Hooft coupling A in the large-N limit [9, 10, 11]. Here, in the context
of the arctic circle, we present a spatially resolved picture of the transition, computing
the exact arctic limiting shape at all values of the coupling A, which is simply an aspect
ratio parameter determined by “arctic” boundary conditions. We refer to the phase
transition associated with the merger of liquid regions such as arctic circles as the
Merger Transition.

The merger of two liquid region has been considered before both in the arctic curve
problem for dimer covering of the Aztec diamond lattice [12] and for random walkers
with nonintersecting constraint [13]. The random walkers description used in the latter
work is practically identical to the free fermion formulation used in this work. In contrast
to Refs. [12, 13] we focus here on the phase transition corresponding to the merger of
liquid regions. A problem of tiling of the Aztec diamond lattice with cut-out corner
has been recently considered in Ref. [11]. The third order phase transition has been
observed in that setting as a function of the size of the cut-out region and parallels
with Gross-Witten-Wadia [9, 10] and Douglas-Kazakov [11] phase transitions has been
made [11]. Finally, we remark that the Coulomb gas technique used in this work allows
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us to connect the above mentioned phase transition to a more general phenomenon of
phase transitions in the constrained Coulomb gases. The latter have been argued to be
universally of the third order [15].

This paper is organized as follows. In Section 2 we start by formulating the limit
shape problem of interest as a partition function of free, one-dimensional, lattice fermions
evolving in imaginary time. Evaluating the partition function in the thermodynamic
limit by the saddle point method is reduced to finding the momentum distribution
problem equivalent to finding the equilibrium distribution of eigenvalues in Ref. [9],
and we reproduce it here. We extend the collective description to space-time resolved
configurations and propose a method to obtain complete space-time dependence of
density and velocity of fermions in Section 3. We compute and illustrate solutions for
these fields in the separated and merged phases in Section 4. In Section 5 we analyze the
phase transition corresponding to the merger of two arctic circles and provide arguments
for its universality in Section 6. Discussion of the results and further arguments in favour
of the universality of the phase transition are outlined in Section 7.

2. Modeling the limit shape: free fermions on a lattice and
Gross-Witten-Wadia model

We start with formulating a model for limit shape phase transitions. Let us consider
the following matrix element of the imaginary time propagator of free, one-dimensional,
lattice fermions

Zy(R) = (N|e”*™|N) . (1)

It is well known (see, e.g., Ref. [3]) that this matrix element represents the partition
function of dimer coverings subject to extreme boundary conditions. The latter are
encoded by the initial and final state shown schematically in Fig. 1

IN) = 12L) = [] ¢l 10) (2)
xzely,
corresponding to fully occupied half-integer sites between the positions —L and L of two

domain walls, I;, = [—L + %, N %} The fermionic operators have the following

anti-commutation relations

{en )} =bum = / R ey, 3)

_p2m

The boundary state |2L) is normalized so that Z5,(0) = 1 and can be viewed as a
real space “Fermi sea”. The dynamics of the fermions is governed by the tight-binding

~O—TO—T-O—T-#-T-—ToT o001~ |2]))
—L -2 -1 0 1 2 L

Figure 1. Initial state |2L).
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Hamiltonian
1 " dk
5 Y et = [ SR Eeln) (1
characterized by the dispersion relation (k) = — cosk. The fermionic operators thus

have the following time dependence

c(k,t) = eHe(k)e ™ = e We(k),
¢k, t) = el (k)e ™ = e Wel() (5)

We proceed calculating the propagator Eq. (9) by inserting the complete set of
eigenstates

Zn(R) = %/ﬂ H Zl:r (N|{k}) e 2Bk ([N (6)

where [{k}) = c'(k1)...c(ky)|0) and

({R}IN) = 0|H ) T eh10) = 2 =mka @y, (7)

zely,
Here A(e*) is the Vandermonde determinant defined as
. N o . .
A(e®) = det el (i=Dk; — H(e‘ki — i), (8)

4,j=1 -
1<J

Combining (6) with (7) we express the partition function as a multiple integral over N
quasimomenta:

1 dVE _ .
Zn(R) = ﬁ/ ) N‘ )‘ e 2R (k) (9)

The crucial observation is that Eq. (9) coincides exactly with the Gross-Witten-
Wadia (GWW) model [9, 10] of lattice QCD. This model was shown to undergo a
third order phase transition in the thermodynamic limit N, R — oo with fixed ratio
2\ = N/R. The transition occurs for critical value of the ratio A = L/R = 1.

In the large N, R limit the statistical sum Eq. (9) can be rewritten as a sum over
configurations of collective quasimomenta distribution o (k) = (7/R) Y. 0(k — k;):

Zn(R) = e I / Doe Fslowl | (10)

siownl = [ Seote — 5 [ 55 [ S oth
_ (/ %a(/@) _ )\) (11)

where
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contains the chemical potential ;1 to ensure the normalisation

dk
/%a(/ﬂ) Y (12)

Here we deviate from the standard notations and scale the action with R rather
than N [We also use A = N/2R, while A = N/R in Ref. [9]. To compare the results one
has to replace A by A/2 in our formulae.]. These scaling and notations are natural for
the space-time picture we are about to present below. In particular, the free energy

-1 A>1
A\ = 47 13
e {—A+%—§1ogx, A<l (12)

becomes a constant for A > 1 corresponding to In Zy(R) = R? independent of N.

The result (13) is obtained semiclassically by considering the saddle point
configuration o (k) minimizing the action Eq. (11). This approximation is controlled
by the large parameter R? and the optimal configuration was found in Ref. [)]. Our
main goal is to make the connection between optimal o (k) and the large scale space-time
structure of the fermionic configuration dominating the statistical sum (9). For this we
need some technical details about the minimization procedure which we outline below.

The action (11) has to be minimized with respect to o(k) and p. Therefore, in
addition to Eq. (12), we obtain the equilibrium condition

/
5(k’)—u—/ I 1og
Iy,

“ o) =0, (14)

: S
elk o elk

27

valid for k belonging to the interval(s) I where o(k) > 0. As was discussed in
Ref. [9], Eq. (14) is equivalent to the electrostatic problem of finding the equilibrium
configuration of charges with density o(k) interacting among themselves via a 2D
logarithmic Coulomb potential and subject to an external field represented by (k).
It was found that the distribution o(k) undergoes a qualitative change: for A > 1 the
quasimomenta fill the whole Brillouin zone I, = [—7, 7], while for A < 1 a gap appears
near k = +m and [}, = [k, k|.

Here we present this solution using the method of semiclassical loop equations

developed in Random Matrix Theory [16, 17, 18, 19, 20] (see also Ref. [21] for
applications to GWW model). We define a function
. dk! eik
X(k) = )\—IEI(IC) -2 gma(k’/), (15)

analytic in the complex plane of k cut along an interval on the real axis which represents
the support of o(k), so that

X(k£i0) = Xi(k) = +o(k). (16)
The solution of Eq. (14) can be represented by the implicit relation

Fo(X, k) = X2+ m? — (A +cosk)> =0, (17)
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where m plays the role of order parameter and has the following behavior across the
GWW phase transition

0, A>1
m = : (18)
1—-XA, A<1

The implicit relation Eq. (17) is a complex curve of the Random Matrix Model
behind GWW model which provides full information about the optimal distribution

of eigenvalues e,

Despite the fact that the leading order behaviour of the fermionic
propagator Eq. (9) is obtained using this mean-field solution, little can be said about
the dynamics of underlying fermionic model. In the next sections we extract the full
space-time picture of the semiclassical dynamics of the free fermions. This space-time
resolved picture will be used to explore beautiful hidden features of the GWW third

order transition which we reinterpret in the context of the limit shape phenomenon.

3. Dynamics of free fermions in GWW model

The solution of GWW model presented in the previous section is essentially static and
while it gives the large-R behaviour of the fermionic propagator Eq. (9) the dynamics
of the fermions leading to this result is buried under rather technical Coulomb gas
calculations.

In order to reveal the dynamical picture we need an extra time dimension to
label the time-dependent configurations of dynamical variables. We use the standard

2RH

approach and split the evolution operator e~ into a product of infinitesimal

evolutions representing the propagator Eq. (1) as the path integral
Z(R,L) = / Dlo, 9] e 45l (19)

over time-dependent momentum distribution o(k,7) and its conjugate field ¥(k,7)
labeled by dimensionless time 7 defined on the interval —1 < 7 < 1. The field o(k) of
the previous section corresponds to the time slice 7 = 0 of the imaginary time dynamics
with fields for 7 # 0 integrated out.

The action in Eq. (19) can be naturally represented as a sum of two terms, the
dynamical term

si=3 [ arf [0k, m)0n0 (k. ) + (k) — ok, )] (20)

corresponding to the evolution operator and the boundary term which originates from
the matrix elements ({k}"!|N) — (6| N) and its complex conjugate in Eq. (6)
between the fields ¢'/i(k) = o(k, +1) on the boundaries of the time interval,

Sy, = —log <N‘af> — log <01}N> , (21)
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where

.1 [dkdE L
log (| N) = log (N|o)* = —= %ga(k)log<ek—ek)a(k’). (22)

Variation of the action gives

55:5&+v&f=%/HT/ﬁﬁwm&w+ﬁd—aﬂ+dm—un
T

2
1 dk i i i N
- 5/% (9" +6")00" — (9" — 6")é0"] | (23)
where
. dk’ . N2 .
f/i — v ik ik £/ifq.0
0/ (k) ‘/‘%Tkg<e ) o k) (24)

are complex potentials induced by the boundary distributions o'/i(k). The variation
w.r.t. fields inside the time interval gives

0-0(k,7) =0, (25)
Ok, 7)=¢€(k) — . (26)

These equations hold independently for every quasimomentum & due to the translational
invariance of the Hamiltonian. Their solution is

I(k, 1)

I(k,0) + (e(k) — p)7. (28)

The variation w.r.t. boundary fields do, fixes

since for a time-independent o(k,7) = oi(k) = o(k) we can use 0i(k) = 0(k)
in Eq. (24). The difference of these equation reproduces exactly the electrostatic
equilibrium condition, Eq. (14). This equation also mixes different quasimomenta as
the boundary conditions break the translational invariance. The sum of these equations
yields ¥(k,0) = 0 for o(k) = o(—k), consistent with the time-reversal symmetry of the
problem.

These time-dependent configurations dominating the path integral Eq. (19) are
related to dynamics of free fermions and, ultimately, to the limit shape emerging as the
dominant contribution to the statistical sum Eq. (9). This relation is quite non-trivial

as we show below. Let us introduce the complex combinations of the time-dependent
fields

Xi(k,7)=x0(k,7) —10x0(k, 7). (31)
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On the equations of motion (27,28) they evolve ballistically
Xi(l{?, 7') = Xi(k?) — iEIU{?)T, (32)

from the initial value X, (k,0) = X4 (k) = £o(k) obtained from the complex curve
Eq. (17), so that

Fo(x,k) = Fo(z +ie' (k)7 k) = (x + irsink)?> + m? — (A + cosk)> =0, (33)

where m is given by (18). The time-dependent spatial configuration dominating the
statistical sum Eq. (9) is fully determined by this equation. Indeed, we show in Appendix
A that X (k) is a position (in units of R) of a particle with momentum k at 7 = 0, so
the ballistic motion Eq. (32) describes (imaginary) time dynamics of free fermions. Our
approach is one of the collective field theory [22, 23]. Below we use the method of
fermionic droplets in phase space (see Ref. [21] and references therein) extending it to
imaginary time dynamics.

Given k; are momenta of fermions, we can determine the distribution of their
positions z; in the large R limit using a semiclassical approach. To do this, we consider
the phase space distribution (Wigner function) Wy(x, k), which for free fermions has a
very simple structure: Wy(z, k) = 1 in the region filled with particles and Wy(x, k) = 0
in the region filled with holes, so one only needs to know the shape of the boundary
separating these regions. The latter is nothing but the solution of Eq. (17) for real z and
k, i.e. this boundary is a real section of the complex curve. It is natural to postulate
the Wigner function in the form

1
Wo(z, k) = ;Im log Fy(z, k) . (34)

The normalisation (12) implies that x is the coordinate of fermions measured in units
of R. For real but sign changing function Fy(x, k) the implicit equation Eq. (17) gives
the boundary of the occupied portion of the phase space.

Generally speaking, the boundary separating particles from holes in phase space
may consist of a number of curves encircling disconnected regions in the phase space,
but we do not consider this possibility here. In our case, there is only one connected
region in the phase space, and Eq. (17) defines a two-valued analytic function X (k) with
a single branch cut along the interval Ij,. The distribution o (k) is given by the jump
across the cut:

o(k) = 5 (X ()~ X_ ()] (3)

where X (k) = X (k7ie). Physically, these two solutions represent the distance between
the most remote right and left fermions. As particles fill uniformly the region between
X_(k) and X, (k), the above expression for o(k) is equivalent to

1 [X+

o(k) =5 | Wole,b)de. (36)
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Conversely, resolving Eq. (17) for k = K (z) gives again a two-valued function with
branches K. (x) which can be interpreted as local Fermi points, so their difference is
proportional to the real space density of fermions,

plz) = /K "B B) = o (K () — K_(@)] (37)

These considerations are illustrated in Fig. 2.

xk—O

— p(ﬂf)

Figure 2. Wigner function for free fermions. The quasimomentum distribution o (k)
and real space density p(x) are obtained by integrating W (x, k) along the x and k
respectively.

This semiclassical picture can be extended to arbitrary 7 by making the ballistic
shift Eq. (33) in the complex curve. In contrast to Eq. (17), the function F,(z,k) is
complex, so the requirement of vanishing of its real and imaginary parts constitute
a system of two equations for two unknowns: the density p(r,7) = (k + k)/27 and
the velocity v(z,7) = (k — k)/2i. Solving Eq. (33) for fixed real z,7 gives space-time
information about density and velocity configurations which can otherwise be viewed as
a mapping between space-time (x,7) and a surface parametrised by local coordinates
(p,v). Finding the shape of such a surface can be formulated as a minimisation
problem leading to complex Burgers equations for combinations k, k = 7p & iv of the
hydrodynamic fields. In the presence of nontrivial boundary conditions imposed at the
endpoints of the time interval, the limit shape phenomenon is expected [25]. In the next
section, we obtain and characterize the limit shapes across GWW phase transition.
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4. Arctic shapes: fluctuating regions and their boundaries

We turn to the solutions of Eq. (33) for various values of the control parameter A. In
terms of the variable z = e* = €™~V the equation F,(x,k) = 0 is a quartic equation
and has four solutions. Moreover, owing to the symmetry of the spectral curve Eq. (33)
if 2z is a solution then Z is also a solution, thus the solutions are either real corresponding
to p = 0,1 or there is a complex conjugate pair of solutions corresponding to k = mp+iv
and —k = —7p + iv with 0 < p < 1. The former, real case, corresponds to the frozen
regions while in the latter case the point (z,7) lies within the fluctuating (aka liquid)
region.

As the point (x, 7) approaches the boundary of the fluctuating region two solutions
2 = el*, 7 = e7* move toward each other and coalesce on the real axis when the boundary
is reached. If this happens for Re z > 0 then k = —k = iv and the point (z, 7) is on the
boundary of the empty frozen region, p = 0. For two solutions meeting on the negative
segment of the real axis, Rez < 0, the point (z, 7) reaches the boundary with the fully

occupied frozen region, p = 1. The condition to have degenerate solutions is
OpFr(z,k)=0. (38)

Imposing it in addition to Eq. (33) and solving for k = iv or k = 7 + iv leads to the
parametric form of the boundary of a frozen region,

x—Vw)r=GW), (39)
-0,V (v)T = 0,G(v), (40)

where for the boundary of the empty region V' (v) = —i¢’(iv) = sinh v and G(v) = X (iv)
is a solution of Eq. (17) with & = iv. The boundary of the fully occupied frozen
region, p = 1, is obtained from Eqgs. (39),(40) by substituting G(v) = X (7 + iv),
V(v) = —ig/(r +iv) = —sinhv. This transformation k& — k -+ 7 amounts to the particle-
hole conjugation. Since Eq. (17) has two solutions for X, the boundary of fluctuating
regions consists of two outer curves separating it from the frozen empty regions and two
inner boundaries separating it from the full frozen region.

Egs. (39,40) determine boundaries of liquid regions (see Fig. 3). It was shown that
this method known as the “tangent method” allows to find the shape of liquid regions
even in the presence of short-range interactions [26]. The essence of this method is the
fact that the boundary curve z(7) and the function G(v) are related by the generalised
Legendre transform

d
Gv)=z-V()r, —=V(). (41)
dr
For free fermions this allows to recover the function G(v) and, consequently, the function
Fy(z, k) from the explicit form of the boundaries z(7).
By fixing a point (z, 7) inside the frozen region one can solve Eq. (39) geometrically

by finding the slope v(z,7) of the line tangential to the frozen boundary passing
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Figure 3. One parameter family of lines given by Eq. (39) tangent to the boundary
of fluctuating region x(7). The point of tangency for given value of parameter v is
determined by Eq. (40).

through (x,7) as shown in Fig. 3. Since there are typically more than one such lines,
the function v(z,7) is multivalued (quadruple-valued in our case). For (z,7) close
enough to the boundary, two points of tangency approach each other, and so do their
slopes. Once (z, T) reaches the boundary, the two points of tangency coalesce, and their
slopes degenerate. This geometric scenario is equivalent to our earlier statement about
coalescing roots.

k e~ leave the real

As one moves inside the fluctuating region, two solutions z = e!
axis symmetrically and p begins to evolve from its frozen value. Solving F,(x,k) = 0
for k at fixed (z,7) provides the density and velocity profiles. Below we illustrate the
boundaries of the fluctuating regions and calculate the density and velocity profiles for
A > 1 and A < 1, which in the standard nomenclature of Refs. [0, 10] are called strong
and weak coupling phases, respectively.

From our geometric perspective, a more intuitive designation for these phases is
more appropriate. Indeed, looking at density profiles shown in Fig. 4 one sees that
the main feature of these solutions is that for A > 1, the liquid regions are completely
separated by the frozen boundary, while for A < 1 the liquid regions merge. In the
following, we use the names of separated and merged phases for A > 1 and A < 1,
respectively. The critical value A\, = 1 of the control parameter corresponds to the

Merger Transition.

4.1. Strong coupling X > 1: separated arctic circles

In this regime equation F.(z,k) = 0 is readily solved since m = 0 and the function
F.(z,k) in Eq. (33) factorizes. Substituting k& = iv we get G(v) = £(X + coshv) to
be used in Egs. (39),(40) for the boundaries of the empty frozen region. This leads
to 7 = Ftanhv, x = £(\ + 1/coshv) which is the parametric equation of the outer
half circles centered at £A. The particle-hole transformation gives the inner half circles
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A=1.2

W7,

A=0.25

Figure 4. 3D plot space-time density profile p(x, 7) accross the Merger Transition.

7 = Ftanhv, 2 = £(A — 1/coshv) describing the boundaries of the fully occupied
frozen region. The overall shape consists of two arctic circles separated by the full
frozen region. As the circles are centered at +\ and have unit radii the width of the
frozen region between them is 2\ — 2.

The density and velocity fields inside the fluctuating circular regions are obtained
from the same equation allowing k& = mp + iv to be complex. Inside the right circle,
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A=0.38 A=0.25

Figure 5. 3D plot space-time velocity profile v(z,7) in the separated, A > 1, and the
merged, A < 1, phases.

(z — \)* + 72 < 1 we have

1 xr—A
,T) = — arccos —, 42
1 1—
v(z,T) = §log1—|—:’ (43)

which are the known density and velocity profiles for one arctic circle [27, 8] (shifted
by A in the positive a-direction). The density and velocity profiles inside the left circle,
(z + \)?+72 < 1 are obtained from the above expression by reflection  — —x, 7 — —7,
corresponding to the reflected boundary conditions (p = 0 on the left hand side and
p = 1 on the right hand side). The velocity field “freezes” at its boundary value and
stays constant as one sweeps across the fluctuating region at fixed value of 7. Inverting
Eq. (42) for 7 = 0 yields the momentum distribution of GWW model in the strong
coupling phase

o(k) = A+ cosk (44)

positive everywhere in the Brillouin zone —7 < k < 7.
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4.2. Weak coupling A\ < 1: merged arctic circles

For A < 1 the critical parameter m = 1 — X > 0 and Eq. (17) gives G(v) =
++/(X + coshv)2 — m? for the outer boundary and G(v) = /(A — coshv)? —m?2 for
the inner one. Eliminating v from Eq. (40) leads to a full quartic equation and its

analysis becomes somewhat cumbersome. While it might be solved analytically the
resulting expressions are not very useful. Some analytic progress can be made in the
regime of small v, including the interesting central region, which we explore in more
detail in the next section. Here we just mention that while for the outer boundaries,
adjacent to the empty frozen region, p = 0, the function 7(v) remains smooth, the
solution for the inner boundary curve leads to 7(v) undergoing a discontinuity at v = 0.
This produces two characteristic cusps in the inner boundary with tips at (0, £/m)
and the arctic shape consists of a single simply connected region, which we refer to as
“merged arctic circles”. We present the density and velocity profiles obtained by solving
Eqgs. (39,40) numerically using Mathematica® in Figs. 4, 5

We can glean some insight on the solution in the weak coupling regime by
analytically solving Eq. (17) along the lines 7 = 0 and = = 0. In the former case
we see that we have the momentum distribution

o(k) = 2cos k cos? k_ m, (45)
2 2

which vanishes in a finite interval in the Brillouin zone around k£ = 7. Outside of this
interval it develops square root singularities at +k., where k. = 2arccos+/m. This
corresponds to a single interval of fluctuating density,

plx) = %arccos (\/m - /\> : (46)

which attains its maximum value pya = k./27 at 2 = 0.
Putting z = 0 in Eq. (17) we get the density along the central “ridge”,

1 1 A
p(0,7) = 2 + ;arcsin T

(47)

valid for |7] < {/m. We observe that this expression (up to a constant and overall
normalization) coincide with the equilibrium density profile (with 7 playing the role of
coordinate) of discrete log-gas [28] with density v/X. For A = 1 the cusps of the frozen
boundary touch, the ridge shrinks to a point and the frozen boundary looks as two
circles touching at (z,7) = (0,0).

5. Merger Transition

We have observed that the main feature of the phase transition is the merger of two arctic
circles at x = 0 via disappearance of the central isthmus and emergence of characteristic
cusps in the frozen boundary. We call it the Merger Transition and study it by expanding
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i
>

Figure 6. Central fluctuating region and its boundaries in the separated, zo > 0,
and merged, g < 0, phases. Dashed lines are boundaries of naively shifted separated
arctic curves, Eq. (50).

Eq. (33) in the vicinity of (z,7) = (0,0) in small deviations ¢ =7 — k = mop + iv < 1.
It is convenient at this stage to restore the macroscopic length and time scales, which
is equivalent to rescaling x — z/R, 7 — 7/R in Eq. (33). The approximate complex
curve (33)

2
(x —irq)? = (xo + q_2> — m?R? (48)
29

depends on two parameters with the geometric meaning discussed below. The density
profile obtained from this equation is shown in Fig. 6. Below we discuss the prominent
features of this solution.

We consider the frozen boundary first. In the separated phase m = 0 and
substituting dp = 0 into Eq. (48) we have the boundary in the parametric form

2

x::i:(aro—f—v—) : T==v/g. (49)
29

Eliminating v leads to the boundary consisting of two parabolae,

x=:|:<x0+gTT2) . (50)

Close to the boundaries the density deviates from 1 as square root of the distance to
the boundary into the liquid phase, i.e. for 7 = 0 we have for the right region (x > z)

V2
(5,0=—g(a:—.750)1/2, x 2 T, (51)
7r

and velocity keeps its value v = —g7 away from the boundary.
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The parameters zy and g have the clear geometric meaning of half the distance
between the frozen boundaries, and their curvature. In terms of the right hand side of
Eq. (39) 2o = RG(0) = L—Rand g~! = RG”(0) = R. The shape (50) is valid for 7y > 0
and describes the boundaries of the central frozen isthmus between two fluctuating
regions. Decreasing z( leads to the isthmus thinning out until its two boundaries touch
at the transition zy = 0.

For xy < 0 the curve Eq. (50) corresponds to the unphysical situation of overlapping
liquid regions with double valued density profile. To rectify this situation one has to
modify the right hand side of Eq. (48) by positive order parameter m = |zo|/R. This

9\ 2 2
T +oT = :F\/(ZEO — U—) —m?R? = Furo( /1 + (E) , (52)
2g Vo

where 79 = \/|xo|/g is the characteristic time and vy = 2|x|/7o is the characteristic
velocity scale. The degeneracy condition, Eq. (40), leads to

142 (—)2 5

_
1+(%)

This equation does not have real solutions for —79 < 7 < 79. This is the interval in which

gives

T = FTo

there is no separation of the two liquid regions and its endpoints (0,+7) correspond
to the boundary cusps. The presence of such a liquid region between arctic curves is
the characteristic feature of the merged phase. Tuning xg to zero from below makes
the cusps approach each other so that the width of the liquid “channel” behaves as
|lzo|*/2. At the Merger Transition, 2o = 0, the cusps touch each other, and the channel
connecting the liquid regions closes.

The solution of Eq. (53) for |7| > 79 gives the boundary velocity

o(7) = £, (1> (54)

To

in terms of the universal function

1 2 4
T(s)zé\/%—Q—l—\/Zsz—l—Sz, (55)

which has a square root singularity as s approaches 1 from above. Substitution of (54)

into (52) gives the universal shape of the boundary below the Merger Transition

(1) = £2|x0 : <_> : (56)
1+ 72 (%)
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which behaves near the tips of the boundary cusps as

(1) = ii'j%‘ (Tlo - 1)3/2 . (57)

This behaviour is identical to the standard singularity of a mapping of a two-

dimensional surface onto a plane known as cusp in Whitney classification [29, 30].
Expanding the right hand side of Eq. (52) for v < vy gives, for the positive sign choice,
the canonical form at the cusp singularity

() 02 ()

Here one regards (v, x, 7) as three dimensional coordinates of a two-dimensional surface
projected along the v-direction onto the plane (z, 7). The choice of the negative sign in
Eq. (52) leads to another surface with another Whitney cusp at 7 = —7. For |7] > 7
the boundaries z(7) are folds in Whitney classification [29].

In the limit 7 > 75 one recovers the parabolic shape Eq. (50) of the boundary.
Note that as x( is negative, the large 7 asymptotics are reproduced by the “naive” shift
of the frozen boundary, namely Eq. (50) with zq < 0, shown by dashed lines in Fig. 6.
The complex curve (52) and the resulting function (55) interpolate nicely between the
cusp and fold singularities.

In the merged phase the density profile for 7 = 0 becomes

5 1/2
dp = Q (\/x§+x2+|xg]> , (59)

which has minimum value 0 pyin = 21/9g|zo|/7. Across the narrow strait between the two
macroscopic liquid regions, x = 0, —79 < 7 < Ty, the density depletion has a semicircle
shape,

2
(5,0:—9 @—72. (60)

n g
6. Universality of the Merger Transition

We expect the above scenario of the Merger Transition, the shape of the frozen boundary,
and the density profile of the liquid regions near the point of merger to be universal.
The expectation is based on the fact that for any interacting model with short-range
interactions, the boundary can be obtained from dynamics of free fermions (particles or
holes) leading to the universal complex curve Eq. (48). The situation is similar to the
universal free-fermionic physics near boundaries of interacting systems [31]. Below we
provide a more detailed argument based on the symmetries of our solution and scaling
considerations.
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6.1. Complex curve at the phase transition

Let us consider the complex curve (33) close to the merger phase transition and close
to the space-time point where the merger occurs. In that region the curve (33) becomes
(48) which we reproduce here as

2\ 2
X? = (a:o + q_> - m’R?. (61)

Here X = x—irq. The boundary conditions we used as well as the dispersion of fermions
have time reversal 7 and space reflection (or parity) P symmetries. We summarize these
symmetries as

P: z——-x,q——q X ——X, (62)
T: 7= —-7,¢q—q, X > X. (63)

It is straightforward to check that the curve (61) has symmetries (62,63). In particular,
the time reversal symmetry guarantees the reality of the coefficients in the rhs of (61)
and the parity symmetry makes sure that the rhs is a function of ¢>. Therefore, based
only on the analyticity of X (q) and the symmetries (62,63) we could write

X? =a(q® +6)(q° + 62) (64)

as the most general algebraic solution up to order ¢*. Here, a is real and §; 5 are either
both real or form a complex conjugate pair &, = ds.

Let us now attempt to describe the most general transition at which two liquid
regions merge, keeping the symmetries (62,63). On one side of the phase transition
we should have separate liquid regions which is equivalent to the conditions a > 0,
§ = &, = 0y > 0. In this case we have X = ++/a(q? + ) describing two separate liquid
regions corresponding to the choice of sign (see the left panel of Fig. 6). When 6 = 0 the
boundaries of liquid regions touch. For the merged phase, one can consider the density
and current profiles corresponding to (64). Since the flux of particles j ~ pv = Im ¢?
must be zero for x = 0 by symmetry, the spectral curve should have real roots for all 7.
In addition p ~ Req should vanish for 7 > 7y. The only possibility for this to happen
is the one corresponding to d; = 0 < 0 and J, = 0 (and the identical solution with J; o
exchanged). That is X? = aq*(¢* + 20) (see the right panel of Fig. 6). We summarize
all cases as

(¢* +0)%, §>0,
X?/a={ q¢*, §=0, (65)
(> +20), 6<0.

In the particular model considered in this paper a = 1/4, § = 2(A — 1).
The phase transition is driven by the real parameter §. During the transition, the
type of complex curve changes as summarized in (65). As we explained above, the
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transition- in the shape of the curve is essentially fixed by requirements of (i) parity
and time-reversal symmetries of the fermion dispersion (Hamiltonian) and boundary
conditions (ii) the requirement of the least possible number of singularities. The latter
requirement forces (65) to be the quadratic polynomial in ¢? with either degenerate
roots or having one of the roots at 0.

We remark that we expect (65) to capture the universal dependence of density and
velocity of fermions near the merging point. Indeed, assume that there is an interaction
between fermions which preserves P and T symmetries of the Hamiltonian (for example,
fermions corresponding to XXZ spin chain). Then, near the point of the merger of two
liquid regions, the density of fermions is small (or close to 1). In this limit, the interaction
is negligible, and the solution of hydrodynamic equations is still captured by a complex
curve X (¢). Symmetries will then fix the form of (65) as a universal curve that changes
across the phase transition.

6.2. Scaling estimates at the Merger Transition

One can estimate the action (i.e., free energy) cost of the merged configuration using
the following geometric argument. For sufficiently small |xg|, zo < 0 the overlap of two
arctic curves computed naively has = dimension 2|x¢| and 7 dimension 24/2|x¢|/g with
the area of the overlap scaling as A ~ g~/2|z¢|%2, see Fig. 6. The depletion of the
density at point (0,0) is equal to dp = 2(g|zo|)'/?/m. The change of the energy (per

3/2

unit length) because of the depletion is §E ~ 6p x 6p* ~ 0p> ~ ¢*/?|z0|?/?. An estimate

of the action cost of the overlap region gives
08 ~ Ax OB ~ (g7 [ao*?) x (g*2[o[?) = gl (66)

This explains why the phase transition is of the third order. The exact expression for
the free fermion problem, Eq. (13) gives

2 2|£IZ’0’3
= 2 — 3:—
0S =R ><3m 3R

(67)

in full accordance with the estimate (66) for ¢ = 1/R. Similarly to the situation at
the edge of an interacting system [31] the precise relation between the parameter g
controlling the scale of typical boundary fluctuations and the global parameters of the
limiting shape is model specific and depends on interaction details.

7. Discussion

In this work, we considered an example of a phase transition of the third order in
a system characterized by a limit shape phenomenon. The transition is a merger
of two liquid (fluctuating) regions controlled by a geometric parameter defined by
boundary conditions. We used a free fermion formulation of the problem and mapped
the transition to the well-known transition in the Gross-Witten-Wadia model [9, 10].
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In the Coulomb gas picture of the transition developed in [9, 10] the transition is the
change of the support of the density of the Coulomb gas. In a complex plane, the support
changes from the whole unit circle to just an arc of the circle. [Compare to similar
Coulomb gas transitions described in the Ref. [15].] Using the path integral of 1d lattice
fermions propagating in imaginary time, we extended this picture to space-time. The
optimal space-time configuration of fermions dominating the path integral exhibits the
limit shape phenomenon. Namely, the space-time is divided into liquid regions, where
fermion density is between 0 and 1, and frozen regions with p = 0,1. At the change of
the geometric control parameter entering through the boundary conditions, two liquid
regions (arctic circles) separated by a frozen region merge into a single connected liquid
region (see Fig. 4). At the value of the geometric parameter corresponding to the
transition, the liquid regions touch. Within the mean-field approximation valid in
the thermodynamic limit when the sizes of liquid regions are much bigger than the
lattice size, we compute the optimal space-time distributions of the density and velocity
of fermions at both sides of the transition.We note that for a finite size (finite V),
the transition is somewhat smeared by statistical fluctuations. The character of these
fluctuations near the boundaries of liquid regions and, in particular, near the point of
the merger is a subject of intense studies (see [13, 12] and reference therein).

It is well known that hydrodynamic solutions of free fermion problems can be
described by an analytic function (complex curve) [1, 2]. Zooming into the vicinity
of the merger, one can describe the transition as a change of the complex curve.
Namely, we find that the curve changes according to (65) when the control parameter
0 passes through its critical value 6 = 0. We argued that this change of the curve is
universal, assuming that additional symmetries (parity and time-reversal) are present.
The universal density profiles on both sides of the transition are shown in Fig. 6. Using
the mapping to the GWW model, in the considered free fermion problem, one can also
compute the free energy exactly and identify the phase transition as the third-order.

A natural question one can ask is whether the features of the merger phase transition
described above are universal in the presence of interactions between fermions. The
answer depends on the symmetries of the system. To be more specific, let us consider
an example of XXZ quantum spin chain. The Jordan-Wigner transformation maps
the XXZ spin chain to fermions with short-range interactions, and one can consider the
amplitude (1) for these fermions as a function of L. The qualitative picture of the merger
of two liquid regions stays the same, at least for small anisotropy parameter A when
the interaction between fermions is weak (see Ref.[8]). The symmetries of the problem
include parity, time-reversal, and particle-hole symmetry. Near the point of merger,
the fermion density is small or close to 1. If the fermion density is close to 1, it can
be mapped to small density using particle-hole symmetry of the problem. In the limit
of small density, the fermions with short-range interactions become indistinguishable
from free fermions. Therefore, we expect that in the neighborhood of the space-time
point where the merger occurs, one can still use a complex curve to describe the fermion
density and velocity profiles. [In fact one can use complex curves to describe the whole
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segments of the boundary of the frozen region [26].] Then one can use parity and time-
reversal symmetry to argue for the universal shape of the curve (65). This means that
only the parameters such as the effective mass in X = x + iq7/m, the relationship of
the control parameter § to parameters of boundary conditions, and overall scales will
depend on details of the model. Up to the values of these parameters, the density and
velocity profiles near the merger will be determined by the universal curve (65).

One more feature that needs a discussion is the order of the phase transition. In the
presence of interactions, there is no free fermion description (or Coulomb gas picture)
describing the field distributions in the liquid region globally. This is why only the
boundary of the region [26] and the vicinity of the merger point allowed an analytical
treatment so far. However, we argued in Sec. 6.2 that the contribution of the vicinity
of the merger to the free energy has a discontinuity in the third derivative with respect
to the control parameter §. Assuming that the contribution of the regions far from the
merger point is analytic in §, we conjecture that the phase transition is of the third
order even in the presence of finite interactions.

The above arguments can be summarized by a conjecture that there is a (possibly
symmetry-protected) universality class of the third-order phase transitions occurring at
the merger of liquid regions in systems exhibiting limit shape phenomena. To confirm
(or disprove) this conjecture, further analytical and numerical studies of systems such
as XXZ spin chains or six-vertex models are needed.
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Appendix A. Dynamic picture for discrete momenta

We start with Eq. (6) and insert the unity

1= [ Gy ) (8D (48 (A1)

at every intermediate time slice labeled by 7. Here [{k}) = |k1, ko, ..., kn) are fermionic
states labeled by the ordered set of momenta, k; < ky < ... < ky and similarly for
[{x}). This leads to the path integral with the following action

SHHOY ool = R [ ar S [k + )] — 1o 4°(H) — 1o A¥)

i (L _ %) SO — ) (A2)

l

in terms of the phase space trajectories k;(7), ;(7). The terms depending explicitly on
the momenta k:lf/ "= ky(£1) at the end points of the time interval arise from the Eq. (7).

The variation of the action w.r.t. x;, k; inside the time interval leads to the ballistic
motion

(1) = 2(0) — i (k)7 (A-3)

while the variation w.r.t. k* fixes N momenta and N initial coordinates z;(0) as

2(0) — X —ie’ (k) ——iilo A*(eik)——l Likl (A.4)
: V= " Rok ® T R4 e |
10 | ek

The second equation is nothing but the discrete analogue of Eq. (15) if the collective
field X (k) is defined so that X (k;) = 2;(0).
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