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ABSTRACT
Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, exist-
ing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally
untestable with observed data. To assess the robustness of individual-level causal conclusion with uncon-
foundedness, this article proposes a method for sensitivity analysis of the ITE, a way to estimate a range
of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding
through a marginal sensitivity model, and adapts the framework of conformal inference to estimate an ITE
interval at a given confounding strength. In particular, we formulate this sensitivity analysis as a conformal
inference problem under distribution shift, and we extend existingmethods of covariate-shifted conformal
inference to this more general setting. The resulting predictive interval has guaranteed nominal coverage
of the ITE and provides this coveragewith distribution-free and nonasymptotic guarantees.We evaluate the
method on synthetic data and illustrate its application in an observational study. Supplementary materials
for this article are available online.
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1. Introduction

Consider a person who ponders whether to take the COVID-
19 vaccine. She is interested in understanding how much risk
the COVID vaccine can reduce for her. However, most large-
scale observational studies are conducted to estimate the average
vaccine efficacy over a whole population (Haas et al. 2021), and
such population-level estimates provide a summary that cannot
reflect individual heterogeneity.

The causal estimand that captures individual heterogeneity
is the individual treatment effect (ITE), the per-individual dif-
ference between the potential outcomes. However, estimation
of the ITE is fundamentally challenging, even beyond the usual
population-level estimands, because of its inherent uncertainty.
To address this challenge, researchers have recently adapted the
method of conformal inference (Vovk,Gammerman, and Shafer
2005) to estimate ITE intervals with good theoretical guarantees
(Kivaranovic et al. 2020b; Lei and Candès 2021). Conformal
inference helps estimate an interval that contains the true ITE
with a guaranteed minimal probability.

Conformal inference for ITE estimation is an important
innovation, but it comeswith assumptions. In particular, it relies
on the usual assumption of unconfoundedness (Kivaranovic
et al. 2020b; Lei andCandès 2021) that the treatment assignment
is conditionally independent of the potential outcomes. In
practice, this assumption can be difficult to accept for many
observational studies (Greenland, Pearl, and Robins 1999), and
violations of unconfoundedness will introduce hidden biases
into the estimation of the ITE. In the context of COVID-19
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vaccine studies, for example, unmeasured confounding may
come from coexisting conditions, medical resources, and
socioeconomic status (Amin-Chowdhury and Ladhani 2021).

To assess the robustness of individual-level causal conclu-
sions with unconfoundedness, this article develops amethod for
sensitivity analysis of the ITE. The idea of sensitivity analysis is
to quantify the violation of the required assumptions and then
to produce intervals of causal estimates that account for such
violations. In the context of the ITE, a sensitivity analysis must
account for two sources of uncertainty: the inherent uncertainty
of the estimand itself and the uncertainty due to violations of the
required assumptions.

We develop conformal sensitivity analysis (CSA), a method
for sensitivity analysis of ITE interval estimation. Given a pre-
specified amount of unmeasured confounding, CSA estimates
an interval that captures the true ITE with a guaranteed prob-
ability. We develop CSA by relaxing the assumption of uncon-
foundedness with a marginal sensitivity model (MSM) (Rosen-
baum 2002; Tan 2006), a general model of the treatment
assignment and potential outcomes that includes a real-valued
parameter for the strength of unmeasured confounding. With
the MSM in hand, we then show how sensitivity analysis can
be formulated as a predictive inference of the missing potential
outcomes, but under a general distribution shift. Finally, we
extend weighted conformal prediction (Tibshirani et al. 2019),
a predictive inference method developed in the setting of
covariate shift, to this more general setting of distribution
shift.

© 2022 American Statistical Association
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TheCSA algorithm contains two stages. Given a specification
of anMSM, it first computes the range of weight functions of the
weighted conformal prediction. While covariate shift leads to a
single weight function, distribution shift requires a range. Then
it uses these functions to quantify the bounds of the ITE, found
by solving an optimization problem with constrained weights.
The resulting algorithm provides a valid interval estimate of an
ITE whenever the true data generation is consistent with the
MSM.

CSA has several practical and theoretical strengths. By lever-
aging conformal inference, itmakesminimal assumptions about
the underlying distribution of the observed data, and its theo-
retical guarantees are valid with finite data. By using an MSM,
it does not impose additional untestable assumptions over the
distribution of a latent confounder and its effects on other
variables. CSA can be used with any predictive functions to fit
the treatment and outcome, and it can be applied after fitting
such functions with a light computational cost.

1.1. RelatedWork

Conformal Inference.The framework of conformal inferencewas
pioneered by Vladimir Vovk and his collaborators (Papadopou-
los et al. 2002; Vovk, Gammerman, and Shafer 2005; Vovk,
Nouretdinov, and Gammerman 2009; Vovk 2012). Recent
developments of conformal inference improve its accuracy (Lei
et al. 2018; Romano, Patterson, and Candès 2019), efficiency
(Lei, Rinaldo, and Wasserman 2015), and extend its applicable
domains (Lei, Rinaldo, and Wasserman 2015; Candès, Lei, and
Ren 2021).

First, regarding accuracy, a variety of conformal inference
algorithms were proposed to reduce the length of predictive
band. Some algorithms rely on the conditional quantile
regression of the outcome given the covariates to capture
the individual heterogeneity (Romano, Patterson, and Candès
2019; Kivaranovic, Johnson, and Leeb 2020a; Sesia and
Candès 2020), some adapt to skewed data by estimating the
conditional histograms (Sesia and Romano 2021), and others
estimate the conditional density function to produce nonconvex
predictive bands (Izbicki, Shimizu, and Stern 2020; Hoff 2021).
Second, to improve efficiency, the split conformal inference
framework is proposed; it uses data splitting to avoid multiple
refitting of the predictor (Papadopoulos 2008; Shafer and
Vovk 2008; Lei and Wasserman 2014). Such data-splitting
will also be adopted in this article. Finally, regarding domain
extensions, the weighted conformal prediction is proposed
to handle non-iid data (Tibshirani et al. 2019), generalizing
conformal inference from exchangeable data to data with
covariates shift.

Sensitivity analysis. Sensitivity analysis dates back to the study of
the average treatment effect (ATE) of smoking on lung cancer
(Cornfield et al. 1959). More recent advances for sensitivity
analysis posit a hypothetical latent confounder and evaluate its
impact on a causal conclusion (Rosenbaum and Rubin 1983a;
Imbens 2003; Ding and VanderWeele 2016; Dorie et al. 2016;
Cinelli and Hazlett 2020; Veitch and Zaveri 2020; Hong, Yang,
and Qin 2021). Though intuitive, introducing a latent con-
founder often entails additional untestable assumptions (Franks,

D’Amour, and Feller 2019). As an alternative, some methods
directly model the dependency between treatment assignment
and potential outcomes given the covariates, such as the MSM
in this article (Robins, Rotnitzky, and Scharfstein 2000; Tan
2006). With this strategy, some sensitivity models focus on
modeling the potential outcome given the treatment (Brumback
et al. 2004; Blackwell 2014), while others focus on modeling the
treatment distribution given the potential outcomes (Tan 2006;
Yadlowsky et al. 2018; Franks, D’Amour, and Feller 2019; Zhao,
Small, and Bhattacharya 2019).

Other papers consider different frameworks to evaluate
the sensitivity of a causal estimate. Some sensitivity analysis
methods measure the association between a latent confounder
and the treatment or outcome that produces a specific amount
of estimation bias (Imbens 2003; Ding and VanderWeele 2016;
Cinelli and Hazlett 2020; Veitch and Zaveri 2020). Another
way to evaluate sensitivity is to compute an interval estimate
of the target estimand for a specific level of unmeasured
confounding. For the ATE, the percentile bootstrap produces
a partial identified region with asymptotically valid coverage
(Zhao, Small, and Bhattacharya 2019). For the conditional
average treatment effect (CATE), data-dependent interval
estimations have been proposed via nonparametric and (semi-
)parametric approaches (Yadlowsky et al. 2018; Kallus, Mao,
and Zhou 2019; Jesson et al. 2021). This work further explores
the interval estimation of the ITE under an unmeasured
confounding.

In an independent and concurrent paper, Jin, Ren, and
Candès (2021) also develops sensitivity analysis procedures
for the ITE based on robust conformal inference. Jin, Ren,
and Candès (2021) derives a sensitivity analysis based on the
MSM and proposes an extended conformal inference algorithm
that is equivalent to Algorithm 1. However, this article and
Jin, Ren, and Candès (2021) propose the methods of analysis
that are complementary and offer different perspectives. The
present article defines the MSM without explicitly having to
posit a latent confounder and uses Tukey’s factorization for an
alternative derivation of Lemma 1 (same as Lem. 3.1 Jin, Ren,
and Candès 2021). We propose and implement an algorithm
to improve the sharpness of the predictive set, provide tools
of calibration from observed data, and design methods to
evaluate the estimation over different sensitivity models in
the MSM.

2. Conformal Inference of Individual Treatment
Effects

We first set up the problem of ITE estimation. Next, we for-
mulate the ITE estimation in observational study as a confor-
mal inference problem under distribution shift, and introduce
existing estimation methods under the assumption of uncon-
foundedness. Then we discuss the challenges presented to ITE
estimation when there is unmeasured confounding.

2.1. Problem Setup

Consider N statistical units. Each unit i ∈ {1, 2, . . . ,N} is
associated with a tuple of random variables (Xi,Ti,Yi(0),Yi(1)).
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Algorithm 1: CSA for Estimating an Unobserved Potential
Outcome
Input: Data Z = (Xi,Yi,Ti)

N
i=1, where Yi is missing if

Ti = 1 − t; level α, sensitivity parameter �, target point
covariates X.

Step I: Preliminary processing
1: Split the data into 2-fold Zpre and Zcal; let

Ipre = {i : Zi ∈ Zpre,Ti = t}, Ical = {i : Zi ∈ Zcal,
Ti = t}

2: Estimate propensity score ê(x) on Zpre
3: Estimate predictor μ̂(·) on {Xi,Yi}i∈Ipre

Step II: Predictive interval for Yi(t) at the target point
1: Compute nonconformity scores V = {Vi}i∈Ĩcal

,
Ĩcal = Ical ∪ {N + 1}, VN+1 = ∞

2: Compute the bounds (w�
lo(Xi),w�

hi(Xi)) for i ∈ Ĩcal by
Equation (18), XN+1 = X;

3: For i ∈ Ĩcal, initialize the weights wi = w�
lo(Xi)

4: Sort V in ascending order and relabel the ordered
elements from 1 to |V|

5: Relabel {wi}i∈Ĩcal
, {Xi}i∈Ĩcal

according to the labels of
the sorted V ; set k = |V|

6: do
wk ← w�

hi(Xk)
Compute normalized weights pi = wi∑|V|

j=1 wj
, for

i ∈ {1, 2, . . . , |V|}
k ← k − 1

while
∑|V|

i=k+1 pi < α

Output: Compute Ĉ�
t (X) by Equation (20) with

Q̂(Z1:n,X) = Vk+1

Xi ∈ X ⊂ R
p is a vector of covariates, Ti ∈ {0, 1} is the

treatment, Yi(1),Yi(0) ∈ Y ⊂ R are the potential outcomes
under treatment and control (Neyman 1923; Rubin 1974). We
use P0(X,T,Y(0),Y(1)) to denote the true joint distribution of
these variables.

We make the stable unit treatment value assumption
(SUTVA) (Rubin 1980). Under SUTVA, the observed outcome
Yi ∈ R is one of the potential outcomes Yi = TiYi(1) + (1 −
Ti)Yi(0).

Assumption 1 (SUTVA). There is no interference between units,
and there are no unrepresented treatments.

We further assume that each unit has a positive probability
of being assigned to all treatment groups and the probability
is bounded away from the extremes (Rosenbaum and Rubin
1983b).

Assumption 2 (Strong overlap). ∃ η > 0, η < p(Ti = 1 |Xi) <

1 − η with probability 1.

The causal estimand of interest is the ITE. The ITE of unit i
is defined as the difference between its potential outcomes, τi =
Yi(1) − Yi(0).

Estimating the ITE is challenging. The fundamental prob-
lem of causal inference is that we can at most observe one
potential outcome of each unit (Holland 1986). Therefore, the
ITE, which requires knowing both the potential outcomes, can
never be observed. Furthermore, unlike population-level causal
estimands, an ITE is inherently random. Even with a known
joint distribution P0(X,T,Y(0),Y(1)), an ITE is not point-
identifiable (Hernan and Robins 2010).

To tackle these challenges, the problem of ITE estimation has
been reframed as a predictive inference problem (Kivaranovic
et al. 2020b; Lei and Candès 2021).

2.2. Predictive Inference in Observational Studies

The idea of predictive inference is to forma covariate-dependent
predictive band that contains the outcome of a new data point
with a guaranteed probability (Vovk, Gammerman, and Shafer
2005; Barber et al. 2021b). For predicting potential outcomes,
predictive inference aims to use observed data {Xi,Yi(t)}i:Ti=t
from the treatment group t to learn a mapping from the covari-
ates X to an interval estimate Ĉt(X) ⊂ R of the potential
outcome Y(t). For a new data point (X,Y(t)) ∼ P(X,Y(t)), the
bandmust have a valid coverage probability P(Y(t) ∈ Ĉt(X)) ≥
1 − α, where the probability is taken over both X and Y(t) and
α ∈ [0, 1] is a predetermined level.

Conformal inference is a collection of methods that realize
the goal of predictive inference (Vovk, Gammerman, and Shafer
2005). Classic conformal inference assumes the training data
and the target data are exchangeable. Based on exchangeability,
the predictive band is constructed by the quantiles of the predic-
tion residuals. Weighted conformal prediction (WCP) extends
the setting to covariate shift (Tibshirani et al. 2019), where
distribution of the covariates P(X) changes from the training
data to the target data but the outcome distribution P(Y(t) |X)

remains the same. Under covariate shift, WCP produces a valid
predictive interval (Tibshirani et al. 2019).

WCP has been applied to the ITE estimation (Lei and Can-
dès 2021). Suppose we want to estimate the missing outcome
Y(t) of a randomly sampled unit. The relationship between the
observed data and the inference target (X,Y(t)) is

Training: (Xi,Yi(t))
iid∼ p(X |T = t) · p(Y(t) |X,T = t),

i ∈ {i : Ti = t};
Target: (X,Y(t)) ∼ p(X) · p(Y(t) |X).

(1)
For the training data, we observe both the covariatesXi and out-
come Yi(t). For a target data point, we only observe covariates
X and the goal is to infer the missing outcome Y(t).

WCP for the ITE estimation crucially relies on the assump-
tion of unconfoundedness (Kivaranovic et al. 2020b; Lei
and Candès 2021), that the units are assigned to the treat-
ment groups based only on the observed covariates, that is,
(Yi(0),Yi(1))Ti |Xi. Under unconfoundedness, the conditional
distributions of a potential outcome remain invariant across
treatment groups, P(Y(t) |X,T = t) = P(Y(t) |X). And
Equation (1) becomes

Training: (Xi,Yi(t))
iid∼ p(X |T = t) · p(Y(t) |X),

i ∈ {i : Ti = t};
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Target: (X,Y(t)) ∼ p(X) · p(Y(t) |X). (2)

The only difference between the training and the target
distribution is on the covariates distribution. In other words,
unconfoundedness reduces the setting of counterfactual
inference from the general distribution shift in Equation (1)
to covariate shift in Equation (2), for which WCP is readily
applicable.

2.3. ITE Estimation under Unconfoundedness

We explain how WCP tackles the predictive inference problem
in Equation (1) and point out the challenges when unconfound-
edness is violated.

Denote each training data pair as Zi := (Xi,Yi(t)), Z1:n =
(Z1, . . . ,Zn). Given a predictive function μ̂(·) : X 
→ Y ,
conformal inference uses a scalar-valued functionV : X ×Y →
R to measure the predictive error. For instance, Vi might be
chosen as the absolute residual functionV(Xi,Yi(t)) = |Yi(t)−
μ̂(Xi)| with mean prediction μ̂(·) (Vovk, Gammerman, and
Shafer 2005); we will discuss how to fit the predictor μ̂(·) later
and take it as a fixed mapping for now. The nonconformity score
is defined for each data point as Vi := V(Zi).

Denote the αth quantile of a random variable X ∼ p(X) as
Qα(X), where Qα(X) = inf{x : p(X ≤ x) ≥ α}, α ∈ [0, 1]. Let
δv(V) be theDirac delta function, defined as δv(V) = 1 ifV = v
and δv(V) = 0 otherwise. We denote the quantile of a discrete
distribution and the quantile of an empirical distribution as

Qα

( n∑
i=1

piδvi

)
:= Qα(V), V ∼

n∑
i=1

piδvi ;

Qα(v1:n) := Qα

( n∑
i=1

1
n
δvi

)
.

We define the conformal weights as the density ratio of the
training and target distributions,

wt(x, y) := p(X = x)p(Y(t) = y |X = x)
p(X = x |T = t)p(Y(t) = y |X = x,T = t)

. (3)

Then for units 1 ≤ i ≤ n, let the normalized weights be

pti(Z1:n, (x, y)) :=
wt(Zi)∑n

i=1 wt(Zi) + wt(x, y)
,

ptn+1(Z1:n, (x, y)) :=
wt(x, y)∑n

i=1 wt(Zi) + wt(x, y)
.

where pti are the weights for the observed data and ptn+1 is
the weight for a new data. When the conformal weights in
Equation (3) are known or computable, we can use the WCP to
derive a predictive interval (Tibshirani et al. 2019),

Ĉt(x) = {
y ∈ R : V(x, y) ≤ Q1−α

( n∑
i=1

pi(Z1:n, (x, y))δVi

+ pn+1(Z1:n, (x, y))δ∞
)}
. (4)

The interval Ĉt(x) is guaranteed with a preset 1 − α coverage
probability (Tibshirani et al. 2019; Lei and Candès 2021), that
is, P(X,Y(t))∼p(X)p(Y(t) |X)(Y(t) ∈ Ĉt(X)) ≥ 1 − α .

Computing the predictive interval Ĉt(x) relies on the confor-
mal weights being accessible. In an ideal randomized controlled
trial (RCT) with perfect compliance, the training and target data
in Equation (1) are iid, hence, the conformal weights wt(x, y) ≡
1. In an observational study under unconfoundedness, the con-
formal weights wt(x, y) = p(X = x)/p(X = x|T = t) can be
estimated from the observed data (Lei and Candès 2021).

However, when unconfoundedness is violated, the joint dis-
tribution of the covariates and outcome shifts from training to
target as shown in Equation (1). We will see that the conformal
weights wt(x, y) are nonidentifiable under such distribution
shift. When unconfoundedness is violated, existing conformal
inference cannot be directly applied to ITE estimation.

3. Sensitivity Analysis for ITEs

In this section, we develop an individual-level sensitivity anal-
ysis for estimating a missing outcome and generalize it to a
sensitivity analysis for the ITE. We first define what it means to
deviate from unconfoundedness. We then show how to incor-
porate the uncertainty from an unknown confounding into the
construction of a valid predictive interval.

3.1. Confounding Strength and theMarginal Sensitivity
Model

A sensitivity analysis quantifies the deviation from uncon-
foundeness and evaluates the corresponding range of causal
estimates.We quantify the strength of unmeasured confounding
by the marginal sensitivity model (MSM) (Tan 2006; Zhao,
Small, and Bhattacharya 2019). Under unconfoundeness, the
propensity score, e(x) := p(T = 1 |X = x) (Rosenbaum and
Rubin 1983b), is the same as the selection score, st(x, y) :=
p(T = 1 |X = x,Y(t) = y) (Scharfstein, Rotnitzky, and
Robins 1999; Robins, Rotnitzky, and Scharfstein 2000).Without
unconfoundeness, the selection scores no longer equal to the
propensity score. Their difference represents the strength of
confounding, which can be measured by the odds ratio (OR),
OR(st(x, y), e(x)) := [

st(x, y)/(1 − st(x, y))
]
[e(x)/(1 − e(x))] .

The MSM assumes that under the true data distribution P0,
the odds ratio between the selection score and the propensity
score is bounded by a given range (Tan 2006; Zhao, Small, and
Bhattacharya 2019).

Definition 1 (Marginal Sensitivity Model). Under the dis-
tribution P0 over (X,T,Y(1),Y(0)), assume the propensity
score e(x) and selection score st(x, y) satisfy st(x, y) ∈ E(�),
where

E(�)= {s(x, y) : s(x, y) : X × Y 
→ [0, 1],
1/� ≤ OR(s(x, y), e(x)) ≤ �,

for all x ∈ X , y ∈ Y}, (5)

and the sensitivity parameter � ≥ 1.

The magnitude of � is the degree of deviation from uncon-
foundedness. The set E(�) expands with an increasing�, repre-
sentingmore possible ways of the treatment assignment that are
not explained by the observed covariates. By specifying �, the
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MSM assumes a rich set of data generating distributions, which
avoids imposing parametric assumptions onhowanunobserved
confounder interacts with the treatment and outcome.

Under the assumption of an MSM, we will develop CSA
in a two-stage approach. In the first stage, we quantify how
the uncertainty from unmeasured confounding propagates to
the conformal weights. In the second stage, we leverage the
uncertainty in the conformal weights to create a valid predictive
interval.

3.2. FromConfounding Strength to the ConformalWeights

We illustrate that under unmeasured confounding, the predic-
tive interval in Equation (4) cannot be computed by the obser-
vational data, which is themain challenge in applying conformal
inference for sensitivity analysis.

The conformal weights in Equation (3) decompose to two
terms. The first term p(X)/p(X |T = t) = p(T = t)/p(T =
t |X) can be inferred from data. The second term is,

p(Y(t) |X)

p(Y(t) |X,T = t)
= p(T = t |X) + p(Y(t) |X,T = 1 − t)

p(Y(t) |X,T = t)
p(T = 1 − t |X). (6)

Without unconfoundedness, the density ratio on the right
hand side of Equation (6) involves the nonidentifiable dis-
tribution p(Y(t) |X,T = 1 − t) of the missing potential
outcome.

To deal with this challenge, we transfer the uncertainty from
the unknown confounding to the uncertainty of the conformal
weights. The nonidentifiable density ratio term in the conformal
weights is related to the odds ratio in theMSM. Applying Bayes’s
rule,

p(T = 1 |X,Y(t)) =p(Y(t) |X,T = 1)p(T = 1 |X)

p(Y(t) |X)

=1/
(
1 + 1 − e(X)

e(X)

p(Y(t) |X,T = 0)
p(Y(t) |X,T = 1)

)
.

(7)

Equation (7) is also known as Tukey’s factorization (Brook 1964;
Franks, Airoldi, and Rubin 2016; Franks, D’Amour, and Feller
2019).

Based on Tukey’s factorization, the following lemma shows
that the conformal weight is proportional to the inverse selec-
tion score and the density ratio of a potential outcome in the
two treatment groups is bounded by the sensitivity parameter.

Lemma 1. (i) For the conformal weights in Equation (3), we
have wt(x, y) = p(T = t)/p(T = t |X = x,Y(t) = y). (ii)
The MSM with parameter � equivalently assumes

1
�

≤ p(Y(t) = y|X = x,T = 1)
p(Y(t) = y|X = x,T = 0)

= OR(s(x, y), e(x)) ≤ � (8)

The sensitivity parameter of the MSM specifies the range of
plausible conformal weights.

Lemma 2. Given an MSM with sensitivity parameter 1 ≤ � <

∞, the weight function for the weighted conformal prediction
in Equation (3) is bounded by(

1 + 1
�

(1 − e(x)
e(x)

)2t−1
)
p(T = t)

≤ wt(x, y) ≤
(
1 + �

( (1 − e(x))
e(x)

)2t−1
)
p(T = t). (9)

Note that the bounds in Equation (9) are uniform for all y.When
� = 1, the upper and lower bounds of the conformal weights
are the same. When � > 1, the conformal weights cannot be
point identified. The range in Equation (9) represents the weight
uncertainty.

3.3. FromConformalWeights to the Predictive Band

We first define a valid predictive band in sensitivity analysis.
Then we demonstrate the validity of a predictive interval given a
specific sensitivity model. The union of such intervals becomes
a valid predictive band for the MSM. Finally, as a practical way
to obtain the union set, we propose and solve a constrained
quantile optimization problem.

Valid Predictive Bands under Sensitivity Models. By Equa-
tion (8), each selection score st(x, y) specifies amissing outcome
distribution

p(st)(Y(t) |X,T = 1 − t)
= OR(st(X,Y(t)), e(X))1−2t · p(Y(t) |X,T = t). (10)

For a selection score st in the collection of sensitivity models
E(�), the target data in Equation (1) is generated by a distribu-
tion depending on st , that is,

p(st)(Y(t) |X) = p(T = t |X)p(Y(t) |X,T = t)
+ p(T = 1 − t |X)p(st)(Y(t) |X,T = 1 − t).

(11)

With the notation above, the validity of the predictive inter-
val is defined as a worst-case guarantee under all plausible
sensitivity models in E(�).

Definition 2. Under a set of sensitivity models E(�), the predic-
tive band for the potential outcome Y(t) with (1 − α) marginal
coverage is a band that satisfies

PX,Y(t)∼p(X)p(st )(Y(t) |X)(Y(t) ∈ Ĉt(X)) ≥ 1 − α, (12)

for any data generating distribution P0 with the corresponding
selection score st ∈ E(�).

The goal is to construct a predictive interval that satisfies
Definition 2 with E(�) defined by the MSM. Our first step
is to create a valid predictive interval under a sensitivity
model.

Coverage Guarantees for a Fixed SensitivityModel. Given a fixed
st ∈ E(�), plugging Equation (11) to Equation (3), the con-
formal weight w(st)

t (x, y) becomes a function of st . Let w(st)
i =
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w(st)
t (Zi) be the conformal weight for Zi, the predictive band in

Equation (4) becomes

Ĉ(st)(x) = {
y ∈ R : V(x, y) ≤ Q1−α

( n∑
i=1

p(st)
i δVi + p(st)

n+1δ∞
)}
,

(13)

where {p(st)
i }n+1

i=1 normalizes {w(st)
i }n+1

i=1 and n is the number of
data points.

In the following theorem, we show that Ĉ(st)(x) has a valid
coverage given a specific sensitivity model st , when the propen-
sity score is either known or estimable.

Lemma 3. Under SUTVA and strong overlap, for a selection
score st ∈ E(�), we have

1. With a known propensity score e(X), the predictive band in
Equation (13) has coverage

1 − α ≤ PX,Y(t)∼p(X)p(st )(Y(t) |X)(Y(t) ∈ Ĉ(st)
t (X))

≤ 1 − α + �/η

n + �/η
. (14)

2. With an estimated propensity score ê(X), ifη < ê(Xi) < 1−η

almost surely for a constant η ∈ (0, 0.5), the predictive band
Ĉ(st)(x) in Equation (13) has a coverage probability

1 − α − � ≤ P(Y(t) ∈ Ĉ(st)(X)) ≤ 1 − α + �/η

n + �/η
+ �,

(15)

� = �

2
p(T = t)Ex∼p(X |T=t)

∣∣ 1
ê(x)t(1 − ê(x))1−t

− 1
e(x)t(1 − e(x))1−t

∣∣.
With a known propensity score, Equation (14) demonstrates

that the coverage of the predictive band Ĉ(st)(x) is valid and
is close to the nominal level. The closeness depends on the
overlapping and confounding strength. When the estimated
propensity score ê(X) differs from the true propensity score
e(X), as shown in Equation (15), the coverage probability might
have an extra slack quantity �. The reason for ê(X) �= e(X)

could be the estimation error from the finite sample or the
inference error from a misspecified treatment model.

Union Method. Based on the predictive band Ĉ(st)(x), we pro-
pose a union method that achieves the valid coverage under the
MSM. That is, we now consider the worst-case coverage for all
sensitivity models st ∈ E(�).

Proposition 1. Suppose the predictive interval Ĉ(st)(X) =
[L(st)(X),U(st)(X)] satisfies

PX,Y(t)∼p(X)p(st )(Y(t) |X)(Y(t) ∈ Ĉ(st)
t (X)) ≥ 1 − α (16)

for each st ∈ E(�). Then let L = inf st∈E(�) L(st) and
U = supst∈E(�) U(st), the interval Ĉ�

t (X) = [L,U] =
∪st∈E(�)[L(st),U(st)] is a predictive interval for Y(t) with at least
(1 − α) coverage under the sensitivity models E(�).

Proposition 1 states that to obtain a valid predictive interval
for theMSM, we can first compute the predictive interval under
a specific sensitivity model as in Equation (13), then take the
union set by finding the extreme endpoints of such intervals over
all the sensitivity models. By Equation (13), finding the extreme
endpoints is equivalent to solving

max
st∈E(�)

Q1−α

( n∑
i=1

p(st)
i

(
Z1:n, (X, y)

)
δVi + p(st)

n+1
(
Z1:n, (X, y)

)
δ∞

)
.

(17)

However, in practice, it is difficult to directly search over the
sensitivitymodels in E(�), because the elements of E(�) are not
defined parametrically.

Quantile Optimization with Linear Constraints. To operational-
ize Equation (17), we can search over the conformal weights
instead of the sensitivity models. As Equation (17) shows, a
sensitivity model influences the predictive band only through
the conformal weights.

In Section 3.2, we find the range of conformal weights under
an MSM. Denote the upper and lower bounds of the conformal
weights in Lemma 2 as

w�
lo(x) :=

(
1 + 1

�

(1 − e(x)
e(x)

)2t−1
)
p(T = t),

w�
hi(x) :=

(
1 + �

( (1 − e(x))
e(x)

)2t−1
)
p(T = t). (18)

Then the optimization in Equation (17) simplifies to a con-
strained optimization problem,

max
w1:n+1

Q1−α

( ∑n
i=1 piδVi + pn+1δ∞

)
.

subject to pi = wi∑n+1
i=1 wi

, 1 ≤ i ≤ n + 1

w�
lo(Xi) ≤ wi ≤ w�

hi(Xi), 1 ≤ i ≤ n,

w�
lo(X) ≤ wn+1 ≤ w�

hi(X),

(19)

where the conformal weights w = (w1, . . . ,wn,wn+1) are the
optimizing variables. For notational convenience, we suppress
the superscript t and denote wi = w(Xi,Yi) for 1 ≤ i ≤ n, and
wn+1 = w(X, y).

An efficient algorithm to solve Equation (19) can be designed
by characterizing its optima.

Proposition 2. Without loss of generality, suppose X1:n are
labeled such that the nonconformity scores are ordered, V1 ≤
V2 ≤ · · · ≤ Vn < Vn+1 = ∞, and let

k̂ = max
{
k ∈ [n + 1] : for k ≤ j ≤ n, wj = w�

hi(Xj),

wn+1 = whi(X),
n+1∑
j=k

pj ≥ α;

for j < k,wj = w�
lo(Xj)

}
.

Then the optima of Equation (19) is ŵ = (w�
lo(X1), . . . ,

w�
lo(X̂k−1),w

�
hi(X̂k), . . . ,w

�
hi(Xn),w�

hi(X)). Furthermore, the
optimal objective value Q̂(Z1:n,X;�,α, t) = V̂k.
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According to Proposition 2, to solve Equation (19), we first
sort V1:n+1 in ascending order and initialize the conformal
weights wi = w�

lo(Xi) for 1 ≤ i ≤ n, wn+1 = w�
lo(X). Then we

iteratively flipwk fromw�
lo(Xk) tow�

hi(Xk) for k = n+1, n, . . . , 1
until

∑n+1
i=k pi ≥ α. Supposing the iteration stops at k = m, the

optimal objective value in Equation (19) is uniquely determined
as Q̂(Z1:n,X;�,α, t) = Vm.

To sumup, by Lemma 3, the interval Ĉ(st)
t (x) in Equation (13)

satisfies the coverage of Equations (14) and (15). With Q̂ given
in Proposition 2,

Ĉ�
t (x) = {

y ∈ R : V(x, y) ≤ Q̂(Z1:n, x;�,α, t)
}

(20)

is the union set ∪st∈E(�)Ĉ(st)(x). According to Proposition 1,
Ĉ�
t (x) is a valid predictive interval of a missing counterfactual

outcome under the MSM.

Theorem 1. Under the condition of Lemma 3, with known
propensity score e(X), the predictive band Ĉ�

t (x) in Equa-
tion (20) has nominal coverage 1−α ofY(t) under the collection
of sensitivity models E(�); with an estimated ê(X), the coverage
is at least to the lower bound in Equation (15).

Implementation and Computational Cost. We compute the
predictive interval by adopting the framework of split conformal
prediction (Papadopoulos et al. 2002; Lei andWasserman 2014).
Classic conformal inference fits the predictive function using
the leave-one-out observed data to ensure the exchangeability
and has to fit a predictor multiple times. Spilt conformal predic-
tion reduces the computational cost by randomly splitting the
observed data into a preliminary set and a calibration set. The
prediction model is fitted on the preliminary set for one time,
set as fixed, and used to compute the nonconformity scores on
the calibration set and target set.

For CSA, the predictive interval in Equation (20) can
be computed analytically on top of a specific conformal
inference algorithm. As an example, for the split conformal
inference with nonconformity score Vi = |Yi − μ̂(Xi)|
(Lei, Rinaldo, and Wasserman 2015), where μ̂(·) is the
mean response function, Equation (20) becomes Ĉ�

t (x) =
[μ̂(x) − Q̂(Z1:n, x;�,α), μ̂(x) + Q̂(Z1:n, x;�,α)]. For split
conformal quantile regression with nonconformity score Vi =
max{̂qα/2(Xi) − Yi,Yi − q̂1−α/2(Xi)} (Romano, Patterson,
and Candès 2019; Lei and Candès 2021), where q̂(·) is the
conditional quantile function, Equation (20) becomes Ĉ�

t (x) =
[̂qα/2(x) − Q̂(Z1:n, x;�,α), q̂1−α/2(x) + Q̂(Z1:n, x;�,α)]. The
full algorithm is summarized in Algorithm 1.

For each target unit, to solve the optimization in Equa-
tion (19), the computational complexity is O(mn) if the loop
ends in m iterations and the worst-case complexity is O(n2).
When the target coverage 1 − α is high, m is close to 1 and
the total computation time is close to the optimal rate that
is needed to evaluate the objective function for one time.
Other computations are sortingV1:n+1 and fitting the treatment
and outcome models, which can be shared by different target
units. Therefore, CSA is highly efficient, inducing little extra
computation comparing to the conformal prediction under
unconfoundedness.

3.4. Predictive Band for the Individual Treatment Effect

We now develop a sensitivity analysis for the ITE of a target
unit, for which both potential outcomes are unobserved. Let
the covariates of a target unit be X. Using the data of the
treatment group t, by Algorithm 1, we can construct an interval
Ĉ�
t (X) = [L�

t (X),U�
t (X)] which has 1 − αt coverage of Y(t)

under the sensitivity models E(�). Let Ĉ�(X) = [L�
1 (X) −

U�
0 (X),U�

1 (X) − L�
0 (X)] and α1 + α0 = α. By the Bonferroni

correction,
P(Y(1) − Y(0) ∈ Ĉ�(X)) ≥ 1 − P(Y(1) /∈ Ĉ�

1 (X) or
Y(0) /∈ Ĉ�

0 (X)) ≥ 1 − α. (21)
So the predictive interval Ĉ�(X) has the desired coverage.

Though computationally simple, the Bonferroni method might
produce overly conservative interval Ĉ�(X) for the ITE, because
the coverage 1 − αt for each potential outcome is higher than
1 − α.

To mitigate this problem, we follow (Lei and Candès 2021)
and develop a nested approach. The idea is to first randomly
sample a subset of data as the validation set (indexed by Ival)
and set the rest of the observed data as the nonvalidation set.
For each individual i ∈ Ival, let Ĉ�(Xi) = Ĉ�

1 (Xi) − Yi(0) if
Ti = 0 and Ĉ�(Xi) = Yi(1) − Ĉ�

0 (Xi) if Ti = 1. The coverage
probability decomposes as

P(Yi(1) − Yi(0) ∈ Ĉ�(Xi))

= P(Ti = 1)P(Yi(0) ∈ Ĉ�
0 (Xi)|Ti = 1)

+ P(Ti = 0)P(Yi(1) ∈ Ĉ�
1 (Xi)|Ti = 0).

If the interval Ĉ�
t (Xi) has a coverage probability of Yi(t) higher

than 1 − α, the coverage probability of Ĉ�(X) for the ITE is
also higher than 1− α. The dataset D̃ = {Xi, Ĉ�(Xi)}i∈Ival with

Xi
iid∼ p(X) can be used to fit a predictive function X 
→ Ĉ�(X),

which maps to a predictive interval Ĉ�(X) for a data point with
covariates X ∼ p(X). The mapping can be two regressions with
the input as Xi, i ∈ Ival and the output as the upper and lower
endpoints of Ĉ�(Xi), respectively. This becomes a relatively easy
in-sample prediction problem.

We use Algorithm 1 to obtain the predictive intervals Ĉ�
t (Xi)

for the data points in the validation set. The training data are
from the treatment group 1 − t in the non-validation set and
the target data are from the treatment group t in the validation
set, t = 0, 1. Similar to Lemma 2, the bounds of the conformal
weights wt(x, y) can be computed as

p(X |T = t)p(Y(t) |X,T = t)
p(X |T = 1 − t)p(Y(t) |X,T = 1 − t)

∈ [ 1
�

( e(x)
1 − e(x)

)2t−1
,

�
( e(x)
1 − e(x)

)2t−1]
.

(22)
The algorithm is summarized in Algorithm 2.

3.5. Sharpness via Covariates Balancing

Notion of sharpness. Consider the sharpness on the sensitivity
models. A sharp sensitivity model should be data compatible
and not have observational implications (Franks, D’Amour, and
Feller 2019; Dorn and Guo 2022). For the MSM, we define the
sharp MSM as
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Algorithm 2: CSA for the ITE estimation with Nested
Method
1 Input: Data (Xi,Ti,Yi(Ti))

N
i=1, level α, sensitivity

parameter �, target covariates X
2 Step I: Preliminary processing

1: Split the data into 2-fold, indexed by I and Ival
2: Denote the treated and control group data in I (Ival) as

I t , Ic (I t
val, Ic

val), respectively
Step II: Predictive interval for the ITE τi at the target
point
1: Run Algorithm 1 with data in I , Ipre ∪ Ical = I t and

for each target point i ∈ Ic
val; the bounds of weight

w�
lo(x) = ê(x)/(�(1 − ê(x))) and

w�
hi(x) = �̂e(x)/(1 − ê(x)); return Ĉ�

1 (Xi)

2: For i ∈ Ic
val, compute Ĉ�(Xi) = Ĉ�

1 (Xi) − Yi(0)
3: Run Algorithm 1 with data in I , Ipre ∪ Ical = Ic and

for each target point i ∈ I t
val; the bounds of weight

w�
lo(x) = (1 − ê(x))/(�̂e(x)) and

w�
hi(x) = �(1 − ê(x))/̂e(x); return Ĉ�

0 (Xi)

4: For i ∈ I t
val, compute Ĉ�(Xi) = Yi(1) − Ĉ�

0 (Xi)

5: Learn the predictive function X → Ĉ�(X) with training
data {Xi, Ĉ�(Xi)}i∈Ival ; predict Ĉ�(X) for the target data
with the learned predictive function

Output: Ĉ�(X)

E∗(�) = {st(x, y) ∈ E(�) :
∫

p(st)

(Y(1) = y |X = x,T = 0)dy = 1}, (23)

where E(�) is defined in Equation (5) and p(st)(Y(1) =
y |X,T = 0) is the induced counterfactual distribution in
Equation (10). The sharp MSM is a subset of the selection
scores in E(�) that induces proper counterfactual density. By
Lemma 1, for example, E∗(�) excludes the selection scores with
an odds ratio OR(st(X,Y(t)), e(X)) uniformly greater (or less
than) one.

Recent work improves the sharpness of the MSM in esti-
mating the ATE (Zhao, Small, and Bhattacharya 2019; Dorn
and Guo 2022). Dorn and Guo (2022) shows that the selec-
tion score s1 is data compatible if it satisfies the constraint
E[ T

s1(X,Y(1)) |X] = 1 (the unobserved confounder in Dorn and
Guo (2022) is replaced with Y(1)). This constraint is equivalent
to the constraint in Equation (23) as shown in Proposition 3,
Appendix B, supplementary materials. We consider estimating
Y(1) for simplicity and the discussion applies to Y(0) similarly.
The derivation and computation details of this section are pre-
sented in Appendix B, supplementary materials.
Sharpness by Covariates Balancing. The integral constraint in
Equation (23) is easy to interpret but is infeasible to compute
because we often only observe one outcome value for a given
X. However, the constraint, equivalent to E[ T

s1(X,Y(1)) |X] = 1
by Proposition 3, indicates that for an arbitrary vector-valued
function g(X),

E[ g(Xi)Ti
s1(Xi,Yi(1))

] = EXi

[
g(Xi)E[ Ti

s1(Xi,Yi(1))
|Xi]

] = E[g(Xi)].
(24)

By enforcing the condition in Equation (24) with different
covariates function g(X), we can reduce E(�) close to E∗(�).
Since Equation (24) holds similarly for the control group, it
represents the covariate balancing between the treated and
control group. This means encouraging the covariate balancing
improves the sharpness of the MSM.

We incorporate the balancing condition Equation (24) to
CSA. By Lemma 1, we transform the condition in Equation (24)
to the constraints in the quantile optimization in Equation (19).
Specifically, we optimize Equation (19) with additional con-
straints

1
Nt

∑
i:Ti=t

gk(Xi)w�
i = 1

N

N∑
i=1

Tt
i (1 − Ti)1−t

ê(Xi)t(1 − ê(Xi))1−t gk(Xi),

1 ≤ k ≤ K, (25)

where gk(X), k ∈ {1, 2, . . . ,K} are the balancing functions
specified by the researcher.We call this algorithmconformalized
sharp sensitivity analysis (CSSA) and summarize it inAlgorithm
3, Appendix B, supplementary materials. The optima of Equa-
tion (19) with additional constraints Equation (25) is smaller
than that of Equation (19), thereby reducing the size of predic-
tive band in estimating the ITE. For example, we find choosing
g(X) = ê(X) effectively improves the sharpness in simulations.
Including additional balancing functions such as the quantile
function of the outcome distribution (Dorn and Guo 2022), the
identity function, and the derivative of the estimated propensity
score (Imai and Ratkovic 2014) may further reduce E(�) to
E∗(�).

Though the sharpness is necessary for claiming a causal
estimate to be sensitive to unmeasured confounding, sensitivity
analysis is often applied to corroborate a nonzero causal effect
identified in the primary analysis. From this perspective, the
deviation from the sharpness might be interpreted as conser-
vativeness (Ding and VanderWeele 2016; Cinelli and Hazlett
2020; Veitch and Zaveri 2020). For the ITE estimation, such
conservativeness increases our confidence that a positive (or
negative) ITE is indeed robust to unmeasured confounding
when the sensitivity analysis suggests so.

4. Practical Considerations of the Algorithms

We now discuss how to interpret the coverage probability of
CSA, choose the conformal inference algorithms, calibrate the
sensitivity parameter, and evaluate the ITE estimation.

Marginal and Conditional Coverage. The probability in the cov-
erage statement of CSA is over both the covariates and the
outcomes. Hence, the coverage guarantee should be interpreted
in a marginal way instead of a conditional way. In other words,
suppose the estimand τ is either the missing potential outcome
Y(t) or the ITE Y(1) − Y(0). P(τ ∈ Ĉ(X)) means that if we
construct a predictive band Ĉ(X) for a unit randomly sampled
as the target, the probability that Ĉ(X) captures τ is at least 1−α.
The randomness is over both the covariates and the potential
outcomes.

The marginal coverage measures the quality of prediction
averaged over the target units. It does not guarantee the coverage
of τ for a given fixed target unit. The loss of conditional coverage
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is unavoidable if no distributional assumption is imposed on the
observed data (Barber et al. 2021a). However, it is possible for an
algorithm with marginal coverage to achieve conditional cover-
age asymptotically, under additional regularization conditions,
or to satisfy a relaxed conditional coverage definition (Barber
et al. 2021a; Lei and Candès 2021). We refer to Barber et al.
(2021a) for a detailed discussion on the definitions, limitations,
and connections of different types of coverages.

Choice of Conformal Inference Methods. CSA is compatible with
a variety of conformal inference algorithms. The main compo-
nents of a conformal inference are the prediction model and the
corresponding nonconformity score (Angelopoulos and Bates
2021). The choice of conformal inference algorithm hinges on
the properties of the underlying outcome distribution, such as
the homogeneity, skewness and multimodality. A good choice
of inference method leads to high interpretability and small
predictive interval. For example, to estimate the ITE, the pre-
dictive band as a single interval may be more interpretable than
a nonconvex set (Sesia and Romano 2021); an algorithm cap-
turing individual heterogeneitymight produce a shorter interval
andmore informative estimate (Romano, Patterson, andCandès
2019). Nevertheless, the coverage validity of the predictive band
does not depend on the choice of conformal inference methods.

Calibration of the Sensitivity Parameter. In the MSM, the sensi-
tivity parameter � quantifies the confounding strength. While
setting � to a proper value requires domain knowledge, the
observed data can provide useful reference (Imbens 2003; Hsu
and Small 2013; Kallus, Mao, and Zhou 2019). In the definition
of MSM, � measures the effect of knowing a potential out-
come on the treatment assignment. We can view the potential
outcome as a type of covariate (Robins, Rotnitzky, and Scharf-
stein 2000) and compute the effect of an observed covariate
on the treatment assignment. Specifically, we compute �ij =
OR(e(Xi), e((X\j)i)) as the effect of the jth covariates on the
treatment assignment of the ith unit, where e(X\j) is the propen-
sity score estimated without the jth covariates. The domain
experts can assess a plausible magnitude of � by referring to
themagnitude of {�ij}i,j. Here, approximating e(Xi) by e((X\j)i))
may introduce conservativeness to the estimated confounding
strength. We refer to (Cinelli and Hazlett 2020; Veitch and
Zaveri 2020) for a discussion on this issue.

Evaluating the Predictive Band of an ITE. When evaluating the
ITE estimation by simulations, we need to sample the true ITEs,
which requires generating random samples of all the potential
outcomes. To generate Yi(t) ∼ p(Y(t) |Xi), we can sample
Ti ∼ Bern(e(Xi)) and Yi(t) ∼ p(Y(t) |Xi,Ti). However, when
Ti = 1 − t, generating Yi(t) depends on a sensitivity model,
which is not defined parametrically in the MSM. To solve this
problem, we propose a rejection sampling method to generate
counterfactual samples. The details of this sampling method is
presented in Appendix C, supplementary materials.

5. Empirical Studies

In this section, we answer the following questions using syn-
thetic data: can CSA provide a desired coverage? Are the pre-
dictive intervals of the ITE overly conservative? How do the

predictive intervals of ITE compare to the interval estimates of
population-level causal estimands? Finally, we illustrate how to
apply CSA in an observational study.

5.1. CSA for Estimating Counterfactual Outcome

Following the synthetic data generation in Lei and Candès
(2021) and Wager and Athey (2018), the potential outcome
Yi(1) is from

Yi(1) = E[Yi(1) |Ti = 1,Xi] + εi, εi ∼ N (0, σ 2);

E[Yi(1) |Ti = 1,Xi] = f (Xi1)f (Xi2), f (x) = 2
1+exp(−5(x−0.5)) ,

(26)

where the covariates Xi = (Xi1, . . . ,Xid)
�, Xij ∼ Unif(0, 1).

The propensity score is e(Xi) = 1
4 (1 + β2,4(1 − Xi1)), where

β2,4 is the CDF of beta distribution with parameters (2, 4). We
generate n = 3000 training data points (Xi,Yi(1))i:Ti=1 with
dimension of covariates d = 20. We take 75% of the training
data as the preliminary set and the rest as the calibration set. For
a calibration set with ncal data points, the coverage probability
of a new target data follows distribution Beta(ncal+1−�(ncal +
1)α�, �(ncal + 1)α�) (Angelopoulos and Bates 2021). We set the
nominal level 1 − α = 0.8 in this simulation. We consider
two settings: in the homoscedastic case, σ ≡ 1, and in the
heteroscedastic case, σ ∼ Unif(0.5, 1.5).

For CSA, we use the split conformal prediction with mean
prediction (Papadopoulos et al. 2002; Lei, Rinaldo, andWasser-
man 2015) and conformal quantile regression Romano, Patter-
son, and Candès (2019), denoted as CSA-M and CSA-Q, respec-
tively.We implement CSSA in Section 3.5 withmean prediction,
denoted as CSSA-M and set the balancing constraints g(Xi) in
Equation (25) as the estimated propensity score ê(Xi).We report
the ITE estimated under no unobserved confounding (NUC)
as a benchmark, denoted as ITE-NUC (Lei and Candès 2021).
For all conformal inference methods, we use the random forest
(Breiman 2001) as the regression function.

We first assume the baseline outcome Y(0) ≡ 0. The esti-
mation of ITE then reduces to estimating a single potential
outcomeY(1). Figure 1 demonstrates several counterfactual dis-
tributions p(Y(1)|X,T = 0) that are generated by the rejection
samplingmethod described in Section 4 with sensitivity models
in E(�), � = 4. Unmeasured confounding is reflected as the
difference between p(Y(1)|X,T = 0) and p(Y(1)|X,T = 1).
Figure 1 show that the nonparametric MSM probes a variety of
potential violations to unconfoundedness. We find the counter-
factual distribution in themiddle of Figure 1 results in the lowest
coverage among the counterfactual cases in Figure 1 due to the
mismatch of the high density regions between the observed and
counterfactual distributions. Since the interval estimate by CSA
has coverage guarantee for any sensitivity model in E(�), we
report the results with counterfactual in the middle of Figure 1
as an adversarial case to test the validity of CSA.

In Appendix E Table 2, supplementary materials, we com-
pare the interval estimates of CSA with those by a sensitivity
analysis of the ATE (Zhao, Small, and Bhattacharya 2019) and
an estimation of the CATE (Chipman, George, and McCulloch
2010). The (sub)population-based interval estimates underesti-
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Figure 1. Distribution of Y(1) for the synthetic data. Given the covariates X , Obs denotes the distribution p(Y(1) | T = 1, X) in the observed group. Cf denotes the
distribution of counterfactual outcome p(Y(1) | T = 0, X). The three plots correspond to different sensitivity models in E(�).

mate the individual-level uncertainty and undercover the true
ITE. This validates the necessity of individual-level sensitivity
analysis.

Figure 2 illustrates the properties of the estimates by CSA
and CSSA. The top panels show the empirical coverage under
different confounding strengths. The empirical coverage is com-
puted as (

∑m
i=1 1[Yi(1) ∈ Ĉ�

1 (Xi)])/m for m = 10,000 target
points. We observe that ITE-NUC achieves the target coverage
under unconfoundedness (� = 1) but its coverage decreases
as the confounding strength increases. In contrast, CSA-M and
CSA-Q have valid coverage across all levels of �. The coverage
of CSSA-M is above the nominal level and is lower than that
of CSA-M, which demonstrate its validity and sharpness. For
� ≤ 2.5, CSSA-M has coverage centered at the nominal level
which suggests its sharpness.

The middle panels in Figure 2 show the average interval
length on the target units. We observe that the length of ITE-
NUC remains the same as � changes. In comparison, the length
of CSA and CSSA methods scales up with �, reflecting an
increased uncertainty with stronger unmeasured confounding.
On average, CSA-M produces shorter intervals than CSA-Q
when the data is homoscedastic, and they have similar inter-
val lengths when the data are heteroscedastic. CSSA-M creates
shorted interval than CSA-M for all � > 1.

To further analyze the sharpness of CSA prediction, weman-
ually shrink the length of the predictive intervals by a constant
factor for all the units and keep the interval centers unchanged.
The maximum shrinkage factor without losing the target cover-
age reflects the sharpness. From the bottom panels in Figure 2,
we observe that the empirical coverage drops below the 1 − α

level if the shrink factor is above 10% and 15% for homoscedas-
tic and heteroscedastic data, respectively. The maximal shrink-
age factor being low means CSA methods produce relatively
sharp intervals.

In Figure 3, we visualize the ITE estimates for multiple indi-
viduals. For each unit i, we compute the difference between
the predictive interval and the true ITE as Ĉ�(Xi) − τi which
contains 0 if and only if Ĉ�(Xi) contains τi. For eachmethod, we
consider two confounding strengths � ∈ {1, 3}, set the coverage
1 − α = 0.8, and randomly sample 70 units. When there is
unmeasured confounding, ITE-NUC produces a large fraction
of intervals that do not contain the ITE, but CSA methods have
a small fraction of undercovered intervals on average (less than
α = 0.2) for both confounding strengths.

5.2. CSA for the ITE Estimation

We further study when both Yi(1) and Yi(0) of a unit are
unobserved. The outcome Y(1) is generated according to
Equation (26) and the observed outcome Y(0) is generated by

Yi(0) = E[Yi(0) |Ti = 0,Xi] + εi, εi ∼ N (0, σ 2);
E[Yi(0) |Ti = 0,Xi] = f (Xi1)f (Xi2) + 10 sin(Xi3)

1+exp(−5Xi3)
, (27)

where f (x) follows the definition in Equation (26). The
construction of the counterfactual distribution p(Y(0)|X =
x,T = 0) is similar to the single missing outcome case, the
details of which are in Appendix E, supplementary materials.
We analyze the Bonferroni correction and the nested approach
wrapped around CSA-M, CSA-Q and ITE-NUC. For the nested
approach, following Lei and Candès (2021), we learn the
mapping X 
→ Ĉ�(X) in Section 3.4 by fitting 40% quantile
of the lower endpoint and 60% quantile of the upper endpoint
with quantile forest function in R package grf.

The results of coverage and interval length are shown in
Figure 7, Appendix E, supplementarymaterials. The Bonferroni
correction provides conservative interval estimates. In compar-
ison, the interval estimation of CSA methods with the nested
method are less conservative. Similar to Section 5.1, ITE-NUC
has poor coverage when the unconfoundedness is violated, but
CSA methods have valid coverages across different levels of
confounding strength.

5.3. Application: ITEs of Fish Consumption on Blood
Mercury

Finally, we illustrate the application of CSA using survey
responses from the National Health and Nutrition Examination
Survey (NHANES) 2013–2014. The causal question we study is
the effect of high fish consumption on individuals’ blood mer-
cury levels when there is potentially unmeasured confounding.

Following Zhao, Small, and Bhattacharya (2019), we define
the high fish consumption as more than 12 servings of fish
a person consumes in the previous month and low fish con-
sumption as 0 or 1 serving of fish. The outcome of interest
is the blood mercury level, which is measured in ug/L and
transformed to the logarithmic scale. The dataset contains n =
1107 units, where 80% are randomly sampled as training data
and the rest 20% are the target units. There are p = 8 covariates
about the demographics and health conditions (Zhao, Small,
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Figure 2. Top: Empirical coverage of the ITE. Dashed line denotes the target coverage level. Across �, the predictive intervals produced by CSA and CSSA methods reach
the valid coverage. CSSA-M improves sharpness over CSA-M.Middle: The average length of the predictive intervals. The interval lengths by CSA and CSSAmethods increase
with�, reflecting increased uncertainty under unmeasured confounding. Bottom: The sharpness of CSA. Themaximal shrinkage factor that preserves the nominal coverage
is low, which suggests CSA methods are relatively sharp. The error bar is by 100 independent trials.

and Rosenbaum 2018). We use random forest and quantile for-
est to fit the observed outcome, the gradient boosting to estimate
the propensity score and the nested method with quantile forest
as the interval prediction function.

We calibrate the sensitivity parameter � with the observed
data. As discussed in Section 4, we compute�ij as the effect of jth
covariate on the treatment assignment of the ith unit in terms of
odds ratio. Figure 4(a) shows the distribution of {�̃ij}j=1:p

i=1:n where
�̃ij equals to �ij if �ij ≥ 1 and 1/�ij otherwise. By Figure 4(a),
we may consider � ∈ [1, 3] as a plausible range of confounding
strength. The choice of a proper sensitivity parameter often
needs further domain knowledge in addition to the reference
information from data.

For each target unit k, CSA produces an interval estimation
Ĉ�(Xk) = [lk, uk]. We call Ĉ�(Xk) a positive interval if lk > 0,
which represents a positive individual effect, and call Ĉ�(Xk)

a negative interval if uk < 0. Figure 4 reports the fraction
of positive and negative intervals in the target units against
the target coverage 1 − α and the sensitivity parameter �.
Overall, the fraction of positive intervals increases when the
confounding strength and the target coverage decrease. There is
a relatively strong evidence of positive effects when α ≤ 0.2 and
� ≤ 2, and there is no evidence of negative effects for α ≤ 0.5
and � ≤ 3.

The results of individual-level estimates are reported in Fig-
ure 5. We randomly sample 70 individuals in the target set and
show the predictive intervals of their ITEs with target coverage
1−α = 0.8. In Figure 5, the interval prediction of the treatment
effect is heterogeneous across individuals. Under unconfound-
edness, the ITEs for most individuals are likely to be positive.
When � = 2, the effects of fish consumption for some individ-
uals are explained away by the unmeasured confounding. From
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Figure 3. The figure reports predictive intervals for random individuals with confounding strengths. Each interval is the predictive interval minus the true ITE for one
individual. Solid intervals contain 0 and dashed intervals do not contain 0. When� = 1, all methods have similar coverage at 1− α = 0.8; when� = 3, ITE-NUC has high
miscoverage while CSA maintains a valid coverage.

Figure 4. When the confounding strength is within the range of the study, we can saywith high confidence that for a group of individuals, high fish consumption increases
their blood mercury levels. The figures are produced using the NHANES fish consumption data. The predictive intervals are estimated by CSA-M. (a) provides reference
information for the magnitude of the sensitivity parameter � from the observed covariates. (b) shows the fraction of intervals with positive lower bounds; (c) shows the
fraction of intervals with negative upper bounds.

Figure 5. Predictive intervals for the target individuals with different unmeasured confounding strength. In top panels, when � = 1, a large fraction of individuals have
positive effects. In the bottom panels, when � = 2, we can still identify individuals whose effects remain positive.
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Figure 5, we can tell the subgroup for whom the effect of fish
consumption on the bloodmercury level is relatively insensitive
to the unmeasured confounding. The predictive intervals given
by the sensitivity analysis can thus provide useful information
to guide personal decisions on fish consumption.

6. Discussion

In this article we developed a sensitivity analysis method for the
ITE called CSA. We developed CSA by extending conformal
inference to distribution shift. We adopted a two-stage design
to propagate the uncertainty of an unmeasured confounding
to the predictive interval of the ITE. We provided theoretical
guarantees on the coverage property of the predictive interval,
designedCSSA to improve the sharpness of CSA, and developed
a rejection sampling method to evaluate the performance in
simulation. Finally, we analyze CSA and CSSA using synthetic
data and demonstrate the application in an observational study.

There are many directions for future research. We quantified
the confounding strength by the MSM. Further research could
explore alternative types of sensitivity models. If the nature of
confounding is known, it might be preferable tomodel the effect
of a confounder parametrically. We can also make a sensitivity
assumption on the dependency structure between potential out-
comes, which may improve the sharpness. Such dependencies
can, for example, be modeled by a copula (Franks, D’Amour,
and Feller 2019; Zheng, D’Amour, and Franks 2021). Finally,
the extended conformal prediction might be used to test other
untestable assumptions, such as the invariant causal mechanism
(Peters, Bühlmann, and Meinshausen 2016).

Supplementary Materials

The SupplementaryMaterial contains the technical proofs of the theoretical
results, further discussions on the algorithms and practical considerations,
and detailed results of the empirical studies.
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