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ABSTRACT 

 
This study examines the ability of the multichannel analysis of surface waves (MASW) 

method to accurately recover the size, stiffness, and depth of subsurface anomalies. The disper-
sion data considered in this paper were derived from waveforms generated using two-
dimensional (2D) finite-difference elastic wave-propagation simulations. These simulations were 
performed to replicate a typical MASW field experiment on models with and without subsurface 
anomalies, referred to as “treatment” and “control” models, respectively. In a previously pub-
lished study, the treatment and control models were compared exclusively based on differences 
between their experimental dispersion data to determine whether or not the anomaly could likely 
be detected. This study examines whether those models previously categorized as containing a 
detectable anomaly, based on their experimental dispersion data, can be inverted to accurately 
resolve the anomaly‟s size, stiffness, and depth. To rigorously perform the inversions, we adopt 
the procedures recommended by the surface wave inversion workflow SWinvert, which involves 
using multiple large-scale global-search inversions to address the problem‟s nonlinearity and 
multiple layering parameterizations to address the problem‟s nonuniqueness. Following the in-
version process, the shear wave velocity (Vs) profiles from the single “best” model associated 
with each layering parameterization are compared to the one-dimensional (1D) Vs profile from 
the centerline of the true model using an error function to quantitatively assess the ability of the 
MASW method to accurately resolve subsurface anomalies. Intuitively, the ability to resolve 
subsurface anomalies is shown to improve as the anomaly is moved closer to the ground surface 
and its lateral extent increases. Surprisingly, however, in this study anomalies with lateral extents 
less than approximately ½ the array length located at depths >5 m most likely cannot be resolved 
accurately by using MASW, even when the anomalies are relatively thick (>2 m) and the imped-
ance contrasts are notably high (>2). 

 
INTRODUCTION 
 

In-situ soil characterization with non-invasive surface wave methods has been widely used in 
past decades because they are relatively inexpensive and, perhaps erroneously presumed, easy to 
perform. Of these methods, the multichannel analysis of surface waves (MASW) method (Park 
et al., 1999; Foti, 2000) is one of the most common. Although this method is typically used to 
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develop one-dimensional (1D) subsurface shear wave velocity (Vs) profiles, an area of particular 
interest is the application of MASW for anomaly detection. Such applications include investiga-
tion of weak zones in levee systems (Rahimi et al., 2018), detection of karst conduits (Debeglia 
et al., 2006), detection of voids near the surface (i.e., < 3 m) (Nolan et al., 2011), shallow man-
made tunnel detection (i.e., < 3 m) (Sloan et al., 2013), delineation of sinkholes, voids, and mines 
(Sloan et al., 2015; Ivanov et al., 2016) identification of the location of a dam‟s compacted core 
(Hock et al., 2007), and evaluation of unknown subsurface bridge foundations (Mahvelati and 
Coe, 2017). The successful application of surface wave methods for anomaly detection relies on 
the anomaly being within the vertical and horizontal detection limits, which depend on a number 
of factors, including: (a) the receiver spacing and length of the MASW array, (b) the minimum 
and maximum frequencies/wavelengths resolved during testing, (c) the size of the anomaly, and 
(d) the stiffness contrast of the anomaly relative to the surrounding materials (Xia et al., 1999; 
Park, 2005; Ivanov et al., 2008). However, successful detection of an anomaly at the dispersion 
processing stage does not necessarily equal successful resolution of the anomaly during the in-
version stage. Accurately resolving subsurface anomalies can be challenging for surface wave 
methods due to: (1) the 1D nature of the forward problem used to calculate theoretical dispersion 
curves from a trial subsurface model, whereas anomalies inherently induce 2D/3D variability in 
the subsurface, and (2) the non-uniqueness of surface wave inversion, which results in a number 
of candidate models that can fit the experimental data equally well. 

In this paper, we consider synthetic subsurface models developed in a previous study by 
Crocker et al. (2020). The development of these models began with a simple uniform body of 
soil (half-space) containing no anomalies. These control models were developed with a constant 
mass density (ρ) and Poisson„s ratio (ν) for Vs values of 150 and 300 m/s. Then, anomalies with 
various combinations of size (lateral extent and thickness), stiffness, and depth were placed into 
the control models to produce treatment models (refer to Figure 1a). These anomalies were cre-
ated to be either softer or stiffer than the surrounding half-space using several different imped-
ance contrasts (the ratio between the anomaly Vs to the half-space Vs). For example, a treatment 
model with an anomaly impedance contrast of 2.0 and a half-space with Vs equal to 150 m/s con-
tains an anomaly with Vs equal to 300 m/s. Approximately 3,000 different treatment models 
were developed in this manner.  

Following model development, Crocker et al. (2020) used a 2D finite-difference program 
(Köhn et al., 2012) to simulate wave propagations for MASW experiments at the surface of 
models with and without anomalies. As shown in Figure 1a, several different shot locations were 
used for each model and the simulated waveforms were recorded using a 24-channel MASW ar-
ray with 1-m spacing between receivers (total array length of 23 m). The simulated wavefields 
were then processed using the frequency domain beamformer method (Zywicki and Rix, 2005) 
to obtain dispersion data. The dispersion data from the treatment and control models were com-
pared quantitatively using a dispersion misfit function (i.e., L1 norm of residuals between the 
mean treatment and control experimental dispersion data, normalized by the control model‟s un-
certainty). The obtained misfit, which we will hereafter refer to unambiguously as the relative 
dispersion misfit (Mdc,rel), was then used to categorize anomalies as likely detectable (i.e., Mdc,rel 
> 1) or likely non-detectable (i.e., Mdc,rel < 1).  To provide a convenient reference, the results 
from similar models were synthesized into figures such as that shown in Figure 1b, which for a 
given impedance contrast (IC), anomaly thickness (T), and half-space velocity (Vs,hs), the user 
could assess the range of relative dispersion misfits as a function of the anomaly's lateral extent 
normalized by the MASW array length (LE/AL; abscissa) and the anomaly's top depth (ordi-
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nate). For example, Figure 1b shows Mdc,rel for models with IC = 5.0, T = 2 m, and Vs,hs = 150 
m/s. As mentioned previously, a Mdc,rel value of 1.0 was considered as the boundary between 
models containing anomalies that were, and were not, likely detectable, and is indicated for ref-
erence with a thin white line in Figure 1b. 

Due to the complexity and computational expense of surface wave inversion, through the 
course of this study, we inverted only 120 of the nearly 3,000 treatment models developed by 
Crocker et al. (2020). Models were selected to encompass various anomaly thicknesses, LE/AL 
ratios (noting that AL = 23 m was constant for all models discussed herein), depths, and imped-
ance contrasts to observe the influence of each factor on anomaly resolution. We focused primar-
ily on models that were likely detectable based on high Mdc,rel (i.e., > 1), and therefore the most 
likely to be resolvable, however, some models with low Mdc,rel (i.e., < 1) were also inverted to 
verify this assumption. To synthesize the most interesting results of the inversion study, this pa-
per will only focus on two model trends. The first trend involves treatment models with increas-
ing LE/AL ratios and constant thickness, depth, half-space velocity, and impedance contrast 
(such as those indicated by black circles in Figure 1b). The second trend involves treatment 
models with increasing depth to the top of the anomaly and constant LE/AR ratios, thickness, 
half-space velocity, and impedance contrast.  

 

 
 

Figure 1. (a) Schematic of a treatment model, and (b) summary of relative dispersion mis-
fits (Mdc,rel) from Crocker et al. (2020) for treatment models with an impendence contrast 

(IC) of 5, thickness (T) of 2 m, and half-space shear wave velocity (Vs,hs) of 150 m/s. Black 
circles at a top depth of 5 m indicate the treatment models selected for inversion to explore 

the effect of the anomalies’ lateral extent/array length (LE/AL) ratio. 
 
INVERSION METHODOLOGY 
 

Before discussing the details of our inversion methodology, we offer a brief summary of 
surface wave inversion. The purpose of surface wave inversion is to find the 1D subsurface 
model(s) with layer thicknesses (H), Vs, compression wave velocity (Vp), and mass density (ρ) 
whose solution to the analytical forward problem (i.e., theoretical dispersion curve) best matches 
the experimental dispersion data. Of particular importance is the determination of the subsurface 
Vs profile, as it has the greatest sensitivity in the forward problem and importance in engineering 
practice. To assess the goodness-of-fit between a potential model‟s theoretical dispersion curve, 
as calculated through the forward problem (Thomson, 1950; Haskell, 1953), and the 

(a) 
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experimental dispersion data, inversion requires the definition of a dispersion misfit (Mdisp). Mdisp 
is most typically a L2 norm of error, or some normalized version thereof. In order to minimize 
Mdisp (i.e., find the best match between a candidate model‟s theoretical dispersion curve and the 
experimental dispersion data), various inversion algorithms have been proposed to alter the 
model properties. Once a model has been found whose theoretical dispersion curve closely 
matches the experimental dispersion data, it can be inferred that the model, and most importantly 
its Vs profile, is an acceptable representation of the subsurface. However, this process is not 
unique.  

To rigorously invert the 120 sets of experimental dispersion data selected from Crocker et al. 
(2020), we adopt the surface wave inversion workflow SWinvert, developed by Vantassel and 
Cox (2020). This workflow entails using multiple large-scale global-search inversions to address 
the inverse problem‟s non-linearity and multiple parameterizations to consider non-uniqueness in 
the subsurface layering. The implementation details of this workflow are explained in the 
following sections. 
 
INVERSION TUNING PARAMETERS 
 

The inversions in this study were performed using the open-source tool SWbatch (Vantassel 
et al., 2020), which enables users to perform batch-style surface wave inversions that consider 
multiple trials to explore the inverse problem‟s non-linearity, and multiple layering parameteriza-
tions to explore its non-uniqueness, as required by the SWinvert workflow. Since these inver-
sions can become computationally expensive, SWbatch has been developed into an easy-to-use 
web-application on the DesignSafe-CI (Rathje et al., 2017) workspace to allow users with no 
knowledge of high-performance computing to gain its benefits in their research. SWbatch is built 
upon the global-search Neighborhood Algorithm developed by Sambridge (1999) and imple-
mented for surface-wave inversion in the Dinver module (Wathelet et al., 2004) of the open-
source software Geopsy (Wathelet et al., 2020). 

We invert each set of experimental dispersion data from the 120 treatment models considered 
using five different layering parameterizations (discussed next), each with five different inver-
sion trials. For each trial inversion, we search 150,000 models, such that we consider 750,000 
models in total for each layering parameterization (i.e., 150,000 models per trial and 5 trials per 
parameterization). To select a single answer for comparison with the true solution, we select the 
“best” (i.e., lowest misfit) model out of the 750,000 models for each layering parameterization. 
Because using such a large number of trial models is computationally expensive, we reduce 
some of the computational expense by resampling the experimental dispersion data prior to in-
version using 20-30 points in log-frequency space (Vantassel and Cox, 2020). 
 
INVERSION PARAMETERIZATION 
 

Developing inversion parameterizations is a crucial part of the inversion process to obtain re-
liable results (Cox and Teague, 2016; DiGiulio et al., 2012). The range of the parameterization 
(e.g., upper and lower limit on Vs) must be broad enough to include the true model, but also rela-
tively restricted such that reasonable results are produced and needless time is not spent search-
ing areas of the parameter space that do not contain the true model. As mentioned previously, the 
treatment and control models were developed to have a constant ρ and ν with variable Vs and 
layer thicknesses. As such, the focus in this study is the inversion parameterization of Vs and the 
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number of trial layers. To consistently parameterize Vs across all treatment models considered, 
we select a range of twice the highest Vs and half of the lowest Vs based on the true model. For 
example, for an IC of 5.0 and a Vs,hs of 150 m/s, the Vs of the anomaly would be 750 m/s, and 
therefore the chosen Vs inversion parameterization range was set at 75 (= 0.5*150) to 1,500 (= 
2*750) m/s. While knowledge of the true Vs profile is untenable in practice, as the true model is 
never known, we do so here to ensure the parameterization contains the true model and avoid the 
time consuming process of iteratively adjusting the inversion parameterization, as is typically re-
quired in practice. We do not apply any limitations on the change in Vs (and Vp, discussed later) 
between layers. Furthermore, we do not constrain the velocity of any given layer to be faster than 
the layer above it, thereby allowing for the detection of soft anomalies and/or the detection of 
soft layers below stiff anomalies. This general approach of enabling velocity reversals in all trial 
layers is common practice when inverting dispersion data to detect subsurface anomalies. To pa-
rameterize layer thicknesses, we utilize Layering by Number‟s (LN) of 3, 4, and 5 and fixed-
thickness layers (FTL) of 10 and 20. The LN parameterization is discussed at length in Vantassel 
and Cox (2020), but for the edification of the reader a brief summary is provided here. An LN=5, 
for example, divides the subsurface into 5 layers, including the half-space. The minimum thick-
ness of each layer is controlled by the minimum experimental dispersion data wavelength () di-
vided by 3, while the maximum profile depth is controlled by dividing the maximum experi-
mental dispersion data by a depth factor (df), which is taken as 2 in this study to satisfy the 
recommendations of Foti et al. (2018). In contrast, the FTL approach parameterizes a profile 
with a set number of layers of equal/fixed thickness. FTL=10, for example, includes 10 layers of 
equal thickness between the surface and the maximum profile depth, defined in the same manner 
as that for LN. Of note to the reader, both approaches are programmed in SWprepost (Vantassel, 
2020), an open-source Python package for surface-wave inversion pre- and post-processing, such 
that these (and other) parameterizations can be generated programmatically and exported directly 
to the .param format used by Dinver.  

While not the primary focus of attention here, the parameterization of Vp and mass density 
also deserve a brief discussion. The range of Vp for all layers was defined as twice the Vs range 
(i.e., 150 to 3,000 m/s for the example discussed above), while the Vp layer thicknesses were de-
fined using an LN=3, regardless of the Vs layering parameterization. Mass density was always 
held constant at the true density of 2,000 kg/m3. Poisson‟s ratio, while not a true inversion pa-
rameter (as it is uniquely determined by Vs and Vp), is used by Dinver as an additional constraint 
available to the user to ensure the consistency of the Vs and Vp during inversion. Poisson‟s ratio 
was parameterized with an LN=1 and allowed to vary between 0.15 and 0.5.  

To ensure reasonable results and expedite convergence to a good solution, the parameter 
ranges for both Vp and Vs were adjusted for the near-surface layers by interpreting the experi-
mental dispersion data on a case-by-case basis. To illustrate the parameterization adjustment 
procedure, Figure 2a shows the experimental dispersion data from one treatment model in terms 
of frequency. The phase velocity is observed to be nearly constant at approximately 140 m/s be-
tween 30 to 100 Hz, which corresponds to wavelengths between 1 and 5 m (λ=V/f). Because the 
resolution depth can be approximated as λ/df, where df is 2 or 3, we can assert that a uniform soil 
layer exists between 2 to 3 m. This allows us to then narrow the default velocity parameterization 
range in the upper 2 to 3 m from 75-1,500 m/s to a more reasonable, but still quite conservative, 
75-250 m/s. 
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A DETAILED PRESENTATION OF A SINGLE EXAMPLE 
 

Before presenting the full results, we first discuss a single example to illustrate a few 
important points. Figure 2a shows the experimental dispersion data for the example treatment 
model in terms of frequency. The example model is composed of a Vs,hs of 150 m/s and an 
anomaly with a T of 2 m, LE/AL = 0.61 (i.e., LE = 14 m), top depth of 5 m, and Vs of 750 m/s 
(i.e., IC=5). As noted above, this model is indicated in Figure 1b by the solid black symbol, 
which has a relative dispersion misfit greater than 1 (meaning it is likely detectable). The 1D Vs 
profile at the middle of the treatment model is shown as the solution in Figure 2b. Figure 2a also 
shows the single “best”/lowest misfit theoretical dispersion curves from each of the five consid-
ered inversion parameterizations. Qualitatively, the theoretical dispersion curves are all observed 
to fit the experimental data extremely well across all frequencies. This qualitative assessment is 
confirmed quantitatively by the low dispersion misfit values (Mdisp < 0.25), indicating an excel-
lent fit between the theoretical dispersion curves and the experimental dispersion data. However, 
Figure 2b shows that the Vs profiles corresponding to these theoretical dispersion curves, which 
match the experimental dispersion data so precisely, poorly capture the anomaly‟s thickness and 
velocity, despite the LN parameterizations doing a fair job of capturing the anomaly‟s top depth. 
To assess the agreement between the true solution (i.e., the 1D Vs profile at the center of the 
model) and the best 1D Vs profile determined during inversion, and to further compare the best 
1D Vs profiles obtained from different layering parameterizations, we calculate the model‟s Vs 
misfit (MVs) using the normalized L1 of residuals, proposed by Vantassel and Cox (2020). MVs is 
described in Equation 1:  

 
𝑀𝑉𝑠 =

1

𝑁
∑

|𝑉𝑠𝑖,𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛−𝑉𝑠𝑖,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛|

𝑉𝑠𝑖,𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑁
𝑖=1                                              (1) 

 
where N is the total number of depth discretizations,   𝑖,𝑖    𝑠𝑖   is the Vs of the best inver-

sion result at depth i, and   𝑖,𝑠    𝑖   is the Vs of the solution model at depth i. For this study, 0.1 
m intervals were used to discretize the profiles from 0 to 20 m depth. The MVs values for the pro-
files shown in Figure 2b illustrate quantitatively that the LN parameterizations (MVs between 
0.19 and 0.39) well outperform their FTL counterparts (MVs between 1.33 and 2.8), resulting in 
better estimates of the site‟s subsurface. However, this is not to imply that the LN parameteriza-
tions do a “good” job resolving the anomaly, as none of the parameterizations are able to capture 
both the anomaly's thickness and velocity. This comparison does, however, indicate that parame-
terizing an inversion using a large number of thin layers does not guarantee better resolution of 
subsurface anomalies (a common misconception) and is more likely to introduce spurious sub-
surface layering despite fitting the experimental dispersion data quite well (e.g., FTL=10). 

 
DISCUSSION OF MANY INVERSION RESULTS 
 

We now present the inversion results pertaining to the two categories of interest for this pa-
per, which include the effects of: (1) increasing anomaly lateral extent, and (2) increasing top 
depth to the anomaly. We begin with the effect of increasing lateral extent. Figure 3 summarizes 
the inversion results for a model with Vs,hs of 150 m/s and an anomaly with a T of 2 m, top 
depth of 5 m, Vs of 750 m/s, and five different LE/AL ratios. Figure 3a illustrates that the Mdc,rel 
for the five lateral extents (black circles) increases from approximately 0.3 (unlikely detectable) 
at LE/AL = 0.17 (4 m LE) to 2.5 (likely detectable) at LE/AL = 1.56 (36 m LE). We now assess 
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whether these anomalies can be accurately resolved using MASW inversions. Figures 3b-f show 
the inversion results for increasing LE/AL ratios. We observe qualitatively (i.e., visually as-
sessing the Vs profiles) and quantitatively (i.e., comparing MVs) that as the lateral extent increas-
es [i.e., proceed from (b) to (f)], the quality of the Vs resolution for the reasonable parameteriza-
tions (i.e., LN) generally improves. However, it is important to note that this improvement is not 
monotonic with increasing LE/AL ratio (due to a number of complicating factors discussed lat-
er), but only a general improving trend from poor resolution at LE/AL = 0.17 (Figure 3b) to bet-
ter resolution at LE/AL = 1.56 (Figure 3f). Importantly, while we note that the anomaly resolu-
tion improves with increasing lateral extent, this is not to say that any of the anomalies (even the 
one with the largest lateral extent) is well-resolved, but rather that anomalies with limited lateral 
extent are much less well-resolved. From this set of examples, we conclude that the MASW 
method is unlikely to accurately resolve subsurface anomalies when they have small LE/AL rati-
os (less than ~ 0.5), even when the anomalies are located relatively close to the ground surface 
(top depth of 5 m) and are relatively thick (2 m). Furthermore, for anomalies with LE/AL > 0.5 
MASW is better able to resolve the anomaly‟s thickness and top depth, but remains unable to re-
liably resolve the anomaly‟s velocity. 

 

 
 

Figure 2. Experimental dispersion data in terms of (a) frequency for a treatment model 
with a half-space velocity (Vs,hs) of 150 m/s and an anomaly with a thickness (T) of 2 m, 
lateral extent of 14 m (i.e., LE/AL = 0.61), top depth of 5 m, and velocity of 750 m/s (i.e., 

IC=5). The Vs profiles resulting from the inversion of experimental dispersion data in pan-
el (a) are shown in panel (b). Misfit values between theoretical and experimental dispersion 
data (Mdisp) and between inverted and true solution Vs profiles (MVs) for each LN and FTL 

parameterization are indicated in the legend. 
 

We now examine the effect of increasing anomaly top depth, or moving the anomaly deeper 
into the control model. Figure 4 summarizes the inversion results for a model with a Vs,hs of 
300 m/s and an anomaly with a T of 4 m, LE/AL ratio of 0.61, Vs of 600 m/s (i.e., IC=2), and 
five different top depths. Figure 4a from Crocker et al. (2020) illustrates that the Mdc,rel for the 
five models (black circles) decrease from 2.8 (likely detectable) at 2 m top depth to 0.4 (unlikely 
detectable) at 10 m top depth. The inversion results used to investigate anomaly top depths of 2, 
4, 5, 8, and 10 m are presented in Figures 4b-f. A comparison of the results confirms that the 
ability to resolve an anomaly deteriorates as its depth increases. However, the results follow a 
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less clear and consistent pattern due to the compounding impact of the lateral extent, which at 14 
m is just slightly above the LE/AL > 0.5 threshold for likely anomaly resolution, as discussed 
previously. Yet, despite these complicating factors, we observe that for those anomalies closer to 
the surface (top depth < 5 m), the reasonable parameterizations (i.e., LNs) are generally able to 
recover the anomaly‟s top depth, although they are unable to consistently recover its thickness 
and velocity. Whereas those models with deeper anomalies (top depth > 5 m) are unable to even 
recover the anomaly‟s top depth. From this example, we observe that the ability to resolve a sub-
surface anomaly decreases as its top depth increases, as anticipated. In particular, we find for this 
example with a lower IC, that the MASW method is unable to accurately resolve the thickness 
and velocity of the anomaly at any top depth, despite the anomaly being of considerable size (4 
m thick and 14 m lateral extent). 

 

 
 
Figure 3. (a) Summary of relative dispersion misfit (Mdc,rel) for a model with half-space ve-

locity (Vs,hs) of 150 m/s and an anomaly with a thickness of 2 m, top depth of 5 m, Vs of 
750 m/s (IC=5), and five different LE/AL ratios. (b) – (f) present the inversion results for 
models with anomalies with lateral extents equal to 4, 10, 14, 25, and 36 m, respectively. 
These models are further indicated by black circles on Figure 3a. Misfit values between 

theoretical and experimental dispersion data (Mdisp) and between inverted and true solution 
Vs profiles (MVs) for each LN and FTL parameterization are indicated in the legend. 
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Figure 4. (a) Summary of relative dispersion misfit (Mdc,rel) for a model with half-space ve-
locity (Vs,hs) of 300 m/s and an anomaly with a thickness of 4 m, Vs of 600 m/s (IC=2), lat-
eral extent of 14 m (i.e., LE/AL = 0.61), and five different top depths. (b) – (f) present the 

inversion results for models with anomalies with top depths equal to 2, 4, 5, 8, and 10 m, re-
spectively. These models are further indicated by black circles in panel (a). Misfit values 
between theoretical and experimental dispersion data (Mdisp) and between inverted and 

true solution Vs profiles (MVs) for each LN and FTL parameterization are indicated in the 
legend. 

 
CONCLUSIONS 
 

This study examines the ability of the MASW method to accurately recover the size, stiff-
ness, and depth of subsurface anomalies. The dispersion data considered in this paper were de-
rived from waveforms generated using 2D finite-difference elastic wave-propagation simulation 
on models with and without subsurface anomalies, referred to as “treatment” and “control” mod-
els, respectively. In a previously published study, the treatment and control models were com-
pared exclusively based on differences between their experimental dispersion data to determine 
whether or not the anomaly could likely be detected. This study examines whether those models 
previously categorized as containing a detectable anomaly based on their experimental disper-
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sion data can be inverted to accurately resolve the anomaly‟s size, stiffness, and depth. In partic-
ular we focus on the effect of: (1) increasing anomaly lateral extent, and (2) increasing anomaly 
top depth on the resulting agreement between the 1D true solution Vs profiles (as defined at the 
center of the true model) and the inversion-derived Vs profiles from multiple parameterizations. 
The ability to resolve subsurface anomalies is shown to improve as the anomaly‟s lateral extent 
increases and as the anomaly moves closer to the ground surface. However, while the MASW 
method was able to reasonably recover the top depth and thickness of anomalies with large lat-
eral extents (LE/AL > ~ 0.5), it was unable to accurately recover their velocity. In addition, as 
models with sufficient lateral extent were moved deeper into the model, MASW loses even its 
ability to accurately recover the anomaly‟s top depth and thickness. This is despite the fact that 
the anomalies presented were relatively thick (> 2 m) and with a significant impedance contrast 
(> 2) to the surrounding medium. 
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