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Abstract
It has been proposed that classical filtering methods, like the Kalman filter and
3DVAR, can be used to solve linear statistical inverse problems. In the work of
Iglesias, Lin, Lu, and Stuart (Commun. Math. Sci. 15(7):1867–1896, 2017), error
estimates were obtained for this approach. By optimally tuning a regularization
parameter in the filters, the authors were able to show that the mean squared error
could be systematically reduced. Building on the aforementioned work of Iglesias,
Lin, Lu, and Stuart, we prove that by (i) considering the problem in a weaker norm
and (ii) applying simple iterate averaging of the filter output, 3DVAR will converge
in mean square, unconditionally on the choice of parameter. Without iterate averag-
ing, 3DVAR cannot converge by running additional iterations with a fixed choice of
parameter. We also establish that the Kalman filter’s performance in this setting can-
not be improved through iterate averaging. We illustrate our results with numerical
experiments that suggest our convergence rates are sharp.
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1 Introduction

The focus of this work is on the inverse problem

† (1.1)

where, given the noisy observation of †, we wish to infer †. In our setting,
is a compact operator between separable Hilbert spaces and 0 2
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is white noise, modelling measurement error. This problem is well-known to be ill-
posed in the infinite-dimensional setting, as has an unbounded inverse. Methods
of solution include the use of regularized Moore-Penrose inverses and, subject to the
introduction of a prior, Bayesian formulations, [4–6, 12, 19, 24, 25].

In [10], a key inspiration for the present work, Iglesias, Lin, Lu, and Stuart con-
sidered two classical filtering algorithms, the Kalman filter and 3DVAR, with the
goal of using them to solve (1.1). The filtering methodology for (1.1) requires the
introduction, conceptually, of the artificial dynamical system

1 0
† (1.2a)
i.i.d.

0 2 . (1.2b)

Here, at algorithmic time step , is the quantity of interest, and is the noisy
observation. Having ascribed a notion of time to the problem, we can then apply a
filter. This provides a mechanism for estimating † in (1.1) in an online setting, where
a sequence of i.i.d. observations, , is available. This corresponds to “Data Model
1” of [10].

Amongst the key results of [10], reviewed in detail below, is that under sufficiently
strong assumptions, the Kalman filter will recover the truth in mean square, uncondi-
tionally on the choice of the scalar regularization parameter. Under somewhat weaker
assumptions, the error will only be bounded, though through minimax selection of a
scalar parameter, an optimal error can be achieved for a given number of iterations,
allowing the error to be driven to zero.

3DVAR is a simplification of Kalman that is demonstrated to have, at best,
bounded error, though, again, through minimax parameter tuning, it can perform
comparably to Kalman. Kalman is more expensive than 3DVAR, as it requires
updating an entire covariance operator at each iteration. For finite-dimensional
approximations, this may require costly matrix-matrix multiplications at each iterate.

Here, by working in a weaker norm and averaging the iterates, we are able to
establish that 3DVAR will unconditionally converge in mean square for all admis-
sible filter parameters. Such weaker convergence was also considered in [3], for
a related problem on 4DVAR. Further, we show that this simple iterate averaging
cannot improve the performance of the Kalman filter.

1.1 Filtering algorithms

The Kalman filter is a probabilistic filter that estimates a Gaussian distribution,
, for † at each iterate. Given a starting mean and covariance, 0 and 0,

the updates are as follows:

1 (1.3a)

1 (1.3b)

1 1
2 1. (1.3c)

Here, is the so-called “Kalman gain.” is a point estimate of †.
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While Kalman is a probabilistic filter, 3DVAR is not. It is obtained by apply-

ing Kalman with a static covariance operator
2

for some predetermined
operator :

1 (1.4a)
1 1 . (1.4b)

We refer the reader to [7, 14, 23, 25], and references therein, for a thorough discussion
and analysis of these classical filtering methods and their extensions.

Indeed, several important extensions of these classical methods that have appeared
in the literature have also been directly applied to statistical inverse problems like
(1.1), along with its nonlinear variation, † . In particular, the ensem-
ble Kalman filter (EnKF), using an ensemble of replicas of the problem, has been
successfully applied to solve such problems in [8, 9]. See, for instance, [14, 21, 22],
for additional details and analysis of EnKF. We also mention [3], which uses similar
ideas with 4DVAR.

Continuous in time analogs of these methods and problems also exist, resulting in
the Kalman-Bucy filter and continuous in time 3DVAR, [14, 18, 25]. In [15], these
were used to solve the continuous in time analog of (1.2)

0 (1.5a)

(1.5b)

where is now a Weiner process in the appropriate function space, [2].

1.2 Key assumptions and prior results

In [10], the following assumptions were invoked.

Assumption 1 (1) 0
2

with Ran
1
2 Dom , 0, and a self-

adjoint positive definite trace class operator with 1 densely defined.
(2) induces a Hilbert scale, and there exist constants 1, 0 such that

induces an equivalent norm:

1 2 . (1.6)

(3) The initial error is sufficiently “smooth,”

0
† Dom 2 0 2 (1.7)

where we replace 0 with 0 in the case of 3DVAR in the above expression.

Under this first set of assumptions, Iglesias et al. established
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Theorem 1.1 (Theorem 4.1 of [10]) The Kalman filter admits the mean square error
bound

† 2 1
2

Tr

and

Theorem 1.2 (Theorem 5.1 of [10]) 3DVAR admits the mean square error bound

† 2 1
2

Tr log .

At fixed values of , Theorems 1.1 and 1.2 preclude convergence, and, in the case
of 3DVAR, the error may even grow. However, there are two free parameters: the
number of iterations and the regularization parameter . Indeed, within a Bayesian
framework, can be interpreted as the strength of a prior relative to a likelihood. For
a fixed number of iterations, , can be tuned to minimize the error. Indeed, the error
can be made arbitrarily small by selecting a sufficiently large with the optimal .

However, in both Theorems 1.1 and 1.2, there is an unknown constant. If the error
at the given, optimal choice of for a given is inadequate, one must obtain addi-
tional data, update the value of , and rerun the algorithm. A benefit of the present
work is that, by using iterate averaging, the error of 3DVAR can always be reduced
with additional iterates, without necessarily altering and discarding previously
computed iterations. We will revisit the minimax estimates under a simultaneous
diagonalization assumption.

Indeed, stronger results were obtained in [10] subject to the simultaneous diago-
nalization assumption:

Assumption 2 (1) and simultaneously diagonalize against the set with
respective eigenvalues and 2, and these eigenvalues satisfy

1 2 0 0. (1.8)

(2) 0 0 (or 0 in 3DVAR) and † satisfies, for 0 1 2 2 ,

1

2 † 2 . (1.9)

With this, Iglesias et al. obtain

Theorem 1.3 (Theorem 4.2 of [10]) Under Assumption 2, for the Kalman filter,

† 2
2

1 2 2 2 2
1 2 2

1 2
1 2 2

and
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Theorem 1.4 (Theorem 5.2 of [10]) Under Assumption 2, for 3DVAR,

† 2
2

1 2 2 2
1 2

1 2 2 .

Now the Kalman filter will converge at any choice of parameter, while 3DVAR
has at worst a bounded error. Again, can be tuned so as to obtain a minimax conver-
gence rate. Indeed, in the setting where one has a fixed number of samples, at the
optimal value of , Theorems 1.3 and 1.4 lead to the estimates (also found in [10]):

† 2
2

1 2 2 (1.10)

† 2
2

1 2 2 2 log (1.11)

where the first expression is for Kalman and the second is for 3DVAR. Similar
expressions are also available in the general case for Theorems 1.1 and 1.2.

Thus far, we have discussed the study of problem (1.1) in a sequential setting,
where the data, , is assimilated one sample at a time. In some settings, a static,
fixed, number of samples, , may be available together. Instead of (1.1), we might
then examine

† 0
2

1

1

1

1
.

(1.12)

The variance of the noise has been reduced by a factor of . This can be solved using
a regularized approximation of to obtain . Under suitable assumptions and
identifying the optimal , one can obtain (see, for instance, [1, 12, 16, 17,
19, 26])

† 2
2

1 2 2 (1.13)

This precisely corresponds to the minimax solution of Kalman (1.10), while there is
a loss for 3DVAR (1.11). Note that this is only for the 0 norm. A generalization
to the 0 norm is covered in [16] and for 1 2 2 in [17]. As we are
principally interested in the general 0 case, we state and prove our own version
of theorem below using a spectral cutoff regularization.

1.3 Main results

The main results of this paper are contained in the following theorems.
First, we have the elementary result that 3DVAR, without averaging, cannot

converge at fixed parameter choices:

Theorem 1.5 Under Assumption 1 in dimension one, if is generated by 3DVAR,
then

† 2 2 2.
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As the method cannot converge in dimension one, it has no hope of converging in
higher dimensions. By time averaging,

1

1

1 1
1 (1.14)

we can obtain convergence for all 0:

Theorem 1.6 Under Assumption 1, fix 0 and v 0 1 , and, having set
these indices, assume that 1 v 1 is trace class. Then

† 2 1
0

2
2

Tr 1 v 1 v

where 0 is the solution to

1
2 0

† 1
2 1 0 (1.15)

and
1
2 .

We will repeatedly make use of the operator

1
2 (1.16)

throughout this work. The existence of 0 in (1.15) is a consequence of Assumption
1 on the initial error and an equivalence of spaces result encapsulated in Proposition
2.3, given below.

The motivation for time averaging comes from two related problems. First, for-
mally, (1.4) has the structure of an AR(1) process, [23]. Under typical assumptions,
an AR(1) process will not converge to a fixed value, but instead, sample an invariant
distribution. Consequently, the time average will converge to the mean, with respect
to this invariant distribution. Another motivation comes from the stochastic root find-
ing problem and the Robbins-Monro algorithm. In [20], Polyak and Juditsky proved
that by time averaging the sequence of estimates generated by Robbins-Monro, the
convergence rate could be improved. See, also, [13].

As a consequence of Theorem 1.7, we will have unconditional mean squared
convergence of the iterate-averaged value, , provided:

We study the problem in a sufficiently weak weighted space ( 0) and/or have
sufficiently smooth data ( 0);

has a sufficiently well behaved spectrum, allowing v 0. Note that taking
v 1 will not require additional assumptions on , but will require

0 for convergence.

We emphasize that iterate averaging is a post-processing step, requiring no modifi-
cation of the underlying 3DVAR iteration.

We introduce a modified version of Assumption 2,
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Assumption 2

(1) and simultaneously diagonalize against the set with respective
eigenvalues and 2, and these eigenvalues satisfy

1 2 0 0. (1.17)

(2) For 0, the initial error, 0
†, satisfies the condition

1

2
0

† 2 . (1.18)

Condition (1.18) on the initial error will automatically be satisfied if 0 and † are,
separately, sufficiently smooth. The assumptions of (1.17) and (1.18) are equivalent
to those of (1.6) and (1.7) under the identifications:

1 2 2 1 2 2 .

In contrast to Assumption 2, no upper bound on is necessary.

Theorem 1.7 Under Assumption 2 , and having fixed a choice of norm with
0, assume b v 0 1 satisfy

b
1 2 2

2 1 2 2 b (1.19a)

v
1 2 2

1 2 2
v (1.19b)

then,

† 2 2 b 2 v

While our results in both the general and diagonal case establish unconditional
convergence for any choice of for the iterate-averaged 3DVAR, in a practical
setting, there may only be iterates available. One might then ask how well iterate-
averaged 3DVAR behaves if, at fixed , we choose the optimal , and how this
would compare to the minimax solution of (1.12). Focusing on the diagonal case, for
comparison, we have the following result for the minimax solution of (1.12):

Theorem 1.8 Under Assumption 2 with 0 0 in (1.18), if (1.12) is solved using a
spectral cutoff with regularization in the 0 norm, then at the optimal value of

,

† 2
1 2 2
1 2 2 1 2 1 2

1 log 1 2 1 2

This is consistent with (1.13) and the results in [16, 17]. Then, looking at the
minimax solution of 3DVAR, we obtain for two particular regimes:
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Corollary 1.9 With the same assumptions as Theorem 1.7, first, assume b v 1.
Taking b b and v 1 v for 0 1 ,

† 2
2 1 2

1 2 2 1 2 2
1 2 2

1 2 2 1 2 2 .

If, instead, b v 1, then, taking b v 1,

† 2 1

Consequently:

At 0, in the first case,

† 2
2

1 2 2 2
2

1 2 2 2

This is somewhat better than (1.11), as there is no logarithmic term, and the
factor of 2 has been replaced by 2 , which can be reduced by taking smaller.
The prefactor will grow, but it is independent of .
In the first case, where b v 1, by taking sufficiently close to zero, we can
get arbitrarily close to the optimal rate in (1.13).
The first case can be realized by taking and sufficiently small. The second
case, where b v 1, is accessible by taking large enough.
There are two other cases to consider, b 1, v 1 and vice versa, but, for
brevity we do not explore them here.

In contrast to iterate-averaged 3DVAR, there is no gain to iterate averaging for
Kalman:

Theorem 1.10 For the scalar Kalman filter, take 0
2

0. Then the bias and
variance of the iterate-averaged mean, satisfy the inequalities

† †

Var Var .

Consequently, we do not further explore the impact of averaging upon the Kalman
filter in this setting.

1.4 Outline

The structure of this paper is as follows. In Section 2 we review certain background
results needed for our main results. Section 3 examines the scalar case, and it includes
proofs of Theorems 1.5 and 1.10. We prove Theorems 1.6 and 1.7 in Section 4.
Numerical examples are given in Section 5. We conclude with a brief discussion in
Section 6.



Numerical Algorithms

2 Preliminary results

In this section, we establish some identities and estimates that will be crucial to
proving our main results.

Much of our analysis relies on spectral calculus involving the following ratio-
nal functions which are closely related to the Tikhonov-Phillips regularization

1:

(2.1)

1
1 1 1 . (2.2)

These are related by the identity

1

. (2.3)

The following estimates can be found in [10] and [19], particularly Section 2.2 of the
latter reference:

Lemma 2.1 For 0 and ,

0 1

0

.

Lemma 2.2 For 0 , ,

1 0 1
1 1

1.

Next, we recall the following result on Hilbert scales,

Proposition 2.3 There exists a constant 1, such that for 1,

1
1 2 1

and

Ran 2 Dom
1
2

0 .

This result, based on a duality argument, is proven in Lemma 4.1 of [10]. See,
also, Section 8.4 of [6], particularly Corollary 8.22.

We also have a few useful identities for the filters which we state without proof.
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Lemma 2.4 For the Kalman filter, the mean and covariance operators and the
Kalman gains satisfy the identities

2 1 1
0

1
2 1 1

0 0

1 1
1

2 1
0

2

2 1
1

1 2 1
0

1 2 .

Lemma 2.5 For 3DVAR,
1

0

1

0

1
0.

Corollary 2.6 Letting †, 1
1 ,

1

0

1

0

1
0.

Remark 2.7 As this is a linear problem, it will be sufficient to study the behavior of
to infer convergence of to †.

For the analysis of 3DVAR, the essential decomposition into bias and variance
terms can be read off of Corollary 2.6. These can be expressed in the more useful
forms using :

Lemma 2.8

bias
1

0

1
0

1
2

1
2 0 (2.4)

var
1

0

1

1

1
2 1 . (2.5)

Proof First, observe that
1
2

1
2 .

Using this in (2.4) together with spectral calculus applied to positive self-adjoint
compact operator , along with (2.3),

bias 1 1
0

1 2 1 1 2
0 0

1
1

1 2 1 2
0

1
2

1
2 0.

Applying the same computations to (2.5), we have,

var 1
0

1
1
2
0 1

1
1 0

1 1
2 1

1
1

1
2 1 .
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3 Analysis of the scalar problem

Before studying the general, infinite-dimensional case, it is instructive to consider
the scalar problem, where and , , and are now scalars. This setting
will also allow us to establish the limitations of both 3DVAR and the Kalman filter.

3.1 3DVAR

First, we prove Theorem 1.5 which asserts that the 3DVAR iteration cannot converge
in mean square:

Proof Since † 2 , we write † for 0 2 . By
(1.4),

† † 1 1
†

1 1
† .

Consequently,

† 2 2 1 1
† 2

2 2 2.

Next, studying the bias and variance of the time averaged problem, given by (2.4)
and (2.5), we prove

Theorem 3.1 For scalar time averaged 3DVAR, for b v 0 1

† 2 2 2 b
0
2

2 b 2
2 v

v
.

Thus, we have unconditional convergence for any choice for 0, something that
we do not have for 3DVAR without any iterate averaging. The rate of convergence is
greatest when b 1 2 and v 1.

To obtain the result, we make use of the bias-variance decomposition and
expressions (2.4) and (2.5). In the scalar case, 2 2, so that

bias
2 2

2 2
0
2. (3.1)

Applying Lemma 2.2 to this expression, we immediately obtain

Proposition 3.2 For 0 b 1,

bias
2

2 2 b
0
2

2 b
. (3.2)

For the variance, we have the result
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Proposition 3.3 Let v 0 1 ,

var 2
2

2 v
v
. (3.3)

Proof For the scalar case of (2.5),using Lemma 2.2,

var 2 2 2

2 1
2 2

2

2
2 1 1 v

1
2 1 v

2 2
2

2

2
2 v

1

2 1 1 v
2

2 2 v

2
1 v 2 2 v v .

Proof of Theorem 3.1 The result then follows immediately by combining the two
preceding propositions.

3.2 Kalman filter

Here, we prove Theorem 1.10, showing there is no improvement in mean squared
convergence of Kalman under iterate averaging.

Proof Using Lemma 2.4, for the -the estimate of the mean,

2 1
0

2 1 2 †
0

1 2

1
† 1

2 1
0

1 .

and without averaging,

† 1
2 1

0
†

Var
2 2

.

Then, with averaging, for the bias,

† 1

1

1
2 1

0
†

and

† 2 1
1 1

2 1 2

0
† 2

1
1 1

2 1 2

0
† 2 † 2.
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For the variance, first note

1
1

1 1
1

1
1

1
1

1 .

Then, by dropping all but the -th term in the inner sum,

Var 1
2 1

2 1 2
1
2 1

2 2

Var

4 Analysis of the infinite-dimensional problem

We return to the bias and variance of 3DVAR in the general, potentially infinite-
dimensional, setting and obtain estimates on the terms. We prove the general case
in Section 4.1, and then the diagonal case in 4.2. Our minimax results are proven in
Section 4.3.

4.1 General case

Here, we prove Theorem 1.6 by first establishing results on the bias and variance.

Proposition 4.1 Under Assumption 1, with 0 ,

bias 2 1
0

2

where 0 solves (1.15).

The fastest possible decay available for the squared bias in Proposition 4.1 is
O 2 when 2 and .

Proof We make use of bias term from Lemma 2.8, allowing us to write

bias 2 1
2

1
2 0

2
.

Next, we make use of (1.6) and argue as in the Appendix of [10], applying Propo-

sition 2.3. Since, by assumption, 0 Dom 2 ,
1
2 0 Dom

1
2 . Then

taking 1 1 in the proposition,
1
2 0 Ran

1
2 1 allows us

to conclude the existence of 0. Therefore,

bias 2 1
2

1
2 1 0

2
.
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Next, using Proposition 2.3 again, now with 1 1 ,

bias 2
1

2 1
1

2 1 0

2

2 1 0
2

sup0 2 1
2

0
2 1

0
2.

The last inequality holds since, 2 and , so that 0 2 2
allowing for the application of Lemma 2.2.

Proposition 4.2 Under Assumption 1, for 0, v 0 1 , and for this choice of
v and , assume 1 v 1 is trace class. Then

var 2
2

Tr 1 v 1 v
.

Remark 4.3 The fastest possible decay in the variance will be O 1 when v
1 and is sufficiently large such that is trace class. However, the bias term
requires . This requires the identity operator to be trace class which will not
hold in infinite dimensions.

Proof of Proposition 4.2 We begin with (2.5) and using that for any bounded opera-
tor and positive self-adjoint trace class operator , Tr Tr ,

var 2 1
2 1

1
2 1

2

2

2 1 Tr
1

2
1

2

2

2 1 Tr
1 v 1 v

1
2

1
2

2

2

2 1
v
1
2

1
2 2Tr 1 v 1 .

Using Proposition 2.3 with v and Lemma 2.2,

v
1
2

1
2

1 v
2

sup 0
1 v
2

1 1 v
2

Therefore,

var 2 2

2 Tr
1 v 1

1

1 v 2
Tr 1 v 1 v

Proof of Theorem 1.6 The theorem immediately follows from the two preceding
propositions.
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4.2 Simultaneous diagonalization

A sharper result is available under the simultaneous diagonalization Assumption 2 .
For convenience, letting

1 2

1 2 2
(4.1)

we have the relationship
2 . (4.2)

Proposition 4.4 Under Assumption 2 , let b 0 1 satisfy condition (1.19a),

bias
2 2 b

.

Proof We start with (2.4) and then use (4.2) and Lemma 2.2,

bias 2
1

1
2

1
2 0

2

1
2 2

2

0
2 2

1
2 2

0
2

2
1

2 2 b 2 b 2 2
0

2

2 2 2 b
1

2 2 b 0
2

Using (1.19a),

1
2 2 b 0

2
1

1 2 2 b 0
2

1
1 2 2 2 b 2 2

0
2

sup 1 2 2 2 b 2
1

2
0

2

we have the result.

Comparing this to the general case, we again see that if the data is sufficiently
smooth and/or we study the problem in a sufficiently smooth space ( and/or large),
we can again obtain O 2 convergence of the squared bias.

Proposition 4.5 Under Assumption 2 , having fixed , for v 0 1 satisfying
(1.19b),

var 2
2 v

Proof Using (2.5), we begin by writing

var 2 1
2 1

1
2 1

2

2

2 1 Tr
1

2 1 1
1

2

2

2 1 Tr
1 2 .
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Using (2.2) on each term in the sum,

Tr 1 2

1

2 2 2 2.

Then, using (4.2) and Lemma 2.2

2 2 2 2 1 2 1
2 2 2

2 1 2 1
2 2 2

2 1 v 2 1 v 2 2 2

2 1 v
1 v

Under Assumption 1.19b

1

2 1 v

1

1 2 1 v 1 2 2 (4.3)

Consequently,

Tr 1 2
1 v

and
2

2
1

Tr 1 2
2 v

In contrast to the non-diagonal case, if the problem is studied in a sufficiently
weak sense (large enough ), one obtains O 1 convergence of the variance.

Proof of Theorem 1.7 This result immediately follows from the previous two propo-
sitions.

4.3 Minimax analysis

Proof of Theorem 1.8 Recall the spectral cutoff regularization
11 .

For a fixed , the regularized solution of (1.12) is
† .

This allows us to write the bias-variance decomposition of the error as
† 2 † 2 2

For the bias term,

† 2

1

2 2 1 2 † 2.
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Since 2 2 , all terms with
1
2 will vanish. This leaves us with

† 2
1
2

† 2

1
2

1 2 2 2 † 2

1 2 2
2 2 † 2.

For the variance term, all terms with
1
2 will vanish,

2 2

1
2 2 2

2
1
2

1
2 2

1
2

1
2 1 2

2 1 2 1 2
2 2 1 2 1

2
log 1 2 1 2 1.

Combining the two terms, we thus have,

† 2

1 2 2
2

2 1 2 1 2
2 2 1 2 1

1 2 2
2

2
log 1 2 1 2 1.

Optimizing over yields the result.

Proof of Corollary 1.9 Note that in the proof of Proposition 4.5, under our assump-
tions, in (4.3), with v 1 v

1
2 1 v

1
1 2 1 1 2 1 2 1

1
1 1 2 2

1
1 1 2 2 1

1 2 2

Consequently,

† 2
1 2 2
1 2 2 1 1 1 1 2 2

1 2 2

where the implicit constants in each term are independent of , , and . The
optimally scaled will be

1 2 2
1 2 2 1 2 2

2 2 1 2 2
1 2 2 1 2 2

Substituting back in, we have our result.

5 Numerical experiments

In this section we illustrate our results with some numerical experiments.
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5.1 Scalar examples

As a simple scalar example, let 1, 0.1, and † 0.5. For 3DVAR, take
0 0, 1, and 1, while for Kalman, take 0 0 and 0 1. Running 102

independent trials of each algorithm for 104 iterations, we obtain the results in Fig. 1.
These simulations demonstrate our predictions from Theorems 1.5, Theorem 3.1, and
Theorem 1.10, that 3DVAR can only converge with time averaging, while Kalman
will not be improved by time averaging. The confidence bounds are computed using
104 bootstrap samples to produce 95% confidence intervals.

5.2 Simultaneous diagonalization example

Next, we consider the case of simultaneous diagonalization, working with functions
in 2 0 2 , and

2

2
1 2 † 0. (4.1)

The operator is equipped with periodic boundary conditions, allowing us to easily
work in Fourier space. As the problem is linear, we can separately consider the bias
and the variance. In all examples below we discretize on 212 modes, and run
for 104 iterations. This corresponds to 2 and 1.5 in Assumption 2 .

For the bias, we choose, before truncation, as the initial condition

0

1

1
2 cos (4.2)

with 1 and 0.01. Consequently, this function satisfies (1.18) from Assump-
tion 2 . The perturbation is introduced so that we can best see the sharpness of our
rates. Running the truncated and discretized problem, we obtain the results shown in
Fig. 2 for the norms 0 0.5 1 2. As the plots show, we are in good agreement
with the maximal rate predicted by Theorem 1.7.

Fig. 1 Scalar results for 3DVAR and the Kalman filter. These results are consistent with Theorems 1.5,
1.10, and 3.1; 3DVAR will not converge without time averaging while Kalman will not improve from time
averaging. Shaded regions reflect 95% confidence intervals at each
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Fig. 2 Decay of the squared bias in our simultaneously diagonalized test problem for different -norms.
All are in good agreement with the rates predicted by Theorem 1.7. The constant v reflects the greatest
possible decay rate from (1.19a)

For the variance, taking 0 0, we run 102 independent trials of the problem, and
then use bootstrapping to estimate 95% confidence intervals. The results, shown in
Fig. 3, again show good agreement with the maximal rate predicted by Theorem 1.7.

6 Discussion

In this work we have examined the impact of iterate averaging upon the Kalman
filter and 3DVAR as tools for solving a statistical inverse problem. We have found
that this modest post-processing step ensures that the simpler algorithm, 3DVAR,
will converge, unconditionally with respect to , in mean square as the number of
iterations . In contrast, there is no performance gain when this averaging is
applied to the Kalman filter.

Our simulations suggest that our rates, at least in the diagonal case, may be sharp.
For the diagonal case, we should expect to see something slower than the Monte
Carlo rate of convergence, O 1 unless working in a sufficiently weak space (large
). In the general case, it would seem that for the infinite-dimensional problem, we
will never be able to achieve O 1 convergence for the reasons outlined in Remark
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Fig. 3 Decay of the mean squared variance term in our simultaneously diagonalized test problem for
different -norms. All are in good agreement with the rates predicted by Theorem 1.7. Shaded regions
reflect 95% confidence intervals at each . The constant v reflects the greatest possible decay rate from
(1.19b)

4.3; the operator would need to be trace class, but for the bias to converge.
The sharpness of the result in the non-diagonalizable case remains to be established.
There is also potential for the extension of this work to the analogous continuous in
time problem (1.5) studied in [15].

In actual applications, the problem will always be finite dimensional, making
O 1 achievable. In a spectral Galerkin formulation, truncating to modes, and,
Tr , will always be finite, though the constant may be large. Hence, we should
expect to see O 1 convergence, for sufficiently large and a sufficiently severe
dimensional truncation.
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