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A B S T R A C T   

The late Cambrian witnessed significant biological and environmental changes. However, the main triggers 
responsible for that formidable turnover remain largely unknown. This study investigates mercury (Hg) en
richments from the late Miaolingian to Furongian section in a unique Alum Shale drilled core obtained from 
southeast Sweden. Our results show that the background level of Hg is relatively high because of the presence of 
reducing conditions and continuous Hg supply from water mass. However, our most spectacular findings are the 
presence of four Hg anomalies. The most pronounced Hg anomalies are characterized by the high values in total 
Hg (~900 ppb) and Hg/TOC ratio (~80), as well as specific signatures of mass independent fractionation of Hg 
(MIFs; Δ199Hg, Δ201Hg, and Δ200Hg) that we attribute to volcanic-derived Hg. This Hg loading event occurred 
immediately after the globally recognized Steptoean Positive Carbon Isotope Excursion (SPICE) event and could 
be attributed to volcanic activities during that period.   

1. Introduction 

The late Cambrian interval (500–487 Ma) is a remarkable period in 
Earth's history, because it was associated with loss of around 50% of 
global species and a one-fold increase in proportion of extinct genera 
(Saltzman et al., 2015; Fan et al., 2020). Previous examinations of 
sedimentary records highlight profound environmental variations such 
as atmospheric oxygenation, widespread anoxia, carbon and sulfur 
isotope excursions, regional water mass warming, and polar wander 
events, potentially induced by significant tectonic activity (Elrick et al., 
2011; Gill et al., 2011; Saltzman et al., 2011; Schiffbauer et al., 2017; 
Jiao et al., 2018). Physical, chemical and biological triggers such as 
widespread oceanic anoxia, mass extinction, and volcanic activity usu
ally occurred through Earth's history (Shen et al., 2019a; Bauer et al., 
2021; Schoepfer et al., 2022). Mass extinction and oceanic anoxia phe
nomena were both investigated thoroughly during the late Cambrian 
(Saltzman et al., 2000, 2015; Gill et al., 2011, 2021; Fan et al., 2020). 
However, the effect of synchronous volcanic activity in sedimentary 
archives has not been examined to date, which may limit the 

understanding on atmospheric-oceanic-biological nexus during the late 
Cambrian. 

Mercury (Hg) anomalies are defined as significantly higher concen
trations of Hg (and/or Hg/TOC ratio) compared to the natural back
ground (e.g., Sanei et al., 2012). They can be used as a proxy for 
identifying ancient volcanic activity in sedimentary records (Grasby 
et al., 2019). Prior to the Anthropocene, major sources of Hg emission 
were volcanic eruptions and degassing (Pyle and Mather, 2003; Percival 
et al., 2021). Given its short residence time in the environment, any 
anomalous rise of Hg in the geological record is attributed to a signifi
cant and prolonged change of the regular Hg flux reaching the sediment- 
water interface (Mason and Sheu, 2002; Selin, 2009; Outridge et al., 
2018). Mercury anomalies are associated with the first-order “big five” 
major mass extinction events and sub-order bio-extinction events as well 
as several oceanic anoxic events (Sanei et al., 2012; Sial et al., 2013; 
Thibodeau et al., 2016; Jones et al., 2017; Racki et al., 2018; Shen et al., 
2019a, 2022). These observations led to the hypothesis that these major 
extinction events were linked to or possibly triggered by intense volcanic 
activity. 
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Today, the predominant species of Hg in the atmosphere is Hg(0) 
(~90%) (Fitzgerald et al., 2007). Mercury (0) can be oxidized into Hg(II) 
species and deposited through wet and dry deposition or via direct 
incorporation in plants and soils, where it is subsequently oxidized to Hg 
(II) (Outridge et al., 2018). Mercury has seven stable isotopes (196Hg, 
198Hg, 199Hg, 200Hg, 201Hg, 202Hg, and 204Hg) that are fractionated in 
the environment by both mass-dependent (Hg-MDF, denoted as δ202Hg) 
and mass-independent (Hg-MIF, denoted as Δ199Hg, Δ200Hg, Δ201Hg, 
and Δ204Hg) processes. Mercury isotopes have been proven to be useful 
tracers (1) to disentangle between Hg(II) and Hg(0) deposition (Obrist 
et al., 2017), (2) to identify sources and processes involving Hg across 
Earth's history (Thibodeau et al., 2016; Zerkle et al., 2021), and (3) to 
provide new insights on Hg atmospheric (photo)chemistry (Chen et al., 
2012; Zerkle et al., 2020). Mercury mass-dependent fractionation (MDF) 
occurs during geochemical reactions driven by kinetic and equilibrium 
exchanges such as methylation and adsorption processes (Lepak et al., 
2020), and is typically denoted as δ 202Hg. Mass independent fraction
ations (MIFs) usually indicate that Hg underwent photochemical re
actions that do not depend on mass (Tsui et al., 2020), and are mostly 
associated with odd isotopes (i.e., Δ199Hg and Δ201Hg) and result from 
the byproduct of photochemical demethylation (in biota) and photo
chemical reduction in sediments (Blum et al., 2014). However, less 
prominent MIF mechanisms have been characterized with even isotopes 
(even-MIFs) that are thought to be the result of nuclear self-shielding 
(Mead et al., 2013), and are denoted as Δ200Hg and Δ204Hg. Magnetic 
isotope effect (MIE) induces the largest mass-independent Hg isotope 
fractionation (MIF) of odd Hg isotopes during the reduction of Hg (II) in 
presence of light and water (Janssen et al., 2016) while nuclear volume 
effect (NVE) leads to relatively small Hg-MIF fractionation (Bergquist 
and Blum, 2007). Odd Hg-MIFs are particularly useful to track sources 
and Hg transformations (Tsui et al., 2020). In oceanic systems, odd Hg- 
MIF are robust to post-depositional alteration (Grasby et al., 2017) and 
can record additional, complementary atmospheric constraints (Zerkle 
et al., 2020). During the late Cambrian, vegetation cover and soil 
development were minimal, supporting a model where volcanic Hg(0) 

would have been the crucial source of Hg to the atmosphere (Grasby 
et al., 2019). Mercury released from volcanoes is mostly characterized 
by near-zero odd and even Hg-MIF signatures (Zambardi et al., 2009; 
Blum et al., 2014; Zerkle et al., 2020; Edwards et al., 2021). 

The lower Paleozoic, organic matter-rich Alum Shale is widely 
distributed in northwestern Europe and well-studied in paleogeography 
(Nielsen and Schovsbo, 2015), providing an ideal example to investigate 
Hg systems during the late Cambrian. The late Cambrian environmental 
and biological variations have been documented for a long time (e.g., 
Gill et al., 2011; Saltzman et al., 2015). However, the effects of late 
Cambrian volcanic activity interpreted by Hg anomaly have been largely 
ignored. This study aims to fill this gap and our goals were to (1) 
determine the late Cambrian Hg variations in the Alum Shale, (2) 
identify controls that contributed to Hg enrichments within this shale, 
and (3) discuss potential environmental and biological implications. 

2. Geological setting 

The lower Paleozoic Alum Shale, deposited in the western margin of 
the Baltic continent, covers an approximate area of 100, 000 km2 in 
northwestern Europe (Fig. 1). This shale is highly enriched in organic 
matter (up to 28.0 wt%; Sanei et al., 2014) and redox metals (e.g., up to 
6000 ppm V; Schovsbo, 2001). The deposition of this shale straddles the 
Miaolingian, Furongian, and Early Ordovician (Tremadocian) (Nielsen 
and Schovsbo, 2015). The long and stable stratigraphic connection and 
high-resolution fossils record within this shale contribute to a well- 
examined stratigraphy and geography (Nielsen and Schovsbo, 2006; 
Nielsen and Ahlberg, 2019). During the deposition of the Alum Shale, 
the water connection between the Baltoscandian Basin and the Iapetus 
Ocean was suggested to be persistent (Sturesson et al., 2005; Gill et al., 
2021). 

The studied Ottenby-2 core was drilled in southern Öland, Sweden 
(GPS Coordinates: 56.14741 N, 16.244316 E). The detailed trilobite/ 
graptolite biostratigraphy of this core was described in Bian et al. 
(2021). The Alum Shale at this site was deposited under a relatively 
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Fig. 1. Paleo-reconstruction of the later Cambrian Earth, modified from Scotese (2001). Hg anomaly is from Pruss et al. (2019). Locations and datings of the later 
Cambrian volcanic events are supplied in Table 2. 
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shallow water condition and the redox condition remained reducing 
(Nielsen and Schovsbo, 2015; Bian et al., 2021). The lithology of this 
core is mainly composed of carbonate-poor shale and subordinate 
calcareous shale. The biostratigraphic record in conjunction with 
organic carbon isotope suggests that the core straddles the Miaolingian 
and Furongian Series. Stratigraphically, this core contains the upper 
Miaolingian to lower Furongian succession and then a nearly contin
uous, condensed middle to upper Furongian succession. The chro
nostratigraphic boundaries of this core are calibrated by Olenus ssp. and 
Acerocare ssp. for the base and top of Furongian, respectively. The Olenus 
Superzone and organic carbon isotope excursion were used to constrain 
the globally recognized Steptoean Positive Carbon Isotope Excursion 
(SPICE) event (Fig. 2; Saltzman et al., 2000; Zhao et al., 2022). The 
thermal maturity of this core was examined by organic geochemical and 
petrographic methods, showing that the samples are immature- 
marginally mature (Petersen et al., 2013). 

3. Methods 

About 3 g samples were pulverized using a corundum mortar, ho
mogenized, and separated into different aliquots for total organic carbon 
(TOC), elemental, and isotopic analyses. All powdered samples were 
sieved through a non-metal, 74-μm sieve at Aarhus University. TOC 
contents and Mo concentrations are compiled from Bian et al. (2021). 
TOC contents were measured using the Hawk pyrolysis systems (Wildcat 
Technologies, USA). Data quality was checked by replicates and was 
better than 5%. Molybdenum concentrations were analyzed through the 
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at the ACME 
Lab, Vancouver. Data precision was examined by reference (OREAS 45- 
E), replicates (± 2%), and blanks. 

3.1. Total sulfur 

Total sulfur (TS) contents were measured through the CS 200 
analyzer at the Geological Survey of Denmark and Greenland. Approx
imate 0.05 g samples were treated with 2 M HCl solution at 65 ◦C for 2 h, 
followed by drying samples at room temperature for 24 h prior to 

analysis. Data quality was checked by replicates (± 5%). 

3.2. Organic carbon isotopes 

Organic carbon isotopes were measured by the mass spectrometer 
(ThermoFinnigan MAT 253 Plus) at Northwest University. Approximate 
1 g powdered samples were acidified with 6 N HCl for 24 h to remove 
calcareous parts, and were then buffered to a neutral pH, filtered, and 
dried at 75 ◦C. The residues were weighted into tin capsules, combusted 
at 950 ◦C in an Elemental Analyzer to generate CO2 that was then 
transferred to the isotope mass spectrometer for measuring carbon iso
topes. Organic carbon isotopes are expressed in delta notation (δ13Corg) 
in per mil. The final δ13Corg values are relative to the Vienna Pee Dee 
Belemnite (V-PDB) standard to characterize the isotopic compositions. 
Analytical precision was better than 0.3‰. 

3.3. Mercury concentration and isotopes 

Mercury concentration analyses were performed through a DMA-80 
automatic Hg analyzer (Milestone, Italy) and Hg isotopes were measured 
by a Cold Vapor-Multicollector Inductively Coupled Plasms Mass Spec
trometry (CV-MC-ICPMS, Nu Instruments, U.K.) at State Key Laboratory 
of Environmental Geochemistry, Chinese Academy of Sciences. 

For analyses of Hg contents, the powdered samples were decom
posed in the combustion tube to remove interfering impurities, and 
subsequently, the purified gas was transported to the amalgamator, 
where Hg vapor was amalgamated with gold and heated for subsequent 
detection through an atomic absorption spectrometer. Data accuracy 
and precision were assessed by reference material (GBW07405) and 
duplicates (within ±5%). The standard samples gave an average Hg 
concentration of 291 ± 22.5 ppb (2 s.d., n = 20) that is consistent with 
standard value (290 ± 30 ppb). The final Hg concentrations documented 
are the average value of the duplicate tests. 

Based on the measured Hg concentrations, ~0.5 g samples were 
added into 10 mL of 40% mixed acid solution (HNO3/HCl = 3:1, v/v) 
and then were analyzed using a combustion-trapping method developed 
for Hg isotopes analysis (Sun et al., 2013). After that, the Hg-trapping 

Fig. 2. Geochemical profiles of Ottenby-2 core in the late Cambrian, Alum Shale of Scandinavia. (A) organic carbon isotope (δ13Corg), (B) total organic carbon (TOC), 
(C) total sulfur (TS), (D) mercury (Hg), (E) Hg/TOC, (F) Hg/TS, (G) △199Hg, (H) △200Hg, and (I) △201Hg for the Alum Shale along with lithology. Zones I to IV 
marked by light red color represent four major mercury anomalies. Yellow zone marks the Steptoean Positive Carbon Isotope Excursion (SPICE) event. In 
biostratigraphic profile, from bottom to top, A.pi: Agnostus pisiformis, O: Olenus, P.sp.: Parabolina spinulosa, Pe: Peltura, and Ac: Acerocare (Bian et al., 2021). In panel 
D, red points represent volcanic Hg input, while blue circles mean basic Hg enrichment influenced by redox condition changes. In panel G-H, the horizontal bars of 
the isotope indicate standard deviation values (2 s.d.) of Hg isotopes. Source data is provided in Table 1. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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solution was diluted with Milli-Q water to a final acid concentration of 
around 20% and stored at 4 ◦C for subsequent Hg isotope measurements. 
Instrumental mass bias was calibrated by an internal NIST 997 Tl stan
dard solution supplied through Aridus II desolvation nebulizer system 
and the National Institute of Standards and Technology Standard 
Reference Material (NIST SRM) 3177 Hg standard sample. Mercury 
isotope compositions are expressed through nomenclature proposed by 
Bergquist and Blum (2007). Isotopic compositions are reported using 
delta notation (δ) relative to the NIST SRM 3177 standard based on the 
equation: 

δxHg(‰) =
{[(xHg

/198Hg
)

sample

/(xHg
/198Hg

)

standard

]
− 1

}
× 1000  

where x is the mass number of each Hg isotope from 199 to 201. Mass 
independent fractionation is expressed by △xHg that is defined though 
the following equation: 

ΔxHg = δxHg −
(
δxHg × β

)

in which x is the mass number of each Hg isotope (199, 200, and 201). β 
is a constant value based on kinetic MDF law (0.2520 for Δ199Hg, 0.5024 
for Δ200Hg, and 0.7520 for Δ201Hg). Analytical uncertainty of Hg iso
topic compositions was evaluated by repeated analysis of the isotopic 
compositions of NIST SRM 3177. The average values of NIST SRM 3177 
(0.01 ± 0.06‰ for Δ199Hg, 0.03 ± 0.07‰ for Δ200Hg, and − 0.01 ±
0.05‰ for Δ201Hg (±2 s.d.)) are in good agreement with previous results 
(Bergquist and Blum, 2007; Zhou et al., 2021). Hg isotopes were only 
measured for zones III and VI (Fig. 2 and Table 1). 

4. Results 

The organic carbon isotope (δ13Corg, Fig. 2A) values remain rela
tively constant at −30.8‰ in the Miaolingian. During the Furongian, the 
δ13Corg values increase to −28.4‰ at 18.1 m in the early Furongian 
Olenus Superzone, corresponding to the SPICE event (Saltzman et al., 
2000; Gill et al., 2011; Zhao et al., 2022). In the mid-late Furongian, the 
δ13Corg values remain constant at approximate −30.5‰ within the 

Parabolina Superzone and subsequently rise to −28.0‰, followed by a 
relatively gradual decrease within the Peltura Superzone. After that, the 
δ13Corg values stay stable until end of the Furongian Series. 

In the Miaolingian, TOC contents vary from 8.0 to 12.1 wt% with an 
average value of 9.8 wt% (n = 9). During the Furongian, TOC contents 
are around 6.0 wt%, before exhibiting a continuously upward increase 
to around 13.0 wt% at ~18.1 m. After that, TOC contents diminish to 
1.5 wt% at 17.8 m, followed by a gradual rise to 13.0 wt% at 15.3 m. 
Within Hg loading event IV, TOC contents are around 8.0 wt% (Fig. 2B). 

During the Miaolingian, TS contents fluctuate between 10.6 and 
16.7 wt% with an average value of 13.5 wt% (n = 9). In the Furongian, 
TS contents increase rapidly from 2.2 to 14.4 wt% and then remain at 
above 10.0 wt%. After that, TS contents display a gradual increase from 
0.7 to ~13.5 wt% at ~15.0 m. Within Hg event IV, TS contents increase 
gradually from ~0.5 to ~9.0 wt% and then remain ~3.5 wt% (Fig. 2C). 

Profiles of total Hg and Hg/TOC show an increase just before the 
SPICE event at around 20.0 to 21.0 m in the late Miaolingian (zone I of 
Fig. 2). In the Furongian, three elevated Hg anomalies are identified 
(Fig. 2): (i) the first Hg anomaly occurs during the SPICE event (zone II) 
at 18.0–20.0 m; (ii) the second anomaly, which shows the highest level 
of Hg (zone III), occurs after the SPICE event at 16.0–17.5 m; and (iii) the 
third Hg anomaly is observed in the late Furongian (zone IV) located at 
12.5–14.5 m. In addition, the observed Hg anomalies vary from 202 to 
934 ppb (median value: 314 ppb) and the background Hg contents are 
between 39 and 199 ppb with a median value of 118 ppb. Those values 
are above tenfold higher than the previously reported late Cambrian Hg 
enrichments (Pruss et al., 2019) and higher than the documented me
dian Hg concentration (62.4 ppb) for key mass extinction and oceanic 
anoxic events through Earth's history (Grasby et al., 2019). 

During loading event I, Hg/TS ratios are almost doubled before 
returning to background values (~10 ppb/wt%). In the Furongian, Hg/ 
TS ratios are around 25 ppb/wt% during loading event II. During event 
III, Hg/TS ratios vary between 33 and 65 ppb/wt% and subsequently 
decrease to background values. During loading event IV, the highest Hg/ 
TS ratio reaches ~71 ppb/wt%, followed by a decrease towards ~22 
ppb/wt%. 

When Hg concentrations and Hg/TOC ratios display their highest 

Table 1 
Analytical dataset for the Ottenby-2 core.  

Depth (m) TOC (wt%) TS (wt%) Hg (ppb) Mo (ppm) Hg/TOC (ppb/wt%) Hg/S (ppb/wt%) Δ199Hg 
(‰) 

Δ200Hg 
(‰) 

Δ201Hg 
(‰) 

12.3 10.3 3.4 90 112 8.78 26.72    
12.4 12.6 3.5 199 185 15.86 56.20 0.002 −0.013 −0.008 
12.8 6.9 9.2 202 108 29.55 21.97    
13.2 9.4 5.4 301 147 31.92 55.50    
13.8 8.6 4.4 314 186 36.48 71.34 −0.002 0.017 −0.051 
14.3 2.0 0.5 46 30 23.09 20.00    
15.3 13.0 13.1 114 138 8.74 8.71    
16.0 12.1 9.0 185 274 15.26 20.53 −0.001 −0.019 0.015 
16.2 10.9 14.5 934 226 85.42 64.26 0.007 0.041 0.010 
16.7 9.8 13.1 789 230 80.35 60.28 0.029 0.008 0.018 
17.2 4.4 7.1 233 84 53.46 32.91    
17.5 8.1 10.3 495 205 61.54 48.19 0.056 0.022 0.073 
17.8 1.5 0.7 38 15 25.11 57.21    
18.1 12.6 10.5 103 184 8.21 9.83 0.055 0.009 0.061 
18.3 13.0 11.1 134 124 10.30 12.11    
18.5 11.5 12.5 118 117 10.33 9.49    
18.9 11.5 14.4 316 75 27.42 22.00    
19.2 9.3 10.4 292 95 31.26 28.07    
19.4 5.7 2.2 98 19 17.15 44.60    
19.7 8.6 12.7 111 74 12.84 8.75    
20.2 12.1 10.6 289 58 23.85 27.26    
20.7 9.9 13.0 322 147 32.50 24.76    
21.2 9.4 10.6 126 198 13.40 11.91    
21.8 10.7 12.9 112 194 10.50 8.64    
22.3 9.9 14.2 164 152 16.49 11.56    
22.5 8.0 16.7 139 139 17.23 8.32    
23.1 9.1 15.8 150 146 16.45 9.50    
23.6 9.5 15.4 158 184 16.59 10.27     
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concentrations in zone III, the even Hg-MIF values (Δ200Hg; Fig. 2H) 
remain close to 0‰ and the odd Hg-MIFs (Δ199Hg and Δ201Hg; Fig. 2G 
and I) show a consistent decrease towards ~0‰, suggesting 

volcanogenic sources (Shen et al., 2019a). 
Molybdenum concentrations were used to identify redox condition. 

Fig. 3 displays Mo concentrations in most samples are above 25 ppm. 
The relationship between Mo and Hg is used to assess potential mech
anisms for Hg enrichments. Fig. 4 shows that Hg and Mo concentrations 
are linearly correlated in samples at Hg background level (R = 0.76, p <
0.01). However, they have an exponential correlation in Hg anomalous 
samples (R = 0.81, p < 0.01). 

The dominant host phases of Hg are examined by crossplots of Hg 
versus TS and Hg versus TOC (Fig. 5A and B; Shen et al., 2019b, 2020). 
Fig. 5A shows that Hg has a significant correlation with TS in samples at 
Hg background level (R = 0.88, P < 0.01), whereas there is no statistical 
relationship in Hg anomalous samples. Fig. 5B displays that Hg and TOC 
are correlated with an R of 0.67 (P < 0.01) in samples at Hg background 
level and that they are insignificantly correlated in Hg anomalous 
samples. 

5. Discussion 

5.1. Potential controls on late Cambrian Hg enrichments 

Four Hg maximums are reported for the Miaolingian–Furongian 
succession in Ottenby-2 core (Fig. 2). The four Hg anomalies are iden
tified by contemporaneous increases of Hg concentrations as well as Hg/ 
TOC and Hg/TS ratios (zones I to IV; Fig. 2). The most elevated Hg 
concentrations measured (zone III) occur just after the SPICE event. This 
anomaly is characterized by concurrent increases of Hg concentrations, 
Hg/TOC and Hg/TS ratios, near-zero even Hg-MIF (Δ200Hg), and near- 
zero to weakly positive odd Hg-MIFs (Δ199Hg and Δ201Hg). The youn
gest Hg anomaly (zone IV) exhibits a similar variation as Hg loading 
event III. 

Sulfides and organic matter are important sinks for sequestrating Hg 
under reducing conditions (Shen et al., 2019b, 2020). Fig. 5 shows that 
Hg concentrations are significantly correlated to TS contents and are 
weakly correlated to TOC contents in samples at Hg background level. 
This suggests that sulfides are the dominant host phases of Hg, followed 
by organic matter (maybe as sulfurized organic matter). Although there 
is no statistical correlation for Hg anomalous samples, we consider that 
sulfides and organic matter remain important host phases, because both 
samples with background Hg values and anomalous values were 
deposited under the same redox conditions (Fig. 3). 

These Hg enrichments could have resulted from three potential 
mechanisms: (1) terrestrial erosion processes that would have trans
ported significant rocks into seawater (Grasby et al., 2017; Meixnerová 
et al., 2021; Shen et al., 2022); (2) reducing conditions that would have 

Fig. 3. Molybdenum (Mo) versus total organic carbon (TOC). The samples 
selected refer to Fig. 2D. 

Fig. 4. Mercury (Hg) versus molybdenum (Mo). The samples selected refer to 
Fig. 2D. The significant level is above 99%. 

Fig. 5. A: Mercury (Hg) versus total sulfur (Mo), and (B) Mercury (Hg) versus total organic carbon (TOC). The samples selected refer to Fig. 2D. The significant level 
is above 99%. 
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promoted removal of continuous Hg supply from seawater (Grasby et al., 
2019; Shen et al., 2019b, 2020); and (3) massive release of Hg from 
volcanic activity. Scenario (1) can be reasonably excluded, because 
previous studies reported an extremely low sedimentation rate in the 
Alum Shale (< 6 mm/ka; Sturesson et al., 2005; Sørensen et al., 2020). 
Terrestrial particles that may have contained Hg were not delivered fast 
enough into the Baltoscandian Basin to explain Hg anomalies. Scenario 
(2) may have been responsible for elevated Hg background values but 
cannot explain Hg anomalous horizons. At first, we used Mo concen
trations to recognize redox conditions in Baltoscandian Basin (Scott and 
Lyons, 2012; Gill et al., 2021). Generally, 2 < Mo < 25 indicates anoxic 
conditions and Mo > 25 suggests euxinic conditions. Fig. 3 shows that all 
samples were deposited into anoxic to euxinic (reducing) conditions. In 
addition, the Hg/Mo ratio is commonly constant and strongly correlated 
(Shen et al., 2019b; Meixnerová et al., 2021). Therefore, the linear 
correlation between Mo and Hg concentrations in samples at Hg back
ground level suggests that the relatively high Hg background values 
could be attributed to reducing conditions and continuous Hg supply 
from seawater (Fig. 4). Therefore, we argue that the most plausible 
scenario for explaining Hg anomalies is volcanic activity. This inference 
is also supported by elevated Hg concentrations, Hg/TOC and Hg/TS 
ratios, near-zero Hg MIFs in loading events III and IV, and gradually 
decreased odd Hg MIFs in loading event III (Fig. 2. Grasby et al., 2017; 
Shen et al., 2019a, 2020). These attributes also reinforce the fact that 
scenario (3) is a reasonable mechanism to explain Hg anomalies, i.e., 
late Cambrian Hg loading events were associated with volcanic 
activities. 

5.2. Comparison with the Laurentian Hg enrichments 

Previous studies examining Hg enrichments across the late Cambrian 
are scarce. Hitherto, only one study documented Hg enrichments in 
carbonate rocks of the late Cambrian Eilean Dubh Formation, northern 
Scotland, and attributed them to redox oscillations of ocean water based 
on increased glauconite contents and the absence of reported large 
igneous provinces (Pruss et al., 2019). Their dataset and our new one 
show that the climax of the SPICE event occurs prior to the highest Hg 
concentrations (Figs. 1 and 6). By combining an in-depth examination of 
biostratigraphic fossils with organic carbon isotopic signature (Fig. 1), 
we suggest that the highest Hg concentrations (zone III) are after the 
SPICE event rather than within the SPICE event. In addition, we consider 
that Hg anomalies in Laurentia (Scotland) and Baltica (this study) could 

have been contemporaneous through the constraint of positive carbon 
isotope excursion during the SPICE event (Fig. 6). 

Mercury concentrations range from 30 to 934 ppb in our samples but 
are below 40 ppb in Laurentia (Fig. 5B and E). We explore different 
mechanisms to explain this difference: (1) different Hg host phases. Most 
samples in Laurentia display low organic matter contents (<0.1 wt%) 
and detrital mineral contents (<10 wt%) that are likely responsible for 
fixing Hg, whereas the dominant Hg host phases in our samples are 
probably sulfides and organic matter (Fig. 5). Previous studies suggested 
that organic matter and sulfides have higher adsorption capabilities for 
Hg sequestration (Wolfenden et al., 2005; Skyllberg and Drott, 2010; 
Chakraborty et al., 2015; Shen et al., 2019a). We thus argue that the 
variations in content and type of host phases might partially explain 
different Hg concentrations in these two areas; (2) different redox con
ditions may affect the fixation rate of Hg. Sediments in Laurentia were 
deposited under oxic to dysoxic conditions, while our studied samples 
were deposited under extremely oxygen-depleted conditions (Fig. 3). 
The reducing conditions could promote Hg fixation by forming organic- 
Hg complexes and Hg-sulfides (Ravichandran, 2004; Duan et al., 2016; 
Shen et al., 2019a); and (3) other factors, such as seawater inflow and 
sedimentation rate (Shen et al., 2019a, 2022). 

We can observe a weakly negative carbon isotope excursion after the 
most pronounced Hg anomaly in Laurentia (Figs. 6D-E). However, there 
is a positive organic carbon isotope excursion in the Peltura Superzone, 
likely following loading event III in the Parabolina spinulosa Superzone 
of Ottenby-2 core (Fig. 5A). We attribute this result to the absence of 
Leptoplastus and Protopeltura Superzones in the Ottenby-2 core during 
the mid-late Jiangshanian Stage. Zhao et al. (2022) investigated the late 
Cambrian organic carbon isotope in the Alum Shale and showed that 
there is a negative carbon isotope excursion within the Leptoplastus 
Superzone just after loading event III (Parabolina spinulosa Superzone). 
During loading events I and II, the δ13Corg values show a continuous 
increase. The positive organic carbon isotope excursion commonly re
sults from increased marine phytoplankton productivity and/or 
increased organic matter preservation under reducing conditions (Kump 
and Arthur, 1999). Previous studies proposed that oceanic anoxia was 
mainly responsible for organic carbon isotope excursion during the 
SPICE event (Gill et al., 2011; Dahl et al., 2014; Schiffbauer et al., 2017; 
LeRoy and Gill, 2019; Pruss et al., 2019). Therefore, we suggest that the 
negative organic carbon isotope excursion caused by volcanism may 
have been inhibited owing to massive organic carbon burial. 

Although large igneous provinces have not been reported during the 

Fig. 6. Comparison of Hg anomalies in Baltica and Laurentia. Panels A and B are organic carbon isotope (δ13Corg) and Hg content in Baltica. The depositional age is 
identified by trilobites/graptolite biozones in Baltica (Peng et al., 2020; Zhao et al., 2022). Panel C: reported Furongian global volcanic events. B: Baltica, L: Lau
rentia, A: Avalonia, NG: Northern Gondwana, Lh: Lhasa Terrane, V: southern Variscan branch, NI: northern India, NT: northern Tianshan, LM: Liberian Massif, SA: 
southern Australian. Source data are provided in Table 2. Panels D and E: carbonate carbon isotope and Hg in Laurentia (Pruss et al., 2019). Panels F and G: carbonate 
carbon isotope and modeled late Cambrian atmospheric oxygen content (Saltzman et al., 2011). 
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late Cambrian, we examined the global late Cambrian magmatic activ
ities and remarked intense global volcanic activities along the plate 
subduction zones (Fig. 1 and Table 2). Those volcanic activities probably 
resulted in the pronounced Hg anomalies observed in Baltica and Lau
rentia. There is not enough evidence to conclude whether Hg events I, II, 
and IV could be identified for other continents. However, we consider 
that they were likely a sequel of massive volcanic activities that occurred 
before, during, and after the SPICE event because of the consistent in
crease of simulated atmospheric oxygen from late Miaolingian to early 
Furongian (Fig. 6; Saltzman et al., 2011). 

5.3. Intensive volcanic activity as potential trigger for major 
environmental perturbation 

The late Cambrian interval was a period that witnessed recurrent 
mass extinction events (Bambach et al., 2004; Pruss et al., 2010; Saltz
man et al., 2015). Previous studies proposed that widespread oceanic 
anoxia was mostly responsible for mass extinction during the SPICE 
event in early Furongian (Saltzman et al., 2000; Dahl et al., 2014; LeRoy 
and Gill, 2019; Gill et al., 2011, 2021). Dahl et al. (2014) proposed two 
stages for the SPICE event: the first stage had a widespread oceanic 
euxinia that was associated with a well-known trilobite extinction event, 
and the second stage had less euxinic conditions and enhanced nutrient 
availability that would have fueled phytoplankton diversification. 
However, the SPICE event was followed by the mid-late Furongian mass 
extinction events (Saltzman et al., 2015; Kröger et al., 2019; Zhang et al., 
2021). 

Although volcanic activity was unlikely responsible for the SPICE 
event, it could have favored mass extinction by stressing the marine 
ecosystem (Bauer et al., 2021; Schoepfer et al., 2022). Massive volcanic 
activity could release light carbon isotopes to the surface of Earth and 
contribute to elevated organic matter burial, which is responsible for the 
widely recognized negative carbon isotope excursion following Hg 
anomaly (Kump and Arthur, 1999; Sanei et al., 2012; Lindström et al., 
2019; Shen et al., 2019a, 2022). The most pronounced Hg anomaly in 
Baltica and Laurentia was followed by a negative carbon isotope 
excursion, likely suggesting the observed Hg enrichments were not a 
localized phenomenon and may have been associated with high 
extinction rates in the mid-late Furongian (Bambach et al., 2004; Pruss 
et al., 2010; Saltzman et al., 2015; Zhang et al., 2021). In addition, the 
recognized volcanic activity (loading events I to IV) may have been 
partially responsible for elevated atmospheric oxygen in the late 
Cambrian (Saltzman et al., 2011). We acknowledge that our new dataset 

is limited to a single location, preventing us from making a robust case 
for a potential global influence. However, we cautiously speculate that 
massive volcanic activity could have released significant amounts of 
greenhouse gases (13C-depleted CO2 and 34S-depleted SO2), progres
sively leading to major environmental perturbations. Ultimately, these 
important changes pushed the ecosystem towards a tipping point that 
may have in some measure contributed to the recurrent mass extinction 
events that occurred during the late Cambrian (Gaillard and Scaillet, 
2014; Saltzman et al., 2015; Fan et al., 2020; Cui et al., 2021). Addi
tional work is required to confirm or reject that hypothesis. 

6. Conclusion 

The late Cambrian mercury (Hg) records obtained from the Alum 
Shale core in southern Sweden show four distinct Hg anomalies. Despite 
the occurrence of reducing conditions and continuous Hg supply from 
seawater that could favor significant concentrations of Hg fixation 
(background level), we argue that the four Hg anomalies resulted from 
volcanic activities. This is characterized by the high values in total Hg as 
well as Hg/TOC and Hg/TS ratios for Hg loading events I to IV, and near- 
zero even Hg mass independent fractionation (even MIF; Δ200Hg) and 
near-zero to weakly positive odd Hg MIFs (Δ199Hg and Δ201Hg) for Hg 
loading events III-IV. The most profound Hg anomalies observed in 
Baltica were synchronous with Hg anomalies recorded in Laurentian 
sedimentary archives, suggesting that these Hg anomalies may have also 
been recorded in other continents. Furthermore, all these Hg anomalies 
were intimately associated with the late Cambrian biological extinction, 
underscoring the needs to examine in future studies the late Cambrian 
volcanic effects at a global scale. 
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Table 2 
Summary of global volcanic activities between ~497 and ~487 Ma.  

Location Sampling Ages Dating Magmatism 
type 

References 

Baltica 
Outer margin of Baltica (Köli Nappe) 488 ± 5 U–Pb subduction Claesson et al., 1983; Barnes et al., 2019 

Outer margin of Baltica (Köli Nappe) 492 ± 1 
U–Pb 
Rb–Sr subduction Claesson et al., 1988; Barnes et al., 2019 

Avalonia / 493 ± 2, 496 ± 5 U–Pb subduction Vozárová et al., 2010 
Laurentia Grampian-Taconic forearc 495 peak U–Pb subduction O'Sullivan and Chew, 2020 

Northern 
Gondwana 

Lhasa Terrane 492 ± 4 U–Pb subduction Zhu et al., 2012 
North India 491, 496 U–Pb subduction Zhu et al., 2012 

North Tian Shan 491 ± 3, 492.6 ± 1.6, 493.5 +
3.7, 493 ± 4 

U–Pb subduction Rojas-Agramonte et al., 2014; Alexeiev 
et al., 2019 

Southern Variscan branch (Sardinia, Italy) 491.7 ± 3.5 U–Pb subduction Oggiano et al., 2010 

Liberian Massif - Viana do Bolo 488 ± 4 U–Pb subduction 
Montero et al., 2009; García-Arias et al., 
2018 

Liberian Massif - Sanabria 488 ± 6 U–Pb subduction 
Díez Montes, 2006; García-Arias et al., 
2018 

Liberian Massif - Puebla de Sanabria 488 ± 3, 490 ± 2, 492 ± 4 U–Pb subduction Montero et al., 2007 

Liberian Massif - Hiendelaencin 494 ± 4, 495 ± 5 U–Pb 
Rb–Sr 

subduction Montero et al., 2007 

Southern 
Gondwana 

Southern Australia, Western Victoria 492.8 ± 1.3, 495 ± 1.2 U–Pb subduction Foden et al., 2006, 2020 
Mount Read Volcanic Belt, Western 
Tasmania, Australia 496 ± 0.9, 497.3 ± 0.9 U–Pb collision Mortensen et al., 2015  
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