

# 1 CO<sub>2</sub>-rich rejuvenated volcanic rocks on Hawaiian islands

2  
3 Guoliang Zhang<sup>1,2,3\*</sup>, Shuai Wang<sup>1</sup>, Shichun Huang<sup>4</sup>, Mingjun Zhan<sup>1</sup>, Junhua Yao<sup>1</sup>

4  
5 <sup>1</sup> Center of Deep Sea Research & Key Laboratory of Marine Geology and Environment, Institute  
6 of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

7 <sup>2</sup> Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and  
8 Technology, Qingdao 266000, China

9 <sup>3</sup> Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

10 <sup>4</sup> Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010, USA

11 \*Corresponding author: Guoliang Zhang ([zhangguoliang@qdio.ac.cn](mailto:zhangguoliang@qdio.ac.cn))

## 13 Abstract

14 **Sedimentary carbonates are sent to the deep mantle if they are not completely destroyed at**  
15 **subduction zones, and subducted carbonates may contribute to plume volcanism. To better**  
16 **constrain the role of recycled carbonates in Hawaiian volcanism, we report high-precision**  
17 **olivine and whole-rock geochemical compositions of shield and rejuvenated stage lavas**  
18 **from Kauai, Oahu and Maui islands. The studied rejuvenated stage whole-rocks have low**  
19 **SiO<sub>2</sub> and high CaO concentrations, and are depleted in HFSEs, such as, Nb and Zr,**  
20 **consistent with a role of carbonated melt. Rejuvenated stage olivines have Ni abundance**  
21 **lower than and CaO and MnO contents similar to those of shield stage at a given Fo. The**  
22 **calculated partition coefficients of Ca (D<sub>Ca</sub><sup>Ol-melt</sup>) and Mn (D<sub>Mn</sub><sup>Ol-melt</sup>) between olivine and**  
23 **shield melts are consistent with those of a dry melt system. However, the low D<sub>Ca</sub><sup>Ol-melt</sup> and**  
24 **D<sub>Mn</sub><sup>Ol-melt</sup> for rejuvenated lavas can only be explained by a volatile-rich melt system. Based**  
25 **on the observed D<sub>Ca</sub><sup>Ol-melt</sup> and D<sub>Mn</sub><sup>Ol-melt</sup> in rejuvenated lavas, and considering the effect of**  
26 **H<sub>2</sub>O, our modeling calculation shows that rejuvenated primary magmas contain up to ~10**

27 **wt% CO<sub>2</sub>. Using olivine-spinel aluminum exchange thermometry, we show that the**  
28 **rejuvenated primary magma temperatures are similar to/ slightly lower than those of shield**  
29 **stage. We posit that the lower rejuvenated stage lavas were originated from melting of**  
30 **carbonated peridotites in the plume. The carbonated melts that metasomatized the**  
31 **peridotites were likely derived from subducted ancient carbonate-bearing lithospheric**  
32 **mantle.**

33 **Keywords:** olivine, CO<sub>2</sub>, metasomatism, rejuvenated lavas, mantle plume, Hawaiian islands

## 34 **1 Introduction**

35 The deep mantle may store most of the Earth's carbon (Dasgupta and Hirschmann, 2006;  
36 Dasgupta and Hirschmann, 2010; Zhang et al., 2017; Plank and Manning, 2019). Plate  
37 subduction is considered to be an important factor of carbon enrichment in the deep Earth's  
38 interior (Dasgupta and Hirschmann, 2010; Plank and Manning, 2019). Deep-rooted mantle  
39 plumes (e.g., Hawaiian plume) are good candidate for the study of deep Earth's carbon cycle  
40 (Dixon et al., 2008). Since CO<sub>2</sub> can significantly change the chemistry of mantle-sourced melts,  
41 e.g., lowering SiO<sub>2</sub> and elevating CaO of melts (Dasgupta et al., 2007a; Foley et al., 2009; Zhang  
42 et al., 2017), it may play an important role in the origin of alkali basalts (Dixon et al., 2008;  
43 Dasgupta et al., 2006, 2007a&b; Sisson et al., 2009).

44 The Emperor-Hawaii seamount chain is a type volcanic chain that may originate from near the  
45 core-mantle boundary (Montelli et al., 2004; Huang et al., 2011; Weis et al., 2011; French and  
46 Romanowicz, 2015). Shield stage tholeiitic basalts account for the majority (95 vol%) of  
47 Hawaiian volcanic rocks, while pre-shield, post-shield and rejuvenated stages account for the  
48 rest 5% (Sherrod et al., 2007). The role of an olivine-free lithology, pyroxenite or eclogite, in the  
49 petrogenesis of Hawaiian shield lavas is highly debated. Specifically, Hawaiian shield tholeiitic  
50 lavas have too high SiO<sub>2</sub> content to be produced by partial melting of garnet peridotite (e.g.,  
51 Hauri, 1996; Wagner and Grove, 1998; Huang and Frey, 2005). This led to the suggestion that an  
52 eclogite component play a role in producing the high SiO<sub>2</sub> contents in Hawaiian tholeiitic lavas  
53 (Hauri, 1996; Huang and Frey, 2005). Alternatively, the high SiO<sub>2</sub> content may be a result of  
54 melt-harzburgite reaction (Wagner and Grove, 1998). Sobolev et al. (2005; 2007) and Herzberg  
55 (2006; 2011) noted that the high olivine Ni contents and low CaO and MnO in olivines from

56 Hawaiian shield lavas, as well as low whole rock CaO contents, required a pyroxenite-dominated  
57 mantle source for Hawaiian shield lavas. Alternatively, the low CaO and MnO contents, and high  
58 SiO<sub>2</sub> content of Hawaiian lavas may be explained if they represent mixtures of partial melts from  
59 garnet peridotite and from eclogite (Huang et al., 2007). Matzen et al. (2013; 2017) showed that  
60 the high olivine Ni content in Hawaiian shield stage olivines may simply reflect the temperature  
61 difference between partial melting beneath the thick lithosphere and olivine crystallization in a  
62 shallow magma chamber, and a pyroxenite-dominated mantle source is not required.

63 Hawaiian rejuvenated stage volcanism occurred 0.5-2 Myr after shield stage and consists of  
64 silica-undersaturated alkaline-rich rocks, e.g., alkali basalt, hawaiite, nephelinite and melilitite  
65 (e.g., Clague and Dalrymple, 1987; Garcia et al., 2010; Phillips et al., 2016). Hawaiian  
66 rejuvenated lavas are among the most silica-undersaturated and alkaline-rich in oceanic  
67 islands/seamounts (Chauvel et al., 1997; Zhang et al., 2020). It remains unclear on the origin of  
68 rejuvenated stage low-SiO<sub>2</sub> alkali-rich volcanic rocks (Reiners and Nelson, 1998; Bianco, 2005;  
69 Garcia et al., 2010; Ballmer, 2011; Hofmann and Farnetani, 2013; Phillips et al., 2016).  
70 Hawaiian rejuvenated lavas are more depleted in Sr-Nd-Hf isotope compositions than those of  
71 shield stage (e.g., Chen and Frey, 1983; Frey et al., 2000; 2005 G-cubed; Yang et al., 2003;  
72 Hofmann and Farnetani, 2013; Beguelin et al., 2019; DeFelice et al., 2019; Harrison et al., 2020),  
73 indicating different mantle sources. Earlier studies suggested an origin of Hawaiian rejuvenated  
74 lavas from the underlying metasomatically enriched Pacific lithospheric mantle (Chen and Frey,  
75 1983; Garcia et al., 2010). However, there are increasing studies suggesting the isotopically  
76 depleted rejuvenated stage source component is intrinsic of the mantle plume (Ribe and  
77 Christensen, 1999 EPSL 171, 517-531; Hofmann and Farnetani, 2013; DeFelice et al., 2019;  
78 Harrison et al., 2020; but see also Beguelin et al., 2019 for a different opinion).

79 Silica under-saturated alkali lavas could be explained by involvement of CO<sub>2</sub> in the mantle  
80 source (Mallik and Dasgupta, 2012; 2013). Several studies have indicated that CO<sub>2</sub> played an  
81 important role in the origin of Hawaiian lavas (Dixon et al., 2008; Huang et al., 2009&2011;  
82 Sisson et al., 2009; Borisova and Tilhac, 2021). Tucker et al (2019) showed that the mantle  
83 sources of Hawaiian shield stage lavas contain 380-480 ppm CO<sub>2</sub> based on measurement of  
84 olivine hosted melt inclusions, while the source CO<sub>2</sub> contents of rejuvenated lavas were not  
85 constrained. Dixon et al (2008) explained Hawaiian rejuvenated lavas with elevated Ba/Th by

86 carbonatite metasomatism, but the content of CO<sub>2</sub> has not been directly constrained. CO<sub>2</sub> not  
87 only affects magma chemical compositions, but also element partitioning between olivine and  
88 melts (Gavrilenko et al., 2016). Gavrilenko et al (2016) proposed that magma CO<sub>2</sub> concentration  
89 could be calculated based on its influence on Ca partition between olivine/melt. In this study, we  
90 have analyzed high-precision olivine chemistry and whole-rock major and trace elements of  
91 Hawaiian rejuvenated stage lavas, aiming to evaluate the role of CO<sub>2</sub> in Hawaiian magmatism.

## 92 **2 Samples**

93 Shield and rejuvenated stage rock samples in this study were collected from Kauai, Oahu and  
94 Maui Islands (Fig. 1), and their information is in [Supplementary Table 1](#). We have collected 26  
95 rock samples, including 16 rejuvenated stage and 10 shield stage, from these islands (Fig. 1;  
96 [Supplementary Table 1](#)). At Kauai Island, there are two sampling sites from the shield stage  
97 Waimea volcanics (5.5-4 Ma), and 5 sites from the rejuvenated stage Koloa volcanics (2.6-0.15  
98 Ma). At Oahu Island, there are 2 sampling sites from the shield stage Wai'anae volcanics and 1  
99 site from the shield stage Ko'olau volcano (3.0-1.8 Ma); 2 sampling sites from the rejuvenated  
100 stage Honolulu volcanics (0.8-<0.1 Ma). At Maui Island, there is 1 sampling site from the shield  
101 stage Wailuku volcanics (2.0-1.3 Ma); 2 sites from the rejuvenated stage Hana volcanics (0-1.5  
102 Ma) and 1 site from the rejuvenated stage Kula volcanics (0.93-0.15 Ma). The detailed  
103 information on division of volcanics can be referred to [Sherrod et al \(2007\)](#). Despite the absence  
104 of distinct differences in formation age between the Hana and Kula volcanics, we classify the  
105 Hana and Kula volcanics as rejuvenated stage because of their low-silica and high alkaline  
106 characteristics. The detailed information on sampling can be found in [Supplementary Table 1](#).

## 107 **3 Methods and results**

### 108 **3.1 Methods**

109 The 26 rock samples were analyzed for bulk-rock major and trace elements, and their olivine  
110 phenocrysts were analyzed for major and trace elements using in situ high-precision Electron  
111 Probe Microanalyzer (EMPA) technique. Bulk-rock major elements were analyzed using fused  
112 glass discs with an Axios sequential X-ray Fluorescence Spectrometer at Institute of Geology  
113 and Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing, China. Samples were fused

114 at 1050 °C using a lithium tetraborate flux ( $\text{Li}_2\text{B}_4\text{O}_7$ ) in a mixture consisting of 0.5 g of sample  
115 and 5 g of lithium tetraborate. Loss on ignition (LOI) was determined at a temperature of 1000°C  
116 in air for 3 hours. Basalt standards BCR-2, BHVO-2 and GSR-3 were analyzed as unknowns and  
117 the results are shown in [Supplementary Method Table 1](#). Bulk-rock trace elements were analyzed  
118 by a Perkin-Elmer Sciex ELAN DRC-e ICP-MS at the State Key Laboratory of Ore Deposit  
119 Geochemistry (SKLODG), Institute of Geochemistry, Chinese Academy of Sciences (IGCAS).  
120 The powdered samples (50 mg) were dissolved with  $\text{HF} + \text{HNO}_3$  mixture in high-pressure Teflon  
121 Bombs at ~190 °C for 48 h ([Qi et al., 2000](#)). Rh was used as an internal standard to monitor  
122 sensitivity drift during measurement. How do you measure the trace element abundances?  
123 BCR-2 and BHVO-2 solutions were used to monitor analytical accuracy. The analytical  
124 precision was generally better than 10 % (2 sigma) based on replication of basalt standards  
125 analyses.

126 Quantitative *in situ* analyses of olivine and spinel major and minor elements were conducted  
127 on JXA-8230 EMPA equipped with 5 wavelength dispersive spectrometers at Institute of  
128 Oceanology, Chinese Academy of Sciences. The operating conditions were: 20 kV accelerating  
129 voltage, 60 nA beam current, and 1-5  $\mu\text{m}$  beam diameter. For olivine analyses, the counting time  
130 was 30 seconds for Si  $\text{k}\alpha$ , Mg  $\text{k}\alpha$  and Fe  $\text{k}\alpha$ , and 80 seconds for Mn  $\text{k}\alpha$ , Ni  $\text{k}\alpha$ , Ca  $\text{k}\alpha$ , Cr  $\text{k}\alpha$ , Al  
131  $\text{k}\alpha$ . The off peak counting time was 80 seconds for Mn  $\text{k}\alpha$ , Ni  $\text{k}\alpha$ , Ca  $\text{k}\alpha$ , Cr  $\text{k}\alpha$ , Al  $\text{k}\alpha$ . Standards  
132 used were olivine (Si, Mg), corundum (Al), MnO (Mn), wollastonite (Ca), NiO (Ni), and apatite  
133 (P), magnetite (Fe), and  $\text{Cr}_2\text{O}_3$  (Cr). For spinel analyses, the counting time was 30 seconds for Si  
134  $\text{k}\alpha$ , Mg  $\text{k}\alpha$ , Al  $\text{k}\alpha$ , Mn  $\text{k}\alpha$ , Ni  $\text{k}\alpha$ , Cr  $\text{k}\alpha$ , Ti  $\text{k}\alpha$  and Fe  $\text{k}\alpha$ . The off peak counting time was 20  
135 seconds for Si  $\text{k}\alpha$ , Mg  $\text{k}\alpha$ , Al  $\text{k}\alpha$ , Mn  $\text{k}\alpha$ , Ni  $\text{k}\alpha$ , Cr  $\text{k}\alpha$ , Ti  $\text{k}\alpha$  and Fe  $\text{k}\alpha$ . Standards used were  
136 spinel (Al, Mg), quartz (Si), MnO (Mn), rutile (Ti), NiO (Ni), magnetite (Fe) and  $\text{Cr}_2\text{O}_3$  (Cr).  
137 Unknown and standard intensities were corrected for dead time. All data were corrected with the  
138 standard ZAF correction procedures. The olivine standard MongOLSh11-2 ([Batanova et al.,](#)  
139 [2019](#)) was replicated during the analyses to monitor the reproducibility and accuracy, and the  
140 results are shown in [Supplementary Method Table 3](#).

141 **3.2 Results**

142 **3.2.1 Whole-rock major and trace elements**

143 Whole-rock major and trace element compositions are shown in [Supplementary Table 2](#). As

144 shown in the plot of TAS vs. SiO<sub>2</sub> ([Supplementary Fig. 1](#)), shield stage lavas are tholeiitic basalts  
145 with two plotting close to the division line between alkali basalt and tholeiitic basalts. Shield  
146 stage lavas have SiO<sub>2</sub> between 46.4-50.0 wt%, MgO between 11.5-23.4 wt%, CaO between  
147 5.1-10.7 wt%, Na<sub>2</sub>O between 1.44-2.51 wt%, and P<sub>2</sub>O<sub>5</sub> between 0.18-0.35 wt%. Shield stage  
148 lavas show slight enrichment of light over heavy rare earth elements (REEs) and slight  
149 enrichment of Ba. Rejuvenated stage lavas are all rich in alkaline elements and can be classified  
150 into foidite, basanite and alkali basalts ([Supplementary Fig. 1](#)), of which the three foidite samples  
151 from Site O7 (Honolulu volcanics) have the highest alkaline (Na<sub>2</sub>O+K<sub>2</sub>O) and P<sub>2</sub>O<sub>5</sub> and the  
152 lowest SiO<sub>2</sub> contents ([Fig. 2](#)). Except for Site O7 foidite samples, the other rejuvenated stage  
153 samples have SiO<sub>2</sub> between 37.7-45.3 wt%, MgO between 7.15-15.1 wt%, CaO between  
154 9.4-13.3 wt%, Na<sub>2</sub>O between 2.4-3.8 wt% and P<sub>2</sub>O<sub>5</sub> between 0.33-0.92 wt%.

155 These rejuvenated stage lavas are strongly enriched in light rare earth elements (LREEs) and  
156 large ion lithophile elements (LILEs) ([Fig. 3](#)) compared with shield stage lavas. These  
157 rejuvenated stage lavas also have positive anomalies of Ba and negative anomalies of Zr-Hf ([Fig.](#)  
158 [3](#)). Site O7 foidite lavas have the strongest enrichment of LILEs and Th-U and the strongest  
159 negative anomalies of high field strength elements (HFSEs, e.g., Nb-Zr-Hf-Ti) ([Fig. 3](#)). These  
160 rejuvenated stage lavas show systematically lower SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> and higher total iron and  
161 CaO/Al<sub>2</sub>O<sub>3</sub> compared to shield stage lavas ([Fig. 2](#), [Supplementary Fig. 2](#)). Rejuvenated stage  
162 lavas also have systematically lower Ni than those of shield stage for a given MgO content ([Fig.](#)  
163 [2b](#)). Moreover, rejuvenated stage lavas have overall higher CaO and MnO contents than those of  
164 shield stage for a given MgO content ([Fig. 2 b&d](#)).

### 165 **3.3.2 *In situ* olivine and spinel chemistry**

166 Olivine phenocrysts and olivine-spinel pairs have been analyzed for high-precision major  
167 and trace element compositions by EMPA, and the results are shown in [Supplementary Table](#)  
168 [3&4](#), respectively. The volcanic rock samples of shield and rejuvenated stages in this study have  
169 similar ranges in Fo# (molar Mg/(Mg+Fe)×100%) ([Fig. 4](#)). For shield stage volcanic rocks, the  
170 highest Fo#s of olivines are 86.8, 89.1, 88.5 and 87.4 for Waimea, Wai'anae, Ko'olau and  
171 Wailuku volcanics, respectively; while for rejuvenated stage volcanic rocks, the highest Fo#s  
172 of olivines are 87.5, 86.9, 87.3 and 84.1 for Koloa, Honolulu, Hana and Kula, respectively. As  
173 shown in [Fig. 4](#), at a given Fo, shield stage volcanic rocks have olivine Ni contents distinctly

174 higher and Mn-Ca contents lower than those of global MORBs. The olivines of rejuvenated stage  
175 lavas also have Ni contents systematically higher than those of global MORBs but lower than  
176 those of shield stage lavas for a given Fo#. Despite the distinct compositions of olivine Ni  
177 between shield stage and rejuvenated stage lavas, their olivine Ca and Mn contents are  
178 comparable for a given Fo# (Fig. 4). The olivines with the highest Fo# for both shield and  
179 rejuvenated stages have similarly Mn and Ca contents, which are lower than those of MORBs.

## 180 **4. Discussion**

### 181 **4.1 Implication of whole-rock geochemistry on the role of CO<sub>2</sub>**

182 It has been suggested that shield stage lavas characterized by depletion of CaO and  
183 enrichment of SiO<sub>2</sub> cannot be explained by melting of peridotites (Hauri, 1996; Wagner and  
184 Grove, 1998; Huang and Frey, 2005; Herzberg, 2006; Herzberg and Asimow, 2008; Dasgupta et  
185 al., 2010), but can be explained by partial melting of mixed pyroxenite (recycled oceanic crust)  
186 and peridotite (e.g., Sobolev et al., 2005&2007; Huang et al., 2007; Herzberg, 2011; Herzberg  
187 and Asimow, 2008; Jackson et al., 2012; Mallik and Dasgupta, 2012). Rejuvenated stage lavas  
188 are usually silica-undersaturated and enriched in CaO that are distinct from shield stage  
189 volcanism (Fig. 2). The enrichment of LREEs and LILEs in rejuvenated lavas (Fig. 3) could be  
190 explained by low degree of melting in the mantle source and a geochemically enriched mantle  
191 source. However, the high CaO and SiO<sub>2</sub>-poor nature of rejuvenated stage lavas cannot be  
192 explained by melting of dry pyroxenite (e.g., Mallik and Dasgupta, 2013) or peridotite (e.g.,  
193 Dasgupta et al., 2010) at any temperature and pressure. Results of high pressure/temperature  
194 experiments indicate that, with the presence of CO<sub>2</sub>, partial melts of either peridotite or  
195 pyroxenite/eclogite have high CaO and low SiO<sub>2</sub> contents (e.g., Dasgupta et al., 2007; Mallik  
196 and Dasgupta, 2013).

197 Plate subduction is an effective way to introduce sedimentary carbonate into deep mantle  
198 (e.g., Zhang and Smith\_Duque, 2014; Plank and Manning, 2019; but see also Thomson et al.,  
199 2016). If recycled oceanic crust is involved in the Hawaiian mantle plume, sedimentary  
200 carbonates may have played a role during mantle melting, especially at low degrees of melting.  
201 Based on the results of melting experiment (e.g., Mallik and Dasgupta, 2013), melting of  
202 carbonate-bearing MORB can only produce melts with MgO of <8 wt%, which cannot explain

203 Hawaiian rejuvenated stage lavas with MgO of >10 wt%. Partial melts of carbonated pyroxenite  
204 and peridotite mixture and carbonated peridotite have both high MgO and CaO contents, as well  
205 as low SiO<sub>2</sub> content (e.g., [Mallik and Dasgupta, 2013](#)). Carbonatitic melts typically have high  
206 contents of CaO, MnO, Ba, and REEs, and are depleted in high field strength elements (HFSEs,  
207 such as Nb-Ta-Zr-Hf-Ti) (e.g., [Hoernle et al., 2002](#); [Dixon et al., 2008](#); [Dalou et al., 2009](#); [Jones  
208 et al., 2013](#)). We find that Site O7 samples from the Honolulu volcanics on Oahu Island, in  
209 addition to their anomalously high CaO-MnO and extremely low SiO<sub>2</sub>, have highly enriched  
210 LREEs and relative depletion in Nb-Ta-Zr-Hf-Ti ([Fig. 3](#)). These observations could be explained  
211 by melting a carbonated mantle source.

## 212 **4.2 Role of CO<sub>2</sub> indicated by olivine Ca-Mn**

213 Hawaiian rejuvenated stage volcanic rocks have higher CaO and MnO contents for a given  
214 MgO content than shield stage lavas ([Fig. 2](#)), while their olivine Ca and Mn contents overlap at a  
215 given olivine Fo# ([Fig. 4](#)), reflecting a difference in partitioning of Ca-Mn between olivine/melt  
216 during the two volcanic stages. To better understand the partitioning of Ca-Mn between  
217 olivine/melt in Hawaiian lavas, we have calculated the partition coefficients of Ca and Mn  
218 between olivine/melt ([Supplementary Table 5](#)). Hawaiian lavas in this study, both shield and  
219 rejuvenated stages, have variable amount of olivine accumulation, and the samples with  
220 clinopyroxene accumulation are excluded. A mineral-melt pair in equilibrium is required before  
221 calculation of partition coefficient. Although primary melt composition can be calculated by  
222 assuming a Fo of ~91, the exact Ca content of the equilibrium primary olivine is not known.  
223 Most of the rejuvenated stage lavas have variable degrees of olivine accumulations, thus, a way  
224 to obtain olivine-melt pairs in equilibrium is to remove the accumulated olivines. Thus, in this  
225 way, we can obtain the exact Ca composition of olivine in equilibrium. Ten to twenty olivine  
226 grains with the highest Fo# and their average chemical compositions were used as the final  
227 equilibrium olivine ([Supplementary Table 5](#)). These final equilibrium olivines have Fo# of 84-87  
228 for rejuvenated stage lavas and 83-89 for shield stage lavas. We have removed this average  
229 olivine composition step-by-step from the melt until the resulted melt was in equilibrium with  
230 the average olivine based on PRIMelt3 program ([Herzberg and Asimow, 2015](#)), in which a melt  
231 Fe<sup>2+</sup>/Fe<sub>tot</sub> is specified. The resulted equilibrium melt compositions are shown in [Supplementary  
232 Table 5](#). The equilibrium melts calculated for rejuvenated stages lavas have MgO of 8-12 wt%,

233 while the equilibrium melts of shield stage have MgO of 10-14 wt%. It is clear that the  
234 calculated melts are not primary melts but evolved melts in equilibrium with the average olivines.  
235 We have calculated the partition coefficients of Ca and Mn between olivine/melt based on these  
236 olivine-melt pairs, which are shown in [Supplementary Table 6](#) and plotted in [Fig. 5](#). The  
237 calculated olivine/melt partition coefficients of Ca and Mn for rejuvenated stage samples are  
238 overall lower than those for shield stage for a given olivine Fo# and melt MgO content, despite  
239 these evolved melts have degassed to certain degrees.

240 There are several observations indicating that CO<sub>2</sub> has played an essential role in the  
241 activities of Hawaiian mantle plume. Sisson et al. (2009) argued that a carbonated garnet  
242 lherzolite source is required to produce the pre-shield basanite-nephelinite lavas at Kilauea.  
243 [Barsanti et al \(2009\)](#) showed that a suite of magmas of recent (1842-1844) Kilauea eruption  
244 contain 2-6 wt% CO<sub>2</sub>, and attributed the high CO<sub>2</sub> contents to enrichment by magma degassing  
245 at low pressures. Based on the CO<sub>2</sub> emission rate and volcanic magma supply rate at Kilauea,  
246 Anderson and Poland (2017 *Nature Geoscience* 10, 2017) estimated 1 wt% CO<sub>2</sub> in the parental  
247 magma supplying Kilauea, which translates to 263 ppm C in their mantle source. This is  
248 consistent with the result of a recent work using melt inclusions. [Tucker et al \(2019\)](#) showed that  
249 parental magmas of Hawaii volcanos (Hualalai, Kilauea, Koolau, Loihi and Mauna Loa) have  
250 0.39-1.0 wt% CO<sub>2</sub>, and their mantle sources contain 380-480 ppm CO<sub>2</sub> that are at least a factor  
251 of ~4 more than the MORB mantle. The negatively correlated Rb/Sr and <sup>87</sup>Sr/<sup>86</sup>Sr in shield stage  
252 Mahukona lavas (Huang et al., 2009) and the light Ca isotope compositions in most shield stage  
253 Hawaiian lavas (Huang et al., 2011) may reflect a role of sedimentary carbonates in the Hawaiian  
254 mantle plume. [Wirth and Rocholl \(2003\)](#) reported nanocrystalline diamond in pyroxenite  
255 xenolith of Oahu Island, which may crystallize from rejuvenated stage magmas. Dixon et al.  
256 (2008) argued for a role of carbonatite metasomatism in the petrogenesis of Hawaiian  
257 rejuvenated stage lavas, requiring a CO<sub>2</sub> rich mantle source during the rejuvenated stage  
258 volcanism.

259 As shown in [Fig. 2](#), partial melts of carbonated pyroxenites and carbonated peridotites have  
260 higher contents of CaO and MnO compared to those from CO<sub>2</sub>-free peridotites and pyroxenites.  
261 Garnet, Clinopyroxene (Cpx) and orthopyroxene (Opx) are important hosts for Ca and Mn  
262 during the mantle melting processes. The Cpx/melt partition coefficient of Mn (1.06-1.16) is

263 lower than that between garnet/melt (1-4.8), but higher than that between Opx/melt (0.66-1.05)  
264 (Le Roux, 2011; Herzburg et al., 2013; Shea and Foley, 2019). The presence of CO<sub>2</sub> in the  
265 mantle source would increase the stability of Opx relative to Cpx and garnet, thus, the  
266 carbonated melts are enriched in Ca and Mn. This is supported by the observation that natural  
267 carbonatites usually are enriched in Ca and Mn (e.g., Hoernle et al., 2002). To further investigate  
268 the effect of CO<sub>2</sub> on the partitioning of Ca-Mn in olivine, we have selected the results of a suite  
269 of high-quality experiments with resulted melts similar in composition to this study for  
270 comparison.

271 Dasgupta et al (2007) conducted partial melting experiments on “peridotite+CO<sub>2</sub>”, and  
272 Mallik and Dasgupta (2013) conducted melting experiment on “eclogite+peridotite+CO<sub>2</sub>”. These  
273 two studies obtained carbonated silicate melts with SiO<sub>2</sub> of 30-48 wt% and CaO of 7-25 wt%,  
274 which are comparable to the geochemistry of rejuvenated stage lavas. We also compared the Ca  
275 partition coefficients for Hawaiian lavas with the results of experiments that produced olivines  
276 equilibrium with dry silicate melts (Kogiso et al., 1998; Robinson et al., 1998; Mallik and  
277 Dasgupta, 2012; Matzen et al., 2013 & 2017). These experiments either produced silicate melts  
278 in equilibrium with olivine based on melting of peridotite (Robinson et al, 1998) and mixed  
279 peridotite+eclogite (Kogiso et al, 1998; Mallik and Dasgupta, 2012), or modeled crystallization  
280 of olivine from MORB-like melts (Matzen et al., 2013; Matzen et al., 2017). These experiments  
281 all produced dry silicate melts with SiO<sub>2</sub> of 45-53 wt% and CaO of 6-11 wt% that are similar to  
282 shield stage lavas and olivines with high precision Ca contents. We calculated the partition  
283 coefficient of Ca between olivine/melt based on the above experiment studies, and the results are  
284 plotted in Fig. 5.

285 To understand the effect of CO<sub>2</sub> on partitioning of Mn between olivine and melt, we have  
286 compared our results with Mallik and Dasgupta (2013) (melting of eclogite+peridotite+CO<sub>2</sub>),  
287 Mallik and Dasgupta (2012) (melting of peridotite+eclogite), and Dasgupta et al (2007) (melting  
288 of peridotite). The calculated partition coefficient of Mn for olivine-carbonated melt and  
289 olivine-dry silicate melt are shown in Fig. 5. As shown in Fig. 5, the experimental partition  
290 coefficients of Ca-Mn between olivine and carbonated silicate melt are overall lower than those  
291 between olivine and dry silicate melt for a given Fo# and MgO content of melt. Rejuvenated  
292 stage foidite samples have the lowest D<sub>Ca</sub><sup>Ol-melt</sup> and D<sub>Mn</sub><sup>Ol-melt</sup> for a given Fo# and magma MgO,

293 while the basanites and alkali basalts have  $D_{Ca}^{Ol-melt}$  and  $D_{Mn}^{Ol-melt}$  intermediate between foidites  
294 and shield stage lavas (Fig. 5).  $D_{Ca}^{Ol-melt}$  and  $D_{Mn}^{Ol-melt}$  from the olivine-dry silicate melt pairs are  
295 similar to those of shield stage lavas, while the partition coefficients of Ca-Mn calculated from  
296 the olivine/carbonated silicate melt are comparable to those of rejuvenated stage (Fig. 5). We  
297 suggest that the lower  $D_{Ca}^{Ol-melt}$  and  $D_{Mn}^{Ol-melt}$  of rejuvenated stage lavas relative to shield stage  
298 lavas are consistent with the role of  $CO_2$  during the mantle melting.

299 The relationships of  $D_{Ca}^{Ol-melt}$  vs. magma  $MgO$  for the shield and rejuvenated lavas in this  
300 study are compared with those resulted from experimental studies in Fig. 6a. As shown in Fig. 6a,  
301 the  $D_{Ca}^{Ol-melt}$  for the dry silicate melt system first slightly decreases and then increases with  
302 decreasing  $MgO$  based on Gavrilenko et al (2016). The calculated  $D_{Ca}^{Ol-melt}$  for shield stage lavas  
303 basically follow the trend in  $D_{Ca}^{Ol-melt}$  vs.  $MgO$  for the dry silicate melts (Fig. 6a). Similar to the  
304 experimentally-derived  $D_{Ca}^{Ol-melt}$  for carbonated silicate melt system, the  $D_{Ca}^{Ol-melt}$  calculated for  
305 rejuvenated stage lavas are well below the curve for the dry silicate melts. We have calculated  
306 the difference in  $D_{Ca}$  ( $\Delta D_{Ca}^{Ol-melt}$ ) between our calculated melts and experimental volatile-free  
307 melts, and the results are shown in Supplementary Table 6. The foidites with the lowest  $SiO_2$   
308 tend to have the lowest  $D_{Ca}^{Ol-melt}$  and  $D_{Mn}^{Ol-melt}$  for a given olivine  $Fo$  and melt  $MgO$  content (Fig.  
309 5), while the basanites and alkali basalts are intermediate between foidites and shield stage lavas  
310 (Fig. 5). The overall high  $\Delta D_{Ca}^{Ol-melt}$  for rejuvenated stage lavas relative to shield stage lavas (Fig.  
311 6c) is consistent with the role of  $CO_2$  in the mantle source, which significantly decreases  $SiO_2$  in  
312 melt. Another role of  $CO_2$  is to cause negative anomalies of high field strength elements (HFSEs)  
313 (e.g., decreases in  $Zr_N/Zr_N^*$ ; N, normalized to primitive mantle;  $Zr_N^*$ , calculated as  $\sqrt{Nd_N \times Sm_N}$ ), because REEs are enriched relative to HFSEs in carbonated melts (Zhang et al.,  
314 2017). As shown in Fig. 6d, the relatively low  $Zr_N/Zr_N^*$  (0.3 to 0.8) and elevated  $\Delta D_{Ca}^{Ol-melt}$  for  
315 rejuvenated stage lavas relative to shield stage further indicates the role of  $CO_2$  in mantle melting.  
316 It should be noted that the Honolulu foidites with the lowest  $SiO_2$ , and  $D_{Ca}^{Ol-melt}$  and  $D_{Mn}^{Ol-melt}$   
317 have the strongest negative anomalies of  $Nb$  and  $Zr$  (Fig. 3, Fig. 6d). This suggests that  
318 rejuvenated stage foidites were subjected to the strongest influence of  $CO_2$  during mantle  
319 melting.

321 Gavrilenko et al (2016) gave an equation of  $CO_2$  (wt.%) =  $270 \times \Delta D_{Ca} - 3330 \times \Delta D_{Ca}^2 + 1.8$   
322  $\times 10^6 \times \Delta D_{Ca}^3$  to calculate melt  $CO_2$  content based on the correlation of  $CO_2$  with the difference

323 ( $\Delta D_{Ca}$ ) in the  $D_{Ca}$  values of carbonated melts and volatile-free melts. Since both  $H_2O$  and  $CO_2$   
324 can lower  $D_{Ca}^{Ol-melt}$  (Gavrilenko et al., 2016), the effect of  $H_2O$  should also be considered to  
325 estimate magma  $CO_2$  content based on  $D_{Ca}^{Ol-melt}$ . As shown in Dixon et al (1997), the alkali  
326 basaltic to nephelinitic lavas from the North Arch Volcanic Field, Hawaii, can have  $H_2O$  up to  
327 1.9 wt% and  $CO_2$  up to 5.4 wt% based on analyses of basalt glass and vesicles. Dixon et al (2008)  
328 further estimated 350 ppm  $H_2O$  in the Hawaii plume mantle, which is ~5 factors higher than the  
329 depleted MORB mantle. Dixon et al (2008) estimated a bulk partition coefficient of ~0.01 for  
330  $H_2O$  in the Hawaiian mantle. Hawaiian rejuvenated lavas are usually considered to have partial  
331 melting extents of <5%, thus, we have calculated rejuvenated magma  $H_2O$  contents based on a  
332 bulk partition coefficient of 0.01 for  $H_2O$  and batch melting degrees of 2% and 4%, and our  
333 calculation results in  $H_2O$  contents of 1.17 wt% and 0.71 wt%, respectively. Shield stage magma  
334  $H_2O$  is calculated by assuming a batch melting degree of 20% in Hawaiian mantle source, and a  
335 magma  $H_2O$  content of 0.17 wt% is obtained. For comparison, Hauri (2002 Chem Geol 183,  
336 115-141) reported 0.03 to 0.84 wt %  $H_2O$  in melt inclusions from five shield stage lavas from  
337 Hawaii. We estimated the influence of  $H_2O$  on  $D_{Ca}^{Ol-melt}$  ( $\Delta D_{Ca}$  at a given  $H_2O$  content) based on  
338 Gavrilenko et al (2016). Then, we calculated the difference between  $\Delta D_{Ca}^{Ol-melt}$  and  $\Delta D_{Ca}$  at a  
339 given  $H_2O$  content, which is used to calculate the content of  $CO_2$  based on the equation of  
340 Gavrilenko et al (2016). The calculated results of  $CO_2$  are shown in Supplementary Table 6.

341 The mantle-derived primary magmas usually crystallize olivines with  $Fo\#$  up to ~91, which  
342 are higher than the olivine phenocrysts in this study (Fig. 4). Thus, the result using the above  
343 method only represents the  $CO_2$  concentration of evolved magmas, rather than primary magmas.  
344 The primary magma composition can be obtained by addition of equilibrium olivines to melt,  
345 however, the Ca contents of high  $Fo\#$  (>90) olivines in equilibrium with primary magmas are not  
346 known. Therefore, we cannot obtain the primary magma  $CO_2$  content directly based on the  
347 equation of Gavrilenko et al (2016). To obtain primary magma  $CO_2$  content, we assume that  
348 magmas have not significantly degassed during fractionation. Then, the equilibrium olivines  
349 were added step by step to melts until the melts are in equilibrium with olivine with  $Fo\#$  of 91  
350 based on PREMELT3 MEGA.XLSM of Herzberg and Asimow (2015), the resulted primary  
351 magma compositions and fraction of olivine added are shown in Supplementary Table 6. The  
352 primary magma  $CO_2$  contents were obtained after correction to fraction of olivine added to melts.

353 The calculation procedure and results are shown in [Supplementary Table 6](#). The CO<sub>2</sub> contents of  
354 the calculated shield stage primary magmas are close to zero. The calculated primary magma  
355 CO<sub>2</sub> for rejuvenated stage are up to 5.6 wt% and 8.3 wt% for batch melting degrees of 2% and  
356 4%, respectively ([Supplementary Table 6](#)).

357 We have compared our primary magma CO<sub>2</sub> contents with those calculated based on a  
358 constant CO<sub>2</sub>/Ba ratio. Because CO<sub>2</sub> is similar to Ba in incompatibility during mantle melting  
359 (e.g., [Anderson and Poland, 2017](#); [Miller et al., 2019](#)), the primary magma CO<sub>2</sub> content can be  
360 estimated if the mantle source CO<sub>2</sub>/Ba ratio can be determined. As suggested by previous studies  
361 the Hawaiian mantle has a CO<sub>2</sub>/Ba ratio of ~86 ([Anderson and Poland, 2017](#)). The calculated  
362 primary magma CO<sub>2</sub> contents through this method is also shown in [Supplementary Table 6](#). The  
363 calculated primary magma CO<sub>2</sub> contents are 0.45 to 3.15 wt% for the shield stage, while the  
364 primary magma CO<sub>2</sub> contents are 2.8 to 10 wt% for rejuvenated stage. We have plotted the  
365 primary magma CO<sub>2</sub> contents for anhydrous melting and a melting degree of 4% in this study  
366 with those based on the constant CO<sub>2</sub>/Ba of 86 in [Fig. 7](#). As shown in [Fig. 7](#), the foidite samples  
367 tend to have the highest primary magma CO<sub>2</sub> contents, while the basanites and alkali basalts are  
368 similarly low relative to the foidite samples. The results of anhydrous melting are overall close to  
369 those based on assuming a constant CO<sub>2</sub>/Ba ratio, however, the results of hydrous melting,  
370 melting degree of 4%, for rejuvenated stage are generally lower than those based on assuming a  
371 constant CO<sub>2</sub>/Ba ratio. Since the latter method is independent of uncertainties in magma  
372 degassing and melting degrees, the lower primary magma CO<sub>2</sub> contents could have been caused  
373 by these uncertainties. Despite discrepancy between the two methods, they are overall consistent  
374 in resulting in primary magma CO<sub>2</sub> contents up to ~10 wt% for rejuvenated stage lavas and low  
375 CO<sub>2</sub> contents for shield stage lavas, suggesting rejuvenated stage lavas have a similar source CO<sub>2</sub>  
376 to the plume mantle. However, as a constant CO<sub>2</sub>/Ba ratio of Hawaiian mantle source is not  
377 verified for shield and rejuvenated stage lavas, our work provides an independent constraint on  
378 CO<sub>2</sub> enrichment in Hawaiian rejuvenated lavas.

### 379 **4.3 Olivine Ni: effects of source vs. temperature**

380 There are different views on the origin of Hawaiian rejuvenated stage volcanism, either  
381 from the shallow metasomatized mantle lithosphere ([Chen and Frey, 1983](#); [Yang et al., 2003](#);  
382 [Bianco, 2005](#); [Garcia et al., 2010](#)), the deep mantle plume component ([Frey et al., 2005](#); [Dixon et](#)

383 al., 2008; Sisson et al., 2009; Hofmann and Farnetani, 2013; DeFelice et al., 2019; Harrison et al.,  
384 2020), or both (Beguelin et al., 2019). The deep plume origin for rejuvenated stage melts is  
385 supported by their distinct isotopic compositions from the Pacific MORBs (Supplementary Fig.  
386 3). Despite enrichment of LILEs and LREEs in rejuvenated stage lavas, they generally have  
387 more depleted isotopic compositions compared to shield stage lavas (Yang et al., 2003; Hofmann  
388 and Farnetani, 2013; Beguelin et al., 2019; DeFelice et al., 2019; Harrison et al., 2020). As  
389 shown in Supplementary Fig. 3, such a depleted signature cannot be explained by involvement of  
390 Pacific-type depleted upper mantle, but likely to have been derived from an intrinsic mantle  
391 plume component. However, it remains unclear how the low-degree melts of rejuvenated stage  
392 preferentially sample the isotopically depleted component in the mantle plume (Ribe and  
393 Christensen, 1999; Bianco and Ito, 2008; Beguelin et al. 2019; DeFelice et al. 2019). For  
394 example, it was suggested that rejuvenated stage lavas originated from a deep isotopically  
395 depleted zone separated from the primary melting zone that formed shield stage lavas (Ribe and  
396 Christensen, 1999), or from a depleted periphery of a zoned mantle plume (Bianco and Ito,  
397 2008).

398 As shown in Fig. 4a, the olivine Ni contents of rejuvenated stage lavas are overall lower  
399 than those of shield stage, but higher than the global MORBs for a given olivine Fo#. In contrast,  
400 rejuvenated stage lavas have whole-rock Ni lower than shield stage lavas for a given MgO  
401 content (Fig. 2c). Increasing magma total alkaline (Na<sub>2</sub>O+K<sub>2</sub>O) increases the partition coefficient  
402 of Ni in olivine when total alkaline > 8 wt% (Förster et al., 2018). Most of our studied rocks  
403 have K<sub>2</sub>O+Na<sub>2</sub>O contents significantly lower than 8 wt%, hence, it is unexpected to have notable  
404 difference in  $D_{Ni}^{Ol-melt}$  between shield and rejuvenated stage lavas. As we discussed above, CO<sub>2</sub>  
405 played a key role in the origin of rejuvenated stage magmatism. However, Girnis et al (2013)  
406 showed that CO<sub>2</sub> have negligible influence on the partitioning of Ni between olivine/melt. As  
407 such, we suggest the relatively lower olivine Ni contents of the rejuvenated stage compared with  
408 the shield stage reflects a lower Ni content in their parental magmas, as indicated by whole-rock  
409 Ni contents (Fig. 2c).

410 Melting temperature/pressure, source lithology, and source Ni content could influence  
411 primary magma Ni content (Sobolev et al., 2005&2007; Putirka et al, 2011; Matzen et al., 2013).  
412 Partial melts of eclogite/pyroxenite react with peridotite in the Hawaii mantle plume to convert

413 olivines to Opx and to form stage-2 pyroxenite with a lower proportion of (or no) olivine in the  
414 source (Sobolev et al., 2005&2007). Thus, the mantle source with a lowered olivine proportion  
415 would generate primary melts with elevated Ni (Sobolev et al., 2005). As indicated by Matzen et  
416 al (2013, 2017),  $D_{Ni}^{Ol-melt}$  increases with decreasing temperature and pressure, thus, elevated  
417 source temperatures and pressures would result in an increase of olivine Ni in Hawaiian shield  
418 lavas. In addition to the stage-2 pyroxenite in the mantle source, the higher olivine Ni of  
419 Hawaiian shield stage lavas may at least partly have been caused by higher melting temperatures  
420 and pressures (e.g., Matzen et al., 2013). Thus, evaluation of difference in primary magma  
421 temperatures among the shield stage lavas, rejuvenated stage lavas and normal MORBs would  
422 help understand the origin of their Fo-Ni systematics (Fig. 4a).

423 In this study, we have calculated the magma temperatures of shield and rejuvenated stages  
424 based on the olivine-spinel aluminum exchange thermometry. This thermometry is advantageous  
425 over the olivine-liquid thermometry since it is independent of equilibrium pressure and melt  
426 compositions. Details on the use of the olivine-spinel aluminum exchange thermometry are  
427 referred to Wan et al (2008) and Coogan et al (2014). We selected the volcanic rock samples  
428 from the rejuvenated and shield stages that contain the highest olivine Fo#. We used the equation  
429 given by Coogan et al (2014) ( $T(K)=10000/(0.575+0.884Cr\#-0.897\ln(Al_2O_3^{Ol}/Al_2O_3^{Sp}))$ ), which  
430 has extended the use of this thermometry to a relatively oxidizing environment. The data of  
431 olivine-spinel are filtered based on the requirements of Coogan et al (2014), i.e., Cr# between  
432 0-69%, and  $Fe^{3+}/Total\ FeO < 35\%$ . The calculated results are shown in Supplementary Table 4  
433 and plotted in Fig. 8a. As shown in Fig. 8a, shield stage olivines with the highest Fo# (~89) tend  
434 to have the highest crystallization temperatures. Rejuvenated stage olivines have statistically  
435 lower crystallization temperatures and Fo# than those of shield stage as shown in Fig. 8 c-d. The  
436 slightly lower olivine crystallization temperatures of rejuvenated stage lavas could also be  
437 indicated by their slightly higher olivine  $Al_2O_3$  (Supplementary Fig. 4) (Coogan et al., 2014).  
438 However, the lavas of both shield and rejuvenated stages approximately follow the trend of melt  
439 temperature vs. equilibrium olivine Fo# of the Icelandic primary magmas as shown in Herzberg  
440 and Asimow (2015). Thus, for the given highest olivine Fo# (e.g., ~91), broadly similar primary  
441 magma temperatures for the shield and rejuvenated stage lavas are expected (Fig. 8). As shown  
442 in Fig. 8a, at the highest Fo# of up to 91, the MORB olivines tend to have lower temperatures

443 compared with those of Hawaiian olivines. This indicates that the Hawaiian primary magmas,  
444 both shield and rejuvenated stages, crystallized high Fo# olivines at higher temperatures than  
445 those of normal MORBs.

446 Since Hawaiian shield and rejuvenated stage lavas show different Sr-Nd-Hf isotopic  
447 compositions (Supplementary Fig. 3; Yang et al., 2003; Hofmann and Farnetani, 2013; DeFelice  
448 et al., 2019), the overall lower olivine Ni contents of rejuvenated stage lavas relative to those of  
449 shield stage may reflect a mantle source effect. As shown in Fig. 8, high Fo olivines from both  
450 shield and rejuvenated stage lavas have similar crystallization temperatures. The effect of  
451 melting-crystallization temperature difference (Matzen et al., 2013) may have not contributed  
452 significantly to the observed olivine Ni difference.

453 The mantle source of Hawaiian shield stage lavas has been considered to contain eclogites  
454 that were most likely derived from ancient recycled oceanic crust. Subducted altered oceanic  
455 crust, as an important carrier of secondary carbonates (Zhang and Smith-Duque, 2014), may  
456 constitute a source of CO<sub>2</sub> in the Hawaiian mantle plume. Thus, it is possible that CO<sub>2</sub>-bearing  
457 mixed eclogite/peridotite exists in the Hawaii mantle plume. However, because the plume mantle  
458 source has melted to high degrees to form shield stage lavas, most of CO<sub>2</sub> would be extracted  
459 from the source mantle after high degrees of melting. As CO<sub>2</sub> is highly incompatible during  
460 mantle melting (e.g., Dixon et al., 2008), the resulted refractory residual mantle after extraction  
461 of shield stage lavas would be difficult to produce carbonated melts. Because Hawaiian  
462 rejuvenated stage lavas were formed 0.5-2 Myr after shield stage and ~100 km from the plume  
463 axis, it is possible that the rejuvenated lavas were sourced from the edge of the mantle plume,  
464 where mantle upwelling and decompression rate are lower than the plume axis (Fig. 9).

465 As indicated by this study, the rejuvenated stage lavas were most likely sourced from  
466 carbonated peridotites that are intrinsic to the Hawaiian mantle plume. Thus, the mantle plume  
467 peridotites may have experienced metasomatism of low degree carbonated melts. This is  
468 consistent with the enriched trace element patterns and negative anomalies of HFSEs in  
469 rejuvenated lavas (Fig. 3). However, the distinct Sr-Nd-Hf isotopic compositions between  
470 rejuvenated and shield stage lavas indicate that such carbonated melts were unlikely derived  
471 from a CO<sub>2</sub>-bearing eclogite/pyroxenite (carbonate-bearing recycled oceanic crust) feeding  
472 shield stage lavas. A possible source for the carbonated melts in the mantle plume is subducted

473 lithospheric mantle (e.g., [Kelemen and Manning, 2015](#)). Although carbonate precipitation is  
474 generally considered to occur mainly in the oceanic crust during seafloor alteration, it would also  
475 occur in shallow lithospheric mantle of the bending plate before subduction ([Kelemen and](#)  
476 [Manning, 2015](#)), and in the exposed abyssal peridotites as represented by slow- to ultra-slow  
477 spreading ridge settings (e.g., [Dick et al., 2000](#); [Schroeder et al., 2002](#)). These carbonate-bearing  
478 subducted peridotites may constitute the source required by Hawaiian rejuvenated stage lavas. As  
479 shown in [Fig. 9](#), the low degree carbonated melts of such carbonate-bearing peridotites near the  
480 plume edge can metasomatize the mantle plume peridotites. Thus, along with the upwelling of  
481 mantle plume, such carbonated peridotites would decompress and melt, which may explain the  
482 CO<sub>2</sub>-rich rejuvenated stage lavas.

## 483 5 Conclusions

484 The origin of Hawaiian rejuvenated stage magmatism remains a subject of debate. In this  
485 study, we have analyzed the whole-rock major and trace elements, *in situ* high-precision  
486 geochemistry of olivines and olivine-spinel pairs of Hawaiian rejuvenated and shield stage lavas.  
487 Unlike shield stage, rejuvenated stage lavas with anomalously high CaO and low SiO<sub>2</sub> and  
488 negative anomalies of HFSEs, which could be explained by the influence of CO<sub>2</sub> in the source. It  
489 is notable that the olivine Ni contents of rejuvenated stage lavas are systematically lower than  
490 those of shield stage, but higher than normal MORBs for a given olivine Fo#. While rejuvenated  
491 stage lavas have whole-rock CaO and MnO higher than shield stage, their olivine Ca and Mn  
492 contents are similar to each other for a given Fo#. Our study results in that D<sub>Ca</sub><sup>Ol-melt</sup> and  
493 D<sub>Mn</sub><sup>Ol-melt</sup> for rejuvenated stage lavas are systematically lower than those of shield stage, which  
494 we suggest is caused by the influence of CO<sub>2</sub>. Our calculation based on the reduced D<sub>Ca</sub><sup>Ol-melt</sup>  
495 relative to dry basaltic melts indicates that rejuvenated stage primary melts were rich in CO<sub>2</sub>,  
496 while shield stage melts were relatively dry (low volatile contents). The temperatures of primary  
497 magmas of rejuvenated stage are similar to the shield stage, but systematically higher than  
498 normal primary MORB magmas. The relatively low olivine Ni of rejuvenated lavas compared to  
499 shield stage can be attributed to the mantle source lithology dominated by peridotites, rather than  
500 stage-2 pyroxenite in shield stage mantle source. It is suggested that rejuvenated stage lavas were  
501 originated from the melting of carbonated peridotites in the Hawaiian mantle plume.

502 **Acknowledgments**

503 We thank Claude Herzberg, Jacqueline Dixon, Daniel Heaton and Eemu Ranta for their  
504 comments and constructive suggestions. JunHua Guo is thanked for the help on rock sampling.  
505 This work was financially supported by the National Natural Science Foundation of China (Nos.  
506 41876040, 91858206, 41888101), the Laboratory for Marine Geology, Qingdao National  
507 Laboratory for Marine Science and Technology (No. MGQNL-TD201806), and Taishan  
508 Scholars Program of Shandong Province (No. tsqn201909157).

509 **Data Availability Statement**

510 Data archiving is underway, and will be deposited in Mendeley Data after the manuscript is  
511 accepted. A copy of our data for review purpose is uploaded as Supplementary Information.

513 **References**

514 Anderson, K.R., Poland, M.P., 2017. Abundant carbon in the mantle beneath Hawai'i. *Nature*  
515 *Geoscience*, 10(9), 704-708.

516 Ballmer, M.D., Ito, G., van Hunen, J., Tackley, P.J., 2011. Spatial and temporal variability in  
517 Hawaiian hotspot volcanism induced by small-scale convection, *Nature Geoscience*, 4, 457–  
518 460.

519 Barsanti, M., Papale, P., Barbato, D., Moretti, R., Boschi, E., Hauri, E., Longo, A., 2009.  
520 Heterogeneous large total CO<sub>2</sub> abundance in the shallow magmatic system of Kilauea volcano,  
521 Hawaii. *Journal of Geophysical Research-Solid Earth*, 114.

522 Batanova, V.G., Thompson, J.M., Danyushevsky, L.V., Portnyagin, M.V., Garbe-Schönberg, D.,  
523 Hauri, E., Kimura, J.I., Chang, Q., Senda, R., Goemann, K. and Chauvel, C., 2019. New  
524 olivine reference material for in situ microanalysis. *Geostandards and Geoanalytical Research*,  
525 43(3): 453-473.

526 Béguelin, P., Bizimis, M., McIntosh, E.C., Cousens, B., Clague, D.A., 2019. Sources vs  
527 processes: Unraveling the compositional heterogeneity of rejuvenated-type Hawaiian magmas.  
528 *Earth and Planetary Science Letters*, 514, 119-129.

529 Borisova, A.Y., Tilhac, R., 2021. Derivation of Hawaiian rejuvenated magmas from deep  
530 carbonated mantle sources: A review of experimental and natural constraints. *Earth-Science*

531      Reviews, 222, 103819.

532      Chauvel, C., McDonough, W., Guille, G., Maury, R., Duncan, R., 1997. Contrasting old and  
533      young volcanism in Rurutu Island, Austral chain, *Chemical Geology*, 139, 125-143.

534      Chen, C.Y. Frey, F.A., 1983. Origin of Hawaiian tholeiite and alkalic basalt. *Nature*, 302 (5911),  
535      785-789.

536      Clague, D.A. Dalrymple, G.B., 1987. The Hawaiian-Emperor volcanic chain. part I. Geologic  
537      evolution. *Volcanism in Hawaii*, 1 (1350), 5-54.

538      Coogan, L.A., Saunders, A.D., Wilson, R.N., 2014. Aluminum-in-olivine thermometry of  
539      primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces.  
540      *Chemical Geology*, 368, 1-10.

541      Dalou, C., Koga, K. T., Hammouda, T., Poitrasson, F., 2009. Trace element partitioning between  
542      carbonatitic melts and mantle transition zone minerals: implications for the source of  
543      carbonatites. *Geochimica Cosmochimica Acta*, 73, 239-255.

544      Dasgupta R, Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth's interior.  
545      *Earth and Planetary Science Letters*, 298, 1–13.

546      Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007a. Water follows carbon: CO<sub>2</sub> incites deep  
547      silicate melting and dehydration beneath mid-ocean ridges. *Geology* 35(2), 135–138.

548      Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007b. Partial Melting Experiments of Peridotite  
549      + CO<sub>2</sub> at 3 GPa and Genesis of Alkalic Ocean Island Basalts. *Journal of Petrology* 48,  
550      2093-2124.

551      Dasgupta, R., Jackson, M.G., Lee, C.-T.A., 2010. Major element chemistry of ocean island  
552      basalts-conditions of mantle melting and heterogeneity of mantle source. *Earth and Planetary  
553      Science Letters*, 289, 377-392.

554      Dasgupta, R., Hirschmann, M.M., Stalker, K., 2006. Immiscible transition from carbonate-rich to  
555      silicate-rich melts in the 3 GPa melting interval of eclogite plus CO<sub>2</sub> and genesis of  
556      silica-undersaturated ocean island lavas. *Journal of Petrology*, 47(4): 647-671.

557      DeFelice, C., S. Mallick, Saal, A.E., Huang, S., 2019. An isotopically depleted lower mantle  
558      component is intrinsic to the Hawaiian mantle plume. *Nature Geoscience*, 12 (6): 487-495.

559      Dick, H. J., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., et al., 2000. A long in situ  
560      section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian

561 Ridge. *Earth and planetary science letters*, 179(1), 31-51.

562 Dixon, J.E., Clague, D.A, Wallace, P., Poreda, R., 1997. Volatiles in alkalic basalts form the  
563 North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic  
564 series lavas. *Journal of Petrology*, 38 (7): 911-939.

565 Dixon, J., Clague, D.A. Cousens, B. Monsalve, M.L., Uhl, J., 2008. Carbonatite and silicate melt  
566 metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace  
567 elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii.  
568 *Geochemistry Geophysics Geosystems*, 9 (9). Doi:10.1029/2008GC002076.

569 Forster, M. W., D. Prelevic, H. R. Schmuck, S. Buhre, H. R. Marschall, R. Mertz-Kraus and D. E.  
570 Jacob (2018). Melting phlogopite-rich MARID: Lamproites and the role of alkalis in  
571 olivine-liquid Ni-partitioning. *Chemical Geology*, 476: 429-440.

572 French, S.W., Romanowicz, B., 2015. Broad plumes rooted at the base of the Earth's mantle  
573 beneath major hotspots. *Nature*, 525 (7567), 95–99.

574 Frey, F.A., Clague, D., Mahoney, J.J., Sinton, J.M., 2000. Volcanism at the edge of the Hawaiian  
575 plume: petrogenesis of submarine alkalic lavas from the North Arch volcanic field. *Journal of  
576 Petrology*, 41(5), 667-691.

577 Garcia, M.O., Swinnard, L., Weis, D., Greene, A.R., Tagami, T., Sano, H., Gandy, C.E., 2010.  
578 Petrology, Geochemistry and Geochronology of Kaua'i Lavas over 4•5 Myr: Implications for  
579 the Origin of Rejuvenated Volcanism and the Evolution of the Hawaiian Plume. *Journal of  
580 Petrology*, 51(7), 1507-1540.

581 Gerbode, C., Dasgupta, R., 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa  
582 and genesis of HIMU ocean island basalts. *Geophysical Research Letters* 51, 2067-2088.

583 Gavrilenko, M., Herzberg, C., Vidito, C., Carr, M.J., Tenner, T., and Ozerov, A., 2016. A  
584 Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism.  
585 *Journal of Petrology* 57(9): 1811–1832.

586 Gervasoni, F., Klemme, S., Rohrbach, A., Grutzner, T., Berndt, J., 2017. Experimental  
587 constraints on mantle metasomatism caused by silicate and carbonate melts. *Lithos*, 282: 173–  
588 186.

589 Girnis, A.V., Bulatov, V.K., Brey, G.P., Gerdes, A., Hofer, H.E., 2013. Trace element partitioning  
590 between mantle minerals and silico-carbonate melts at 6-12 GPa and applications to mantle

591 metasomatism and kimberlite genesis. *Lithos*, 160, 183–200.

592 Hammouda, T., Chantel, J., Devidal, J.L., 2010. Apatite solubility in carbonatitic liquids and  
593 trace element partitioning between apatite and carbonatite at high pressure. *Geochimica et  
594 Cosmochimica Acta*, 74, 7220–7235.

595 Harrison, L.N., Weis, D. and Garcia, M.O., 2020. The multiple depleted mantle components in  
596 the Hawaiian-Emperor chain. *Chemical Geology*, 532, 119324.

597 Hauri, E.H., 1996. Major-element variability in the Hawaiian mantle plume. *Nature*, 382(6590),  
598 415-419.

599 Herzberg, C., 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea  
600 volcano. *Nature*, 444 (7119), 605-609.

601 Herzberg, C., Asimow, P.D., 2008. Petrology of some oceanic island basalts: PRIMELT2. XLS  
602 software for primary magma calculation. *Geochemistry Geophysics Geosystems*, 9(9).

603 Herzberg, C., 2011. Identification of source lithology in the Hawaiian and Canary Islands:  
604 Implications for origins. *Journal of Petrology*, 52(1), 113–146.

605 Herzberg, C., Asimow, P.D., Ionov, D.A., Vidito, C., Jackson, M.G., Geist, D., 2013. Nickel and  
606 helium evidence for melt above the core–mantle boundary. *Nature*, 493(7432), 393-397.

607 Herzberg, C., Asimow, P.D., 2015. PRIMELT 3 MEGA. XLSM software for primary magma  
608 calculation: peridotite primary magma MgO contents from the liquidus to the solidus.  
609 *Geochemistry Geophysics Geosystems*, 16(2), 563–578.

610 Hirose, K., 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO<sub>2</sub> in  
611 alkali-basalt magma generation. *Geophysical Research Letters* 24, 2837–2840.

612 Hoernle, K., Tilton, G., Le Bas, M.J., Garbe-Schönberg, D., 2002. Geochemistry of oceanic  
613 carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal  
614 carbonate. *Contrib. Mineralogy and Petrology*, 142, 520–542.

615 Hofmann, A. W., Farnetani, C.G., 2013. Two views of Hawaiian plume structure, *Geochemistry  
616 Geophysics Geosystem*, 14, 5308–5322.

617 Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. *Nature*, 385,  
618 219–229.

619 Huang, S., Abouchami, W., Blichert-Toft, J., Clague, D.A., Cousens, B.L., Frey, F.A., Humayun,  
620 M., 2009. Ancient carbonate sedimentary signature in the Hawaiian plume: Evidence from

621 Mahukona volcano, Hawaii, *Geochemistry Geophysics Geosystem*, 10, Q08002,  
622 doi:10.1029/2009GC002418.

623 Huang, S., Frey, F.A., Blichert-Toft, J., Fodor, R.V., Bauer, G.R., Xu, G., 2005. Enriched  
624 components in the Hawaiian plume: evidence from Kahoolawe Volcano, Hawaii.  
625 *Geochemistry Geophysics Geosystems*, 6(11).

626 Huang, S. C., Hall, P.S., Jackson, M.G., 2011, Geochemical zoning of volcanic chains associated  
627 with Pacific hotspots, *Nature Geoscience*, 4, 874–878, doi:10.1038/NGEO1263.

628 Huang, S., Humayun, M., Frey, F.A., 2007. Iron/manganese ratio and manganese content in  
629 shield lavas from Ko'olau Volcano, Hawai'i. *Geochimica et Cosmochimica Acta*, 71(18),  
630 4557-4569.

631 Jones, A.P., Genge, M., Carmody, L., 2013. Carbonate Melts and Carbonatites. *Reviews in  
632 Mineralogy and Geochemistry*, 75: 289–322.

633 Kiseeva, E. S. et al., 2012. An experimental study of carbonated eclogite at 3.5–5.5 GPa:  
634 Implications for silicate and carbonate metasomatism in the cratonic mantle. *Journal of  
635 Petrology* 53, 727–759.

636 Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., Ohtani, E., Kamenetsky, V. S., 2013. Melting and  
637 phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in  
638 the deep mantle. *Journal of Petrology* 54, 1555–1583.

639 Kelemen, P.B., Manning, C.E., 2015. Reevaluating carbon fluxes in subduction zones, what goes  
640 down, mostly comes up. *Proceedings of the National Academy of Sciences*, 112(30),  
641 E3997-E4006.

642 Kogiso, T., Hirose K., Eiichi, T., 1998. Melting experiments on homogeneous mixtures of  
643 peridotite and basalt: application to the genesis of ocean island basalts. *Earth and Planetary  
644 Science Letters*, 162, 45–61.

645 Le Roux, V., Dasgupta, R., Lee, C.T.A., 2011. Mineralogical heterogeneities in the Earth's  
646 mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. *Earth and  
647 Planetary Science Letters*, 307 (3-4): 395-408.

648 Mallik, A., Dasgupta, R., 2013. Reactive infiltration of MORB-eclogite-derived carbonated  
649 silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. *Journal of  
650 Petrology* 54, 2267-2300.

651 Mallik, A., Dasgupta, R., 2012. Reaction between MORB-eclogite derived melts and fertile  
652 peridotite and generation of ocean island basalts. *Earth and Planetary Science Letters*, 329:  
653 97–108.

654 Matzen, A. K., M. B. Baker, J. R. Beckett and E. M. Stolper (2013). The Temperature and  
655 Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt. *Journal of*  
656 *Petrology* 54(12): 2521-2545.

657 Matzen, A. K., Baker, M.B., Beckett, J.R., Wood, B.J., Stolper, E.M., 2017. The effect of liquid  
658 composition on the partitioning of Ni between olivine and silicate melt. *Contribution to*  
659 *Mineralogy and Petrology*, 172(1): 3.

660 Miller, W.G., MacLennan, J., Shortle, O., Gaetani, G.A., Le Roux, V., Klein, F., 2019. Estimating  
661 the carbon content of the deep mantle with Icelandic melt inclusions. *Earth and Planetary*  
662 *Science Letters*, 523, 115699.

663 Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S.H., 2004.  
664 Finite-frequency tomography reveals a variety of plumes in the mantle. *Science*, 303 (5656),  
665 338-343.

666 Phillips, E. H., K. W. W. Sims, D. R. Sherrod, V. J. M. Salters, J. Blusztajn and H. Dulai (2016).  
667 Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of  
668 Maui, Hawaii. *Geochimica et Cosmochimica Acta*, 195: 201-225.

669 Plank, T., Manning, C.E., 2019. Subducting carbon. *Nature*, 574 (7778), 343-352.

670 Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively  
671 coupled plasma mass spectrometry. *Talanta* 51, 507–513.

672 Reiners, P.W., Nelson, B.K., 1998. Temporal-compositional-isotopic trends in rejuvenated stage  
673 magmas of Kauai, Hawaii, and implications for mantle melting processes. *Geochimica et*  
674 *Cosmochimica Acta*, 62, 13, 2347–2368.

675 Robinson, J.A.C., Wood, B.J., Blundy, J.D., 1998. The beginning of melting of fertile and  
676 depleted peridotite at 1.5 GPa. *Earth and Planetary Science Letters*, 155, 97–111.

677 Schroeder, T., John, B., Frost, B.R., 2002. Geologic implications of seawater circulation through  
678 peridotite exposed at slow-spreading mid-ocean ridges. *Geology*, 30(4): 367-370.

679 Shea, J.J., Foley, S.F., 2019. Evidence for a Carbonatite-Influenced Source Assemblage for  
680 Intraplate Basalts from the Buckland Volcanic Province, Queensland, Australia. *Minerals*, 9

681 (9), 546.

682 Sherrod, D.R., Nishimitsu, Y., and Tagami, T., 2003, New K–Ar ages and the geologic evidence  
683 against rejuvenatedstage volcanism at Haleakalā, East Maui, a postshield-stage volcano of the  
684 Hawaiian island chain: Geological Society of America Bulletin, 115 (6), 683–694.

685 Sherrod, D.R., Sinton, J.M., Watkins, S.E., Brunt, K.M., 2007. Geologic Map of the State of  
686 Hawaii. Open-File Report 2007–1089. U.S. Geological Survey, Reston, Virginia 2007.

687 Sisson, T.W., Kimura, J.I., Coombs, M.L., 2009. Basanite–nephelinite suite from early Kilauea:  
688 carbonated melts of phlogopite–garnet peridotite at Hawaii’s leading magmatic edge.  
689 Contributions to Mineralogy and Petrology, 158(6): 803-829.

690 Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L.,  
691 Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S.,  
692 Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson,  
693 I.A., Sushchevskaya, N.M., Teklay, M., 2007. The amount of recycled crust in sources of  
694 mantle-derived melts. Science 316, 412-417.

695 Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free mantle  
696 source of Hawaiian shield basalts. Nature 434, 590-597.

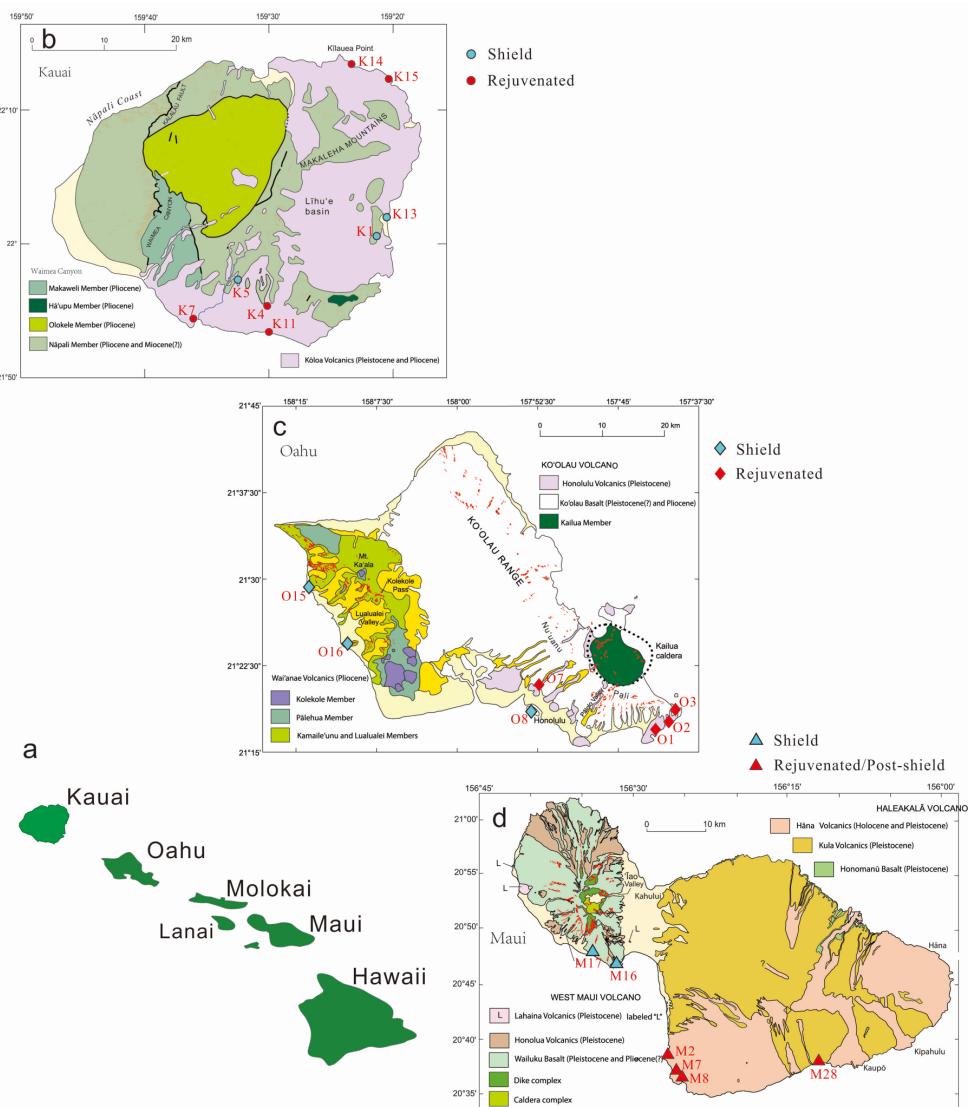
697 Tucker, J.M., Hauri, E.H., Pietruszka, A.J., Garcia, M.O., Marske, J.P., Trusdell, F.A., 2019. A  
698 high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions. Geochimica  
699 et Cosmochimica Acta 254: 156-172.

700 Wagner, T.P., Grove, T.L. 1998. Melt/harzburgite reaction in the petrogenesis of tholeiitic  
701 magma from Kilauea volcano, Hawaii. Contributions to Mineralogy and Petrology, 131(1),  
702 1-12.

703 Weis, D., Garcia, M.O., Rhodes, J.M., Jellinek, M., Scoates, J.S., 2011. Role of the deep mantle  
704 in generating the compositional asymmetry of the Hawaiian mantle plume, Nature Geoscience,  
705 4, 831–838, doi:10.1038/NGEO1328.

706 Wirth, R., Rocholl, A., 2003. Nanocrystalline diamond from the Earth’s mantle underneath  
707 Hawaii. Earth and Planetary Science Letters, 211 (3-4), 357-369.

708 Yang, H.J., Frey, F.A., Clague, D.A., 2003. Constraints on the source components of lavas  
709 forming the Hawaiian North Arch and Honolulu Volcanics, Journal of Petrology, 44, 603–627.


710 Zhang, G.L., Chen, L.H., Jackson, M.G., Hofmann, A.W., 2017. Evolution of carbonated melt to

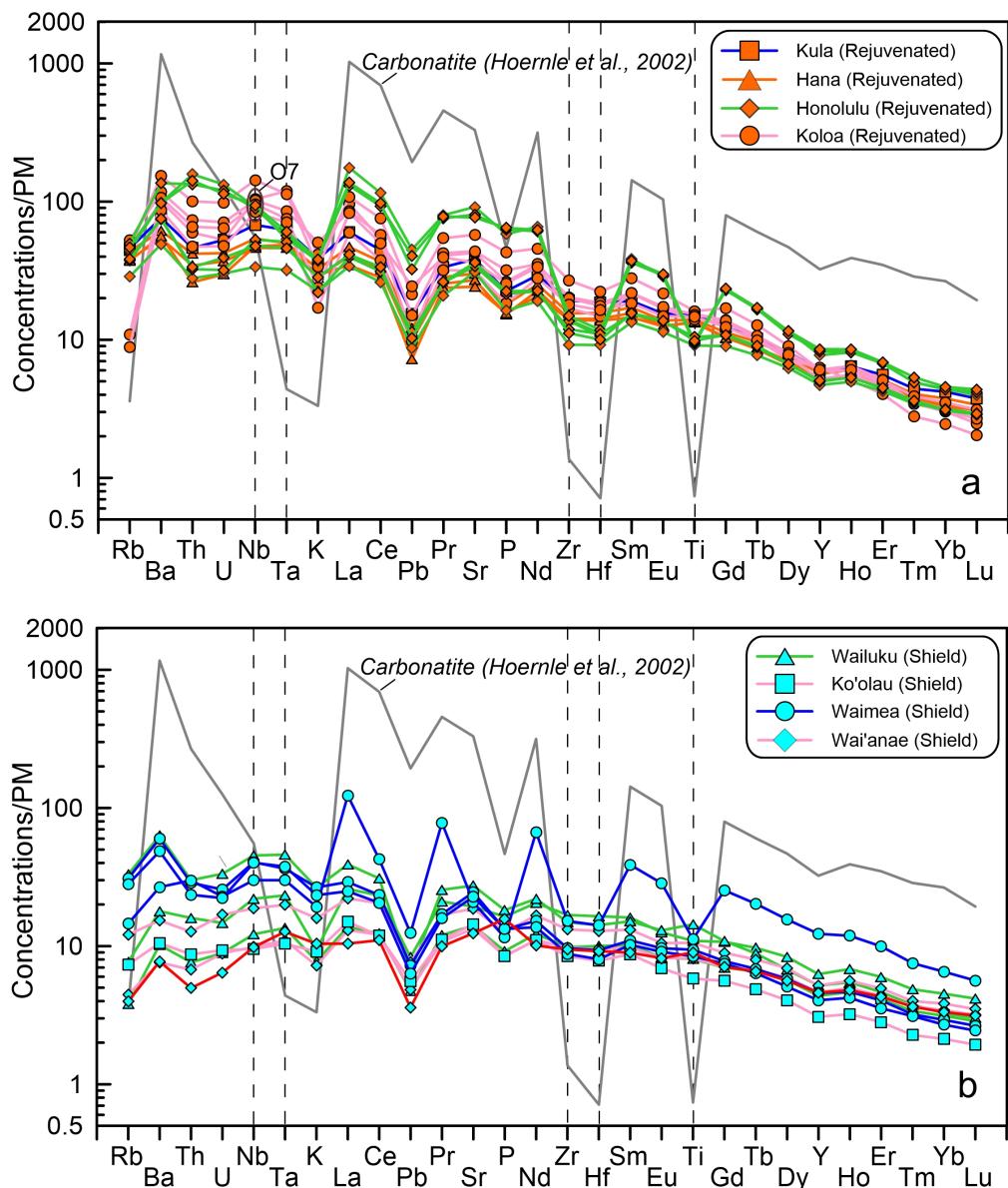
711 alkali basalt in the South China Sea. *Nature Geoscience*. 10(3), 229-235.

712 Zhang, G.L., Smith\_Duque C, 2014. Seafloor basalt alteration and chemical change in the ultra  
713 thinly sedimented South Pacific. *Geochemistry Geophysics Geosystems*, DOI:  
714 10.1002/2013GC005141.

715 Zhang, G.L., Zhang, J., Wang, S., Zhao, J.X., 2020. Geochemical and chronological constraints  
716 on the mantle plume origin of the Caroline Plateau. *Chemical Geology*, doi.org/10.1016/  
717 j.chemgeo.2020.119566.

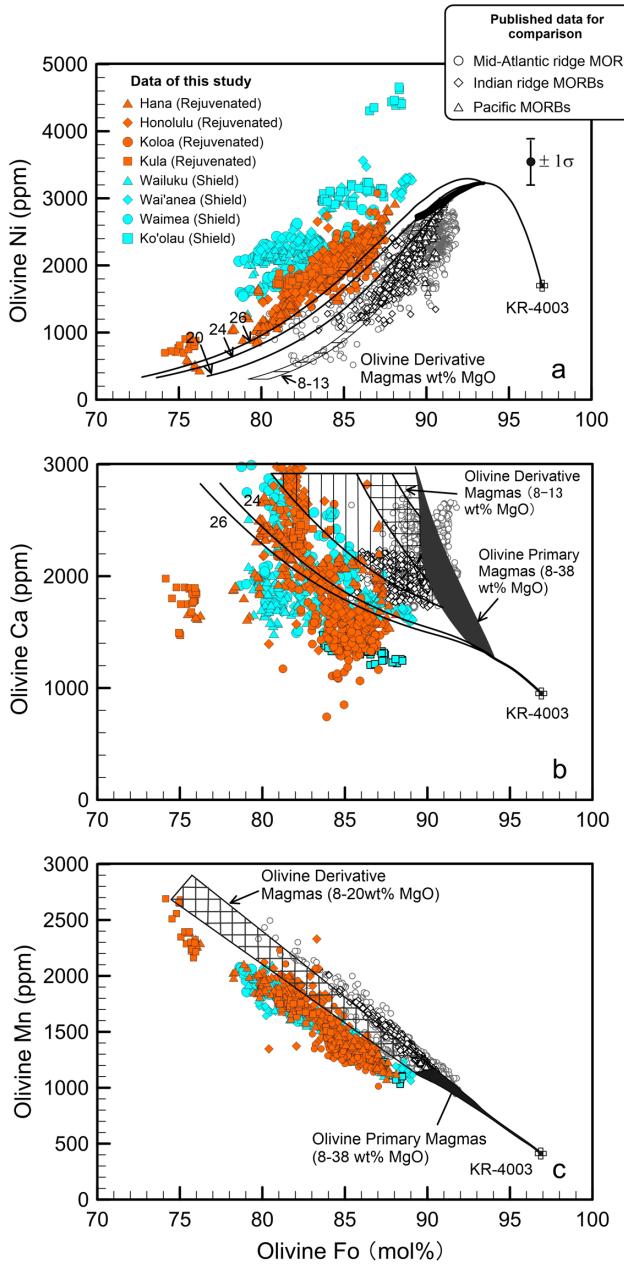
718




719  
720 **Figure 1.** Geological setting and sampling locations of this study. The geologic maps are  
721 modified according to [Sherrod et al \(2007\)](#).  
722

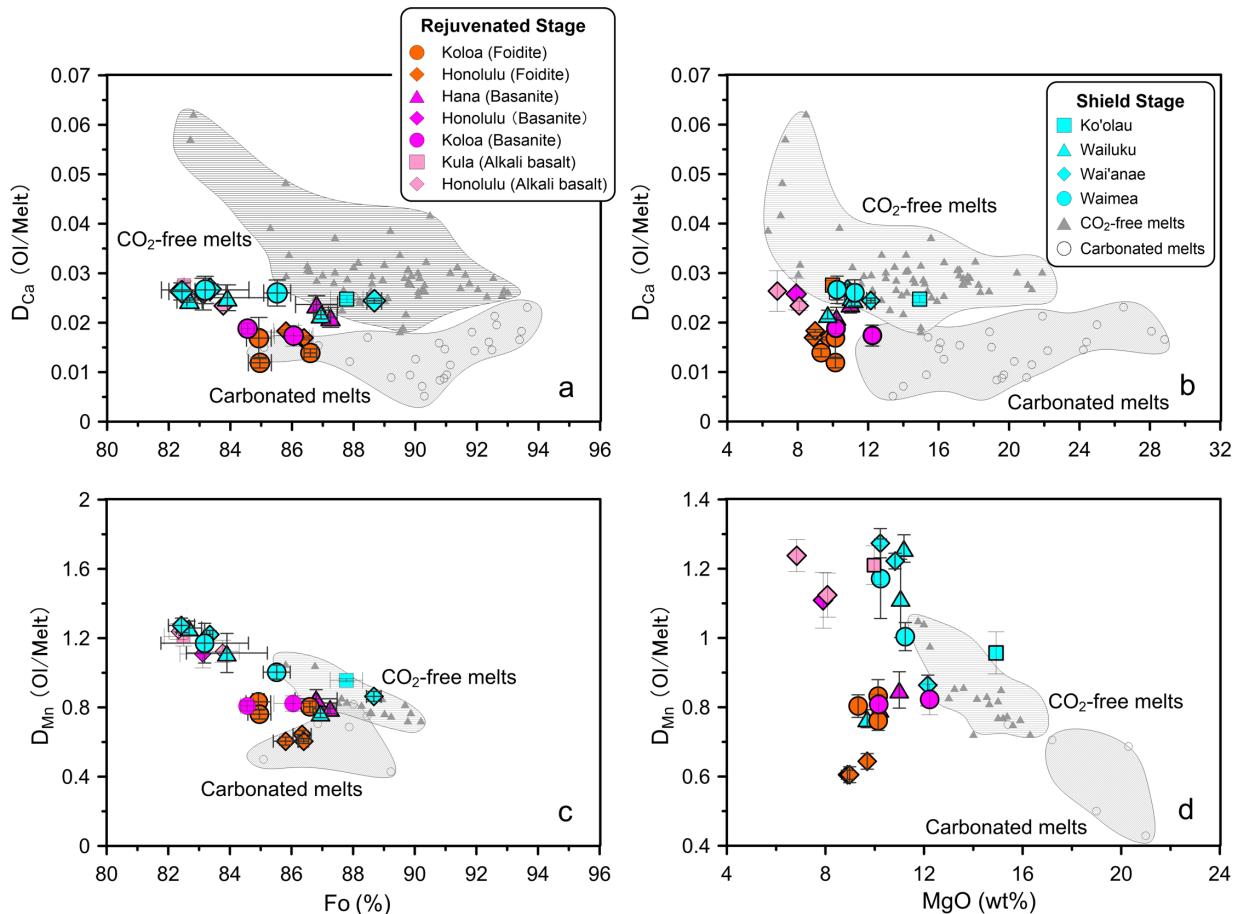


723


724 **Figure 2. Plots of bulk-rock MgO vs. (a) SiO<sub>2</sub>, (b) CaO, (c) Ni and (d) Mn for volcanic rocks**  
 725 **of Hawaiian islands.** Green dashed line in (c), primary accumulated fractional melts of fertile  
 726 mantle peridotite (KR-4003) modeled by calculated by Herzburg (2011). Source of literature  
 727 data for comparison: Carbonated peridotite melt (Hirose, 1997; Dasgupta et al., 2007),  
 728 carbonated eclogite melt (Kiseeva et al., 2012; Kiseeva et al., 2013; Hammouda et al., 2010;  
 729 Gerbode and Dasgupta, 2010), carbonated eclogite+peridotite melt (Mallik and Dasgupta,  
 730 2013), data of Hawaiian shield and rejuvenated stage in (a)-(c) for comparison are from  
 731 <http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html>.

732

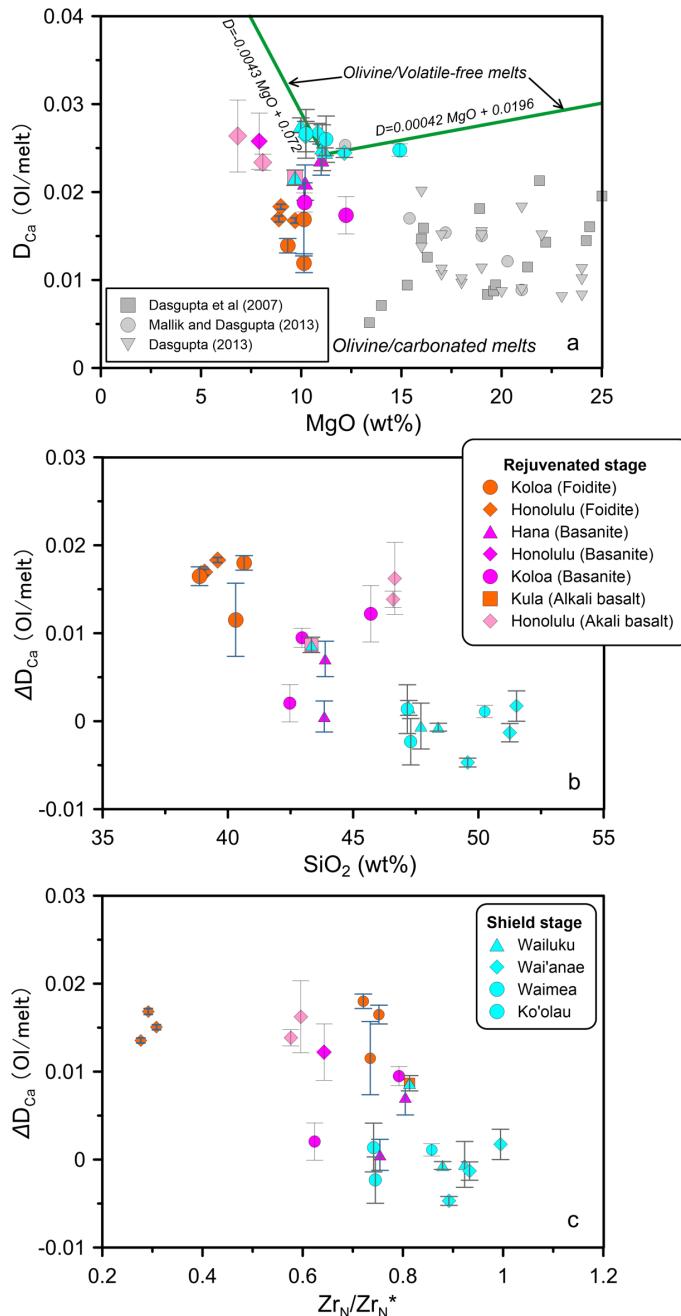



733

734 **Figure 3. Trace element patterns for the volcanic rock samples from Hawaiian Islands.** Data  
 735 are normalized to the primitive mantle data of [McDonough and Sun \(1995\)](#). The typical  
 736 carbonatite (Sample #: 85LB25, the carbonatite lava) for comparison from [Hoernle et al](#)  
 737 ([2002](#)).  
 738



739


740 **Figure 4. Plots of olivine Mg number (Fo) vs. (a) Ni, (b) Ca and (c) Mn.** The calculated  
 741 olivine compositions are based on [Herzberg \(2011\)](#). Black area shows the olivines of primary  
 742 magmas (MgO of 8–38 wt%) from fertile peridotite KR-4003 with 1964 ppm Ni, 3.45 wt%  
 743 CaO, 1007 ppm Mn, and 8.02 wt% FeO. Numbered lines in (a) and (b) are calculated olivines  
 744 of olivine-fractionated derivative magmas, and the numbers indicate the MgO contents of  
 745 olivine derivative magmas. Short lines with end-bars in (a) and (d) are  $\pm 1\sigma$  Ni and Fe/Mn  
 746 variations of the primary magmas from which olivines crystallize. Data of olivine for global  
 747 MORBs (Indian ridge, Mid-Atlantic Ridge, and East Pacific Rise) and Hawaiian OIBs are  
 748 from [Sobolev et al. \(2007\)](#).



749

750 **Figure 5. Plots of  $D_{Ca}$  (Ol/melt) vs. (a) Fo and (b) melt  $\text{MgO}$ , and  $D_{Mn}$  (Ol/melt) vs. (c)**  
 751 **olivine Mg number (Fo) and (d) melt  $\text{MgO}$ .** Source of literature data for comparison: data  
 752 for  $D_{Mn}$  (Mallik and Dasgupta, 2012 & 2013; Matzen et al., 2017), data for  $D_{Ca}$  (Mallik and  
 753 Dasgupta, 2012 & 2013; Matzen et al., 2017; Dasgupta et al., 2007; Robinson et al., 1998;  
 754 Kogiso et al., 1998).

755



756

757 **Figure 6. Plots of (a)  $D_{Ca}^{Ol/melt}$  vs. equilibrium melt  $MgO$ ,  $\Delta D_{Ca}^{Ol/melt}$  vs. (b)  $SiO_2$  and (c)**  
758  **$Zr_N/Zr_N^*$ .** The results of high-pressure/temperature experiments from Dasgupta et al. (2007,  
759 2013) and Mallik and Dasgupta (2013) are plotted in (a) for comparison. The green solid line  
760 in (a) indicates the results of such experiments with volatile-free melts from Gavrilenko et al.  
761 (2016).  $\Delta D_{Ca}^{Ol/melt}$  indicates difference between the olivine  $D_{Ca}$  values of calculated melts and  
762 volatile-free melts.  $Zr_N$ , normalized to primitive mantle data of McDonough and Sun (1995).  
763  $Zr_N^*$ , calculated as square root of  $Nd_N \times Sm_N$ .

764

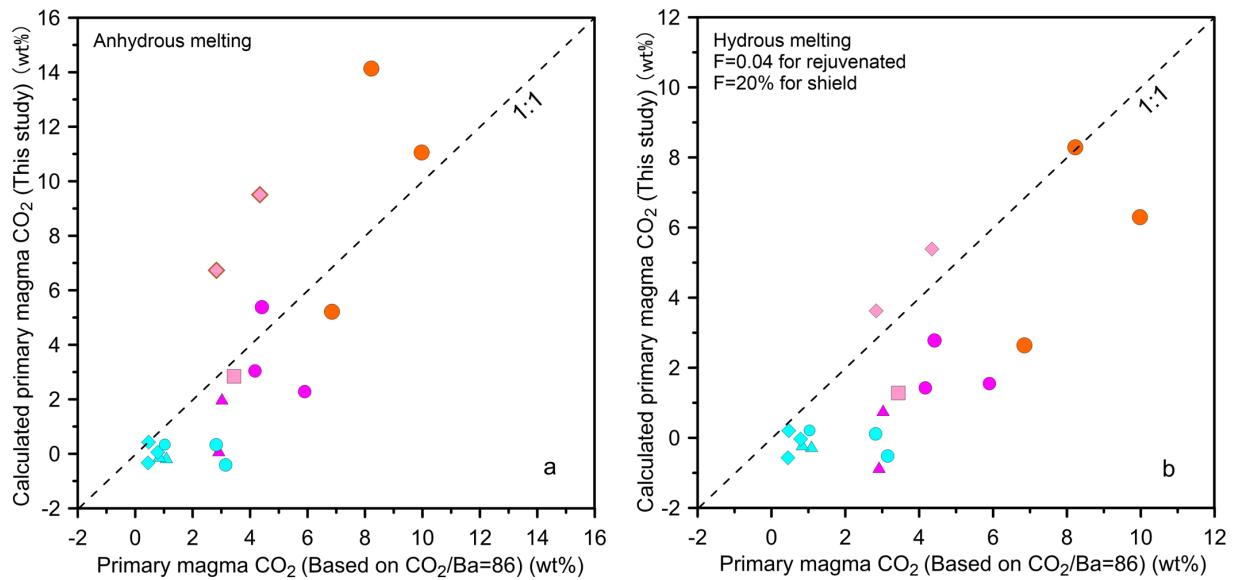



Figure 7. Plots of calculated primary magma  $\text{CO}_2$  based on  $\text{CO}_2/\text{Ba}=86$  vs. calculated primary magma  $\text{CO}_2$  on basis of (a) anhydrous and (b) hydrous melting. Anhydrous melting assumes no influence of water on partition of Ca in olivine. F, melting degree of mantle based on which water content is calculated. Primary magma  $\text{CO}_2$  content is calculated based on  $\text{CO}_2/\text{Ba}=86$  and is corrected based on fraction of olivine added during primary magma calculation.

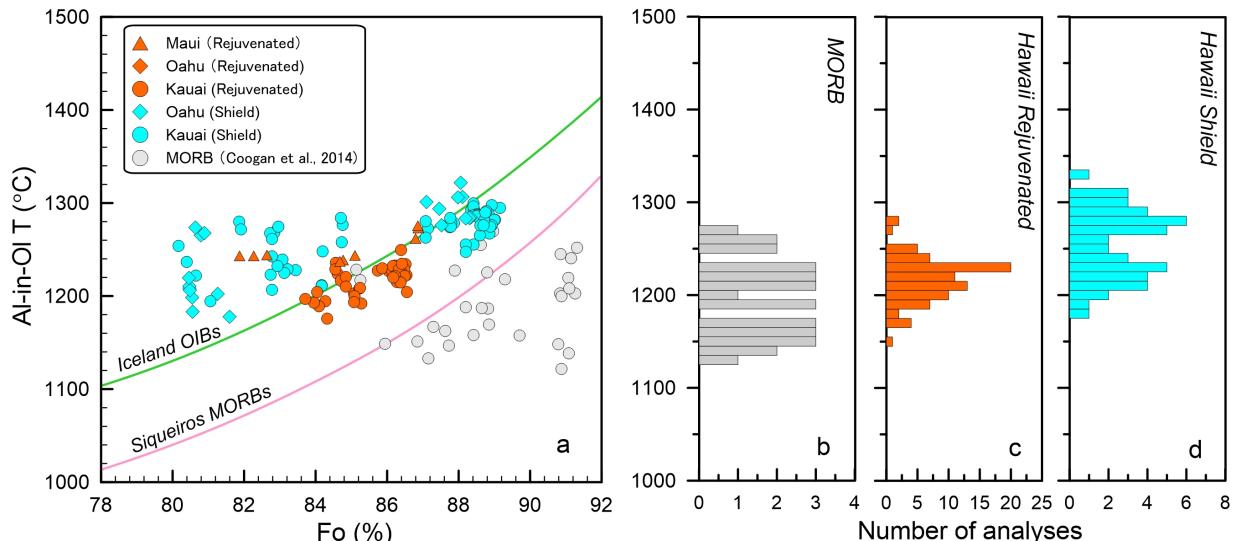
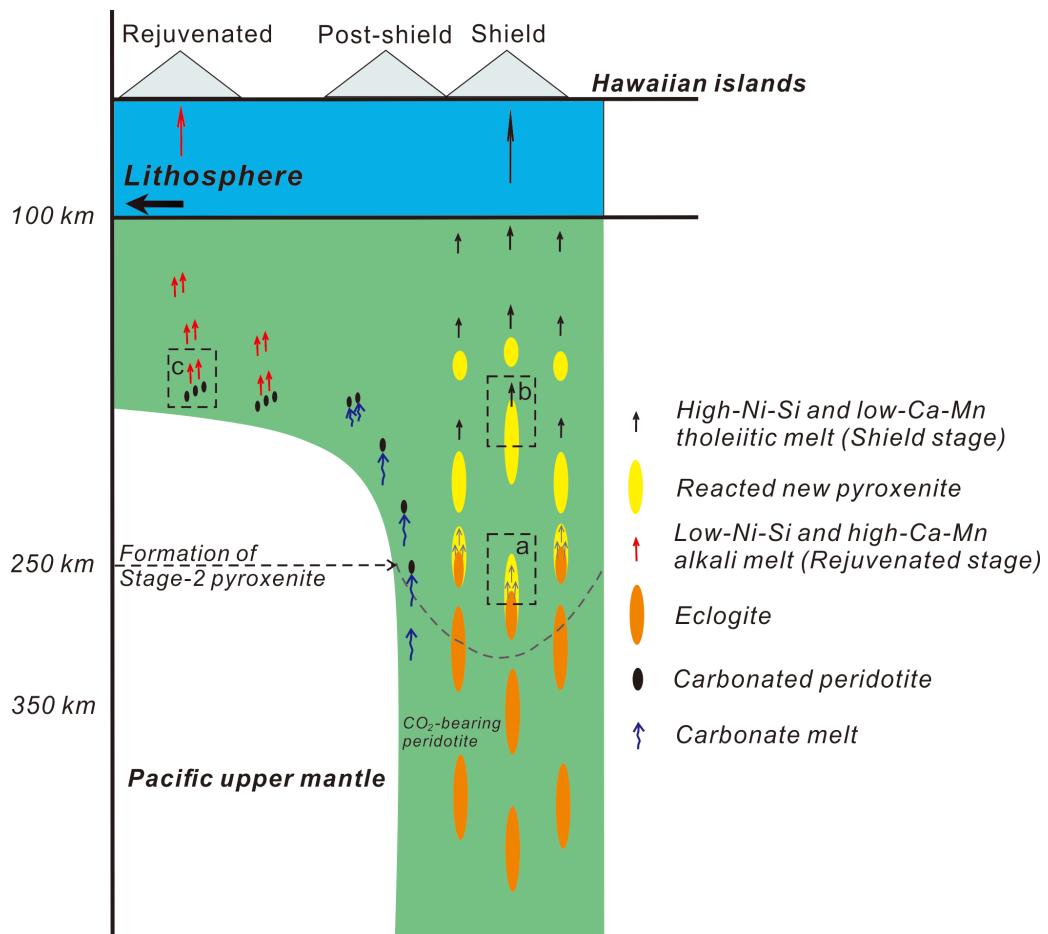




Figure 8. Al-in-olivine crystallization temperature as a function of olivine Fo (a) and histogram for comparing Hawaii rejuvenated and shield stage crystallization temperature (b-c). Data of MORB temperature for comparison are from Coogan et al (2014). The solid lines for Iceland OIB and Siqueiros MORB are calculated by PREMELT3 MEGA.XLSM based on Herzberg and Asimow (2015).



781 **Figure 9. Model showing genesis of shield stage and rejuvenated stage volcanism.** *a.*  
782 Reaction of eclogite melt with peridotite to form Stage-2 pyroxenite (Sobolev et al., 2005); *b.*  
783 High-degree melt of stage-2 pyroxenite to produce Hawaii Shield stage volcanism; *c.* Melting  
784 of carbonated peridotite to form CO<sub>2</sub>-rich rejuvenated stage melts.