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Abstract

Sedimentary carbonates are sent to the deep mantle if they are not completely destroyed at
subduction zones, and subducted carbonates may contribute to plume volcanism. To better
constrain the role of recycled carbonates in Hawaiian volcanism, we report high-precision
olivine and whole-rock geochemical compositions of shield and rejuvenated stage lavas
from Kauai, Oahu and Maui islands. The studied rejuvenated stage whole-rocks have low
SiO; and high CaO concentrations, and are depleted in HFSEs, such as, Nb and Zr,
consistent with a role of carbonated melt. Rejuvenated stage olivines have Ni abundance
lower than and CaO and MnO contents similar to those of shield stage at a given Fo. The
calculated partition coefficients of Ca (Dc.®"™"") and Mn (Dmn®"™¢!*) between olivine and
shield melts are consistent with those of a dry melt system. However, the low Dc,°™¢!* and
Dma®' ™! for rejuvenated lavas can only be explained by a volatile-rich melt system. Based
on the observed Dc,°™¢! and Dvn®"™! in rejuvenated lavas, and considering the effect of

H20, our modeling calculation shows that rejuvenated primary magmas contain up to ~10
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wt% COz. Using olivine-spinel aluminum exchange thermometry, we show that the
rejuvenated primary magma temperatures are similar to/slightly lower than those of shield
stage. We posit that the lower rejuvenated stage lavas were originated from melting of
carbonated peridotites in the plume. The carbonated melts that metasomatized the
peridotites were likely derived from subducted ancient carbonate-bearing lithospheric
mantle.

Keywords: olivine, CO>, metasomatism, rejuvenated lavas, mantle plume, Hawaiian islands

1 Introduction

The deep mantle may store most of the Earth’s carbon (Dasgupta and Hirschmann, 2006;
Dasgupta and Hirschmann, 2010; Zhang et al., 2017; Plank and Manning, 2019). Plate
subduction is considered to be an important factor of carbon enrichment in the deep Earth’s
interior (Dasgupta and Hirschmann, 2010; Plank and Manning, 2019). Deep-rooted mantle
plumes (e.g., Hawaiian plume) are good candidate for the study of deep Earth’s carbon cycle
(Dixon et al., 2008). Since CO; can significantly change the chemistry of mantle-sourced melts,
e.g., lowing SiO; and elevating CaO of melts (Dasgupta et al., 2007a; Foley et al., 2009; Zhang
et al., 2017), it may play an important role in the origin of alkali basalts (Dixon et al., 2008;
Dasgupta et al., 2006, 2007a&b; Sisson et al., 2009).

The Emperor-Hawaii seamount chain is a type volcanic chain that may originate from near the
core-mantle boundary (Montelli et al., 2004; Huang et al., 2011; Weis et al., 2011; French and
Romanowicz, 2015). Shield stage tholeiitic basalts account for the majority (95 vol%) of
Hawaiian volcanic rocks, while pre-shield, post-shield and rejuvenated stages account for the
rest 5% (Sherrod et al., 2007). The role of an olivine-free lithology, pyroxenite or eclogite, in the
petrogenesis of Hawaiian shield lavas is highly debated. Specifically, Hawaiian shield tholeiitic
lavas have too high SiO; content to be produced by partial melting of garnet peridotite (e.g.,
Hauri, 1996; Wagner and Grove, 1998; Huang and Frey, 2005). This led to the suggestion that an
eclogite component play a role in producing the high SiO> contents in Hawaiian tholeiitic lavas
(Hauri, 1996; Huang and Frey, 2005). Alternatively, the high SiO> content may be a result of
melt-harzburgite reaction (Wagner and Grove, 1998). Sobolev et al. (2005; 2007) and Herzberg

(2006; 2011) noted that the high olivine Ni contents and low CaO and MnO in olivines from
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Hawaiian shield lavas, as well as low whole rock CaO contents, required a pyroxenite-dominated
mantle source for Hawaiian shield lavas. Alternatively, the low CaO and MnO contents, and high
SiO: content of Hawaiian lavas may be explained if they represent mixtures of partial melts from
garnet peridotite and from eclogite (Huang et al., 2007). Matzen et al. (2013; 2017) showed that
the high olivine Ni content in Hawaiian shield stage olivines may simply reflect the temperature
difference between partial melting beneath the thick lithosphere and olivine crystallization in a
shallow magma chamber, and a pyroxenite-dominated mantle source is not required.

Hawaiian rejuvenated stage volcanism occurred 0.5-2 Myr after shield stage and consists of
silica-undersaturated alkaline-rich rocks, e.g., alkali basalt, hawaiite, nephelinite and melilitite
(e.g., Clague and Dalrymple, 1987; Garcia et al., 2010; Phillips et al., 2016). Hawaiian
rejuvenated lavas are among the most silica-undersaturated and alkaline-rich in oceanic
islands/seamounts (Chauvel et al., 1997; Zhang et al., 2020). It remains unclear on the origin of
rejuvenated stage low-SiO; alkali-rich volcanic rocks (Reiners and Nelson, 1998; Bianco, 2005;
Garcia et al.,, 2010; Ballmer, 2011; Hofmann and Farnetani, 2013; Phillips et al., 2016).
Hawaiian rejuvenated lavas are more depleted in Sr-Nd-Hf isotope compositions than those of
shield stage (e.g., Chen and Frey, 1983; Frey et al., 2000; 2005 G-cubed; Yang et al., 2003;
Hofmann and Farnetani, 2013; Beguelin et al., 2019; DeFelice et al., 2019; Harrison et al., 2020),
indicating different mantle sources. Earlier studies suggested an origin of Hawaiian rejuvenated
lavas from the underlying metasomatically enriched Pacific lithospheric mantle (Chen and Frey,
1983; Garcia et al., 2010). However, there are increasing studies suggesting the isotopically
depleted rejuvenated stage source component is intrinsic of the mantle plume (Ribe and
Christensen, 1999 EPSL 171, 517-531; Hofmann and Farnetani, 2013; DeFelice et al., 2019;
Harrison et al., 2020; but see also Beguelin et al., 2019 for a different opinion).

Silica under-saturated alkali lavas could be explained by involvement of CO; in the mantle
source (Mallik and Dasgupta, 2012; 2013). Several studies have indicated that CO> played an
important role in the origin of Hawaiian lavas (Dixon et al., 2008; Huang et al., 2009&2011;
Sisson et al., 2009; Borisova and Tilhac, 2021). Tucker et al (2019) showed that the mantle
sources of Hawaiian shield stage lavas contain 380-480 ppm CO; based on measurement of
olivine hosted melt inclusions, while the source CO> contents of rejuvenated lavas were not
constrained. Dixon et al (2008) explained Hawaiian rejuvenated lavas with elevated Ba/Th by
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carbonatite metasomatism, but the content of CO> has not been directly constrained. CO> not
only affects magma chemical compositions, but also element partitioning between olivine and
melts (Gavrilenko et al., 2016). Gavrilenko et al (2016) proposed that magma CO; concentration
could be calculated based on its influence on Ca partition between olivine/melt. In this study, we
have analyzed high-precision olivine chemistry and whole-rock major and trace elements of

Hawaiian rejuvenated stage lavas, aiming to evaluate the role of CO, in Hawaiian magmatism.

2 Samples

Shield and rejuvenated stage rock samples in this study were collected from Kauai, Oahu and
Maui Islands (Fig. 1), and their information is in Supplementary Table 1. We have collected 26
rock samples, including 16 rejuvenated stage and 10 shield stage, from these islands (Fig. 1;
Supplementary Table 1). At Kauai Island, there are two sampling sites from the shield stage
Waimea volcanics (5.5-4 Ma), and 5 sites from the rejuvenated stage Koloa volcanics (2.6-0.15
Ma). At Oahu Island, there are 2 sampling sites from the shield stage Wai'anae volcanics and 1
site from the shield stage Ko'olau volcano (3.0-1.8 Ma); 2 sampling sites from the rejuvenated
stage Honolulu volcanics (0.8-<0.1 Ma). At Maui Island, there is 1 sampling site from the shield
stage Wailuku volcanics (2.0-1.3 Ma); 2 sites from the rejuvenated stage Hana volcanics (0-1.5
Ma) and 1 site from the rejuvenated stage Kula volcanics (0.93-0.15 Ma). The detailed
information on division of volcanics can be referred to Sherrod et al (2007). Despite the absence
of distinct differences in formation age between the Hana and Kula volcanics, we classify the
Hana and Kula volcanics as rejuvenated stage because of their low-silica and high alkaline

characteristics. The detailed information on sampling can be found in Supplementary Table 1.

3 Methods and results

3.1 Methods

The 26 rock samples were analyzed for bulk-rock major and trace elements, and their olivine
phenocrysts were analyzed for major and trace elements using in situ high-precision Electron
Probe Microanalyzer (EMPA) technique. Bulk-rock major elements were analyzed using fused
glass discs with an Axios sequential X-ray Fluorescence Spectrometer at Institute of Geology

and Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing, China. Samples were fused
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at 1050 °C using a lithium tetraborate flux (Li2B4O7) in a mixture consisting of 0.5 g of sample
and 5 g of lithium tetraborate. Loss on ignition (LOI) was determined at a temperature of 1000°C
in air for 3 hours. Basalt standards BCR-2, BHVO-2 and GSR-3 were analyzed as unknowns and
the results are shown in Supplementary Method Table 1. Bulk-rock trace elements were analyzed
by a Perkin-Elmer Sciex ELAN DRC-e ICP-MS at the State Key Laboratory of Ore Deposit
Geochemistry (SKLODG), Institute of Geochemistry, Chinese Academy of Sciences (IGCAS).
The powdered samples (50 mg) were dissolved with HF + HNO3z mixture in high-pressure Teflon
Bombs at ~190 °C for 48 h (Qi et al., 2000). Rh was used as an internal standard to monitor
sensitivity drift during measurement. How do you measure the trace element abundances?
BCR-2 and BHVO-2 solutions were used to monitor analytical accuracy. The analytical
precision was generally better than 10 % (2 sigma) based on replication of basalt standards
analyses.

Quantitative in situ analyses of olivine and spinel major and minor elements were conducted
on JXA-8230 EMPA equipped with 5 wavelength dispersive spectrometers at Institute of
Oceanology, Chinese Academy of Sciences. The operating conditions were: 20 kV accelerating
voltage, 60 nA beam current, and 1-5 pm beam diameter. For olivine analyses, the counting time
was 30 seconds for Si ka, Mg ka and Fe ka, and 80 seconds for Mn ka, Ni ka, Ca ka, Cr ka, Al
ka. The off peak counting time was 80 seconds for Mn ka, Ni ka, Ca ka, Cr ka, Al ka. Standards
used were olivine (Si, Mg), corundum (Al), MnO (Mn), wollastonite (Ca), NiO (Ni), and apatite
(P), magnetite (Fe), and Cr2O3 (Cr). For spinel analyses, the counting time was 30 seconds for Si
ka, Mg ka, Al ka, Mn ko, Ni ka, Cr ka, Ti ka and Fe ko. The off peak counting time was 20
seconds for Si ka, Mg ka, Al ka, Mn ka, Ni ka, Cr ka, Ti ka and Fe ka. Standards used were
spinel (Al, Mg), quartz (Si), MnO (Mn), rutile (Ti), NiO (Ni), magnetite (Fe) and Cr,O3 (Cr).
Unknown and standard intensities were corrected for dead time. All data were corrected with the
standard ZAF correction procedures. The olivine standard MongOLSh11-2 (Batanova et al.,
2019) was replicated during the analyses to monitor the reproducibility and accuracy, and the
results are shown in Supplementary Method Table 3.

3.2 Results
3.2.1 Whole-rock major and trace elements
Whole-rock major and trace element compositions are shown in Supplementary Table 2. As
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shown in the plot of TAS vs. SiO» (Supplementary Fig. 1), shield stage lavas are tholeiitic basalts
with two plotting close to the division line between alkali basalt and tholeiitic basalts. Shield
stage lavas have SiO> between 46.4-50.0 wt%, MgO between 11.5-23.4 wt%, CaO between
5.1-10.7 wt%, Na>O between 1.44-2.51 wt%, and P,Os between 0.18-0.35 wt%. Shield stage
lavas show slight enrichment of light over heavy rare earth elements (REEs) and slight
enrichment of Ba. Rejuvenated stage lavas are all rich in alkaline elements and can be classified
into foidite, basanite and alkali basalts (Supplementary Fig. 1), of which the three foidite samples
from Site O7 (Honolulu volcanics) have the highest alkaline (Na,O+K;0) and P>Os and the
lowest SiO> contents (Fig. 2). Except for Site O7 foidite samples, the other rejuvenated stage
samples have SiO> between 37.7-45.3 wt%, MgO between 7.15-15.1 wt%, CaO between
9.4-13.3 wt%, Na,O between 2.4-3.8 wt% and P»0s between 0.33-0.92 wt%.

These rejuvenated stage lavas are strongly enriched in light rare earth elements (LREEs) and
large ion lithophile elements (LILEs) (Fig. 3) compared with shield stage lavas. These
rejuvenated stage lavas also have positive anomalies of Ba and negative anomalies of Zr-Hf (Fig.
3). Site O7 foidite lavas have the strongest enrichment of LILEs and Th-U and the strongest
negative anomalies of high field strength elements (HFSEs, e.g., Nb-Zr-Hf-T1) (Fig. 3). These
rejuvenated stage lavas show systematically lower SiO> and Al,Os; and higher total iron and
CaO/Al2O3 compared to shield stage lavas (Fig. 2, Supplementary Fig. 2). Rejuvenated stage
lavas also have systematically lower Ni than those of shield stage for a given MgO content (Fig.
2b). Moreover, rejuvenated stage lavas have overall higher CaO and MnO contents than those of
shield stage for a given MgO content (Fig. 2 b&d).

3.3.2 In situ olivine and spinel chemistry

Olivine phenocrysts and olivine-spinel pairs have been analyzed for high-precision major
and trace element compositions by EMPA, and the results are shown in Supplementary Table
3&4, respectively. The volcanic rock samples of shield and rejuvenated stages in this study have
similar ranges in Fo# (molar Mg/(Mg+Fe)x100%) (Fig. 4). For shield stage volcanic rocks, the
highest Fo#s of olivines are 86.8, 89.1, 88.5 and 87.4 for Waimea, Wai'anae, Ko'olau and
Wailuku volcanics, respectively; while for rejuvenated stage volcanic rocks, the highest Fo#s
of olivines are 87.5, 86.9, 87.3 and 84.1 for Koloa, Honolulu, Hana and Kula, respectively. As
shown in Fig. 4, at a given Fo, shield stage volcanic rocks have olivine Ni contents distinctly

6
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higher and Mn-Ca contents lower than those of global MORBs. The olivines of rejuvenated stage
lavas also have Ni contents systematically higher than those of global MORBs but lower than
those of shield stage lavas for a given Fo#. Despite the distinct compositions of olivine Ni
between shield stage and rejuvenated stage lavas, their olivine Ca and Mn contents are
comparable for a given Fo# (Fig. 4). The olivines with the highest Fo# for both shield and

rejuvenated stages have similarly Mn and Ca contents, which are lower than those of MORB:s.

4. Discussion

4.1 Implication of whole-rock geochemistry on the role of CO:

It has been suggested that shield stage lavas characterized by depletion of CaO and
enrichment of SiO» cannot be explained by melting of peridotites (Hauri, 1996; Wagner and
Grove, 1998; Huang and Frey, 2005; Herzberg, 2006; Herzberg and Asimow, 2008; Dasgupta et
al., 2010), but can be explained by partial melting of mixed pyroxenite (recycled oceanic crust)
and peridotite (e.g., Sobolev et al., 2005&2007; Huang et al., 2007; Herzberg, 2011; Herzberg
and Asimow, 2008; Jackson et al., 2012; Mallik and Dasgupta, 2012). Rejuvenated stage lavas
are usually silica-undersaturated and enriched in CaO that are distinct from shield stage
volcanism (Fig. 2). The enrichment of LREEs and LILEs in rejuvenated lavas (Fig. 3) could be
explained by low degree of melting in the mantle source and a geochemically enriched mantle
source. However, the high CaO and SiOz-poor nature of rejuvenated stage lavas cannot be
explained by melting of dry pyroxenite (e.g., Mallik and Dasgupta, 2013) or peridotite (e.g.,
Dasgupta et al., 2010) at any temperature and pressure. Results of high pressure/temperature
experiments indicate that, with the presence of CO, partial melts of either peridotite or
pyroxenite/eclogite have high CaO and low SiO> contents (e.g., Dasgupta et al., 2007; Mallik
and Dasgupta, 2013).

Plate subduction is an effective way to introduce sedimentary carbonate into deep mantle
(e.g., Zhang and Smith Duque, 2014; Plank and Manning, 2019; but see also Thomson et al.,
2016). If recycled oceanic crust is involved in the Hawaiian mantle plume, sedimentary
carbonates may have played a role during mantle melting, especially at low degrees of melting.
Based on the results of melting experiment (e.g., Mallik and Dasgupta, 2013), melting of

carbonate-bearing MORB can only produce melts with MgO of <8 wt%, which cannot explain
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Hawaiian rejuvenated stage lavas with MgO of >10 wt%. Partial melts of carbonated pyroxenite
and peridotite mixture and carbonated peridotite have both high MgO and CaO contents, as well
as low SiO; content (e.g., Mallik and Dasgupta, 2013). Carbonatitic melts typically have high
contents of CaO, MnO, Ba, and REEs, and are depleted in high field strength elements (HFSEs,
such as Nb-Ta-Zr-Hf-Ti) (e.g., Hoernle et al., 2002; Dixon et al., 2008; Dalou et al., 2009;-Jones
et al.,, 2013). We find that Site O7 samples from the Honolulu volcanics on Oahu Island, in
addition to their anomalously high CaO-MnO and extremely low SiO», have highly enriched
LREEs and relative depletion in Nb-Ta-Zr-Hf-Ti (Fig. 3). These observations could be explained
by melting a carbonated mantle source.
4.2 Role of CO; indicated by olivine Ca-Mn

Hawaiian rejuvenated stage volcanic rocks have higher CaO and MnO contents for a given
MgO content than shield stage lavas (Fig. 2), while their olivine Ca and Mn contents overlap at a
given olivine Fo# (Fig. 4), reflecting a difference in partitioning of Ca-Mn between olivine/melt
during the two volcanic stages. To better understand the partitioning of Ca-Mn between
olivine/melt in Hawaiian lavas, we have calculated the partition coefficients of Ca and Mn
between olivine/melt (Supplementary Table 5). Hawaiian lavas in this study, both shield and
rejuvenated stages, have variable amount of olivine accumulation, and the samples with
clinopyroxene accumulation are excluded. A mineral-melt pair in equilibrium is required before
calculation of partition coefficient. Although primary melt composition can be calculated by
assuming a Fo of ~91, the exact Ca content of the equilibrium primary olivine is not known.
Most of the rejuvenated stage lavas have variable degrees of olivine accumulations, thus, a way
to obtain olivine-melt pairs in equilibrium is to remove the accumulated olivines. Thus, in this
way, we can obtain the exact Ca composition of olivine in equilibrium. Ten to twenty olivine
grains with the highest Fo# and their average chemical compositions were used as the final
equilibrium olivine (Supplementary Table 5). These final equilibrium olivines have Fo# of 84-87
for rejuvenated stage lavas and 83-89 for shield stage lavas. We have removed this average
olivine composition step-by-step from the melt until the resulted melt was in equilibrium with
the average olivine based on PRIMelt3 program (Herzberg and Asimow, 2015), in which a melt
Fe*'/Feio is specified. The resulted equilibrium melt compositions are shown in Supplementary
Table 5. The equilibrium melts calculated for rejuvenated stages lavas have MgO of 8-12 wt%,
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while the equilibrium melts of shield stage have MgO of 10-14 wt%. It is clear that the
calculated melts are not primary melts but evolved melts in equilibrium with the average olivines.
We have calculated the partition coefficients of Ca and Mn between olivine/melt based on these
olivine-melt pairs, which are shown in Supplementary Table 6 and plotted in Fig. 5. The
calculated olivine/melt partition coefficients of Ca and Mn for rejuvenated stage samples are
overall lower than those for shield stage for a given olivine Fo# and melt MgO content, despite
these evolved melts have degassed to certain degrees.

There are several observations indicating that CO; has played an essential role in the
activities of Hawaiian mantle plume. Sisson et al. (2009) argued that a carbonated garnet
lherzolite source is required to produce the pre-shield basanite-nephelinite lavas at Kilauea.
Barsanti et al (2009) showed that a suite of magmas of recent (1842-1844) Kilauea eruption
contain 2-6 wt% COz, and attributed the high CO: contents to enrichment by magma degassing
at low pressures. Based on the CO> emission rate and volcanic magma supply rate at Kilauea,
Anderson and Poland (2017 Nature Geoscience 10, 2017) estimated 1 wt% CO. in the parental
magma supplying Kilauea, which translates to 263 ppm C in their mantle source. This is
consistent with the result of a recent work using melt inclusions. Tucker et al (2019) showed that
parental magmas of Hawaii volcanos (Hualalai, Kilauea, Koolau, Loihi and Mauna Loa) have
0.39-1.0 wt% COz, and their mantle sources contain 380-480 ppm CO; that are at least a factor
of ~4 more than the MORB mantle.. The negatively correlated Rb/Sr and ¥Sr/%¢Sr in shield stage
Mahukona lavas (Huang et al., 2009) and the light Ca isotope compositions in most shield stage
Hawaiian lavas (Huang et al., 2011) may reflect a role of sedimentary carbonates in the Hawaiian
mantle plume. Wirth and Rocholl (2003) reported nanocrystalline diamond in pyroxenite
xenolith of Oahu Island, which may crystallize from rejuvenated stage magmas. Dixon et al.
(2008) argued for a role of carbonatite metasomatism in the petrogenesis of Hawaiian
rejuvenated stage lavas, requiring a CO: rich mantle source during the rejuvenated stage
volcanism.

As shown in Fig. 2, partial melts of carbonated pyroxenites and carbonated peridotites have
higher contents of CaO and MnO compared to those from CO»-free peridotites and pyroxenites..
Garnet, Clinopyroxene (Cpx) and orthopyroxene (Opx) are important hosts for Ca and Mn
during the mantle melting processes. The Cpx/melt partition coefficient of Mn (1.06-1.16) is

9
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lower than that between garnet/melt (1-4.8), but higher than that between Opx/melt (0.66-1.05)
(Le Roux, 2011; Herzburg et al., 2013; Shea and Foley, 2019). The presence of CO; in the
mantle source would increase the stability of Opx relative to Cpx and garnet, thus, the
carbonated melts are enriched in Ca and Mn. This is supported by the observation that natural
carbonatites usually are enriched in Ca and Mn (e.g., Hoernle et al., 2002). To further investigate
the effect of CO; on the partitioning of Ca-Mn in olivine, we have selected the results of a suite
of high-quality experiments with resulted melts similar in composition to this study for
comparison.

Dasgupta et al (2007) conducted partial melting experiments on “peridotite+CO,”, and
Mallik and Dasgupta (2013) conducted melting experiment on “eclogite+peridotite+CO;”. These
two studies obtained carbonated silicate melts with SiO; of 30-48 wt% and CaO of 7-25 wt%,
which are comparable to the geochemistry of rejuvenated stage lavas. We also compared the Ca
partition coefficients for Hawaiian lavas with the results of experiments that produced olivines
equilibrium with dry silicate melts (Kogiso et al., 1998; Robinson et al., 1998; Mallik and
Dasgupta, 2012; Matzen et al., 2013 & 2017). These experiments either produced silicate melts
in equilibrium with olivine based on melting of peridotite (Robinson et al, 1998) and mixed
peridotitet+eclogite (Kogiso et al, 1998; Mallik and Dasgupta, 2012), or modeled crystallization
of olivine from MORB-like melts (Matzen et al., 2013; Matzen et al., 2017). These experiments
all produced dry silicate melts with SiO; of 45-53 wt% and CaO of 6-11 wt% that are similar to
shield stage lavas and olivines with high precision Ca contents. We calculated the partition
coefficient of Ca between olivine/melt based on the above experiment studies, and the results are
plotted in Fig. 5.

To understand the effect of CO> on partitioning of Mn between olivine and melt, we have
compared our results with Mallik and Dasgupta (2013) (melting of eclogite+peridotite+CO>),
Mallik and Dasgupta (2012) (melting of peridotite+eclogite), and Dasgupta et al (2007) (melting
of peridotite). The calculated partition coefficient of Mn for olivine-carbonated melt and
olivine-dry silicate melt are shown in Fig. 5. As shown in Fig. 5, the experimental partition
coefficients of Ca-Mn between olivine and carbonated silicate melt are overall lower than those
between olivine and dry silicate melt for a given Fo# and MgO content of melt. Rejuvenated
stage foidite samples have the lowest Dc,%'™! and Dyin®™! for a given Fo# and magma MgO,
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while the basanites and alkali basalts have D¢ and Dmn®™¢!t intermediate between foidites
and shield stage lavas (Fig. 5). Dc.%"™!" and Dyin®™! from the olivine-dry silicate melt pairs are
similar to those of shield stage lavas, while the partition coefficients of Ca-Mn calculated from
the olivine/carbonated silicate melt are comparable to those of rejuvenated stage (Fig. 5). We
suggest that the lower Dc,®™!" and Dmn®"™!" of rejuvenated stage lavas relative to shield stage
lavas are consistent with the role of CO; during the mantle melting.

The relationships of D¢,Omelt

vs. magma MgO for the shield and rejuvenated lavas in this
study are compared with those resulted from experimental studies in Fig. 6a. As shown in Fig. 6a,
the DcO™! for the dry silicate melt system first slightly decreases and then increases with
decreasing MgO based on Gavrilenko et al (2016). The calculated Dc,°™¢! for shield stage lavas

basically follow the trend in D¢ O melt

vs. MgO for the dry silicate melts (Fig. 6a). Similar to the
experimentally-derived Dc,®'™¢! for carbonated silicate melt system, the Dc,®"™! calculated for
rejuvenated stage lavas are well below the curve for the dry silicate melts. We have calculated
the difference in Dca (ADc®'"™e!) between our calculated melts and experimental volatile-free
melts, and the results are shown in Supplementary Table 6. The foidites with the lowest SiO
tend to have the lowest Dc,®™!" and Dmn®"™¢! for a given olivine Fo and melt MgO content (Fig.
5), while the basanites and alkali basalts are intermediate between foidites and shield stage lavas
(Fig. 5). The overall high ADc,%"™! for rejuvenated stage lavas relative to shield stage lavas (Fig.
6¢) is consistent with the role of CO» in the mantle source, which significantly decreases SiO; in
melt. Another role of CO; is to cause negative anomalies of high field strength elements (HFSEs)
(e.g., decreases in Zrn/Zrn*; N, normalized to primitive mantle; Zrn*, calculated as
NdnxSmn), because REEs are enriched relative to HFSEs in carbonated melts (Zhang et al.,
2017). As shown in Fig. 6d, the relatively low Zrn/Zrn* (0.3 to 0.8) and elevated ADc0 ™! for
rejuvenated stage lavas relative to shield stage further indicates the role of CO; in mantle melting.
It should be noted that the Honolulu foidites with the lowest SiO,, and Dc,°"™¢!t and Dy, O melt
have the strongest negative anomalies of Nb and Zr (Fig. 3, Fig. 6d). This suggests that
rejuvenated stage foidites were subjected to the strongest influence of CO> during mantle
melting.

Gavrilenko et al (2016) gave an equation of CO2 (wt.%) =270 x ADca — 3330 x ADca” + 1.8
x 10 x ADc,® to calculate melt CO; content based on the correlation of CO, with the difference
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(ADca) in the Dca values of carbonated melts and volatile-free melts. Since both H>O and CO>
can lower Dc,O"™! (Gavrilenko et al., 2016), the effect of H,O should also be considered to
estimate magma CO, content based on Dc.?"™!, As shown in Dixon et al (1997), the alkali
basaltic to nephelinitic lavas from the North Arch Volcanic Field, Hawaii, can have H>O up to
1.9 wt% and CO; up to 5.4 wt% based on analyses of basalt glass and vesicles. Dixon et al (2008)
further estimated 350 ppm H>O in the Hawaii plume mantle, which is ~5 factors higher than the
depleted MORB mantle. Dixon et al (2008) estimated a bulk partition coefficient of ~0.01 for
H>O in the Hawaiian mantle. Hawaiian rejuvenated lavas are usually considered to have partial
melting extents of <5%, thus, we have calculated rejuvenated magma H>O contents based on a
bulk partition coefficient of 0.01 for H O and batch melting degrees of 2% and 4%, and our
calculation results in H>O contents of 1.17 wt% and 0.71 wt%, respectively. Shield stage magma
H>O is calculated by assuming a batch melting degree of 20% in Hawaiian mantle source, and a
magma H>O content of 0.17 wt% is obtained. For comparison, Hauri (2002 Chem Geol 183,
115-141) reported 0.03 to 0.84 wt % H>O in melt inclusions from five shield stage lavas from
Hawaii. We estimated the influence of H,O on D¢, 0™ (AD¢, at a given H>O content) based on
Gavrilenko et al (2016). Then, we calculated the difference between ADc™! and ADc, at a
given H>O content, which is used to calculate the content of CO; based on the equation of
Gavrilenko et al (2016). The calculated results of CO; are shown in Supplementary Table 6.

The mantle-derived primary magmas usually crystallize olivines with Fo# up to ~91, which
are higher than the olivine phenocrysts in this study (Fig. 4). Thus, the result using the above
method only represents the CO> concentration of evolved magmas, rather than primary magmas.
The primary magma composition can be obtained by addition of equilibrium olivines to melt,
however, the Ca contents of high Fo# (>90) olivines in equilibrium with primary magmas are not
known. Therefore, we cannot obtain the primary magma CO> content directly based on the
equation of Gavrilenko et al (2016). To obtain primary magma CO> content, we assume that
magmas have not significantly degassed during fractionation. Then, the equilibrium olivines
were added step by step to melts until the melts are in equilibrium with olivine with Fo# of 91
based on PREMELT3 MEGA.XLSM of Herzberg and Asimow (2015), the resulted primary
magma compositions and fraction of olivine added are shown in Supplementary Table 6. The
primary magma CO: contents were obtained after correction to fraction of olivine added to melts.
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The calculation procedure and results are shown in Supplementary Table 6. The COz contents of
the calculated shield stage primary magmas are close to zero. The calculated primary magma
CO; for rejuvenated stage are up to 5.6 wt% and 8.3 wt% for batch melting degrees of 2% and
4%, respectively (Supplementary Table 6).

We have compared our primary magma CO; contents with those calculated based on a
constant CO»/Ba ratio. Because CO; is similar to Ba in incompatibility during mantle melting
(e.g., Anderson and Poland, 2017; Miller et al., 2019), the primary magma CO; content can be
estimated if the mantle source CO»/Ba ratio can be determined. As suggested by previous studies
the Hawaiian mantle has a CO/Ba ratio of ~86 (Anderson and Poland, 2017). The calculated
primary magma CO; contents through this method is also shown in Supplementary Table 6. The
calculated primary magma CO; contents are 0.45 to 3.15 wt% for the shield stage, while the
primary magma CO; contents are 2.8 to 10 wt% for rejuvenated stage. We have plotted the
primary magma CO- contents for anhydrous melting and a melting degree of 4% in this study
with those based on the constant CO2/Ba of 86 in Fig. 7. As shown in Fig. 7, the foidite samples
tend to have the highest primary magma CO- contents, while the basanites and alkali basalts are
similarly low relative to the foidite samples. The results of anhydrous melting are overall close to
those based on assuming a constant CO»/Ba ratio, however, the results of hydrous melting,
melting degree of 4%, for rejuvenated stage are generally lower than those based on assuming a
constant CO»/Ba ratio. Since the latter method is independent of uncertainties in magma
degassing and melting degrees, the lower primary magma CO; contents could have been caused
by these uncertainties. Despite discrepancy between the two methods, they are overall consistent
in resulting in primary magma CO; contents up to ~10 wt% for rejuvenated stage lavas and low
CO; contents for shield stage lavas, suggesting rejuvenated stage lavas have a similar source CO>
to the plume mantle. However, as a constant CO2/Ba ratio of Hawaiian mantle source is not
verified for shield and rejuvenated stage lavas, our work provides an independent constraint on
CO; enrichment in Hawaiian rejuvenated lavas.

4.3 Olivine Ni: effects of source vs. temperature

There are different views on the origin of Hawaiian rejuvenated stage volcanism, either
from the shallow metasomatized mantle lithosphere (Chen and Frey, 1983; Yang et al., 2003;
Bianco, 2005; Garcia et al., 2010), the deep mantle plume component (Frey et al., 2005; Dixon et
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al., 2008; Sisson et al., 2009; Hofmann and Farnetani, 2013; DeFelice et al., 2019; Harrison et al.,
2020), or both (Beguelin et al., 2019). The deep plume origin for rejuvenated stage melts is
supported by their distinct isotopic compositions from the Pacific MORBs (Supplementary Fig.
3). Despite enrichment of LILEs and LREEs in rejuvenated stage lavas, they generally have
more depleted isotopic compositions compared to shield stage lavas (Yang et al., 2003; Hofmann
and Farnetani, 2013; Beguelin et al., 2019; DeFelice et al., 2019; Harrison et al., 2020). As
shown in Supplementary Fig. 3, such a depleted signature cannot be explained by involvement of
Pacific-type depleted upper mantle, but likely to have been derived from an intrinsic mantle
plume component. However, it remains unclear how the low-degree melts of rejuvenated stage
preferentially sample the isotopically depleted component in the mantle plume (Ribe and
Christensen, 1999; Bianco and Ito, 2008; Beguelin et al. 2019; DeFelice et al. 2019). For
example, it was suggested that rejuvenated stage lavas originated from a deep isotopically
depleted zone separated from the primary melting zone that formed shield stage lavas (Ribe and
Christensen, 1999), or from a depleted periphery of a zoned mantle plume (Bianco and Ito,
2008).

As shown in Fig. 4a, the olivine Ni contents of rejuvenated stage lavas are overall lower
than those of shield stage, but higher than the global MORBs for a given olivine Fo#. In contrast,
rejuvenated stage lavas have whole-rock Ni lower than shield stage lavas for a given MgO
content (Fig. 2¢). Increasing magma total alkaline (Na,O+K>0O) increases the partition coefficient
of Ni in olivine when total alkaline > 8 wt% (Forster et al., 2018). Most of our studied rocks
have KoO+Na>O contents significantly lower than 8 wt%, hence, it is unexpected to have notable
difference in Dni®"™! between shield and rejuvenated stage lavas. As we discussed above, CO,
played a key role in the origin of rejuvenated stage magmatism. However, Girnis et al (2013)
showed that CO> have negligible influence on the partitioning of Ni between olivine/melt. As
such, we suggest the relatively lower olivine Ni contents of the rejuvenated stage compared with
the shield stage reflects a lower Ni content in their parental magmas, as indicated by whole-rock
Ni contents (Fig. 2c¢).

Melting temperature/pressure, source lithology, and source Ni content could influence
primary magma Ni content (Sobolev et al., 2005&2007; Putirka et al, 2011; Matzen et al., 2013).
Partial melts of eclogite/pyroxenite react with peridotite in the Hawaii mantle plume to convert

14



413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

olivines to Opx and to form stage-2 pyroxenite with a lower proportion of (or no) olivine in the
source (Sobolev et al., 2005&2007). Thus, the mantle source with a lowered olivine proportion
would generate primary melts with elevated Ni (Sobolev et al., 2005). As indicated by Matzen et
al (2013, 2017), Dni®"™e!t increases with decreasing temperature and pressure, thus, elevated
source temperatures and pressures would result in an increase of olivine Ni in Hawaiian shield
lavas. In addition to the stage-2 pyroxenite in the mantle source, the higher olivine Ni of
Hawaiian shield stage lavas may at least partly have been caused by higher melting temperatures
and pressures (e.g., Matzen et al., 2013). Thus, evaluation of difference in primary magma
temperatures among the shield stage lavas, rejuvenated stage lavas and normal MORBs would
help understand the origin of their Fo-Ni systematics (Fig. 4a).

In this study, we have calculated the magma temperatures of shield and rejuvenated stages
based on the olivine-spinel aluminum exchange thermometry. This thermometry is advantageous
over the olivine-liquid thermometry since it is independent of equilibrium pressure and melt
compositions. Details on the use of the olivine-spinel aluminum exchange thermometry are
referred to Wan et al (2008) and Coogan et al (2014). We selected the volcanic rock samples
from the rejuvenated and shield stages that contain the highest olivine Fo#. We used the equation
given by Coogan et al (2014) (T(K)=10000/(0.575+0.884Cr#-0.897In(Al,03°"/Al,05%)), which
has extended the use of this thermometry to a relatively oxidizing environment. The data of
olivine-spinel are filtered based on the requirements of Coogan et al (2014), i.e., Cr# between
0-69%, and Fe*'/Total FeO <35%. The calculated results are shown in Supplementary Table 4
and plotted in Fig. 8a. As shown in Fig. 8a, shield stage olivines with the highest Fo# (~89) tend
to have the highest crystallization temperatures. Rejuvenated stage olivines have statistically
lower crystallization temperatures and Fo# than those of shield stage as shown in Fig. 8 c-d. The
slightly lower olivine crystallization temperatures of rejuvenated stage lavas could also be
indicated by their slightly higher olivine AbOs; (Supplementary Fig. 4) (Coogan et al., 2014).
However, the lavas of both shield and rejuvenated stages approximately follow the trend of melt
temperature vs. equilibrium olivine Fo# of the Icelandic primary magmas as shown in Herzberg
and Asimow (2015). Thus, for the given highest olivine Fo# (e.g., ~91), broadly similar primary
magma temperatures for the shield and rejuvenated stage lavas are expected (Fig. 8). As shown
in Fig. 8a, at the highest Fo# of up to 91, the MORB olivines tend to have lower temperatures
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compared with those of Hawaiian olivines. This indicates that the Hawaiian primary magmas,
both shield and rejuvenated stages, crystallized high Fo# olivines at higher temperatures than
those of normal MORBs.

Since Hawaiian shield and rejuvenated stage lavas show different Sr-Nd-Hf isotopic
compositions (Supplementary Fig. 3; Yang et al., 2003; Hofmann and Farnetani, 2013; DeFelice
et al., 2019), the overall lower olivine Ni contents of rejuvenated stage lavas relative to those of
shield stage may reflect a mantle source effect. As shown in Fig. 8, high Fo olivines from both
shield and rejuvenated stage lavas have similar crystallization temperatures. The effect of
melting-crystallization temperature difference (Matzen et al., 2013) may have not contributed
significantly to the observed olivine Ni difference.

The mantle source of Hawaiian shield stage lavas has been considered to contain eclogites
that were most likely derived from ancient recycled oceanic crust. Subducted altered oceanic
crust, as an important carrier of secondary carbonates (Zhang and Smith Duque, 2014), may
constitute a source of CO; in the Hawaiian mantle plume. Thus, it is possible that CO»-bearing
mixed eclogite/peridotite exists in the Hawaii mantle plume. However, because the plume mantle
source has melted to high degrees to form shield stage lavas, most of CO> would be extracted
from the source mantle after high degrees of melting. As CO: is highly incompatible during
mantle melting (e.g., Dixon et al., 2008), the resulted refractory residual mantle after extraction
of shield stage lavas would be difficult to produce carbonated melts. Because Hawaiian
rejuvenated stage lavas were formed 0.5-2 Myr after shield stage and ~100 km from the plume
axis, it is possible that the rejuvenated lavas were sourced from the edge of the mantle plume,
where mantle upwelling and decompression rate are lower than the plume axis (Fig. 9).

As indicated by this study, the rejuvenated stage lavas were most likely sourced from
carbonated peridotites that are intrinsic to the Hawaiian mantle plume. Thus, the mantle plume
peridotites may have experienced metasomatism of low degree carbonated melts. This is
consistent with the enriched trace element patterns and negative anomalies of HFSEs in
rejuvenated lavas (Fig. 3). However, the distinct Sr-Nd-Hf isotopic compositions between
rejuvenated and shield stage lavas indicate that such carbonated melts were unlikely derived
from a CO»-bearing eclogite/pyroxenite (carbonate-bearing recycled oceanic crust) feeding
shield stage lavas. A possible source for the carbonated melts in the mantle plume is subducted
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lithospheric mantle (e.g., Kelemen and Manning, 2015). Although carbonate precipitation is
generally considered to occur mainly in the oceanic crust during seafloor alteration, it would also
occur in shallow lithospheric mantle of the bending plate before subduction (Kelemen and
Manning, 2015), and in the exposed abyssal peridotites as represented by slow- to ultra-slow
spreading ridge settings (e.g., Dick et al., 2000; Schroeder et al., 2002). These carbonate-bearing
subducted peridotites may constitute the source required by Hawaiian rejuvenated stage lavas. As
shown in Fig. 9, the low degree carbonated melts of such carbonate-bearing peridotites near the
plume edge can metasomatize the mantle plume peridotites. Thus, along with the upwelling of
mantle plume, such carbonated peridotites would decompress and melt, which may explain the

COg-rich rejuvenated stage lavas.

5 Conclusions

The origin of Hawaiian rejuvenated stage magmatism remains a subject of debate. In this
study, we have analyzed the whole-rock major and trace elements, in situ high-precision
geochemistry of olivines and olivine-spinel pairs of Hawaiian rejuvenated and shield stage lavas.
Unlike shield stage, rejuvenated stage lavas with anomalously high CaO and low SiO, and
negative anomalies of HFSEs, which could be explained by the influence of CO; in the source. It
is notable that the olivine Ni contents of rejuvenated stage lavas are systematically lower than
those of shield stage, but higher than normal MORBs for a given olivine Fo#. While rejuvenated
stage lavas have whole-rock CaO and MnO higher than shield stage, their olivine Ca and Mn
contents are similar to each other for a given Fo#. Our study results in that D¢, %™ and
Dvin® ™!t for rejuvenated stage lavas are systematically lower than those of shield stage, which
we suggest is caused by the influence of CO». Our calculation based on the reduced D¢ O™t
relative to dry basaltic melts indicates that rejuvenated stage primary melts were rich in CO»,
while shield stage melts were relatively dry (low volatile contents). The temperatures of primary
magmas of rejuvenated stage are similar to the shield stage, but systematically higher than
normal primary MORB magmas. The relatively low olivine Ni of rejuvenated lavas compared to
shield stage can be attributed to the mantle source lithology dominated by peridotites, rather than
stage-2 pyroxenite in shield stage mantle source. It is suggested that rejuvenated stage lavas were

originated from the melting of carbonated peridotites in the Hawaiian mantle plume.
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