LiTERECONFIG: Cost and Content Aware
Reconfiguration of Video Object Detection Systems

for Mobile GPUs

Ran Xu
xu943@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Saurabh Bagchi
sbagchi@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Abstract

An adaptive video object detection system selects different
execution paths at runtime, based on video content and avail-
able resources, so as to maximize accuracy under a target
latency objective (e.g., 30 frames per second). Such a sys-
tem is well suited to mobile devices with limited computing
resources, and often running multiple contending applica-
tions. Existing solutions suffer from two major drawbacks.
First, collecting feature values to decide on an execution
branch is expensive. Second, there is a switching overhead
for transitioning between branches and this overhead de-
pends on the transition pair. LITERECONFIG, an efficient and
adaptive video object detection framework, addresses these
challenges. LITERECONFIG features a cost-benefit analyzer to
decide which features to use, and which execution branch
to run, at inference time. Furthermore, LITERECONFIG has a
content-aware accuracy prediction model, to select an ex-
ecution branch tailored for frames in a video stream. We
demonstrate that LITERECONFIG achieves significantly im-
proved accuracy under a set of varying latency objectives
than existing systems, while maintaining up to 50 fps on an
NVIDIA AGX Xavier board. Our code, with DO], is available
at https://doi.org/10.5281/zenodo0.6345733.

CCS Concepts: « Computer systems organization —
Embedded software; - Human-centered computing —
Ubiquitous and mobile computing systems and tools;
« Computing methodologies —» Computer vision prob-
lems.

This work is licensed under a Creative Commons Attribution International 4.0 License.

EuroSys '22, April 5-8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519577

Jayoung Lee
lee3716@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Yin Li
yin.li@wisc.edu
University of Wisconsin-Madison
Madison, Wisconsin, USA

334

Pengcheng Wang
wang4495@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Somali Chaterji
schaterji@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Keywords: Video Analytics, Mobile Vision, Reconfigura-
tion, Object Detection, Approximate Computing, Latency-
Sensitive Analytics

ACM Reference Format:

Ran Xu, Jayoung Lee, Pengcheng Wang, Saurabh Bagchi, Yin Li,
and Somali Chaterji. 2022. LITERECONFIG: Cost and Content Aware
Reconfiguration of Video Object Detection Systems for Mobile
GPUs. In Seventeenth European Conference on Computer Systems
(EuroSys °22), April 5-8, 2022, RENNES, France. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3492321.3519577

1 Introduction

Video object detection on mobiles has attracted consider-
able attention in recent years. An adaptive vision system
consists of two key components: (1) a multi-branch execu-
tion kernel (MBEK), with multiple execution branches each
achieving an operating point in the accuracy-latency axes,
and (2) a scheduler that decides which branch to use, based
on video features and the user’s latency objectives. Much
progress has been made in developing light-weight models
and systems that are capable of running on mobile devices
with moderate computation capabilities [15, 20, 56, 64, 73].
Previous work focuses on statically optimized models and
systems [4, 39, 58], pushing the frontiers of accuracy and
efficiency. More recently, adaptive object detection models
and systems [5, 9, 10, 24, 67, 68] have emerged. These are
capable of achieving different points in the accuracy-latency
tradeoff space, and are thus suited to mobile devices under
real-world conditions: adapting to dynamically changing
content, resource availability on the device, and user’s la-
tency objectives.

Despite recent advances, no previous work considers the
contending pulls of the accuracy-latency frontier of the adap-
tive (MBEK) vision system, on the one hand, and the latency
cost of the scheduler itself, on the other. Previous work faces
two fundamental challenges. First, the scheduler relies on

https://orcid.org/0000-0003-2913-9420
https://orcid.org/0000-0002-1011-6002
https://orcid.org/0000-0002-2797-6973
https://orcid.org/0000-0002-4239-5632
https://orcid.org/0000-0003-4173-9453
https://orcid.org/0000-0002-3651-6362
https://doi.org/10.5281/zenodo.6345733
https://doi.org/10.1145/3492321.3519577
https://doi.org/10.1145/3492321.3519577
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional

EuroSys ’22, April 5-8, 2022, RENNES, France

computationally light video features (e.g., height, width, num-
ber of objects, or intermediate results of the execution ker-
nel), to decide which branch to run. Such features might not
be sufficiently informative. Other features or models, such
as motion and appearance features of the video, can improve
decision making, but are typically too heavy-weight. For
example, extracting a high-dimensional Histogram of Ori-
ented Gradient (HOG) and executing the associated models
(i.e., other modules of the scheduler that select the execution
branch) takes 30.25 ms (Table 1) on the Jetson TX2, nearly
the time of one video frame.

Second, if the conditions change frequently, the scheduler
incurs high switching overhead between execution branches.
Thus, a cost-aware scheduler should tamp down the fre-
quency of reconfigurations based on the cost, which itself
can vary depending on the execution branch. Prior work has
not considered a cost-aware design of the scheduler and, as
we show empirically, this leads to sub-optimal performance.

To address these challenges, we develop LITERECONFIG,
which is tailored to embedded boards with mobile GPUs.
L1TERECONFIG provides a cost-benefit analysis that allows
it to decide, at any point in a video stream, which exe-
cution branch to select. A schematic of LITERECONFIG is
shown in Figure 1. The cost-benefit analyzer factors in the
latency cost and the benefit (in terms of accuracy) of using
computationally-heavy content features. By wisely enabling
content features and models, the system characterizes the ac-
curacy of the MBEK in a content-aware manner so as to select
a more accurate branch, tailored to the video content. Fur-
thermore, LITERECONFIG analyzes the cost-benefit overhead
of switching execution branches when conditions change.

Thus, Figure 2 shows the accuracy vs. latency curve
(higher is better). Here we see that the content-agnostic
version is worse than the ResNet content-aware strategy.
Note in contrast that the MobileNet content-aware option
is worse than the content-agnostic version, indicating the
need for a rational decision on which content features to
include. Despite a seemingly higher cost than MobileNet, the
ResNet features come from the object detector in the MBEK,
and thus only incur minor additional extraction and model
prediction costs. This makes the content-aware version with
the ResNet option, the winning one. Through careful design,
we ensure that the overhead of using a content feature ex-
tractor and the corresponding model is minimal, so as not
to erase the gains from the optimization. We evaluate our
approach on the ImageNet VID 2015 benchmark, and com-
pare with SSD [40] and YOLOv3 [49], which we enhance
by incorporating tuning knobs to run at different points in
the latency-accuracy spectrum (e.g., tuning knobs such as
shape of video frame and size of GoF (Group-of-Frames)).
We also compare to a recent adaptive model [68] with the
Faster R-CNN backbone. The evaluation uses the Jetson TX2
and Jetson AGX Xavier boards with mobile GPUs. LITERE-
CONFIG improves accuracy by 1.8% to 3.5% mean average

335

Xu et al.

precision (mAP) over state-of-the-art (SOTA) adaptive object
detection systems, under identical latency objective. Under
contention for the GPU resource, the SSD and YOLOv3 base-
lines completely fail to meet the latency objective. Compared
to three recent accuracy-focused object detection systems,
SELSA [65], MEGA [4], and REPP [53], LITERECONFIG is
74.9%, 30.5%, and 20.3x faster on the Jetson TX2 board.

Contributions. We summarize our contributions as follows.

1. A cost-benefit analyzer that enables low-cost online re-
configuration. This design reduces scheduler cost and
increases accuracy, since more of the latency budget
can be devoted to the object detection kernel.

2. A content-aware accuracy prediction model of the ex-
ecution branch, so that the scheduler selects a branch
tailored to the video content. Such a model is built on
computationally-heavy features and integrates well
with our cost-benefit analysis.

3. Extensive experimental evaluation on two mobile GPU
boards and against a set of previous approaches. It
underscores two key insights (i) it is important to con-
sider the effect of contention from co-located applica-
tions, and (ii) it is important to engineer which fea-
tures to use for making the selection of the execution
branch; this is especially essential for the incorpora-
tion of content-aware features, which also have a high
computational overhead. The full implementation of
LITERECONFIG is able to satisfy even stringent latency
objectives, 30 fps on the weaker TX2 board, and 50 fps
on the higher performing AGX Xavier board.

2 System model, background, and
requirements

We provide background on video object detection algorithms,
content-aware video object detection models, and adaptive
vision systems. Readers who are knowledgeable about video
object detection may skip the rest of this section.

2.1 Video Object Detection Algorithms

As a key problem in computer vision, object detection seeks
to locate object instances in an image or video frame, using
bounding boxes, and simultaneously classify each instance
into pre-defined categories. Convolutional neural networks
(CNNss) are popular, and can be separated into two parts: a
backbone network, which extracts features from images, and
a detection network, which classifies object regions based on
the extracted features. The detection network can be further
categorized into two-stage [6, 17, 50] or single-stage [36, 40,
49, 58, 72] models.

While single-image object detectors can be applied to
videos frame-by-frame, this method ignores the reality that
adjacent frames have redundancies. This temporal continu-
ity in videos can be leveraged to approximate the compu-
tations, or to enhance detection in neighboring frames [11,

LiTERECONFIG: Cost and Content Aware Reconfiguration

/ Scheduler

Feature Extractor and
%> Prediction Model,

Light-weight
features &
models

Streaming
video

&

Cost-b fit Feature Extractor and
ost-benetl & Prediction Model,,

analyzer
Cost Benefit
(Latency) | (Accuracy)

S(fn)

switching

schedull ost

Co!

A, i)

latency of
execution kernel

I S(ED.__ AL fd).

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

EuroSys ’22, April 5-8, 2022, RENNES, France

branch, Object
detection

results

branch b*,
video frame

branch,

accuracy

\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
xief 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U

Figure 1: An illustration of our proposed cost-aware adaptive framework for video object detection. Our scheduler uses its cost-benefit analysis to decide on
which features to use for making a decision and then makes a decision on which execution branch to run for detection. The multi-branch execution kernel
(MBEK) can be provided by any adaptive vision algorithm for mobiles and we build on top of several mainstream object detection and tracking algorithms.

51 -
50 -
49 -
48 -
47 -
46 -

Accuracy (mAP, %)

45 A /) —e— Content agnostic

=== Content aware w/ MobileNet
f === Content aware w/ ResNet
43 T T T T
0 20 40 60 80
Mean latency (msec)

44 -

T
100

Figure 2: Motivation of cost-benefit analysis. We plot the accuracy vs.
latency curve for three different strategies. Without a careful design, a
content-aware strategy can be either better (e.g., ResNet) or worse (e.g.,
MobileNet) than a content-agnostic one. Here, the ResNet50 features come
from the object detector itself and thus has lower cost than using an
external MobileNet, making it a winning option.

28, 38, 62, 69, 76, 77]. Many previous approaches optimize
for accuracy, explore temporal aggregation of object fea-
tures [69], using either recurrent neural networks [38], or
motion analysis [62]. More practical solutions integrate ob-
ject detection with visual tracking [11, 37, 68, 71], where
inexpensive trackers connect costly object detection outputs.
Recent papers [8, 12, 41] generally improve 1-2% mAP in
accuracy.

2.2 Content-Aware Video Object Detection Models

As discussed in Sec. 2.1, videos come with inherent infor-
mation within a series of contiguous frames. For example,
the scale of objects, the moving speed, the complexity, etc.
Therefore, some video object detection models [5, 38, 68]
utilize the content information in videos, to improve latency
and accuracy. We call such models content-aware video object
detection systems. At model inference time, a content-aware
system reconfigures itself based on the content information
from the video stream. Instead, a content-agnostic system
uses a static model variant or branch.

An efficient object detection system that is capable of re-
configuration at runtime faces two challenges: (1) Lack of
content-rich features and fine-grained accuracy prediction.
Insufficient feature extraction and inaccurate prediction be-
fore the reconfiguration can worsen performance. (2) Lack
of cost-aware design. The system reconfiguration overhead
(cost) is not considered when a decision is made. This may
degrade overall performance if the reconfiguration cost is
high. To the best of our understanding, no prior video object
detection work solves either of these two challenges.

2.3 Adaptive Vision Systems

Video object detection algorithms have good accuracy and
latency on server-class machines. However, existing ap-
proaches suffer when running on edge or mobile devices,
particularly under a tight latency service level objective (SLO)
and under varying resource contention. There has been sig-
nificant work on developing continuous vision applications
on mobile or resource-constrained devices — some with
manual-crafted network architectures [15, 20, 73] and some

336

EuroSys ’22, April 5-8, 2022, RENNES, France

with models given by neural architecture search [35, 56, 64].
To further optimize the efficiency, additional techniques have
been applied to provide adaptation to the deep models. Exam-
ples include, tuning the size of the input or other model pa-
rameters [5, 24, 67, 68] at inference time, prune a static DNN
into multiple DNNs that could be dynamically selected [10],
or select a different exit within a network [21, 59].

These adaptive video object detection frameworks usu-
ally feature multi-models or multi-branches as part of their
design. However, in real applications, considering the chang-
ing video content and available computational resources,
the requirement for switching between execution kernels
may be frequent, with a concomitant switching overhead.
The uncertainty of performance after the switching makes
it hard for the system to maintain consistent latency and
accuracy performance at runtime. Thus, the decision mak-
ing for selecting the optimal branch needs to be cost- and
content-aware, and light-weight, to minimize the overhead.
This is what prior work is lacking.

2.4 Terminology in Adaptive Vision Systems

We first introduce several important terms and concepts
encountered in adaptive vision systems.

An Execution Branch is a distinct setting of an algorithm,
typically differentiated by controlling some hyperparame-
ters (colloquially, “knobs"), so as to finish the vision task in a
distinct and fixed execution time (latency) and a consistent
accuracy! across a dataset. Models with multiple execution
branches are often considered by adaptive object detection
frameworks. We adapt the design of the MBEK from Ap-
proxDet, where an object tracking algorithm, i.e., the object
tracker, is paired with the object detector to greatly reduce
the latency while preserving the accuracy. An execution
branch might, for example, specify the choice of object de-
tector and/or object tracker, the input shapes of video frames
fed into them, the number of frames in a GoF that runs the
object detector (always on the first frame of the GoF) and
the object tracker (on the remaining frames of the GoF), and
the number of region proposals in the object detector.
Accuracy-Latency Trade-off: The trade-off between accu-
racy and latency is fundamental to adaptive vision systems.
If a higher accuracy is desired, one has to incur higher la-
tency. Each execution branch has an associated accuracy and
latency for a given content type and contention level.

The set of all such accuracy-latency values is represented
in a curve like that shown in Figure 1, bottom right. Of these,
the Pareto frontier is the one to focus on as any scheduler
strives to stay on it. This is because the Pareto curve presents
most accurate branches for certain latency SLOs. Note that
the Pareto curve is subject to change at runtime due to the
dynamic content characteristics and resource contention. We

!Consistency means a branch with higher accuracy in the training dataset
is expected to have higher accuracy in the test dataset.

337

Xu et al.

will discuss in Sections 3.3 and 3.4 how our systems take
content characteristics into the design of the scheduler to
predict accuracy-latency values correctly.

Scheduler: The scheduler in our adaptive vision system
is the key component to determine the execution branch
on-the-fly, so as to achieve the optimal reachable accuracy-
latency point. None of the prior work has explored the cost-
aware design of the scheduler, resulting in sub-optimal per-
formance. Fundamentally, this is the key contribution that
LITERECONFIG makes.

3 Design
3.1 Approach Overview

The workflow of our system LITERECONFIG is presented in
Figure 1. LITERECONFIG uses MBEK with multiple execution
branches to meet different latency-accuracy trade-offs or to
handle dynamic runtime conditions such as content changes.
It can execute on top of any multi-branch continuous vision
algorithm that consumes streaming video frames as inputs.
At a high level, our solution LITERECONFIG comprises two
parts that work together as a scheduler to determine which
branch of the execution kernel to execute. The first part
models the cost and the benefit of all possible featuresused by
the scheduler to decide among the execution branches, and
then decides which features to use in choosing the execution
branch. The second part models the cost and the benefit of
the various execution branches of the MBEK, and chooses the
optimal execution branch.

The scheduler synthesizes the outputs from the above
two parts and determines which execution branch to invoke.
Specifically, it first performs cost-benefit analysis to choose
a set of features, then predicts accuracy and latency of exe-
cution branches based on these selected features, and finally
solves a constrained optimization problem (Equation 3) that
accounts for switching cost and maximizes the benefit (the
improvement of accuracy) of the object detection kernel,
such that the latency stays below the SLO.

In Section 3.2-3.3, we present the optimization problem
of the scheduler assuming the particular features to be con-
sidered are decided. The solution of this optimization leads
to our choice of the execution branch to invoke. We then
present in Section 3.4 the cost-benefit analysis that enables
the scheduler to pick the right set of features, considering
their costs and benefits. And finally, we introduce the cost-
benefit analysis on the switching cost to guarantee the tail
latency SLO in Section 3.5.

3.2 Scheduler Optimization

LiTERECONFIG builds on an existing MBEK with a set of exe-
cution branches B, and strives to pick the execution branch
that maximizes the accuracy of object detection, while prob-
abilistically meeting the latency guarantee. The latency guar-
antee is typically specified in terms of tail latency, like the

LiTERECONFIG: Cost and Content Aware Reconfiguration

95th percentile latency, and this does not intrinsically affect
the algorithms in LITERECONFIG. Specifically, we create a
latency prediction model L(b, f) and an accuracy prediction
model A(b, f) to predict the latency (i.e., cost) and accuracy
(i.e., benefit) of the execution branch b, based on a set of
features f, in a short look-ahead window?, called Group-of-
Frames (GoF). The choice of the optimal branch is thus deter-
mined by the solution to a constrained optimization problem
that maximizes the predicted accuracy while maintaining
the predicted latency within the latency SLO Ly, given by

b* = argmax A(b, f)

beB
s.t. L(b, f) < Lo

1
given f e F.

A critical insight of our latency and accuracy prediction

model is that these models are not only a function of the
execution branch b, but also of the content-based features,
which can be included in f. This insight thus allows us to
choose different features f from a set of features ¥ with vary-
ing computational cost at runtime, such that our scheduler
can be better adapted to the video content characteristics
and the computing resources available. We now present the
design of our latency and accuracy models.
Modeling of Latency: To build our latency model, we start
by analyzing the sources of latency of our system. The end-
to-end latency is comprised of two parts — the latency of the
MBEK and the execution time overhead of LITERECONFIG’s
scheduler. The latter is itself composed of three parts — (1)
the cost of extracting various features, (e.g., the number and
sizes of objects in the video frame, the histogram of colors,
the degree of motion from one frame to another), (2) the cost
of executing corresponding models to predict the accuracy
and the latency of each execution branch using these feature
values, and (3) the switching cost from the current execution
branch to a new one.

Next, we observe that the selected features f can be di-
vided into two types: light-weight features f;, that will always
be computed, such as height and width of the input video or
the number of objects in the frame and are thus available to
the scheduler for “free", and heavy-weight features fy, which
may be extracted based on the cost-benefit analysis. A list
of features considered in LITERECONFIG and their costs are
summarized in Table 1. We consider the following latency
model that consists of four terms, given by:

L(b, f) = Lo(b, fi) + So + S(frr) + C(bo, b), @

where Ly(b, f1) is a linear regression model defined on each
branch b using the light-weight features f; to predict the
latency of b. Sy is the cost of the scheduler that extracts and
uses the light-weight features f; to determine the optimal
branches; S(fy) is the additional cost of the scheduler that
extracts and uses computationally heavy content features f;
C(bo, b) is the switching cost from the current branch b, to

2The window size is also a tuning knob determined by the scheduler.

338

EuroSys ’22, April 5-8, 2022, RENNES, France

the new branch b. For ease of exposition, in this formulation,
we have considered all the heavy-weight features as one
unit — in reality, the scheduler can recruit any subset of
heavy-weight features.

Modeling of Accuracy: Another central component of an
adaptive vision system is the accuracy prediction model. Due
to the latency SLO, in much of prior work, only features that
are light-weight to compute are considered for modeling the
accuracy of the execution branches [10, 16, 46, 68].

Our key observation is that more expressive and compu-
tationally heavy features (fi) can significantly improve the
prediction. For example, we find that the widely used com-
puter vision features, like Histogram of Colors (HoC) [45],
Histogram of Oriented Gradient (HOG) [7], recent neural
network based features, like MobileNetV2 [54] (details in Ta-
ble 1), can provide significantly better-accuracy prediction.
We call the model using such heavy-weight content features
the content-aware accuracy model. In addition to the three
external feature extractors, we also use two features from the
Faster R-CNN detector in the MBEK — ResNet50 and Class
Predictions on Proposal (CPoP) feature. They are less com-
putationally costly to collect as these are obtained directly
from the object detector component of the MBEK, as op-
posed to other features extracted on-the-fly (HoC, HOG, and
MobileNetV2), and they turn out to be informative features
to characterize the accuracy of each branch in the MBEK.

3.3 Content-agnostic vs. Content-aware Accuracy
Model

Instead of predicting the accuracy of an execution branch
b on a representative large dataset (as one would with the
content-agnostic features in ApproxDet [68]), we aim at
predicting the accuracy of an execution branch b at a finer
granularity, using a video snippet. A video snippet is a se-
quence of N consecutive frames?, starting at any point of the
streaming video. In practice, since the scheduler must make
a decision right on the current frame, we extract features
from the first frame of the snippet and use these features
to predict the accuracy of execution branches on the video
snippet. Concretely, A(b, f) predicts the accuracy of branch b
in a short look-ahead window using input features f, where
the features can include either light-weight (f1) or a subset
of the heavy-weight features (fy).

The accuracy prediction model A(b, f) is realized with a
6-layer neural network. The first layer uses fully-connected
projections to project the low-dimensional light-weight fea-
tures and high-dimensional content features to the same
dimension, and then concatenates them. All rest layers are
fully connected with ReLU as the activation function.

3Too small an N will make it hard to characterize the accuracy of execution
branches and too large an N will tend toward a content-agnostic system.
We take N = 100 to balance these two goals.

EuroSys ’22, April 5-8, 2022, RENNES, France

Xu et al.

Category, Feature names, Execution time (or cost, in ms) Description

Notations Dimension Extract Predict P

Light-weight, | Light, 4 0.12 3.71 Composed of height, width, number of objects, aver-

fi aged size of the objects.

Heavy- HoC, 768 14.14 4.94 Histogram of Color on red, green, blue channels.

weight, f}}

Heavy- HOG, 5400 25.32 4.93 Histogram of Oriented Gradients.

weight,

Heavy- Resnet50, 1024 26.96 6.07 ResNet50 feature from the object detector in the MBEK,

weight, f7 average pooled over height and width dimensions and
only reserving the channel dimension

Heavy- CPoP, 31 3.62 4.84 Class Predictions on Proposal feature from the Faster

weight, f;] R-CNN detector in the MBEK. Prediction logits on the
region proposals are extracted and average pooled over
all region proposals. We only reserve the class dimen-
sion (including a background class)

Heavy- MobileNetV2, 1280 153.96 9.33 Efficient and effective feature extractor, average pooled

weight, f7 from the feature map before the fully-connected layer.

Table 1: List of features and their costs considered in our scheduler. The extraction cost is the averaged execution time to extract the feature and the
prediction cost is the averaged execution time to predict the accuracy of each branch given the features. The execution time is evaluated on the NVIDIA
Jetson TX2 board. ResNet50, CPoP, MobileNetV2 feature extractors and the prediction models use the GPU; the others are mainly on the CPU.

Constrained Optimization: Given the optimization prob-
lem in Equation 1 and our latency model in Equation 2, our
scheduler is tasked to select the optimal execution branch b*
based on the selected features f under the latency budget Lo,
by solving the following constrained optimization problem

b* = argmax A(b, f)
beB

s.t. Lo(b, f1) + So + S(fig) + C(bo, b) < Ly
given f=[f,ful € ¥.

®)

To solve this optimization, we examine all branches {b}
that satisfy the latency constraint? and pick the branches
with highest predicted accuracy A(b, f). Note that the latency
prediction model Ly(b, f1) incorporates light-weight features
f1 but does not rely on the heavy-weight content features
fu. Additionally, both the accuracy prediction model A(b, f)
and the latency prediction model Ly (b, f) are trained from
the data from our offline dataset’. In the following sections,
we discuss (1) the algorithm for selecting which features f
to choose for scheduling (Section 3.4) and (2) the modeling
of the switching cost C(by, b) (Section 3.5).

4The computational cost of the feature extractors and accuracy prediction
model dominates the overhead of the scheduler. Reducing the number of
examined branches does not significantly reduce the cost as the execution
time of a neural network (our accuracy prediction model) is not linear in
relation to the number of output neurons, i.e., the number of branches to
predict on. For example, reducing the number of branches to predict on by
20% may only reduce the total cost by 5%.

5Our innovation lies in the design of the optimization problem. To solve it,
we use standard convex solver.

339

3.4 Feature Selection for Scheduling

Recall that selecting the features used by the scheduler
should consider the relative cost and the benefit of including
various features. LITERECONFIG dynamically decides which
features to use during runtime, based on current video con-
tent characteristics and latency objective.

Light-weight vs. Heavy-weight Features: The light-
weight features fi can be extracted without adding cost and
its corresponding content-agnostic accuracy prediction is
also computationally light-weight (e.g., the dimension of the
image). Heavy-weight features f are content dependent and
need processing of the video frame, including costly neural
network-based processing (e.g., MobileNetV2 feature of a
video frame). As is well known in the literature [22, 50, 74],
accuracy is enhanced with content-dependent features, such
as HoC, HOG, MobileNet, and ResNet. We show empirically
that this improvement happens under many scenarios, but
not all. Furthermore, one has to account for the decrease in
the latency budget of the execution kernel due to the over-
head of the features themselves. This is the key idea behind
our feature selection algorithm, which maximizes the accu-
racy of the selected branch in the execution kernel, with
overhead considered.

Table 1 shows that HoC, HOG, and MobileNetV2 features
take 14.14 ms, 25.32 ms, and 153.96 ms respectively, and
the corresponding prediction models on these features take
4.94 ms, 4.93 ms, and 9.33 ms respectively. This is because
these features are high-dimensional to encode. Such costs
can be overwhelming especially when the continuous vision
system is running under a strict latency budget, say 33.3
ms (30 fps). Supposing the scheduler is triggered at every

LiTERECONFIG: Cost and Content Aware Reconfiguration

first frame of a GoF of size 8 (a middle-of-the-range number),
the MobileNetV2 feature extraction plus prediction take 61%
of the latency budget. In several situations, this offsets its
benefit in selecting a better execution branch through its
content-aware accuracy prediction model.

Modeling the Cost and Benefit of Features: A key chal-
lenge is that feature selection must work without actually
extracting the heavy-weight features or querying the corre-
sponding models. To address this challenge, we take some
pragmatic simplifications.

Let the set of all possible features #, consisting of light-
weight features f; and a set of heavy-weight feature candi-
dates F¢y. Our algorithm will always use the light-weight
features f7, and then determine which subset of heavy-weight
features fi; € 27# to use. It is possible that fi; = 0. We first
extract the light-weight features and run the latency predic-
tion model Ly(b, f1) and accuracy prediction model A(b, f1).
Then, we use the following nested optimization to decide
fi1, one element at a time, f};. Let us say at any point in the
iterative process, the currently selected set of heavy-weight
features is flf The optimization is given by

fIl{ = argmax maxA(b, f) + Ben(fg U fm)
fu ET‘H\fHS beB

s.t. Lo(b, f1) + S(fi) + S(f3 U fur) + Clbo, b) < Lo.

Ben(flf, U fg) is the benefit (improvement in accuracy) of
including additional features fy. S(f1.) is the cost to extract
and use light-weight features fi; S(fhs, U fg) is the cost for
heavy-weight features fg U fur; C(bo, b) is the switching cost
from the current branch b, to the new branch b.

We further simplify the calculation of the benefit Ben(fg U
fr) due to the heavy-weight features in Equation 3.4. Con-
cretely, this benefit depends on the content features and
should ideally be calculated by extracting the heavy-weight
features from the current video frame. However, doing so
would be costly and would defeat the purpose of this feature
selection algorithm. The key difference of this equation from
Equation 3 is that we use A(b, f) + Ben(fg U fy) as a proxy of
A(b, fg U fu) to avoid extracting heavy-weight features and
executing the corresponding content-aware accuracy predic-
tion model. The benefit function Ben(f U fy) is collected
from a offline dataset to reflect the accuracy improvement
of the system with the heavy-weight features F against the
light-weight feature f;. To further reduce the online cost,
these are all implemented using lookup tables.

3.5 Modeling Switching Cost

In contrast to prior work, LITERECONFIG additionally consid-
ers the latency of switching from branches or models in its
cost-benefit analysis. We observe indeed from Figure 5 that

340

EuroSys ’22, April 5-8, 2022, RENNES, France

different branch transitions have different costs®. Consider-
ing switching from branch b to b, the switching overhead
is the difference between the latency of branch b in its first
inference run, and the mean latency of b in the subsequent
inference runs. This is estimated offline, as it is static. It de-
pends on the implementation and the nature of execution
branches, and varies with size of non-shared data structure
such as disjoint parts of a TensorFlow graph. We perform a
cost-benefit analysis by including the term C(by, b), i.e., the
cost of switching in latency (execution time) terms, in the
total cost formulation. The data is again collected from the
offline training dataset.

Our model of switching cost considers only the current
frame. Due to the unforeseen nature of video, we cannot
forecast how long a new branch b stays optimal. Thus, the
scheduler re-evaluates after every tracking-by-detection GoF.
Empirically, this works better than optimizing over a look-
ahead window by predicting future workload changes [29,
51] . Indeed, the latter approaches are inaccurate and have a
high cost. Furthermore, re-evaluating every GoF (typically
4-20 frames) mitigates the impact of an incorrect decision.

4 Implementation

We implement LITERECONFIG on top of an MBEK with Faster
R-CNN as the detection backbone, and four types of ob-
ject trackers: MedianFlow, CSRT, KCF, and Optical Flow.
We implement LITERECONFIG in Python-3 (v3.7.3) using
TensorFlow-gpu v1.14.0 (for Faster R-CNN), PyTorch v1.4.0
(for MobileNetV2 feature extractors and neural network-
based accuracy prediction models), CUDA v10.0.326, and
cuDNN v7.5.0. We re-implement the latency predictors in
ApproxDet [68] on our embedded devices and use them for
predicting the latency of each execution branch, i.e, L(b, f)
(Equation 1). To train content-aware accuracy prediction
model A(b, fi), we first collect the content-dependent fea-
tures from the first frame of each video snippet as the model
input’. Then, we collect the snippet-specific accuracy, i.e.,
the mAP, under each execution branch. These mAP results
are used as labels for training our content-aware accuracy
prediction model in a supervised manner. We use a 6-layer
neural network for each content-dependent feature. The
first projection layer projects both the light-weight feature
fi and content-dependent feature fy into vectors of 256
neurons and then concatenates the two. The following fully-
connected layers come with 256 neurons in the hidden layer
and M neurons in the output layer, where M is the number
of execution branches. We use MSE loss and a Stochastic
Gradient descent (SGD) optimizer, with momentum of 0.9, to
train the neural network, and use ¢, regularization to prevent

6 All branches and models are loaded and preheated with several video
frames in the beginning. Thus, the cost reflects the true transition time.
"The scheduler must predict at the first frame of a video snippet and has
access only to the feature of the first frame.

EuroSys ’22, April 5-8, 2022, RENNES, France

overfitting. We train the neural networks for 400 epochs at
maximum with batch size of 64 and observe that the models
converge within 100 epochs.

We evaluate LITERECONFIG on two embedded platforms:

an NVIDIA Jetson TX2 and a more powerful NVIDIA Jetson
AGX Xavier. TX2 has a 256-core NVIDIA Pascal GPU on a
8GB unified memory, whereas AGX Xavier has a 512-core
Volta GPU on a unified 32GB memory. TX2 has compute capa-
bility similar to high-end smartphones like Samsung Galaxy
S20 and iPhone 12 Pro, while AGX Xavier represents the
next-generation mobile SoCs. Using two different platforms
allows us to evaluate the performance of LITERECONFIG with
different target latency ranges.
LiTeEREcCONFIG Variants: We consider four variants:
namely LITERECONFIG-MinCost (content agnostic), LITERE-
coNFIG-MaxContent-ResNet, LITEREcONFIG-MaxContent-
MobileNet (the two best performing content-aware models),
and LITERECONFIG (the full implementation with cost-benefit
analysis and all content features and models).

5 Evaluation

We conduct extensive experiments on embedded boards with
mobile GPUs to evaluate the ability of LITERECONFIG to
achieve high accuracy and low latency and contrast with
a slew of strong baselines. Our evaluations account for dy-
namic conditions of changing content and contention levels.

5.1 Baselines

We consider the following baselines for evaluating LITERE-
CONFIG.

1. ApproxDet: is the state-of-the-art adaptive object de-
tection framework on embedded devices [68]. Approx-
Det uses Faster R-CNN [50] as its backbone object
detector, and is able to adapt to latency objectives by
changing the image resolution (shape), and the num-
ber of proposals (nprop) in the first RPN, and by com-
bining different tracker types (LITERECONFIG uses the
same four types as ApproxDet) with the detector, cou-
pled with varying GoF, and downsampling ratio, of the
image fed into the tracker. We use ApproxDet’s open-
sourced implementation [66], which uses TensorFlow-
gpu v1.14.0.

2. AdaScale by adaptively re-scaling the input image to
one of a number of preset resolutions can perform in-
ference at different latencies [5]. The primary focus of
AdaScale is not efficiency, and thus its base latency val-
ues (with no contention) on embedded boards are too
high, making it irrelevant to be compared with LITERE-
CONFIG under resource contention (Table 3). Therefore,
we execute AdaScale, and its variants (scales of 600,
480, 360, and 240, which correspond to the number

341

Xu et al.

of pixels of the shortest side) on the TX2 board, with-
out contention, and compare their mAP and latency
values.

3. YOLO+: YOLOV3 [49] is a fast one-stage object detec-
tor. However, it is far from real-time on our embedded
devices. YOLO+ is our version of YOLOv3, improved,
by exposing four tuning knobs, similar to ApproxDet.
The tuning knobs are: shape of video frame, size of
GOoF (si), type of tracker, and downsampling (ds) ratio.
YOLO+ is adaptive to different latency SLOs, but not
to resource contention. The YOLO implementation is
YOLOV3 in PyTorch v1.4.0 from Ultralytics [61].

4. SSD+: SSD [40] is a one-stage object detector that
combines with multiple feature extractor backbones.
We use MobileNetV2 as the backbone, combined with
MnasFPN [3] to further improve the object detector.
SSD+ is our improved version of SSD by exposing the
same tuning knobs as for YOLO, and an additional
tuning knob, the confidence threshold of the detector
(which controls the number of objects to be tracked).
SSD+ is adaptive to different latency SLOs as well,
but not to resource contention. The SSD implementa-
tion is with TensorFlow v1.14, following the official
implementation from TensorFlow Object Detection
API [60].

5. EfficientDet: EfficientDet [58] is a recent SOTA object
detector, focusing on model efficiency, and consisting
of 8 variants (D0-D7), in increasing order of compu-
tational complexity. From our observation, heavier
model variants above D3 cannot run on the Jetson
TX2 board due to insufficient memory. Thus, we have
selected DO and D3, which are the lightest and heaviest
models, respectively, within the executable candidates.

6. SELSA [65], MEGA [4], REPP [53]: are three recent
solutions with the best benchmarking results for video
object detection (on server-class machines, not em-
bedded). We use pre-trained models, trained on the
same dataset as ours. This comparison is more limited
since these models are not optimized for efficiency and
not suitable under resource contention on our embed-
ded boards — their base latency is already too high
and they crash or hang, when subjected to resource
contention.

5.2 Evaluation Setup

Dataset and Metrics: We evaluate LITERECONFIG on the
ILSVRC 2015 VID dataset [52], which contains 3,862 videos
in the training set, and 555 videos in the validation set. Both
datasets are fully annotated, with class names, and location
of each object in the video frame. We use 90% of the ILSVRC
training dataset ® to train the vision algorithms (detection
backbones), including all baselines, and the remaining 10%

8Every 9 out of 10 videos in the alphabetic order of video names

LiTERECONFIG: Cost and Content Aware Reconfiguration

EuroSys ’22, April 5-8, 2022, RENNES, France

Device and | GPU resource | Models mAP (%) P95 latency per-
latency SLOs | contention frame (ms)
(ms)
SSD+ 45.5/46.3/46.7 30.5/47.8/79.9
YOLO+ 42.1/45.8/47.3 26.0/36.3/65.3
TX2, 0% ApproxDet F/F/46.8 F/F/83.9
33.3/50.0/100.0 LiteEREcoNFIG-MinCost 43.8/46.4/49.0 26.4/41.0/77.7
LiteEREcONFIG-MaxContent-ResNet 44.4/47.1/50.3 28.5/40.8/82.3
LiTERECONFIG-MaxContent-MobileNet F/F/50.2 35.2/50.9/99.0
LiTERECONFIG 45.4/46.5/50.3 32.2/42.1/80.5
SSD+ F/F/F 41.6/68.3/118.7
YOLO+ F/F/47.3 36.3/55.2/98.8
TX2, 50% ApproxDet F/F/45.2 F/F/18.7
33.3/50.0/100.0 LiteEREcoNFIG-MinCost 39.0/42.1/46.0 25.0/41.8/84.6
LiTeEREcONFIG-MaxContent-ResNet 39.2/41.4/46.6 30.9/47.5/90.5
LiTERECONFIG-MaxContent-MobileNet F/F/47.1 36.2/60.0/79.2
LiTERECONFIG F /43.6/47.0 34.0/49.5/78.2
SSD+ 45.5/46.3/46.7 21.1/27.9/41.5
YOLO+ 44.2/45.7/48.8 14.4/26.2/38.1
AGX Xavier, 0% LiTeEREcONFIG-MinCost 45.5/47.4/49.6 16.4/25.5/38.8
20.0/33.3/50.0 LiTeEREcONFIG-MaxContent-ResNet 46.4/48.5/50.7 17.0/26.9/39.3
LiTERECONFIG-MaxContent-MobileNet F/F/50.7 20.3/35.6/38.7
LiTERECONFIG 46.4/48.5/50.7 18.2/28.9/41.4
SSD+ F/46.3/ F 25.2/33.3/53.4
YOLO+ F/F/F 30.6/59.0/93.1
AGX Xavier, 50% LiteEREcONFIG-MinCost 38.9/45.1/46.3 17.7/25.1/38.4
20.0/33.3/50.0 LiteEREcONFIG-MaxContent-ResNet 39.3/45.4/46.9 17.6/25.4/39.0
LiTeEREcONFIG-MaxContent-MobileNet F /44.6/46.8 21.8/32.8/47.0
LiTERECONFIG 39.4/45.1/46.9 19.0/27.8/40.0

Table 2: Performance comparison on the ImageNet VID validation set. “F” in the mAP column indicates that the protocol fails to meet the latency SLO and
thus the accuracy results are not comparable. The bold text of mAP shows the highest accuracy in each scenario and objective, while the italicized text of
latency highlights that the 95% latency SLO is violated. An “F” in a latency cell means that that protocol did not execute at all.

of the training dataset to train the scheduler, i.e., the latency
prediction model L(b), the accuracy prediction model A(b, f),
the switching overhead model C(by, b), and the benefit of
heavy-weight features Ben(F). The validation set is set aside
for the evaluation only.

Our accuracy metric is the mAP on the VID validation
dataset, following widely adopted protocols [4, 62, 75-77].
We report the average per-frame execution time (latency)
over a GoF as the time metric. We use the 95th percentile
(P95) latency when evaluating LITERECONFIG, because our
scheduler aims to guarantee a SLO violation rate < 5%. This is
standard when evaluating latency-sensitive ML systems [27,
30, 33, 47]. To compare fairly against accuracy-optimized
models (SELSA, REPP, EfficientDet, and AdaScale), we use
the mean latency. The latency we report includes all relevant
parts, such as the feature extractor, the model execution, and
the scheduler.

342

5.3 End-to-end Evaluation

Evaluation with different SLOs and no resource con-
tention on the TX2. We first evaluate LiTERECONFIG for
accuracy, by varying latency objective from 33.3 ms (tight,
for real-time 30 fps) to 50 ms (medium, for 20 fps) to 100
ms (loose, for 10 fps) per frame on the NVIDIA Jetson TX2
board, where no resource contention is injected. Table 2 sum-
marizes the comparison, where an mAP row contains three
results separated by “/”, each corresponding to different la-
tency SLOs; similarly for every P95 latency row. A note of
“F" means that this algorithm failed to meet the objective. Ob-
serve that LITERECONFIG and our enhanced baselines (SSD+
and YOLO+) improve efficiency over the SOTA ApproxDet
from 33.3 ms to 100 ms. LITERECONFIG’s improvement is
higher, thanks to its superior object detector, feature extrac-
tors, and cost-benefit analyzer.

LITERECONFIG achieves 3.5% mAP improvement over Ap-
proxDet under the 100 ms objective — a significant improve-
ment for an object detection task. LITERECONFIG achieves a

EuroSys ’22, April 5-8, 2022, RENNES, France

Models, latency SLO mAP Mean Memory|
(%) latency | (GB)
(ms)

SELSA-ResNet-101 [65], no SLO 81.5 2334 6.91
SELSA-ResNet-50, no SLO 77.31 2112 6.70
MEGA-ResNet-101 [4], no SLO OOM OOM 9.38
MEGA-ResNet-50, no SLO OOM OOM 6.42
MEGA-ResNet-50 (base), no SLO | 68.11 861 3.16
REPP [53], over FGFA[76], no SLO | OOM | OOM 10.02
REPP, over SELSA OOM OOM 8.13
REPP, over YOLOv3 [49] 74.8 565 2.43
EfficienetDet D3 63.9 796 5.68
EfficienetDet DO 55.1 138 2.22
AdaScale-MS, no SLO 56.3 976.4 3.26
AdaScale-SS-600, no SLO 55.7 1049.4 3.20
AdaScale-SS-480, no SLO 59.0 710.5 3.18
AdaScale-SS-360, no SLO 59.4 434.0 3.18
AdaScale-SS-240, no SLO 56.5 227.9 3.18
LITERECONFIG, 100 ms 50.3 72.0 3.67
LITERECONFIG, 50 ms 46.5 38.4 4.09
L1TERECONFIG, 33.3 ms 45.4 28.2 4.12

Table 3: Performance comparison between LITERECONFIG and the video
object detection solutions optimized for accuracy. mAP means the mean
average precision and OOM stands for out-of-memory errors.

consistent accuracy improvement over the content-agnostic
variant, i.e., LITERECONFIG-MinCost, by 1.6%, 0.1%, and 1.3%
mAP, respectively. Among all of LITERECONFIG’s four vari-
ants and our enhanced baselines, LITERECONFIG and SSD+
achieve the highest accuracy under 33.3 ms objective, LITERE-
conrIG-MaxContent-ResNet is the most accurate under the
50 ms objective, and LITERECONFIG is again the most accu-
rate under 100 ms objective. Finally, though LITERECONFIG-
MaxContent variants violate the latency objective due to
costs of running feature extractors and models, LITERECON-
FIG is strictly always below the latency objective.

To summarize, in addition to efficiency improvement over
the SOTA, our cost and content-aware solution aces accuracy
frontiers, with the latency values satisfying the objective.
Evaluation with higher GPU contention on the TX2.
We extend our evaluation to a high resource-contention sce-
nario, where 50% GPU resource is busy with other concurrent
applications. Table 2 shows that under contention on TX2,
our efficiency-enhanced baselines (SSD+ and YOLO+) fail to
meet the latency objectives due to lack of contention-aware
adaptation. LITERECONFIG is 1.8% mAP more accurate than
the best adaptive systems. Our full implementation is always
one of best protocols among all variants and models, satisfy-
ing the latency objective (with the small exception of 34.0
ms under 33.3 ms latency objective and 39.3% mAP in this
case).

Evaluation on the AGX Xavier. Finally, we extend our
evaluation to a more powerful embedded device, the NVIDIA
AGX Xavier. Correspondingly, we tighten the latency objec-
tive to as low as 20 ms (corresponding to 50 fps). We find that

343

Xu et al.

ApproxDet cannot meet any of the three latency objectives.
We observe again that LiTERECONFIG and the MaxContent-
ResNet variants both have the highest accuracy under dif-
ferent latency objectives and contention scenarios, and can
meet the latency objectives. On the other hand, the enhanced
baselines and MaxContent-MobileNet variant violate two
stringent objectives.

To summarize, LITERECONFIG is always the highest per-

forming content-aware variant, being 1.0% mAP superior
to LiTERECONFIG-MaxContent-ResNet, given no contention,
and 33.3 ms SLO. It is 2.2% mAP better, given 50% GPU
contention and 50.0 ms SLO on TX2. LITERECONFIG is also
clearly superior to the content-agnostic variant (0.9-1.1%
higher mAP, given no contention, and 0.5-0.6% higher mAP,
given 50% GPU contention), ApproxDet, SSD+, and YOLO+,
in most cases.
Comparison to Recent, Accuracy-Optimized Object
Detection Algorithms: Table 3 compares LITERECONFIG
to recent solutions optimized for accuracy, which however
do not achieve real-time efficiency on the embedded device.
AdaScale, one of the content-aware baselines, whose fastest
variant always using the smallest scale, runs at a latency
of 227.9 ms on the TX2 board, and is much less efficient
than LiTERECONFIG. Its accuracy of 55.7% to 59.4% mAP,
though higher than LITERECONFIG, is still lower than all
accuracy-optimized baselines. In addition, EfficientDet-D0
and Efficient-D3 achieve reasonable accuracy while main-
taining relatively low latency, relative to other accuracy-
optimized solutions, such as SELSA [65], MEGA [4], and
REPP [53]. EfficientDet-DO0 runs at 138 ms per frame, at an
mAP of 55.1%, with a latency close to the SLO (albeit higher),
while the accuracy is higher compared to LITERECONFIG.
EfficientDet-D3 runs at 796 ms per frame, at an mAP of
63.9%, with the latency in an unacceptable range for on-
device inferencing. Thus, with no adaptive features, both
EfficientDet-D0 and EfficientDet-D3 fail to match the 100 ms
latency objective.

Compared to most accurate models SELSA, MEGA and
REPP, LITERECONFIG is 90.3X, 36.8%, and 24.1X faster (for
SLO of 33.3 ms). On the flip side, the accuracy of LITERECON-
FIG is significantly lower. Thus, each kind of solution has
its own applicability — if real-time processing is required
on these embedded boards, LITERECONFIG is a good solu-
tion, while if frames can be sub-sampled for detection and
high accuracy is required, then these recent solutions could
be selected. Note that we measure mAP values lower than
those published by their authors (3.2% lower for SELSA, 9.2%
for MEGA, and 23.8% for REPP), even though we used pre-
trained models. The accuracy reduction in Table 3 results
from three factors: (1) the change of the backbone feature
extractors from ResNet-101 to ResNet-50 due to memory
constraints on the TX2 and (2) the removal of the part of
the design that refers to future frames because our problem
context requires streaming and real-time processing. These

LiTERECONFIG: Cost and Content Aware Reconfiguration

Feature 33.3 ms 50.0 ms 100.0 ms
None 43.8% 46.4% 49.0%
HoC 44.4% 47.1% 50.3%
HOG 44.3% 47.1% 50.2%
ResNet50 44.4% 47.0% 50.3%
CPoP 44.8% 46.1% 50.3%
MobileNetV2 | 45.1% 47.1% 50.2%

Table 4: Effectiveness of LITERECONFIG of individual content-specific
features by comparing the accuracy given different latency objectives.

algorithms benefit from using future frames to detect objects
in the current frame.

5.4 Evaluation of Video Content Features

Next, we analyze the benefit of applying each content fea-
ture in our content-aware design. To study this, we always
extract a particular feature and use it in the corresponding
prediction model and see what accuracy can be achieved,
with the latency objective applied to the MBEK only, and
ignoring the overhead of that feature. We see that all con-
tent features achieve higher utility than the content-agnostic
ones (labeled as “None”). The maximum accuracy improve-
ment achieved by a single content feature (over “None") is
2.3%, 0.7%, and 1.3%, respectively, for each latency objective.
Particularly, HoC and HOG feature extractors and predic-
tors are beneficial when the latency budget is 50.0 ms and
100.0 ms since they come with a lower cost relative to the
MobileNetV2 counterpart. To precisely account for the cost
and benefit of feature extractors, the selection of features
comes from our constrained optimization solution and is
not manually selected. This validates our design to use cost-
benefit analysis to select the best features among all (feature)
options and also determine whether the benefit is enough
over the content-agnostic protocol, considering the overhead
from the content-aware features.

5.5 Understanding Latency-Accuracy Tradeoff

We examine the detailed latency breakdown of each system
component in LITERECONFIG to uncover the source of our
benefit. Figure 3 shows the percentage latency (normalized
by the latency SLO) of the object detector, the object tracker,
and the cost, where the cost is either modeling (feature execu-
tion, regression models, solving optimization) or switching
between execution branches. There is no bar for Approx-
Det for 33.3 and 50 ms latencies because it cannot satisfy
those SLOs. First, we can observe the cost of LITERECONFIG
is between the two LITERECONFIG-MaxContent variants, ow-
ing to its cost benefit analysis on feature selection. Second,
the overhead of LITERECONFIG is always below 10%, and
much less, for the higher latency objectives (50 ms and 100
ms). Finally, LiTERECONFIG wins over YOLO+, SSD+, and
ApproxDet, due to higher latency SLO assigned to the object

344

EuroSys ’22, April 5-8, 2022, RENNES, France

mmm Overhead

1.2 - = Object detector | Object tracker

From left to right: LiteReconfig-MinCost, LiteReconfig-MaxContent-ResNet,
LiteReconfig-MaxContent-MobileNet, LiteReconfig, YOLO+, SSD+,
] and ApproxDet (only 100 ms latency requirement)

1.0
0.8 4
0.6

0.4 4

Normalized latency

0.2 1

33.3
Latency requirements (msec)

50 100

Figure 3: Percentage latency of each system component, normalized over
the latency SLO, profiled on the TX2. FRCNN and YOLO cannot meet the
33.3 ms SLO and thus their bars are missing.

detector. Also, as we select the content-dependent optimal
branches, even the latency of these branches may seem simi-
lar, but our selected branches finally lead to higher accuracy
(Table 2). One may wonder why LITERECONFIG does not try
to use up the latency budget to get close to the 1.0 normalized
latency value. This is merely an artifact of the presentation
of this result — we are reporting mean latency while SLO
is specified in terms of 95-th percentile latency (P95). Thus,
L1TERECONFIG is using up its latency budget prudently, being
conservative to avoid frequent SLO violations.

25 mm R-MinCost . R mm SSD+
W LR-MaxContent-RN . YOLO+ ApproxDet
== LR-MaxContent-MN

o 207
(]
e
[v]
c
C 15+
o
—
2 ‘
.
o 1094 @
Qo
€
=)
=2 5 ‘7

0 -

33.3 50 100

Latency requirements (msec)

Figure 4: Branch coverage between the four variants of LITERECONFIG and
three other baselines. LITERECONFIG is able to explore more beneficial
execution branches and avoids fruitless switches between execution
branches, leaving greater part of the latency budget available for the
execution kernel, the object detector, and the tracker.

We further investigate the branch coverage (i.e., the num-
ber of distinct execution branches invoked) within the four
L1TERECONFIG variants. Figure 4 shows that using heavy-
weight features (orange and green bars) tend to explore more
branches tailored to the video content, driving higher accu-
racy. However, using light-weight features can reduce la-
tency even further for the MBEK. The complete LITERECON-
FIG (red) through its cost-benefit analysis balances these two

EuroSys ’22, April 5-8, 2022, RENNES, France

tendencies and leads to the winning overall accuracy, over
other variants and baselines, and probabilistically guaran-
tees the latency objective. ApproxDet, covering a far higher
number of execution branches (100 ms latency objective), is
still less accurate than any variant of LiTERECONFIG. To sum-
marize the end-to-end evaluation we have described in Sec-
tion 5.3 — Section 5.5, we are able to adapt at a fine granularity
to content-based characteristics in the video stream by incor-
porating more computationally intensive, yet content-aware,
features. The cost-benefit analysis of LITERECONFIG enables
us to squeeze out more accuracy from the content-aware
features within the latency objectives. This is instantiated by
exploring a greater number execution branches, which are
more accurate with respect to their content characteristics.

5.6 Switching Cost and Benefit

(224,1)
(224, 3)
(224, 5)
(224, 10)
(224, 20)
(224, 50)
(224, 100)
(320,1)
(320, 3)
(320,5) ||
(320, 10)
(320, 20)
(320, 50)
(320, 100)
(448, 1)
(448, 3)
(448, 5)
(448, 10)
(448, 20)
(448, 50)
(448, 100)
(576, 1)
(576, 3)
(576, 5)
(576, 10)
(576, 20)
(576, 50)
(576, 100)

Switching overhead (msec)

(a) offline training data

(320, 5)
(320, 50)
(448, 5)
(448, 10)
(448, 20)
(448, 50)
(448, 100)
(576, 3)
(576, 5)
(576, 10)
(576, 20)
(576, 50)
(576, 100)

(320, 5)
(320, 50)
(448, 5)
(448, 10)
(448, 20)
(448, 50)
(448, 100)
(576, 3)
(576, 5)
(576, 10)
(576, 20)
(576, 50)
(576, 100)

1000

u =100

Switching overhead (msec)
Switching overhead (msec)

(b) online data

Figure 5: Switching overhead between execution branches in object
detectors from (a) offline training data and (b) online data given 33.3 ms
latency SLO on the left and 50 ms latency SLO on the right. The source
branches are on the y-axis and the destination branches are on the x-axis,
with (shape, nprop) notation.

345

Xu et al.

L1TERECONFIG considers the switching overhead between
branches in deciding whether to reconfigure its execution to
a new branch. This is done through the term C(by, b) in Eq. 3.
In Figure 5, we show empirically the switching overhead
between any two execution branches in the object detector.
The offline training data on Figure 5(a) shows that generally
the switching overhead is below 10 ms but it is higher with
a light source branch, e.g., shape=576 and nprop=1, or with
a heavy destination branch, e.g., shape=576 and nprop=100.
Figure 5(b) shows the online switching cost with 33.3 ms
latency objective at the top, and 50 ms latency objective
at the bottom. The online data confirms that the switching
overhead is mostly less than 10 ms and we also observe the
non-deterministic outliers with high values, in the 1-5 sec
range. These outlier results happen due to cold misses of the
neural network graphs and become rarer still as the video
analytics system runs for a longer period of time. Such outlier
switches are impossible to model — see how the outliers do
not show up at the same cells, in our two independent runs,
as a testimony to this.

6 Discussion

Generalization to other domains: First, MBEK as a multi-
branch solution for the object detection task in this work is
a general solution for many similar tasks in other domains,
like video recognition, face recognition, and so on. One may
expose tuning knobs from a trained model in other domains
to make it adaptive and highly efficient on mobile devices.
Second, the cost-benefit analysis in the scheduler is also gen-
eral because the competition of the latency budget between
a feature-based scheduler and an MBEK also exists as long
as the accuracy-latency trade-off is still a tuning space in
the other domains. Schedulers operating on a rich feature
space can generally leverage this enhanced feature space to
make better decisions as to which branch to select for the
MBEK. However, one must take the cost of the schedulers
into consideration so as not to offset the benefits of using
rich features over simple and cheap features. Thus, without
such an overhead-aware scheduler, it will not be possible
to leverage rich content features to improve the model’s
performance on the Pareto frontier.

Online drift in the data: LITERECONFIG assumes the on-
line and offline datasets are independent and identically dis-
tributed (iid distribution), and thus both the MBEK and the
scheduler are trained offline and work well in the online
phase. If an online drift exists in the data, one may have to
re-train LITERECONFIG, depending on the source of the drift.
For example, if the object classes change, one may re-train
the object detector and the accuracy predictor in the sched-
uler. If the compute capability or runtime environment of
the devices change, one may re-train the latency predictor,
switching overhead, and cost function in the scheduler.

LiTERECONFIG: Cost and Content Aware Reconfiguration

Contention generator (CG): CG is used as a stand-in for
real-world background workloads running on the mobile de-
vice. The CG is tunable between 0% and 99% GPU contention,
which can represent a wide range of workload scenarios. We
empirically found that beyond a contention level of 50%,
the video object detection task performs equally poorly. So
we evaluate two typical scenarios — 0% and 50% GPU con-
tention.

7 Related Work

Object Detection and Tracking in Videos. Modern object
detectors make use of DNNs to localize the recognized object
instances within an input image, which is categorized into
two-stage or a single-stage detector depending on the archi-
tecture of the DNN. Faster R-CNN [50] is representative of
two-stage detectors. Input images, represented as tensors, are
passed through pre-trained CNNSs, up until an intermediate
layer, ending up with a convolutional feature map. Using the
features that the CNN computed, Region Proposal Networks
(RPN) generate regions-of-interest (Rols) in the first stage. In
the second stage, the Rol pooling layer combines the feature
map and the proposals from the RPN, together, to generate
positive proposal feature maps, which are then provided to
the classifier network. In contrast, a single-stage object detec-
tor does not provide region proposal generation, and directly
classifies a dense set of pre-defined regions. These models
are optimized for lower latency, which can come at the ex-
pense of accuracy. For example, the YOLO [48] one-stage
network simplifies object detection as a regression problem,
by predicting bounding boxes and class probabilities directly
without generating region proposals. EfficientDet [58] is a
family of (nine) one-stage detector models, with various in-
put image sizes and network depths, all of which achieve
SOTA performance [18, 57, 58], measured in FLOPs’.

However, it remains challenging to apply these image-
based detectors to videos, due to motion blur, occlusion, and
defocus, which frequently occur in videos. In parallel, visual
tracking has evolved from light-weight trackers focusing on
motion analysis and trajectory prediction [2, 13, 26] to DNN-
based trackers that learn to match the appearance patterns
of target objects [11, 34, 63].

These developments have led to works on video object
detection that use a tracking-by-detection technique [25, 76],
which has become a de facto standard. In this technique,
an execution plan performs object detection on the current
frame, and then, object tracking on the following frames,
in a Group-of-Frames (GoF). Such a scheme is utilized to
exploit the temporal features in the video [38, 62, 76, 77] or
to efficiently reduce the overall cost of the expensive object
detector by associating detected objects to the tracker [11,
37, 68, 71]. Unfortunately, the majority of previous methods

9FLOPs denote the number of multiply-adds [18, 57, 58].

346

EuroSys ’22, April 5-8, 2022, RENNES, France

are meant to run on server-class systems, and only a few so-
lutions exist for edge devices [37, 68]. Video object detection
at the edge processes the videos where they are generated,
improving latency and decreasing network congestion.
Computer Vision on Mobiles. Resource utilization and
management is one of the key factors to match the Quality
of Experience (QoE) for end users in mobile devices. Many
previous works focus on the design of light-weight DNNs
to handle resource limits, including hand-crafted network
architectures [15, 20, 73], and network architectures built by
neural architecture search [35, 56, 64]. Despite the efficiency
of these models, none of these approaches is adaptive to con-
tent or contention at runtime. There have been recent works
on developing adaptive computer vision algorithms and sys-
tems (which we have described earlier in Sections 1 and 2). To
sum up, based on the image content or latency budget, adap-
tive configuration can occur within one model [5, 24, 67, 68],
within an ensemble of models in a system [10], multi-exit
solutions [21, 59, 67], or by generating a light network, spe-
cific to a given dataset [9]. Most of the existing approaches
consider image or video classification tasks. Rather than pre-
dicting a single label per frame or video clip, video object
detection has to examine every frame and output a varying
number of object boxes per frame. Therefore, the design of
an adaptive video object detection system poses additional
challenges compared to an adaptive classification system.
Only a few adaptive video object detection solutions exist to
date [5, 68].

Some other adaptive vision systems [23, 46, 71] also
leverage a multi-branch design methodology. For exam-
ple, VideoStorm [71] considers two key characteristics of
video analytics: resource and quality tradeoff with multi-
dimensional configurations. Mainstream [23] automatically
determines, at deployment time, the right tradeoff between
more specialized DNNs to improve accuracy, and retaining
more of the unspecialized base model to increase (model)
sharing. The latter reduces the per-frame latency. DeepDeci-
sion [46] designs a framework that ties together front-end
devices with more powerful backend servers to allow deep
learning to be executed locally, or remotely, in the cloud/edge.
These methods, however, lack the ability to be fully adaptive
to content and contention changes (e.g., limited to a single
dataset or to a specific time interval) or to do a cost-benefit
analysis to guide their adaptation.

Cost Benefit Analysis in Online Reconfigurable Sys-
tems. The specific context dictates many of the technical
challenges in this space, such as what are the cost and the
benefit functions, how easily can the parameters for the
functions be collected, and how should the cost-benefit anal-
yses feed into changes made by a scheduler into the system.
Some prominent examples in this line of work are for clus-
tered database servers [42, 44], for intermediate data storage
for serverless jobs [31, 43], for VM allocation and consoli-
dation [14, 19], and for VM migration [55]. In the context

EuroSys ’22, April 5-8, 2022, RENNES, France

of mobile computing, such cost-benefit analysis has influ-
enced decision making for mobile sensing [1], offloading
from mobile to edge or cloud [70], or context-aware appli-
cation scheduling on mobile devices [32]. While principles
from this volume of prior work inspire our design, they do
not directly solve our problem of reconfiguration of video
object detection.

8 Conclusion

Several adaptive computer vision systems have been pro-
posed that change the execution paths depending on content
and runtime conditions on mobile devices. In this paper,
we first uncover that these adaptive vision algorithms ac-
tually perform worse than static algorithms under a large
range of conditions such as under stringent latency objec-
tives, say keeping up with 30 fps video or getting to 20 ms
latency for AR/VR applications. We then present our so-
lution, LITERECONFIG, which is applicable to any adaptive
vision system. LITERECONFIG introduces two design inno-
vations. First, it provides the cost-benefit analysis to decide
on which of the rich set of features can be used to model
the accuracy and the latency of different execution branches.
Second, the scheduler leverages the cost-benefit analysis to
achieve a superior accuracy-vs-latency characteristic relative
to prior solutions, ApproxDet, EfficientDet, Faster R-CNN,
YOLO, SELSA, MEGA, and REPP. Our evaluation provides
actionable insights with broad implications — how latency-
accuracy models of light-weight vision algorithms can be
transferable to different content classes, such as, from fast
moving to slow moving videos; how vision frameworks can
be designed to better handle resource contention, much of
which may be unpredictable; and what the relative utilities
of different features are in guiding adaptation in such stream-
ing video analytics systems. Much work remains to be done,
such as how our design generalizes to other computer vision
tasks or can provide its probabilistic guarantees for different
video content.

Acknowledgments

This material is based in part upon work supported by the
National Science Foundation under Grant Numbers CCF-
1919197, CNS-2038986, CNS-2038566, and CNS-2146449 (NSF
CAREER award). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors. The authors thank the reviewers for their enthu-
siastic comments and the shepherd, Marc Shapiro, for his
very diligent passes with us and his valuable insights that
improved our paper.

References

[1] Amin Anjomshoaa, Fabio Duarte, Daniél Rennings, Thomas J
Matarazzo, Priyanka deSouza, and Carlo Ratti. 2018. City scanner:

347

[2

—

3

—

[4

—

[5

—

(6]

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Xu et al.

Building and scheduling a mobile sensing platform for smart city
services. IEEE Internet of Things Journal 5, 6 (2018), 4567-4579.

Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. 2009. Visual
tracking with online multiple instance learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 983-990.

Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry
Kalenichenko, Hartwig Adam, and Quoc V Le. 2020. MnasFPN: Learn-
ing latency-aware pyramid architecture for object detection on mobile
devices. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 13607-13616.

Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. 2020. Memory
enhanced global-local aggregation for video object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 10337-10346.

Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. 2019. AdaScale:
Towards Real-time Video Object Detection Using Adaptive Scaling. In
Systems and Machine Learning Conference (SysML).

Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: Object
detection via region-based fully convolutional networks. In Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS).
379-387.

Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients
for human detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Vol. 1. IEEE, 886-893.

Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang, and Yichen
Wei. 2021. Solq: Segmenting objects by learning queries. Advances in
Neural Information Processing Systems 34 (2021).

Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. 2020.
FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mo-
bile Vision. In Proceedings of the 5th ACM/IEEE Symposium on Edge
Computing (SEC). IEEE, 84-95.

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-aware
multi-tenant on-device deep learning for continuous mobile vision.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking (MobiCom). 115-127.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2017. De-
tect to track and track to detect. In Proceedings of the IEEE International
Conference on Computer Vision. 3038-3046.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin,
Ekin D Cubuk, Quoc V Le, and Barret Zoph. 2021. Simple copy-paste
is a strong data augmentation method for instance segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2918-2928.

Helmut Grabner, Michael Grabner, and Horst Bischof. 2006. Real-time
tracking via on-line boosting. In Proceedings of the British Machine
Vision Conference (BMVC), Vol. 1. 47-56.

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. 2020. Protean: VM allocation
service at scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 845-861.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and
Chang Xu. 2020. GhostNet: More features from cheap operations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 1580~-1589.

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. 2016. Mcdnn: An
approximation-based execution framework for deep stream process-
ing under resource constraints. In Proceedings of the 14th Annual In-
ternational Conference on Mobile Systems, Applications, and Services
(Mobisys). 123-136.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017.
Mask r-cnn. In Proceedings of the IEEE International Conference on

LiTERECONFIG: Cost and Content Aware Reconfiguration

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25

—

[26]

[27

—

(28]

[29]

(30]

(31]

(32]

(33]

Computer Vision (ICCV). 2961-2969.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770~778.
Nguyen Trung Hieu, Mario Di Francesco, and Antti Yla-Jadski. 2015.
Virtual machine consolidation with usage prediction for energy-
efficient cloud data centers. In 2015 IEEE 8th International Conference
on Cloud Computing. IEEE, 750-757.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay
Vasudevan, et al. 2019. Searching for MobileNetV3. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV). 1314-1324.
Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016.
Network trimming: A data-driven neuron pruning approach towards
efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016).
Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao. 2015. Salicon:
Reducing the semantic gap in saliency prediction by adapting deep
neural networks. In Proceedings of the IEEE International Conference
on Computer Vision. 262-270.

Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang,
Ishan Misra, Michael Kaminsky, Michael A Kozuch, Padmanabhan
Pillai, David G Andersen, and Gregory R Ganger. 2018. Mainstream:
Dynamic Stem-Sharing for Multi-Tenant Video Processing. In 2018
USENIX Annual Technical Conference (USENIX ATC). 29-42.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha
Sen, and Ion Stoica. 2018. Chameleon: scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 253-266.

Kinjal A Joshi and Darshak G Thakore. 2012. A survey on moving ob-
ject detection and tracking in video surveillance system. International
Journal of Soft Computing and Engineering 2, 3 (2012), 44-48.

Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. 2010. Forward-
backward error: Automatic detection of tracking failures. In Proceed-
ings of the 20th International Conference on Pattern Recognition (ICPR).
IEEE, 2756-2759.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proceedings of the VLDB Endowment 10, 11 (2017).

Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. 2016.
Object detection from video tubelets with convolutional neural net-
works. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 817-825.

Harshad Kasture and Daniel Sanchez. 2014. Ubik: efficient cache
sharing with strict qos for latency-critical workloads. ACM SIGPLAN
Notices (ASPLOS) 49, 4 (2014), 729-742.

Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark
suite and evaluation methodology for latency-critical applications.
In 2016 IEEE International Symposium on Workload Characterization
(ISWC). IEEE, 1-10.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral
storage for serverless analytics. In 13th Usenix Symposium on Operating
Systems Design and Implementation (OSDI). 427-444.

Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, and Ness B
Shroff. 2016. Context-aware application scheduling in mobile systems:
What will users do and not do next?. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing.
1235-1246.

Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. 2018. PRET-
ZEL: Opening the black box of machine learning prediction serving
systems. In 13th USENLX Symposium on Operating Systems Design and
Implementation (OSDI). 611-626.

348

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

EuroSys ’22, April 5-8, 2022, RENNES, France

Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-Hsuan Yang.
2019. Target-aware deep tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 1369-1378.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020.
Mcunet: Tiny deep learning on iot devices. Advances in Neural Infor-
mation Processing Systems 33 (2020), 11711-11722.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
2017. Focal loss for dense object detection. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV). 2980-2988.
Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted
real-time object detection for mobile augmented reality. In The 25th
Annual International Conference on Mobile Computing and Networking
(MobiCom). 1-16.

Mason Liu and Menglong Zhu. 2018. Mobile video object detection
with temporally-aware feature maps. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR). 5686—5695.
Mason Liu, Menglong Zhu, Marie White, Yinxiao Li, and Dmitry
Kalenichenko. 2019. Looking fast and slow: Memory-guided mobile
video object detection. arXiv preprint arXiv:1903.10172 (2019).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot
multibox detector. In Proceedings of the European Conference on Com-
puter Vision (ECCV), Vol. 9907. 21-37.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. 2021. Swin transformer: Hierarchi-
cal vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 10012-10022.
Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-
rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020.
OPTIMUSCLOUD: Heterogeneous configuration optimization for dis-
tributed databases in the cloud. In 2020 USENLX Annual Technical
Conference (USENIX ATC). 189-203.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In 2021 USENLX
Annual Technical Conference (USENIX ATC). 285-301.

Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker
Meyer, Somali Chaterji, and Saurabh Bagchi. 2019. SOPHIA: Online
reconfiguration of clustered NoSQL databases for time-varying work-
loads. In Usenix Annual Technical Conference (USENLX ATC). 223-240.
Carol L Novak and Steven A Shafer. 1992. Anatomy of a color his-
togram.. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Vol. 1992. 599-605.

Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi
Chen. 2018. Deepdecision: A mobile deep learning framework for edge
video analytics. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 1421-1429.

Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kosti¢, and Sean
Braithwaite. 2017. Rein: Taming tail latency in key-value stores via
multiget scheduling. In Proceedings of the Twelfth European Conference
on Computer Systems. 95-110.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You only look once: Unified, real-time object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 779-788.

Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An incremental im-
provement. arXiv preprint arXiv:1804.02767 (2018).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2016. Faster
R-CNN: Towards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 39, 6 (2016), 1137-1149.

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient
autoscaling in the cloud using predictive models for workload fore-
casting. In 2011 IEEE 4th International Conference on Cloud Computing.

EuroSys ’22, April 5-8, 2022, RENNES, France

[52]

(53

[t

(54]

(55

=

(56

—

(57]

(58]

(59]

(60]

(61]

(62]

(63

[t}

(64]

(65]

[66]

(67]

(68]

IEEE, 500-507.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115, 3 (2015), 211-252.

Alberto Sabater, Luis Montesano, and Ana C Murillo. 2020. Robust and
efficient post-processing for video object detection. In 2020 IEEE/RS§
International Conference on Intelligent Robots and Systems (IROS). IEEE,
10536-10542.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. MobileNetV2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 4510-4520.

Rahul Singh, David Irwin, Prashant Shenoy, and Kadangode K Ramakr-
ishnan. 2013. Yank: Enabling green data centers to pull the plug. In
Presented as part of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 143-155.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. 2019. MNasNet: Platform-aware
neural architecture search for mobile. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2820-2828.
Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International conference
on machine learning. PMLR, 6105-6114.

Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. Efficientdet:
Scalable and efficient object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10781-10790.
Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
2016. BranchyNet: Fast inference via early exiting from deep neural
networks. In Proceedings of the 23rd International Conference on Pattern
Recognition (ICPR). IEEE, 2464-2469.

Tensorflow. 2021. Official implementation of SSD-MobileNetv2-
MnasFPN. https://github.com/tensorflow/models/tree/master/
research/object_detection.

Ultralytics. 2021. YOLOv3 in PyTorch. https://github.com/ultralytics/
yolov3.

Shiyao Wang, Yucong Zhou, Junjie Yan, and Zhidong Deng. 2018. Fully
motion-aware network for video object detection. In Proceedings of
the European conference on computer vision (ECCV). 542-557.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online
and realtime tracking with a deep association metric. In 2017 IEEE
international conference on image processing (ICIP). IEEE, 3645-3649.
Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,
Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt
Keutzer. 2019. FBNet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 10734—
10742.

Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. 2019.
Sequence level semantics aggregation for video object detection. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). 9217-9225.

Ran Xu. 2020. ApproxDet: Content and Contention-Aware Approxi-
mate Object Detection for Mobiles. https://github.com/StarsThu2016/
ApproxDet.

Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath,
Somali Chaterji, Subrata Mitra, and Saurabh Bagchi. 2021. ApproxNet:
Content and contention-aware video object classification system for
embedded clients. ACM Transactions on Sensor Networks (TOSN) 18, 1
(2021), 1-27.

Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mi-
tra, Somali Chaterji, Yin Li, and Saurabh Bagchi. 2020. ApproxDet:

349

Xu et al.

content and contention-aware approximate object detection for mo-
biles. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems (SenSys). 449-462.

Chun-Han Yao, Chen Fang, Xiaohui Shen, Yangyue Wan, and Ming-
Hsuan Yang. 2020. Video Object Detection via Object-Level Temporal
Aggregation. In European Conference on Computer Vision. Springer,
160-177.

Shuai Yu, Rami Langar, Xiaoming Fu, Li Wang, and Zhu Han. 2018.
Computation offloading with data caching enhancement for mobile
edge computing. IEEE Transactions on Vehicular Technology 67, 11
(2018), 11098-11112.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. 2017. Live video analyt-
ics at scale with approximation and delay-tolerance. In 14th USENLX
Symposium on Networked Systems Design and Implementation (NSDI).
377-392.

Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li.
2018. Single-shot refinement neural network for object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 4203-4212.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shuf-
flenet: An extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 6848—6856.

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019.
Object detection with deep learning: A review. IEEE transactions on
neural networks and learning systems 30, 11 (2019), 3212-3232.
Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. 2018. Towards
high performance video object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 7210-7218.
Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017.
Flow-guided feature aggregation for video object detection. In Proceed-
ings of the IEEE International Conference on Computer Vision. 408—417.
Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017.
Deep feature flow for video recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2349-2358.

[69]

[70]

[71]

[72]

[73]

[74]
[75]
[76]

[77]

A Artifact Appendix
A.1 Abstract

This appendix mainly describes the artifact of LITERECONFIG
with four major claims that describe the key performance of
L1TERECONFIG, the accuracy improvement of LITERECONFIG
over the state-of-the-art (SOTA) works, the latency improve-
ment of LITERECONFIG over the accuracy-optimized models,
and the accuracy improvement of LITERECONFIG over vari-
ants of LITERECONFIG (ablation study). The artifact is pack-
aged to be used easily with several commands. In particular,
Section A.2 describes how to access the code and dataset,
and what the hardware and software dependencies are. User
needs to go through the setup steps in Section A.3 on the eli-
gible hardware. Finally, Section A.4 explains in detail how to
validate the major claims with experiments. Due to the page
limit, more detailed step-by-step instructions for the experi-
ments can be found in the “‘README.md” document in our
packaged artifacts at https://doi.org/10.5281/zenodo.6345733.

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/StarsThu2016/ApproxDet
https://github.com/StarsThu2016/ApproxDet
https://doi.org/10.5281/zenodo.6345733

LiTERECONFIG: Cost and Content Aware Reconfiguration

A.2 Description & Requirements

A.2.1 How to access. The link to our artifact is: https:
//www.doi.org/10.5281/zenodo.6345733. Please follow the
code setup instruction (‘“README.md”) in the artifact.

A.2.2 Hardware dependencies. An NVIDIA Jetson TX2
and an NVIDIA Jetson AGX Xavier board.

A.2.3 Software dependencies. Flash the embedded
boards with the default OS and CUDA library. Then, install
the virtual environment tool “c4aarch64”. Finally, install
the Python packages through “pip install” and “conda
install”. The packages include numpy, numba, tensorboard,
tensorflow, opencv, scikit-learn, torch, torchvision, etc. See
“INSTALL.md” for more details.

A.2.4 Benchmarks. Our dataset, ILSVRC 2015 VID
dataset!?, is not included in our artifacts because of external
dependencies. Users may download the dataset from the link
above or alternative sources.

A.3 Set-up

Please follow the library setup instruction (“INSTALL.md”)
in the artifact.

A.4 Evaluation workflow

Once the setup is finished, the evaluation of LITERECONFIG,
variants of LITERECONFIG, and the baselines are generally
composed of two steps — (1) running a certain protocol on
a certain embedded device, given some constraint, and pro-
ducing the results files, and (2) extracting the performance
metrics (i.e., accuracy and latency) of these protocols with
post-processing scripts to understand how good or bad a
protocol is. For all experiments, we provide the sample com-
mands to run on our embedded devices (paths may vary on
user’s own device) and generate results files (step #1 of the
workflow) and post-processing scripts to extract key per-
formance metrics from the experiment runs (step #2 of the
workflow). For artifact evaluation purposes, we also provide
the results files of our evaluation so that the evaluation team
can skip the time-consuming step #1 and verify step #2 with
our provided files.

A.4.1 Major Claims.

e (C1): LITERECONFIG achieves 45.4% mAP accuracy at 30
fps on the NVIDIA TX2 board under no resource con-
tention for a video object detection task. The accuracy
is 46.4% mAP accuracy at 50 fps on the NVIDIA Xavier
board. This is proven by experiment (E1) described in
Section 5.3 whose results are reported in Table 2.

o (C2): LITERECONFIG improves the accuracy 1.8% to 3.5%
mean average precision (mAP) over the state-of-the-art
(SOTA) adaptive object detection systems. This is proven

Othe public link for the dataset is https://image-net.org/challenges/LSVRC/
2015/

-

5

350

EuroSys ’22, April 5-8, 2022, RENNES, France

by experiment (E2) described in Section 5.3 whose results
are reported in Table 2.

® (C3): LITERECONFIG is 74.9X, 30.5X, and 20.0X faster
than SELSA, MEGA, and REPP on the Jetson TX2 board.
This is proven by experiment (E3) described in Section 5.3
whose results are reported in Table 3.

e (C4): LITERECONFIG is 1.0% and 2.2% mAP better
than LiTERECONFIG-MaxContent-ResNet given (0% con-
tention, 33.3 ms latency SLO) and (50% contention, 50.0
ms latency SLO) cases. This is proven by experiment (E4)
described in Section 5.3 whose results are reported in
Table 2.

A.4.2 Experiments.

Experiment (E1) [Key accuracy and latency performance
of LiteReconfig] [10 human-minutes + 4 compute-hours]:
we will run LiteReconfig on two types of embedded devices
and examine the key accuracy and latency performance of it.
Expected accuracy and latency on TX2 are 45.4% mAP and <
33.3 ms (95 percentile), and those on Xavier are 46.4% mAP
and < 20.0 ms (95 percentile) (claim C1).
On TX2, run the following commands,

$ conda activate ae

(ae) $ cd ~/LiteReconfig_AE

(ae) $ python LiteReconfig.py --gl @ \
--lat_req 33.3 --mobile_device=tx2 \
--output=test/executor_LiteReconfig.txt

On AGX Xavier, run the following commands (this can be
done in parallel with the ones on TX2).

$ conda activate ae

(ae) $ cd ~/LiteReconfig_AE

(ae) $ python LiteReconfig.py --gl 0 \
--lat_req 20 --mobile_device=xv \
--output=test/executor_LiteReconfig. txt

The results will be written to test/executor_LiteReconfig_
g0_{lat33_tx2,1at20_xv}_{det,lat}.txt. We have saved a copy
of these files in “offline_logs_AE/”, and use “python of-
fline_eval_expl.py” to compute the accuracy and latency
from these results files. One may replace the filenames by
those in the online execution.

Experiment (E2) [Accuracy improvement at the same la-
tency over the state-of-the-art (SOTA) work, ApproxDet] [20
human-minutes + 12 compute-hours]: we will run LiteRecon-
fig on TX2 given 100 ms latency SLO and examine the true
accuracy and latency metrics of it. Then we will compare it
with ApproxDet. Expected accuracy and latency of LiteRe-
config under no contention is 50.3% mAP and less than 100
ms 95 percentile latency, which is 3.5% higher than that of
ApproxDet in the same condition (46.8%). Under 50% GPU
contention and 100 ms SLO, the accuracy of LiteReconfig is
47.0%, which is 1.8% mAP higher than that of SmartAdapt
(45.2%) (claim C2). On TX2, run the following command,

https://www.doi.org/10.5281/zenodo.6345733
https://www.doi.org/10.5281/zenodo.6345733
https://image-net.org/challenges/LSVRC/2015/
https://image-net.org/challenges/LSVRC/2015/
test/executor_LiteReconfig_g0_{lat33_tx2,lat20_xv}_{det,lat}.txt
test/executor_LiteReconfig_g0_{lat33_tx2,lat20_xv}_{det,lat}.txt

EuroSys ’22, April 5-8, 2022, RENNES, France

1 $ conda activate ae

2 (ae) $ cd ~/LiteReconfig_AE

(ae) $ python LiteReconfig.py --gl 0 \

4 --lat_req 100 --mobile_device=tx2 \

--output=test/executor_LiteReconfig. txt

¢ (ae) $ python LiteReconfig_CG.py --GPU 50

7 (ae) $ python LiteReconfig.py --gl 50 \

8 --lat_req 100 --mobile_device=tx2 \
--output=test/executor_LiteReconfig. txt

(ae) $ python LiteReconfig_CG.py --GPU @

The results will be written to test/executor_LiteReconfig_g{0,
50}_lat100_tx2_{det,lat}.txt. Similar post-processing script
(“python offline_eval_exp2.py”) applies.

Experiment (E3) [Latency improvement of LiteReconfig
over accuracy-optimized baselines, i.e. SELSA, MEGA, and
REPP] [20 human-minutes + 1 compute-hours]: we will run
LiteReconfig on the TX2 and examine the latency perfor-
mance of it. Expected mean latency of LiteReconfig is 28.2
ms. Those of SELSA, MEGA, and REPP are 2112 ms, 861 ms,
and 565 ms. So LiteReconfig achieves 74.9%, 30.5%, and 20.0X
speed up over these three baselines (claim C3). On TX2, run
the following commands,

1 $ conda activate ae

2 (ae) $ cd ~/LiteReconfig_AE

(ae) $ python LiteReconfig.py --gl 0 \
--lat_req 33.3 --mobile_device=tx2 \

5 --output=test/executor_LiteReconfig. txt

The results will be written to test/executor_LiteReconfig_
g0_lat33_tx2_{det,lat}.txt. Similar post-processing script
(“python offline_eval_exp3.py”) applies.

Experiment (E4) [Accuracy improvement at the same
latency over a variant of LiteReconfig, i.e. LiteReconfig-
MaxContent-ResNet] [20 human-minutes + 10 compute-
hours]: we will run LiteReconfig and LiteReconfig-
MaxContent-ResNet on the TX2 and examine the accuracy
and latency performance of them. Expected accuracy given
no contention and 33.3 ms latency SLO is 45.4% for LiteRe-
config and 44.4% for LiteReconfig-MaxContent-ResNet. Ex-
pected accuracy given 50% contention and 50 ms latency
SLO is 43.6% for LiteReconfig and 41.4% for LiteReconfig-
MaxContent-ResNet. Thus, LiteReconfig is 1.0% and 2.2%
mAP better than LiteReconfig-MaxContent-ResNet in these
two cases (claim C4). On TX2, run the following commands,

1 $ conda activate ae

2 (ae) $ cd ~/LiteReconfig_AE

3 (ae) $ python LiteReconfig.py --gl o \

4 --lat_req 33.3 --mobile_device=tx2 \

5 --output=test/executor_LiteReconfig.txt
6 (ae) $ python LiteReconfig_MaxContent.py \
7 --protocol SmartAdapt_RPN --gl @ \

8 --lat_req 33.3 --mobile_device=tx2 \

9 --output=test/executor_LR_MC_ResNet. txt
10 (ae) $ python LiteReconfig_CG.py --GPU 50
11 (ae) $ python LiteReconfig.py --gl 50 \

12
13
14
15
16
17

18

351

Xu et al.

--lat_req 50 --mobile_device=tx2 \
--output=test/executor_LiteReconfig.txt
(ae) $ python LiteReconfig_MaxContent.py \

--protocol SmartAdapt_RPN --gl 50 \

--lat_req 50 --mobile_device=tx2 \

--output=test/executor_LR_MC_ResNet. txt
(ae) $ python LiteReconfig_CG.py --GPU @

The results will be written to test/executor_{LiteReconfig,
LR_MC_ResNet}_{g0_lat33,g50_lat50}_tx2_{det,lat}.txt. Sim-
ilar post-processing script (“python offline_eval_exp4.py”)
applies.

test/executor_LiteReconfig_g{0,50}_lat100_tx2_{det,lat}.txt
test/executor_LiteReconfig_g{0,50}_lat100_tx2_{det,lat}.txt
test/executor_LiteReconfig_g0_lat33_tx2_{det,lat}.txt
test/executor_LiteReconfig_g0_lat33_tx2_{det,lat}.txt
test/executor_{LiteReconfig,LR_MC_ResNet}_{g0_lat33,g50_lat50}_tx2_{det,lat}.txt
test/executor_{LiteReconfig,LR_MC_ResNet}_{g0_lat33,g50_lat50}_tx2_{det,lat}.txt

	Abstract
	1 Introduction
	2 System model, background, and requirements
	2.1 Video Object Detection Algorithms
	2.2 Content-Aware Video Object Detection Models
	2.3 Adaptive Vision Systems
	2.4 Terminology in Adaptive Vision Systems

	3 Design
	3.1 Approach Overview
	3.2 Scheduler Optimization
	3.3 Content-agnostic vs. Content-aware Accuracy Model
	3.4 Feature Selection for Scheduling
	3.5 Modeling Switching Cost

	4 Implementation
	5 Evaluation
	5.1 Baselines
	5.2 Evaluation Setup
	5.3 End-to-end Evaluation
	5.4 Evaluation of Video Content Features
	5.5 Understanding Latency-Accuracy Tradeoff
	5.6 Switching Cost and Benefit

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

