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Abstract

Several recent works seek to create lightweight deep net-
works for video object detection on mobiles. We observe
that many existing detectors, previously deemed computa-
tionally costly for mobiles, intrinsically support adaptive
inference, and offer a multi-branch object detection frame-
work (MBODEF). Here, an MBODF is referred to as a so-
lution that has many execution branches and one can dy-
namically choose from among them at inference time to sat-
isfy varying latency requirements (e.g. by varying resolution
of an input frame). In this paper, we ask, and answer, the
wide-ranging question across all MBODFs: How to expose
the right set of execution branches and then how to sched-
ule the optimal one at inference time? In addition, we un-
cover the importance of making a content-aware decision
on which branch to run, as the optimal one is conditioned
on the video content. Finally, we explore a content-aware
scheduler, an Oracle one, and then a practical one, leverag-
ing various lightweight feature extractors. Our evaluation
shows that layered on Faster R-CNN-based MBODE, com-
pared to 7 baselines, our SMARTADAPT achieves a higher
Pareto optimal curve in the accuracy-vs-latency space for
the ILSVRC VID dataset.

1. Introduction

Object detection is arguably one of central problems in
computer vision. Much progress has been made over the
past few years in deep learning based object detectors. De-
spite their impressive accuracy results on standard bench-
marks, these models come at a price of their complexity
and computational cost. This imposes a major barrier to de-
ploy these models under resource-constrained settings with
strict latency requirements, such as real-time detection in
streaming videos on mobile or embedded devices. Several
recent works seek to address this challenge by designing
light-weight models on mobiles [11,14,35,44,58], in partic-
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ular, for video object detection [6,21,22,24]. The assump-
tion and the common belief are that the object detectors that
are optimized for accuracy, such as Faster R-CNN with a
ResNet-50 backbone, are too expensive for mobile vision.

Indeed, detectors optimized for accuracy are rather com-
plex, often trained with different input resolutions, and
equipped with multiple stages (e.g. proposal generation).
It is perhaps not surprising that these detectors can adapt
to different settings at inference time. Consider the exam-
ple of Faster R-CNN [30], one can reduce the input resolu-
tion or the number of proposals for a lower latency while
still maintaining a reasonable accuracy. Such combina-
tions of choices of tunable parameters would constitute a
multi-branch object detection framework (MBODF). The
Faster R-CNN detector using a specific input resolution and
a particular number of proposals from our previous example
could be considered as one execution branch.

Our key observation is that if one is allowed to select,
at inference time, from a large set of fine-grained execu-
tion branches, the detection accuracy and latency can be
significantly improved (see Figure 1). Then, the key re-
search questions are: How to expose the right set of exe-
cution branches in an existing object detector and then how
to schedule the optimal one at inference time?

An ideal scheduler must not only consider the branches
in the model and their properties (accuracy and latency), but
also the input content. For example, if the input video only
contains larger objects, using a lower input resolution for
the detector suffices. Another example is using inexpensive
tracking to replace the costly detector, if the video content
remains mostly stationary. However, the design of such a
scheduler is challenging for streaming videos. This is be-
cause the scheduler has to “predict” potential future content
change in order to select the best branch at the current time.

In this paper, we focus on the challenging and practical
task of streaming video object detection on mobile devices,
and present a simple adaptive object detection method. Our
key innovation is to leverage standard existing object de-
tectors (Faster R-CNN, EfficientDet, SSD, YOLO) to con-



struct an MBODF for adaptive video object detection. An
MBODF combines an object detector and an object tracker,
and provides many execution choices (branches).

We demonstrate that our method, notwithstanding its
simplicity, can adapt to a wide range of latency require-
ments, ranging from 10 to 50 FPS on a mobile GPU de-
vice — the NVIDIA Jetson TX2 (a widely used device for
embedded/mobile vision benchmarks [19,33,41,43]) with
only a minor accuracy loss. For example, our method when
running at 20 FPS in streaming mode on TX2, achieves an
mAP of 70% on a large-scale dataset (ImageNet video ob-
ject detection benchmark). In contrast, the best performing
detector, MEGA [5] that supports streaming videos, has an
mAP of 75.4%, and runs only at 1.2 FPS. Further, SMAR-
TADAPT achieves 20.9% to 23.6% higher mAP than our
previous multi-branch algorithm [17] given the same con-
straint on the streaming latency (33-100 msec per frame)
(Figure 6, FR+MB vs. FastAdapt).

Next, we uncover the importance of making a content-
aware decision on which branch to run, as the optimal
one is conditioned on the video content. We explore a
content-aware scheduler — an Oracle one, and then a prac-
tical one, which uses various light-weight feature extrac-
tors, to adapt (at runtime) to the content. We show that our
content-aware Oracle scheduler achieves 6.6%—8.3% higher
mAP than a content-agnostic one (Table 3, FR+MB+Oracle
vs. FR+MB). With our realistic content-aware scheduler
(CAS), the gains are more modest, albeit, still present,
ranging from 0.1%-2.3% mAP (Table 3, FR+MB+CAS vs.
FR+MB, FastAdapt+CAS vs. FastAdapt). The strength of
SMARTADAPT is due to the synergistic use of a carefully or-
chestrated set of features that demonstrate both a low com-
putational overhead and high accuracy, and expose a fine-
grained set of branches using MBODF.

Thus, our contributions can be summarized as:

1. We point out that modern detectors are intrinsically adap-
tive, and can be re-purposed as an MBODF, achieving
varying latency and accuracy tradeoffs at inference time,
using a set of (individually) proven adaptive attributes.

2. Different from previous solutions [0, ], our work
provides a systematic study on the design of MBODF.
The result is SMARTADAPT, which combines a set of
knobs (e.g., the input resolution and number of propos-
als), and tunes the ranges and step sizes of these knobs
in a fine-grained manner. SMARTADAPT enables deploy-
ing existing detectors on a mobile device to span a wide
range of latency requirements with minor accuracy drops.

3. We show that an MBODF can achieve significant perfor-
mance gains when the choice of the execution branches is
optimally conditioned on the input content (e.g. size and
speed of objects). We also take an exploratory step to-
wards practical content-aware adaptive object detection.

2. Related Work

Efficient Object Detection Models. Efficiency is
paramount on embedded or mobile devices, where power
is limited. Many solutions design more efficient network
architectures (e.g., [11,12,18,32,36,44,58]), leading to ob-
ject detectors tailored for mobiles such as SSDLite [32],
SqueezeDet [45], Pelee [42], EfficientDet [37], and Mo-
bileDets [49]. Several recent works explore temporal re-
dundancy to accelerate video object detection on mobiles,
by fusing features from nearby frames [2 1] or using a gating
function that allows convolutions to run on a sparse set of
locations [10]. While these methods can effectively reduce
the computation cost in terms of FLOPS, they are rarely
evaluated on mobile GPUs. Further, reduction in FLOPs
does not always translate to reduction in latency [10,35].

Another stream of studies is to combine a costly ob-
ject detection module with a relatively inexpensive object
tracker module via the “tracking-by-detection” scheme [8,

]. Our method also builds on “tracking-by-detection”,
yet significantly extends existing studies to consider a wide
range of configurations that may impact the detection per-
formance while focusing on mobile vision.

Adaptive Inference for Image Recognition. These models
leverage the content characteristics from the input images
and make execution decisions conditioned on them. Previ-
ous works integrate several sub-networks [16,40], or design
a network with multiple exits [15, 38, 51], or select input
resolution at inference time [55]. However, these works are
limited to adaptation in one dimension and with a narrow
range, and do not optimize the execution choice by ingest-
ing a rich set of input features available to object detection
pipelines. Further, they do not consider video recognition.

Adaptive Inference for Video Recognition. Unlike im-
ages, videos exhibit intrinsic temporal redundancy among
neighboring frames. Several recent works leverage this re-
dundancy for efficient video classification. These efforts
include designing efficient 3D networks [7, 34, 39], dynam-
ically selecting input frame or intermediate feature resolu-
tion [25,47], skipping redundant frames [9,48], reusing fea-
tures from previous frames [26], or exploring scheduling
strategies in the high-dimensional parameter space [50, 52—

]. Such efforts greatly address challenges in mobile and
IoT systems [1].

Only a handful of previous works considered adaptive
video object detection, which is fundamentally distinct from
video classification. These works include ST-Lattice [4],
AdaScale [6], Skip-Conv [10], and our previous works of
ApproxDet [54] and FastAdapt [17]. Among these work,
ST-Lattice [4] is not designed for mobile vision. AdaS-
cale [6] and Skip-Conv [10] can not achieve explicit trade-
offs between latency and accuracy. The key difference be-
tween SMARTADAPT, ApproxDet, and FastAdapt is the
ability to switch to multiple fine-grained execution branches



using a content aware scheduler.

3. SMARTADAPT: Method and Design

Our goal is to maximize the accuracy of video object
detection models for streaming videos at stringent latency
constraints (e.g. 33 msec) on mobile GPUs. We now present
our solution design and describe our techniques.

3.1. Multi-branch Object Detection Framework

Tracking-by-detection. This is our starting point to sig-
nificantly reduce the latency of the object detection models
with a minor accuracy reduction. Rigorously, we define a
Group of Frames (GoF) as a sequence of di (detection in-
terval) consecutive frames in a streaming video, in which
we run object detectors (e.g. Faster R-CNN, EfficientDet,
YOLO), on the first frame, and run object tracker (e.g. Me-
dianFlow, KCF) on the remaining frames. In the streaming
scenario, as we process the video frame-by-frame, an object
detector can run on any frame with no prerequisite while an
object tracker depends on the detection results, either from
a detector, or from the tracker on the previous video frame.
Considering our implementation on a Faster R-CNN object
detector (in PyTorch [27], with mobile GPU) and a Medi-
anFlow object tracker (in OpenCV [3], with mobile CPU),
the tracker runs up to 114X faster, boosting the efficiency.
Tuning Knobs at Inference Time. To further improve the
efficiency and avoid a large accuracy reduction, we design
tuning knobs for this tracking-by-detection scheme. Our
design explores the accuracy-latency tradeoff in five inde-
pendent dimensions: (1) the detector interval (dz), control-
ling how often an object detector is triggered, (2) the in-
put resolution of the detector (rd), controlling the shape of
the resized image fed into the object detector, (3) the num-
ber of proposals (nprop), controlling the maximum number
of region proposals generated from the RPN module of the
Faster R-CNN detector, (4) the input resolution of the ob-
ject tracker (rt), controlling the shape of the resized image
fed into the object tracker, and (5) the confidence threshold
to track (ct), controlling a minimum threshold on the confi-
dence score of the objects below which the objects are not
tracked and output by the tracker. The multi-knob design
leads to a combinatorial configuration space as we can tune
each knob independently and in various step sizes. This
allows for a wide range of adaptations and is key to SMAR-
TADAPT’s impressive empirical results in what follows.
MBODF. We name the multi-knob tracking-by-detection
scheme, with the range and step sizes for each knob, a
Multi-branch Object Detection Framework (MBODF). An
execution branch in the MBODF is an instance of the values
of each knob. Note that not every branch in the configura-
tion space is valid, e.g. for branches that run object detector
on every frame (di = 1), the rt and ct knobs (which are
specific to the object tracker) are not relevant.
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Figure 1. Accuracy comparison of a 5-knob MBODF and a 2-knob sub-
framework (input resolution, number of proposals).

Figure 1 shows the accuracy comparison between a 2-
knob 54-branch, a 5-knob 368-branch, and a 5-knob 3,942-
branch MBODF, where each point on the Pareto optimal
curve stands for the accuracy and latency performance of
a single branch on the ILSVRC VID dataset. A 5-knob
MBODF is much more efficient than a 2-knob MBODF
(rd and nprop). It achieves a 6.1X speedup, with only a
2.41% mAP reduction, compared to 3.0X speedup, with a
2.37% mAP reduction in the 2-knob MBODF. In contrast,
the 5-knob MBODF with 10X more branches (3,942) is
only slightly better than the one with a subset of branches
(368) at any given value of a latency constraint. The root
cause of such reduced accuracy improvement is the lack
of smarts in choosing the execution branch conditioned on
the video content. In other words, if only applying a sin-
gle static branch on an entire dataset, without finer-grained
content revelations (as revealed from Figure 3), one cannot
reap the benefit of the much larger-scaled MBODEF.

3.2. Branch Selection Problem

A scheduler is a critical component in an MBODF that
decides which branch is the optimal one to run, subject to
some criteria. Considering an MBODF with m = | M| in-
dependent execution branches b € {by, bo, ..., b, } that are
capable of finishing the object detection task on streaming
videos, we use the latency of the branch as the constraint,
and maximize its accuracy as the optimization goal:

bopt = argmaxa(b, X), s.t. (b, X) <lo, (N
b

where X denotes the input video frame, [y denotes the la-
tency constraints for each frame on average, and a(b, X )
and [(b, X ) represent the accuracy and latency of the branch
b. Figure 2 shows the workflow of SMARTADAPT where
the scheduler takes the video frame as an input and deter-
mines the execution branch in the MBODF to run. Inside
the scheduler, the workflow is as follows: (1) extracts the
content features, (2) predicts the accuracy with a content-
aware accuracy predictor, and then (3) uses a branch selec-
tor to choose the optimal branch. Particularly, given the
tracking-by-detection scheme in the MBODF, where a GoF
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Figure 2. Workflow of SMARTADAPT.

is a unit for scheduling, X isrelaxed to a GoF. In the stream-
ing scenario, a scheduler should be able to make a decision
at any frame z; in the streaming video where the X is the
GoF starting from the frame ;.

As the optimal branch selection is conditioned on the
current frame and a few future frames', a content-aware
scheduler leverages the content characteristics in such
a GoF to maximize accuracy. In contrast, a content-
agnostic scheduler considers the average accuracy of dif-
ferent branches across the entire dataset, which loses the
nuances of the snippet-level video characteristics.

In Figure 3, we show the Pareto optimal branches for
three randomly selected video snippets of different content
characteristics, and the one that inputs the entire dataset for
X. We glean that the accuracy-latency frontiers vary sig-
nificantly from snippet to snippet and are different from the
“average” for the entire dataset (red curve). This motivates
the use of a content-aware scheduler for identifying the ex-
ecution branches for a video object detection pipeline. Ac-
cording to our study, 83.4% branches in the MBODF are
most accurate for at least one video snippet at any latency
requirement. Among a dataset of 1,256 video snippets, de-
rived from the ILSVRC VID dataset, we find 627 unique
sets of accuracy-latency frontier branches. Thus, we con-
clude that it is important to determine the optimal branch
for a given video snippet rather than use a single branch
for an entire dataset. This latter approach is also observed
with benefit in some prior works, addressed either by us-
ing a content-agnostic scheduler [17], or enabling multiple
sub-models to choose from [55, 56].

3.3. Content-aware Oracle Scheduler

We define a perfect content-aware scheduler for an
MBODF M an “Oracle” scheduler. Such a scheduler se-
lects the optimal branch b,,; to execute. The accuracy-
latency performance of an Oracle scheduler establishes the
upper-bound performance of a content-aware scheduler,
something that has not been established up until now.

To realize an Oracle scheduler, we grant three imprac-
tical powers to it — (1) it has access to the future frames
in the GoF, (2) it has the annotation of the objects to cal-
culate the ground truth accuracy a(b, f(X)) so that no pre-
dictions are performed, (3) it exhaustively tests all avail-
able branches and selects the most accurate one, subject
to the latency constraint. Figure 4 shows the performance
of the Oracle scheduler on two 5-knob MBODF instantia-
tions, with 3,942 and 368 (a subset) branches and compares

I'The size of the GoF is typically between 1 and 100 in the MBODF.
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with a content-agnostic scheduler, which chooses a single
static branch for the entire dataset. We observe that the Or-
acle scheduler has a 3.2% to 4.6% mAP improvement in
the 368-branch MBODF at 10, 20, 30, and 50 FPS, four
typical latency constraints on mobile devices. This is rel-
ative to the baseline with 368 branches. Interestingly, the
mAP improvement of the Oracle scheduler is higher for
the 3,942-branch MBODF, 6.6%—-8.3%, compared to the
above-mentioned 3.2%-4.6% (which is for the 368-branch
MBODF). In contrast, such large-scaled MBODF has no
benefit in the content-agnostic setting. The large gap moti-
vates a content-aware scheduler that can adapt over a large
and fine-grained range of knobs.

3.4. Designing a Content-aware Scheduler (CAS)

Our goal is to design a light-weight scheduler to de-
termine the content-specific execution branches on-the-fly,
bereft of the impractical powers that we granted to the Or-
acle. As Eq. 2 suggests, the branch selector in the sched-
uler requires a latency predictor and an accuracy predictor
to solve the optimization. The former has been studied in
our previous work [54] through a resource contention sen-
sor and a content-aware latency predictor on each execution
branch. In this work, we focus on the design of a content-
aware accuracy predictor based on simple content features.
Content Feature Extractors. A content feature extractor
aims to build a mapping f(-) from the frame representation
X to its feature representation since the frame representa-
tion carries too much redundancy. The content feature ex-
tractor is expected to be discriminative so that the feature
values it carries can be used to predict the content-specific
accuracy of each execution branch. Then, a content-aware
accuracy prediction model aims to build a mapping a(-)
from the feature representation f (X ) to the accuracy of a
given execution branch b. Thus, the scheduler model can be
formulated as follows:

bopt = argmaxa(b, f(X)), s.t. 1(b,X)<lp. (2
b

A well-designed content feature extractor should be rich

in content characteristics, discriminative enough, and light-

weight in the computation. Table 1 summarizes the list of

our content features, specs, and descriptions. We start from

(98]



Name Dim. Trainable | Description

light 4 No Composed of height, width, number of objects, aver-
aged size of the objects

HoC 768 No Histograms of Color on red, green, blue channels

HOG 5400 No Histograms of Oriented Gradients

ResNet50 1024 No ResNet50 features from the object detector in the
MBODF, average pooled over height and width dimen-
sions, and only preserving the channel dimension

CPoP 31 No “Class Predictions on the Proposal” feature (CPoP)
from the object detector of the MBODEF, averaged
pooled over all region proposals, and only preserving
the class dimension (including a background class)

MobileNet | 1280 Yes Efficient, effective feature extractor, average pooled
from the feature map before the fully-connected layer,
and only preserving the channel dimension

Table 1. Feature extractors in SMARTADAPT’s content-aware scheduler.

some light features that come with no cost to extract, i.e.
the height and width of the video frame, the number of ob-
jects, and average size of the objects. We then choose two
traditional vision features — Histograms of Color (HoC)
and Histograms of Oriented Gradients (HOG) to character-
ize the color and gradient information. As the object detec-
tor itself is a neural network with intermediate features, we
average pool one from the layer after the feature extractor
head of Faster R-CNN backbone, i.e. ResNet-50, and one
from the prediction logits on the object classes. These two
features are attractive as they incur no extra computation
cost, yet encode the object information within videos. Fi-
nally, we propose to use a widely used DNN-based feature
extractor, MobileNetV2 [32]. It is lightweight in terms of
the computation cost and jointly trainable with the down-
stream content-aware accuracy predictor. Naturally, at in-
ference time, the scheduler has to run ahead of the MBODF
and thus has to rely on extracted content features from the
previous GoF. Due to the temporal smoothness in video
frames [9,25], this simplification works well in practice.
Content-aware Accuracy Predictor. A content-aware ac-
curacy predictor infers the accuracy of all branches in the
MBODF given a feature vector. We use a 5-layer fully con-
nected neural network (NN) with ReLLU, 256 neurons in all
hidden layers, and residual connections [ 3]. As the dimen-
sions of the light features and other features vary signifi-
cantly in 1 to 3 orders of magnitude, we add a feature pro-
jection layer before the features are concatenated and fed
into the 5-layer NN. The feature projection layer projects
both light features and other high-dimensional features to
fixed 256-dimensional vectors so that they are equally rep-
resentative in the accuracy predictor. We use MSE loss and
train the NN on a derived snippet-granularity dataset from
ILSVRC VID (see Sec. 4 for details), where the ground
truth accuracy of the branches are profiled offline.

Joint Modeling of Content and Latency Requirement.
We additionally explore a network that jointly models con-
tent and latency requirement for branch selection. Different
from the previous design, this model does not pair with a
latency predictor and thus is simpler in design. Specifically,
we begin by embedding content and latency requirement
into separate feature vectors using multi-layer perceptrons
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(MLPs). Following FiILM [28], our model regresses a set
of affine weights v and biases /3 from the latency feature F;
using another MLP and subsequently transforms the con-
tent feature F,. as F(/ = v - F, + . In doing so, our model
adapts to the current latency requirement through the mod-
ulation of content features. An MLP further processes the
modulated content features FC/ and predicts accuracy of all
branches. We train our model using the same MSE loss as
before, except that we set the target accuracy of a branch to
zero when latency requirement is violated. We show in our
experiments that this joint modeling scheme is most effec-
tive under tight latency constraint.

Candidate Branches. Predicting on thousands of execu-
tion branches is challenging. SMARTADAPT narrows down
the number of candidate execution branches in the design
phase to top K. The intuition is that the top K execu-
tion branches should cover the majority of optimal branches
across videos of different content characteristics and differ-
ent latency constraints, for properly chosen K. We use the
method called Optimal Branch Election (OBE) to select the
K candidate branches. Figure 5(a) shows the recall of using
K branches (i.e. proportion where the optimal branch be-
longs to one of the top K), rather than all 368 branches. We
see that in the 368-branch MBODF, 10.1% branches suffice
to achieve 90% recall. Also, if we consider the candidate
branches for a particular latency constraint, even fewer can
be considered. To achieve a 90% recall, the percentages
of K branches are 1.4%, 2.7%, 3.3%, and 7.1%, given 20,
33.3, 50, and 100 msec latency constraints. Figure 5(b)
shows such relation on a larger-scaled MBODF with 3,942
branches, with a lower ratio of branches that need to be
considered. Thus, using top K candidates can effectively
reduces the cost of online scheduling and offline profiling.

4. Implementations

All models are trained on a server with two NVIDIA
P100 GPUs; evaluated on NVIDIA TX2 with a 256-core
NVIDIA Pascal GPU on a 8GB unified memory. Our
method is implemented in PyTorch, yet further speedup us-
ing TensorRT might be possible.

Profiling. Once the tuning knobs are determined for an ob-
ject detector, it is important to determine the ranges and step

[98)
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di rd nprop rt ct

1,248 224%*,352,384,288,320, | 3*5%10%,20%| 25%,50% 0.05,0.1
20,50,100% | 416%,448*,480%*,512* 100, 1000 100% 0.2,0.4*

Table 2. Choices of the tuning knobs in the MBODF with Faster R-CNN
object detector in the 368-branch variant (* indicates additional choices in
the 3,942-branch variant).

sizes of values for each knob. We profile the multi-knob
tracking-by-detection scheme and evaluate the accuracy-
latency relation on each knob. We then determine the ranges
and step sizes according to the monotonic range of such re-
lation and the constraints of each knob. Finally, we imple-
ment our MBODF on top of Faster R-CNN (a 368-branch
and a 3,942-branch variant), EfficientDet, YOLOv3, and
SSD. Specifically, we implement 5 tuning knobs for the
Faster R-CNN object detector (Table 2). Those for the other
detectors are in the Supplement.

Snippet-granularity Dataset. = We derive a snippet-
granularity dataset to study the content-aware accuracy
of the execution branches. Given a video dataset
{v1,ve,...u5,} with h videos, we clip each video into [-
frame video snippets, and each video snippet is our unit
for evaluating content-specific accuracy. Too small an [
value makes mAP meaningless, and too large an [, reduces
the content-aware granularity. We choose [ = 100 for the
ILSVRC 2015 VID dataset. To further enlarge the training
dataset, we use sliding windows to extract more video snip-
pets. Supposing a temporal stride of s frames, every [-frame
snippet starting at the frame whose index is the multiple of
s is selected as a video snippet (we use s = 5), enlarging
the training dataset by a factor of [ /s.

Training content-aware scheduler model. We train our
content-aware accuracy predictors for 400 epochs, with a
batch size of 64, a weight decay of 0.01, and an SGD opti-
mizer of fixed learning rate of 0.01, and momentum of 0.9.

5. Experiments

Our experimental results are composed of three parts.
First, we evaluate our best performing models over multiple
backbone object detectors and compare with the content-
agnostic baselines. Second, we perform ablation studies
of our techniques over the MBODF with Faster R-CNN
(FR+MB+CAS) and FastAdapt (FastAdapt+CAS) proto-
cols and study the impact of content-aware techniques. Fi-
nally, we discuss the benefit of post-processing methods on
the accuracy and latency cost of both the offline profiling
and the online scheduler. We report results on the ILSVRC
2015 VID dataset and a snippet-granularity derivative of the
dataset (only Table 4), and use different latency constraints
to demonstrate the strength of our method. We achieve 70%
mAP accuracy at 20 FPS and lead the accuracy frontier at
a wide range of latency constraints. Before we present our
results, we summarize our evaluation scenario, dataset and
metrics, and naming convention for the protocols.

Streaming Inference. As we study the efficient and adap-
tive object detection systems on mobiles, the typical us-
age scenario is to process the videos at the speed of their
source, i.e. 30 FPS, in the streaming style. This means (1)
one cannot use the raw video frame or features of video
frames in the future to refine the detection results on the
current frame, (2) one cannot refine the detection results of
past frames, and (3) the algorithm should process the video
frame-by-frame in the timestamp order. We discuss the
comparison with other protocols in the offline mode with
post-processing techniques in Sec. 5.2.

Dataset and Metrics. We use ILSVRC 2015 VID
dataset for our evaluation. Particularly, we train our fea-
ture extractors and accuracy predictors on our snippet-
granularity dataset derived from the ILSVRC 2015 VID
training dataset, which contains 3,862 videos. Our snippet-
granularity dataset of 1,256 video snippets is derived from
10% videos in the training dataset, considering the signif-
icant amount of execution branches in our MBODF. We
evaluate our models on both ILSVRC 2015 VID valida-
tion dataset and our snippet-granularity dataset. The former
contains 555 videos, and we evaluate object detection per-
formance by reporting (1) mean Average Precision (mAP)
at IoU=0.5 as the accuracy metric and (2) mean execution
latency per frame on the NVIDIA Jetson TX2 as the la-
tency metric. The latter has 1,965 video snippets. Here we
evaluate our accuracy prediction results, and report Mean
Squared Error (MSE), Spearman Rank Correlation (SRC),
and Recall of the most accurate branches between the pre-
dicted accuracy and the ground truth accuracy.

Protocols. We formulate several protocols that implement
a set of techniques for efficient video object detection. We
replicate the SOTA object detectors and create MBODF
for each model by designing tuning knobs and determining
ranges and step sizes for each knob (Sec. 4). The variants
of SMARTADAPT (anything with “MB” or “CAS” in the
name) and baselines are as follows:

e FR+MB Our MBODF on top of the Faster R-CNN [30]

object detector with ResNet-50 [13] and FPN [20]. We

have a 368-branch and a 3,942-branch variant due to the

different ranges and step sizes in each knob.

ED+MB: Our MBODF on EfficientDet [37].

YL+MB: Our MBODF on YOLOV3 [29].

SSD+MB: Our MBODF on SSD [23].

FastAdapt [17]: An adaptive object detection sys-

tem with 1,036 approximation branches and a content-

agnostic scheduler.

e ApproxDet [54]: Another adaptive object detection sys-
tem, but less efficient than FastAdapt.

o FR+MB+CAS: Our content-aware scheduler with our
MBODF on top of Faster R-CNN.

o FastAdapt+CAS: Our content-aware scheduler with an
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Figure 6. Accuracy-latency frontier. Our MBODF on top of Faster R-CNN
(FR+MB) achieves higher accuracy at a wide latency range (2 - 85 FPS).

off-the-shelf adaptive object detection system.

e AdaScale [60]: an adaptive and efficient video object de-
tection model with a scale knob. We evaluate a multi-
scale (MS) variant as its main design, and include several
single scales (SS) for comparison.

e Skip-Conv ED DO [10]: We use the norm-gate variant
of Skip-Conv on top of an EfficientDet DO model. The
original implementation only shows MAC and wall time
reduction on CPUs. We evaluate Skip-Conv on the mo-
bile GPU to compare with SMARTADAPT.

o MEGA RNI101 [5]: ResNet 101 version of MEGA. In
our streaming inference scenario, we cannot access the
frames or features in the future or refine the detection
in the past. Thus, we report the accuracy of the still-
image object detection baseline in MEGA. This applies
to SELSA RN101 and REPP YOLOvV3 as well.

e SELSA RN101 [46]: ResNet-101 version of SELSA.

e REPP YOLOV3 [31]: YOLOV3 version of REPP.

5.1. Performance of MBODFs

Figure 6 shows the accuracy and latency performance of
each protocol, in which the latency scale is logarithmic to
include a large variety of protocols. We can observe that our
FR+MB protocol leads the accuracy-latency frontiers com-
pared to baselines and other MBODFs in our work. Particu-
larly, FR+MB achieves 67.5% mAP at 30 FPS, 69.7% mAP
at 20 FPS, 71.0% mAP at 10 FPS on the TX2. The adap-
tation range is 40.5x in latency (9.8x within 3% accuracy
reduction) and the accuracy is superior to all other proto-
cols given the same latency constraint. On the other hand,
our ED+MB, YL+MB, and SSD+MB also enhance the effi-
ciency to achieve the real-time inferencing speed (30 FPS).
As for baseline protocols, MEGA and SELSA, with their
deeper ResNet 101 kernel, they are 2.9% and 1.1% more ac-
curate than our most accurate branch in FR+MB and much
slower than us (running at 1.2 and 0.4 FPS). REPP, Skip-

N
«

Protocols 20.0ms | 33.3ms | 50 ms 100 ms
FR+MB+Oracle (3,942 br.) | 71.5% 75.8% 76.3% 77.6%
FR+MB+Oracle (368 br.) 67.1% 72.1% 72.9% 74.8%
FR+MB+CAS 64.1% 68.3% | 69.8% 71.1%
FR+MB 63.6% 67.5% 69.7% 71.0%
FastAdapt+CAS N/A 46.1% | 47.1% 50.3%
FastAdapt N/A 43.8% 46.4% 49.0%
ED+MB 45.1% 51.3% 52.0% 52.5%
SSD+MB N/A 45.5% 46.3% 46.7%
YL+MB N/A 42.1% 45.8% 47.3%
ApproxDet N/A N/A N/A 46.8%

Table 3. Accuracy comparison of SMARTADAPT over all efficient base-
lines given stringent latency constraints on the ILSVRC VID validation
dataset. The object detectors FR, ED, SSD, and YOLO cannot meet the
100 msec latency constraint with a MBODF and thus not shown. N/A
means that the accuracy is unusably low.

metrics MSE SRC Recall
features 368 br. | 3,942 368 br. | 3,942 368 br. | 3,942
br. br. br.
baseline 0.091 0.109 0.377 0.376 0.354 0.343
light 0.083 0.109 0.385 0.385 0.368 0.347
HoC 0.083 0.109 0.387 0.385 0.369 0.348
HOG 0.084 0.103 0.386 0.384 0.347 0.348
MobileNet 0.082 0.102 0.385 0.385 0.368 0.347
MobileNet Tr. 0.083 N/A 0.385 N/A 0.361 N/A

Table 4. Evaluation of our content-aware MBODF on top of Faster R-
CNN object detector with different content extractors against the content-
agnostic MBODF (baseline) on the snippet-level dataset. N/A means the
training cannot finish in a reasonable time.

Conv, AdaScale, FastAdapt and ApproxDet are both worse
than our FR+MB protocol with lower accuracy and higher
latency. To conclude, our MBODFs on top of four pop-
ular object detectors can greatly enhance the efficiency to
achieve real-time speed and the best of them, FR+MB, leads
the accuracy-latency frontier and has comparable accuracy
with the accuracy optimized models.

We then look into all adaptive and efficient protocols
that are able to run within 100 msec per frame (10 FPS
speed) and examine the accuracy at 50, 30, 20, and 10 FPS
in Table 3. The results show that FR+MB+CAS achieves
marginally better accuracy results than FR+MB by 0.1%
to 0.8% mAP through its content-aware scheduler. Com-
pared to the FastAdapt baseline, our content-aware sched-
uler achieves a higher benefit, 0.7% to 2.3% mAP improve-
ment. Note that our CAS results are still far from our Oracle
results because (1) we cannot exhaustively run every branch
and select the most accurate one, (2) we cannot access anno-
tations online to calculate the ground truth accuracy, and (3)
we cannot access future frames and the scheduler’s choice
is based on the features of current and past frames. To
summarize, in addition to the illuminating results in Fig-
ure 6, our exploration on the content-aware design boosts
the accuracy-latency frontier further.

We further evaluate the CAS with different feature ex-
tractors. On the snippet-level dataset, Table 4 shows the
MSE, SRC, and recall of our full stack of techniques with
different off-the-shelf and trainable feature extractors, on
top of a 368-branch and a 3,942-branch FR+MB. The re-
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sults show consistent lower MSE, higher SRC, and recall in
the CAS of all feature extractors compared to the content-
agnostic baseline. We include a further detailed ablation
study with feature extractors, candidate branches, and joint
training and modeling in the Supplement.

5.2. Further Discussions

Impact of Post-processing & Accuracy in Offline Mode.
To fairly compare SMARTADAPT with the accuracy opti-
mized models, we apply REPP [31] and Seq-BBox Match-
ing (SBM) [2] post-processing methods to our detection re-
sults in the offline mode. The averaged mAP improvement
over FR+MB is 2.60% and 2.38%. We show the details of
the accuracy improvement on each accuracy-latency fron-
tier branches of the two approaches in the Supplement.
While the latency cost of these processing techniques is
heavily dependent on the number of objects in a given
video, the overall averaged latency cost per frame is 24
msec for REPP and 9 msec for SBM. Furthermore, we have
evaluated these post-processing methods in online mode.
We find that the latency cost in such online mode is more
than 100X higher than that in the offline mode since the
post-processing is iteratively done on every frame. This
points to the difficulty of improving accuracy in streaming
content through existing post-processing techniques.
Offline Profiling Cost. The cost of profiling MBODF to
realize an Oracle scheduler and derive a snippet-granularity
dataset to study content-aware accuracy is significant. Con-
sidering the 3,942-branch MBODF on top of the FRCNN
object detector, in the basic case, we need to run every
branch on the training and test datasets to collect its latency
and accuracy. We deploy a set of engineering techniques
to speed up the profiling by parallelizing it (accuracy pro-
file can run on the server, not on the mobile device) and
reusing results across branches (details in Supplement).
Combining these techniques, we are able to finish the pro-
filing within 5 days on two servers (specs in Sec. 4).
Overhead of the Content-aware Scheduler (CAS). While
the CAS improves accuracy-latency frontier of the MBODF,
we further evaluate its latency overhead because a naive de-
sign will result in additional overhead of the scheduler on
top of the latency of MBODF. Figure 7 shows the latency

breakdown in the CAS. The cost of light feature is zero, and
the cost of ResNet50 and CPoP feature extractors are minor,
since ResNet50 and CPoP features come from the object de-
tector itself. The costs of the HoC and HOG features are in-
termediate, between 20 to 35 msec per run, adding a minor
overhead considering its triggering frequency ranges from
every 8 to 50 frames. The cost of a MobileNetV2 features,
whether trainable or not, is around 65 msec per run.

Figure 8 further evaluates FastAdapt+CAS with a 33.3
msec latency constraint. The latency of the execution kernel
is almost the same and summed latency meets the latency
budget for all feature extractors (including the most expen-
sive MobileNetV2), owing to a conservative branch selec-
tion strategy where the branch selector uses 95th percentile
latency as the criteria to choose the branch. Furthermore,
we find that the latency cost of MobileNetV2 can be re-
duced by 20% using a smaller input resolution of 64x64x3,
with similar performance —one of many optimizations that
we can leverage to further reduce the cost.

6. Conclusion

We have demonstrated in a multi-branch (video) object
detection framework (MBODF) how to expose the right
set of execution branches, and then, how to schedule the
optimal one at inference time. We uncovered the impor-
tance of making a content-aware decision on the execu-
tion branch to run. Finally, we explored a content-aware
scheduler SMARTADAPT, an Oracle one, and then a prac-
tical one, which uses various light-weight feature extrac-
tors, to adapt to the content at runtime. We demonstrated
that our method, notwithstanding its simplicity, can adapt
to a wide range of latency requirements (range of 40X),
on a mobile GPU device, NVIDIA Jetson TX2. SMAR-
TADAPT, integrated with Faster R-CNN as the MBODF,
leads the Pareto optimal accuracy-vs-latency frontier over
7 baselines. SMARTADAPT outperforms a content-agnostic
MBODF baseline, FastAdapt, by 20.9%-23.6% mAP. Our
work can benefit from ongoing work on better video fea-
ture extractors (to be used in our content-aware scheduler),
improved video object detection and tracking models, and
better post-processing algorithms.
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