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A B S T R A C T

A significant source of error was found in the paper by Zhen and Davies which is highly cited for use in
calculating Lennard Jones N-M potential parameters. This error was corrected for and a new more easily
implemented method for determining N-M parameters was developed. N-M parameters for 38 metallic elements
were calculated using this new method in addition to Morse and Lennard Jones 6-12 parameters. Molecular
dynamics simulations were carried out to illustrate the increased accuracy of the new parameters. The predicted
bulk modulus of silver using Zhen and Davies parameters was off by approximately 40%, while the bulk
modulus calculated using the parameters generated in this study was within 2% of the experimental value.
Finally, a discussion on the limitations of each potential type for describing different metallic systems is
presented. In particular, the overly slow decay rate of the N-M potential with distance is addressed for small
values of parameter ‘‘m’’.
1. Introduction

Interatomic potentials are a class of mathematical functions used to
describe the change in potential energy between a group of atoms as
a function of the coordinates of all the atoms present. Such functions
are useful for carrying out molecular dynamics (MD) and molecular
Monte Carlo (MC) simulations that bridge the gap between quantum
and mesoscale descriptions of materials. The oldest and most basic
potential types are pair potentials. This sub class of interatomic poten-
tials describes bond energy purely in terms of interatomic separation.
Their simplicity makes them easy to implement and computationally
efficient. As a result, they are used to simulate a wide variety of
different phenomena [1–3].

The use of pair potentials for describing metallic solids is some-
what outdated given the development of bond order potentials that
are both more accurate and exhibit greater functionality [4–6]. Pair
potentials are unable to correctly describe the energetics of defects and
generally predict close packed crystal structures as having the lowest
energy state regardless of whether the physical crystal structure is
close packed or not. Despite their limitations, pair potentials are still
relevant for a variety of reasons: (1) Most bond order potentials have
a pair potential component [7,8]. For example, the Tersoff potential
s a modified/improved Morse potential [7]. (2) Pair potentials have
low computational overhead and can accelerate simulations when
ppropriately used. (3) Pair potentials can be used to extend bond order
otentials by describing bonding behavior that the bond order potential
as not fitted for. An example of which is the use of pair potentials to
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describe interaction between a substrate and foreign atoms deposited
through physical vapor deposition [9]. As a result of their continued
relevance to the scientific community, it is important to ensure that
tabulated pair potential parameters as well as the descriptions of the
methods used to generate pair potentials are accurate.

Four pair potentials are studied in this paper. They include the
Lennard Jones potential, Morse potential, Lennard Jones N-M potential,
and the Mie potential. Their mathematical forms are given below, with
a description of variables used throughout the document provided in
the appendix.

Lennard Jones:

𝑈𝐵𝑜𝑛𝑑 = 4𝜖
[

(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]

(1)

Morse:

𝑈𝐵𝑜𝑛𝑑 = 𝜖
[

𝑒−2𝐴(𝑟−𝑟𝑚𝑖𝑛) − 2𝑒−𝐴(𝑟−𝑟𝑚𝑖𝑛)
]

(2)

Lennard Jones N-M:

𝑈𝐵𝑜𝑛𝑑 = 𝜖
[ 𝑚
𝑛 − 𝑚

( 𝑟𝑚𝑖𝑛
𝑟

)𝑛
− 𝑛

𝑛 − 𝑚

( 𝑟𝑚𝑖𝑛
𝑟

)𝑚]
(3)

Mie:

𝑈𝐵𝑜𝑛𝑑 = 𝑛
𝑛 − 𝑚

( 𝑛
𝑚

)
𝑚

𝑛−𝑚 𝜖
[(𝜎

𝑟

)𝑛
−
(𝜎
𝑟

)𝑚]
(4)

The Lennard Jones potential is arguably the most famous and well
studied pair potential. This is largely due to its age as well as its
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mathematical simplicity [10,11]. The N-M potential is the generalized
orm of the Lennard Jones potential, where the 6 and 12 exponent
alues are made variable. As a result, there are two additional degrees
f freedom that provide extra versatility when it comes to fitting. The
ie potential is simply a reformulated N-M potential [12]. Rather than
xpressing the characteristic length in terms of the distance at which
he potential is minimized (𝑟𝑚𝑖𝑛), the distance at which the potential is
zero (𝜎) is used. The Morse potential is an exponential type potential
that differs from the three aforementioned potential types in that the
Morse potential does not approach infinity as interatomic separation
goes to zero [13]. It has three tunable parameters (𝜖, 𝐴, 𝑟𝑚𝑖𝑛) that can
be manipulated to achieve different bonding behavior.

The defacto reference for Lennard Jones and Lennard Jones N-M
parameters for metals is a publication by Zhen and Davies (it has
been cited over 200 times) [14]. In their work, a method is outlined
for determining the m, n, 𝜖, and 𝑟𝑚𝑖𝑛 values associated with the N-
M potential using lattice constant, cohesive energy, and bulk modulus
data. This method assumes that the minimum potential well distance
(𝑟𝑚𝑖𝑛) is equal to the equilibrium nearest neighbor distance. Make such
an assumption greatly simplifies calculations, but also greatly reduces
the accuracy of the calculated parameters. A subsequent study by
Magomedov tabulates Lennard Jones N-M parameters, but suffers from
additional poor assumptions such as only considering nearest neighbor
contributions [15].

The authors of this study seek to correct the issue that hindered
Zhen and Davies approach to calculating N-M parameters while also
providing the parameters for the Lennard Jones and Morse potentials.
The assumption that 𝑟𝑚𝑖𝑛 equals the equilibrium nearest neighbor dis-
tance is relaxed. Additionally, the constraint equations used to fit each
set of parameters are simplified so that each parameter can be solved
using analytical or simple iterative methods. The cohesive energy, lat-
tice constant, and bulk modulus were calculated for silver using Zhen’s
and Davies’ parameters in addition to the parameters developed here
in order to illustrate the difference in accuracy. Finally, a discussion is
included on the fundamental limitations of the potential types studied
to physically describe different metallic properties. Although this study
and the work by Zhen and Davies is targeted towards metals, it can be
shown that the N-M potentials is fundamentally incapable of correctly
describing interatomic bonding for certain metals. We illustrate this
point by giving particular attention to the influence of the cutoff
distance and the rate at which pair interactions decay.

The objectives of this publication are the following: (1) To pro-
vide detailed descriptions of the methods needed to generate potential
parameters. (2) To provide a list of Lennard Jones, Morse, and N-M
parameters for a significant number of metals. (3) To highlight the
fundamental limitations associated with using these potentials.

2. Theory

The total internal energy of a perfect crystal at 0 K can be expressed
as follows:

𝑈𝑎𝑡𝑜𝑚 =
∑

𝑖

𝑎𝑖
2
𝑈𝑏𝑜𝑛𝑑 (𝑟𝑖) (5)

where 𝑖 refers to the ith nearest neighbor and 𝑎 is the multiplic-
ity/number of equidistant atoms associated with the ith nearest neigh-
bor position. The fitting criteria used in this study are given below:

Criteria 1:

𝑈𝑎𝑡𝑜𝑚(𝑟𝑒𝑞) = 𝐸𝑐𝑜 (6)

Criteria 2:

𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟

|𝑟=𝑟𝑒𝑞 = 0 (7)

riteria 3:

𝜕2𝑈𝑎𝑡𝑜𝑚 )( 𝑑𝑟 )2|𝑟=𝑟 = 𝐵 (8)
2

𝜕𝑟2 𝑑𝑉 𝑒𝑞 𝑉0
Criteria 4:

𝑛 ≈ 2 𝑚 (9)

Potentials with two free parameters (Lennard Jones) will be fit to
reproduce the correct lattice constant and cohesive energy (criteria
1 and 2). Potentials with three free parameters (Morse) will be fit
to reproduce the correct lattice constant, cohesive energy, and bulk
modulus (criteria 1, 2, and 3). Potentials with 4 parameters (Mie and
Lennard Jones N-M) will have an additional constraint placed on the
ratio of m to n (criteria 4).

2.1. Lennard Jones fitting

Fitting Lennard Jones parameters is rather trivial, but we include
a description of the process below for completeness as well as to
demonstrate the derivation process without the complexity of the Morse
or N-M potential types. From Eq. (5), the per atom energy of a Lennard
Jones solid at 0 K is:

𝑈𝑎𝑡𝑜𝑚 =
∑

𝑖

𝑎𝑖
2
4𝜖

[

(

𝜎
𝑟𝑖

)12
−
(

𝜎
𝑟𝑖

)6
]

(10)

It is more convenient to express the interatomic separation (𝑟𝑖) in terms
of the lattice constant multiplied by a scalar: 𝑟 = 𝑟𝑙𝑎𝑡𝜆𝑖. 𝜆𝑖 is the
normalized distance between an atom and its ith nearest neighbor.
Factoring the resulting expression yields the following new equation
for per atom energy:

𝑈𝑎𝑡𝑜𝑚 = 2𝜖

[

(

𝜎
𝑟𝑙𝑎𝑡

)12
𝑆12 −

(

𝜎
𝑟𝑙𝑎𝑡

)6
𝑆6

]

(11)

where

𝑆𝑛 =
∑

𝑖
𝑎𝑖𝜆

−𝑛
𝑖 (12)

Taking the first derivative of the potential energy (Eq. (10)):

𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟𝑙𝑎𝑡

= 12𝜖
𝑟𝑙𝑎𝑡

(

𝜎
𝑟𝑙𝑎𝑡

)6
[

2
(

𝜎
𝑟𝑙𝑎𝑡

)6
𝑆12 − 𝑆6

]

(13)

Applying criteria 2 (Eq. (7)) to Eq. (13) yields the following expression
for 𝜎:

𝜎 = 𝑟𝑙𝑎𝑡

(

𝑆6
2𝑆12

)
1
6

(14)

Applying criteria 1 (Eq. (6)) to Eq. (10) and substituting the above
expression for sigma provides an expression for 𝜖.

𝜖 = −
2𝑆12𝐸𝑐𝑜

𝑆2
6

(15)

2.2. Morse and Lennard Jones N-M potential fitting

The above subsection illustrates the general method for determining
potential parameters. The four fitting criteria (Eqs. (6)–(9)) are applied
to an expression for the per atom energy that consists of an interatomic
potential summed over nearest neighbor lists and multiplicities. We re-
peat this process here for the Morse and Lennard Jones N-M potentials,
with more detailed derivations included in the appendices. The results
of these derivations are provided below in terms of the fitting criteria.

Morse

𝑈𝑎𝑡𝑜𝑚 =
∑

𝑖

𝑎𝑖
2
𝜖
[

𝑒−2𝐴(𝑟−𝑟𝑚𝑖𝑛) − 2𝑒−𝐴(𝑟−𝑟𝑚𝑖𝑛)
]

(16)

From Criteria 1:

𝜖 =
−𝐸𝑐𝑜

∑
(17)
𝑖 𝑎𝑖𝑒−𝐴(𝑟−𝑟𝑚𝑖𝑛)
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From Criteria 2:
∑

𝑖
𝑎𝑖𝑒

−2𝐴(𝑟−𝑟𝑚𝑖𝑛) =
∑

𝑖
𝑎𝑖𝑒

−𝐴(𝑟−𝑟𝑚𝑖𝑛) (18)

rom Criteria 3:

=
[

−𝐵
2𝐸𝑐𝑜𝑉0

(
𝑑𝑉𝑎𝑡𝑜𝑚
𝑑𝑟

|𝑟=𝑟𝑙𝑎𝑡 )
2
]

1
2

(19)

Of the potentials addressed here, the Morse potential is unique
n that it cannot be solved analytically. ‘‘A’’ can be explicitly solved
or using Eq. (19), but then 𝑟𝑚𝑖𝑛 must be solved for iteratively using
q. (18). Once 𝑟𝑚𝑖𝑛 is determined, 𝜖 can then be calculated using
q. (17).

ennard Jones N-M

𝑎𝑡𝑜𝑚 =
∑

𝑖

𝑎𝑖
2
𝜖
[ 𝑚
𝑛 − 𝑚

( 𝑟𝑚𝑖𝑛
𝑟

)𝑛
− 𝑛

𝑛 − 𝑚

( 𝑟𝑚𝑖𝑛
𝑟

)𝑚]
(20)

rom Criteria 1:

=
2𝐸𝑐𝑜

[

( 𝑟𝑚𝑖𝑛
𝑟𝑙𝑎𝑡,0

)𝑚𝑆𝑚

] (21)

𝑚 =
∑

𝑖
𝑎𝑖𝜆

−𝑚
𝑖 (22)

rom Criteria 2:

𝑚𝑖𝑛 =
(

𝑆𝑚
𝑆𝑛

)
1

(𝜏−1)𝑚
(23)

rom Criteria 3:

=

(

𝐵𝑟2𝑙𝑎𝑡,0
𝑉0(−𝐸𝑐𝑜)𝜏

)

1
2 (𝑑𝑉𝑎𝑡𝑜𝑚

𝑑𝑟
|𝑟=𝑟𝑙𝑎𝑡

)

(24)

From Criteria 4:

𝑛 = 𝜏𝑚 (25)

2.3. Mie potential coefficients from N-M parameters

The Mie potential is functionally the same as the N-M potential.
The only difference is that it has been expressed in terms of 𝜎 (the
value corresponding to a potential of 0.) If the Lennard Jones N-M
otential parameters are known for a given metal, the value of 𝜎 can
be determined using Eq. (26). The derivation of Eq. (26) is found in the
appendix.

𝜎 =
(𝑚
𝑛

)
1

𝑛−𝑚 𝑟𝑚𝑖𝑛 (26)

3. Methods

The cohesive energy, lattice constant, and bulk modulus data were
taken from the paper by Zhen and Davies, the values of which are
included in Table 1 [14]. For the Lennard Jones, N-M, and Mie po-
entials, all of the parameters can be calculated analytically. For the
orse potential, Eq. (18) must be solved for numerically. The python
‘fsolve’’ function was used to solve for Eq. (18), while Eqs. (17) and
19) were solved analytically.
The multiplicity and normalized distance (𝑎𝑖 and 𝜆𝑖) values for

ifferent crystal types are tabulated in the appendix. Their values
ere generated using brute force numerical calculations. The numerical
ethod consisted of generating a lattice out to a given distance from a
entral atom, calculating the distance between the central atom and
ll neighboring atoms, and then determining the number of unique
nteratomic separation distances. Additionally, the number of atoms
3

xisting at each unique separation distance was calculated
In order to make sure that the parameters generated are correct,
he cohesive energy, lattice constant, and bulk modulus were calculated
sing Eq. (6), (7), and (8). The resulting values were compared with the
xperimental values in Table 1 that were used to the fit the potentials.
or the Lennard Jones potential, only Eqs. (6) and (7) were used. Silver
as chosen as a special case for further study. Molecular dynamics
imulations were carried out to quantify the differences in accuracy
etween the new parameter set and the parameter set generated by
avies. The cohesive energy, lattice constant, and bulk modulus were
alculated using the LAMMPS MD simulator [16].

. Results

The interatomic potential parameters associated with the Lennard
ones, Morse, N-M, and Mie parameters are presented in Table 2.

.1. Comparison of parameters with Zhen and Davies

Fig. 1 plots the N-M potential for silver using the parameters gen-
rated in this study and the study carried out by Zhen and Davies.
dditionally, material properties calculated from the MD simulations
sing both sets of parameters are also tabulated beneath the plot. The
ifference in potential well geometries is visually obvious in Fig. 1. The
ariation in computed material properties from the experimental values
or silver is highly dependent on the parameter set being calculated.
he calculated cohesive energy and lattice constant using Zhen and
avie’s parameters yields values within 10 percent of the experimental
alues, but the calculated bulk modulus is off by more than of 50
ercent. The parameters generated in this study result in less than 2
ercent error for all of the calculated material properties.

.2. Effect of cutoff distance

Restated below is the lattice sum used to fit the M-N and Morse
otentials.

-N sum

𝑚 =
∑

𝑖
𝑎𝑖𝜆

−𝑚
𝑖 (27)

orse sum

𝐿(𝑟𝑙𝑎𝑡) =
∑

𝑖
𝑎𝑖𝑒

−𝐿𝐴(𝑟𝑙𝑎𝑡𝜆𝑖−𝑟𝑚𝑖𝑛) (28)

hese sums were calculated using the following method. Values of 𝑎
the multiplicity) and 𝜆 (the interatomic distance divided by the lattice
onstant) were explicitly determined out to a given distance (𝑟𝑐). These
alues were used to fit the potential parameters, and the influence
f all more distant atoms were neglected. We can estimate the total
ontribution of the atoms beyond the cutoff distance by modeling the
emaining atoms as a continuum. The multiplicity can be recast as the
olar density multiplied by a spherical differential volume.

𝑖 = 𝜌4𝜋𝑟2𝑑𝑟 (29)

xpressing r in terms of 𝜆 yields the following expressions for multi-
licity in terms of 𝜆.

𝑖 = 𝜌4𝜋(𝑟𝑙𝑎𝑡𝜆)2𝑑(𝑟𝑙𝑎𝑡𝜆) (30)

𝑖 = 𝜌4𝜋𝑟3𝑙𝑎𝑡𝜆
2𝑑𝜆 (31)

or FCC materials, 𝜌 = 4𝑎𝑡𝑜𝑚𝑠
𝑟3𝑙𝑎𝑡

thus:

𝑎𝑖 = 16𝜋𝜆2𝑑𝜆 (32)

The N-M and morses sum can now be converted to the following
integral form:

𝑆𝑚,𝑁−𝑀 (𝑟 > 𝑟𝑐 ) ≈
∞
16𝜋𝜆2−𝑚𝑑𝜆 (33)
∫𝑟𝑐
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Table 1
Experimental values for lattice constant, cohesive energy, and bulk modulus of various metals.
Species 𝑟𝑙𝑎𝑡(𝐴̇) 𝐸𝑐𝑜(𝐽 ) B (GPa) Species 𝑟𝑙𝑎𝑡(𝐴̇) 𝐸𝑐𝑜(𝐽 ) B (GPa) Species 𝑟𝑙𝑎𝑡(𝐴̇) 𝐸𝑐𝑜(𝐽 ) B (GPa)

FCC metals BCC metals HCP metals

Ag 4.07 2.84E5 100 Ba 4.98 1.83E5 13.5 Be 2.25 3.20E5 112
Al 4.04 3.27E5 87.7 Cr 2.88 3.97E5 172 Cd 3.11 1.12E5 55.6
Au 4.07 3.68E5 167 Cr 2.88 3.97E5 172 Co 2.49 4.26E5 185
Ca 5.54 1.78E5 16.2 Fe 2.86 4.14E5 164 Dy 3.55 2.97E5 44.6
Ce 5.16 4.23E5 21.7 Li 3.47 1.61E5 11.3 Er 3.50 3.22E5 44.6
Cu 3.60 3.38E5 133 K 5.24 9.00E4 3.57 Hf 3.16 6.18E5 106
Ir 3.83 6.69E5 357 Na 4.23 1.08E5 7.40 Mg 3.19 1.45E5 34.1
Ni 3.51 4.30E5 182 Nb 3.31 7.19E5 189 Re 2.75 7.82E5 357
Pb 4.92 1.96E5 41.3 Rb 5.61 8.28E4 2.23 Ru 2.67 6.49E5 303
Pd 3.88 3.80E5 188 Ta 3.31 7.06E5 189 Ti 2.93 4.68E5 103
Pt 3.92 5.65E5 278 V 3.01 5.15E5 169 Tl 3.41 1.81E5 31.8
Rh 3.80 5.55E5 333 V 3.01 5.15E5 169 Y 3.58 4.23E5 41.8
Th 5.08 5.76E5 56.5 Zn 2.76 1.30E5 70.9

Zr 3.20 6.09E5 94.3
Table 2
Interatomic potential parameters for the Lennard Jones, Morse, N-M, and Mie potentials. Species symbols with a star next to them represent ill fitting N-M potential parameters
as a result of small ratios of bulk modulus to cohesive energy.
Species Lennard Jones Morse N-M/Mie

𝜖 (10−20 J) 𝜎 (𝐴̇) 𝜖 A 𝑟𝑚𝑖𝑛 𝜖 𝑟𝑚𝑖𝑛 𝑚 𝑛 𝑐𝑚𝑖𝑒 𝜎𝑚𝑖𝑒
FCC metals

Ag 5.518e−20 2.638e−10 5.146e−20 1.353e+10 3.123e−10 2.584e−20 3.280e−10 4.010e+00 8.019e+00 4.000e+00 2.759e−10
Al 6.354e−20 2.619e−10 5.001e−20 1.160e+10 3.262e−10 1.965e−20 3.506e−10 3.461e+00 6.922e+00 4.000e+00 2.869e−10
Au 7.150e−20 2.638e−10 7.499e−20 1.549e+10 3.031e−10 4.537e−20 3.132e−10 4.552e+00 9.104e+00 4.000e+00 2.690e−10
Ca 3.459e−20 3.591e−10 2.492e−20 7.854e+09 4.608e−10 8.736e−21 5.007e−10 3.237e+00 6.475e+00 4.000e+00 4.042e−10
Ce 8.219e−20 3.345e−10 5.293e−21 2.198e+09 1.015e−09 6.631e−21 6.317e−10 2.185e+00 4.370e+00 4.000e+00 4.600e−10
Cu 6.567e−20 2.334e−10 5.292e−20 1.329e+10 2.885e−10 2.147e−20 3.091e−10 3.526e+00 7.052e+00 4.000e+00 2.539e−10
Ir 1.300e−19 2.483e−10 1.352e−19 1.628e+10 2.858e−10 8.068e−20 2.957e−10 4.506e+00 9.012e+00 4.000e+00 2.535e−10
Ni 8.355e−20 2.275e−10 6.720e−20 1.361e+10 2.814e−10 2.719e−20 3.016e−10 3.521e+00 7.042e+00 4.000e+00 2.477e−10
Pb 3.808e−20 3.189e−10 3.652e−20 1.153e+10 3.747e−10 1.915e−20 3.920e−10 4.123e+00 8.245e+00 4.000e+00 3.313e−10
Pd 7.383e−20 2.515e−10 7.559e−20 1.576e+10 2.907e−10 4.398e−20 3.013e−10 4.424e+00 8.848e+00 4.000e+00 2.576e−10
Pt 1.098e−19 2.541e−10 1.136e−19 1.581e+10 2.929e−10 6.728e−20 3.032e−10 4.480e+00 8.960e+00 4.000e+00 2.597e−10
Rh 1.078e−19 2.463e−10 1.164e−19 1.725e+10 2.811e−10 7.390e−20 2.893e−10 4.722e+00 9.444e+00 4.000e+00 2.498e−10
Th 1.119e−19 3.293e−10 7.048e−20 7.707e+09 4.440e−10 2.125e−20 4.892e−10 2.951e+00 5.902e+00 4.000e+00 3.868e−10

BCC metals

Ba 3.718e−20 4.034e−10 2.865e−20 7.594e+09 5.035e−10 2.763e−20 4.689e−10 4.968e+00 9.936e+00 4.000e+00 4.079e−10
Cr 8.066e−20 2.333e−10 6.723e−20 1.409e+10 2.843e−10 6.714e−20 2.674e−10 5.295e+00 1.059e+01 4.000e+00 2.346e−10
Fe 8.412e−20 2.317e−10 6.553e−20 1.335e+10 2.882e−10 6.351e−20 2.687e−10 5.010e+00 1.002e+01 4.000e+00 2.340e−10
Li 3.271e−20 2.811e−10 1.624e−21 2.246e+09 9.030e−10 5.296e−21 4.333e−10 2.819e+00 5.637e+00 4.000e+00 3.388e−10
K 1.829e−20 4.245e−10 2.261e−21 2.365e+09 1.081e−09 7.928e−21 5.344e−10 3.932e+00 7.864e+00 4.000e+00 4.480e−10
Na 2.194e−20 3.427e−10 2.714e−21 2.930e+09 8.724e−10 8.341e−21 4.412e−10 3.748e+00 7.496e+00 4.000e+00 3.667e−10
Nb 1.461e−19 2.681e−10 1.158e−19 1.172e+10 3.317e−10 1.132e−19 3.100e−10 5.082e+00 1.016e+01 4.000e+00 2.705e−10
Rb 1.682e−20 4.544e−10 2.080e−21 2.209e+09 1.157e−09 5.649e−21 5.985e−10 3.589e+00 7.178e+00 4.000e+00 4.934e−10
Ta 1.434e−19 2.681e−10 1.150e−19 1.183e+10 3.305e−10 1.130e−19 3.094e−10 5.128e+00 1.026e+01 4.000e+00 2.703e−10
V 1.046e−19 2.438e−10 7.972e−20 1.244e+10 3.054e−10 7.643e−20 2.841e−10 4.924e+00 9.847e+00 4.000e+00 2.467e−10
W 1.723e−19 2.560e−10 1.562e−19 1.393e+10 3.047e−10 1.610e−19 2.895e−10 5.706e+00 1.141e+01 4.000e+00 2.563e−10

HCP metals

Be 6.213e−20 2.063e−10 7.121e−21 4.646e+09 5.485e−10 2.687e−20 2.597e−10 3.908e+00 7.816e+00 4.000e+00 2.175e−10
Cd 2.175e−20 2.851e−10 2.571e−21 3.405e+09 7.519e−10 2.650e−20 3.142e−10 7.564e+00 1.513e+01 4.000e+00 2.867e−10
Co 8.271e−20 2.283e−10 9.486e−21 4.199e+09 6.069e−10 6.465e−20 2.636e−10 5.068e+00 1.014e+01 4.000e+00 2.299e−10
Dy 5.766e−20 3.255e−10 6.614e−21 2.945e+09 8.653e−10 4.516e−20 3.757e−10 5.073e+00 1.015e+01 4.000e+00 3.277e−10
Er 6.252e−20 3.209e−10 7.161e−21 2.986e+09 8.534e−10 4.357e−20 3.760e−10 4.770e+00 9.540e+00 4.000e+00 3.252e−10
Hf 1.200e−19 2.897e−10 1.376e−20 3.308e+09 7.703e−10 7.585e−20 3.441e−10 4.554e+00 9.107e+00 4.000e+00 2.955e−10
Mg 2.815e−20 2.925e−10 3.226e−21 3.276e+09 7.777e−10 2.449e−20 3.334e−10 5.408e+00 1.082e+01 4.000e+00 2.933e−10
Re 1.518e−19 2.521e−10 1.739e−20 3.800e+09 6.706e−10 1.527e−19 2.828e−10 6.031e+00 1.206e+01 4.000e+00 2.521e−10
Ru 1.260e−19 2.448e−10 1.442e−20 3.913e+09 6.511e−10 1.218e−19 2.757e−10 5.835e+00 1.167e+01 4.000e+00 2.449e−10
Ti 9.086e−20 2.686e−10 1.042e−20 3.569e+09 7.142e−10 5.887e−20 3.179e−10 4.605e+00 9.211e+00 4.000e+00 2.735e−10
Tl 3.514e−20 3.126e−10 4.024e−21 3.064e+09 8.316e−10 2.840e−20 3.595e−10 5.166e+00 1.033e+01 4.000e+00 3.144e−10
Y 8.213e−20 3.282e−10 9.413e−21 2.920e+09 8.728e−10 4.210e−20 4.021e−10 4.168e+00 8.336e+00 4.000e+00 3.405e−10
Zn 2.524e−20 2.530e−10 2.894e−21 3.788e+09 6.728e−10 2.794e−20 2.812e−10 6.628e+00 1.326e+01 4.000e+00 2.533e−10
Zr 1.182e−19 2.934e−10 1.355e−20 3.266e+09 7.802e−10 6.949e−20 3.521e−10 4.409e+00 8.818e+00 4.000e+00 3.009e−10
4
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Fig. 1. Comparison of interatomic potential curves and calculated properties for Ag, using the parameters from this study and the study by Zhen and Davies. The cutoff distance
sed was five times the nearest neighbor distance. All of the calculated property values were taken from equilibrium MD simulations carried out in LAMMPS. It should be noted
hat the bulk modulus calculation for Davie’s parameters was carried out assuming a lattice constant of 0.407 nm. If the lattice constant predicted by the potential is used, the
ulk modulus is overestimated by 80%.
Fig. 2. Each of the above charts depict how much of the neighbor sum remains as a function of neighbor distance for an FCC crystal. The left chart corresponds to the Mie
potential. The right picture corresponds to the Morse potential.
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𝑆𝐿,𝑚𝑜𝑟𝑠𝑒(𝑟 > 𝑟𝑐 ) ≈ ∫

∞

𝑟𝑐
16𝜋𝜆2𝑒−𝐿𝐴(𝑟𝑙𝑎𝑡𝜆−𝑟𝑚𝑖𝑛)𝑑𝜆 (34)

he resulting expressions for the total sums:

𝑚,𝑁−𝑀 =
𝑖=𝑖𝑒
∑

𝑖=1
𝑎𝑖𝜆

−𝑚
𝑖 +

16𝜋𝜆3−𝑚𝑐
3 − 𝑚

(35)

𝐿,𝑚𝑜𝑟𝑠𝑒

=
∑

𝑖
𝑎𝑖𝑒

−𝐿𝐴(𝑟𝑙𝑎𝑡𝜆𝑖−𝑟𝑚𝑖𝑛) + 16𝜋𝑒−𝐿𝐴(𝑟𝑙𝑎𝑡𝜆𝑐−𝑟𝑚𝑖𝑛)
𝐴𝑟𝑙𝑎𝑡

[

𝜆2𝑐 +
2𝜆𝑐
𝐴𝑟𝑙𝑎𝑡

− 2
(𝐴𝑟𝑙𝑎𝑡)2

]

(36)
5

he accuracy of this calculation can be increased to arbitrary precision
y increasing the cutoff distance 𝑟𝑐 . In order for the summation to
converge, it is necessary that expressions (33) and (34) take on a finite
alue. For the Mie potential, this requires that 𝑚 > 3. For the Morse
otential convergence is guaranteed.
One can see in Table 2 that certain elements have an asterisk by

heir elemental symbol to denote m values less than three. The resulting
otentials are wildly inaccurate due to the cohesive energy diverging
ith increasing cutoff radius. The fourth fitting criteria (Eq. (9)) can be
elaxed in order to increase the value of 𝑚 by as much as a factor of

√

2.
Even so, the resulting values of m are still relatively low (near 3) and
require extremely large cutoff values that are both non-physical and
highly computationally expensive. Fig. 2 demonstrates the convergence
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rate of the sums associated with the Mie potential and the Morse
potential for different sets of parameters (𝑚, 𝐴 ∗ 𝑟𝑙𝑎𝑡).

5. Discussion

5.1. Zhen and Davies error source

The substantial difference in potential shape between this study and
the study carried out by Zhen and Davies is made evident in Fig. 1.
he source of the difference in potential shape and the accuracies of
omputed material properties results from criteria 2 (Eq. (7)). In their
erivation, Zhen and Davies assumed that the nearest neighbor distance
nd the potential well minimum were equivalent. This implicitly as-
umes that the cutoff distance is somewhere inbetween the first and
econd nearest neighbor atom. It is obvious that this assumption is
oor and unintentional on the part of Zhen and Davies, because they
alculated lattice sums out to 14 times the nearest neighbor distance.

.2. Recognizing the importance of cutoff distance

Interatomic potential strength should decay with distance such that,
or a suitably large cutoff, increasing the cutoff distance has negligible
ffect on computed material properties. How large this cutoff distance
hould be depends on the nature of the physical bonding being de-
cribed. This is important for two reasons. First, the goal of interatomic
otentials is to accurately describe the bonding of real materials. As
uch, the decay in bond strength as a function of distance should
atch that of real materials. Second, simulation performance drops
recipitously as cutoff distance increases.
Traditionally, the Lennard Jones cutoff radius is set to 2.5𝜎 which

corresponds to approximately the 5th nearest neighbor distance for FCC
crystals. The error introduced by truncating the lattice sum beyond this
point is less than 5 percent. It is clear from Fig. 2 that low values of
m (𝑚 ≈ 4) and 𝐴 ∗ 𝑟𝑙𝑎𝑡 correspond to slow convergence of the lattice
sum and large required cutoff distances. The authors urge caution in
the use of potentials with such parameters. At best, they will need
to be used with large cutoff radii that are non physical and result in
slow simulations. At worst, they will be used with short cutoff radii
that result in large inaccuracies in simulation behavior and calculated
material properties.

It is desirable to have a set of tabulated interatomic potential
parameters for a single potential that works well [14,15,17,18]. In
reality the situation is more nuanced. Certain pair potentials are fun-
damentally limited in their ability to describe particular materials. The
Lennard Jones N-M/Mie potential is an excellent example in that it
cannot physically model materials with small ratios of bulk modulus to
cohesive energy. The authors advise that researchers wanting to use the
parameters listed in Table 2 should consider their associated limitations
and look into other potential types whenever 𝑚 and 𝐴 ∗ 𝑟𝑙𝑎𝑡 values are
mall. The fitting procedures outlined in the appendices can be used to
erive parameters for other potential types whose interactions decay
ore appropriately with distance.
This work corrects the pair potential parameters determined by

hen and Davies. We go one step further to show that even though
ulk modulus is used to fit the N-M potential, the N-M potential is
undamentally incapable of accurately modeling certain metals without
epending on arbitrary cutoff distances. This paper is not intended to
e an exhaustive analysis on the limitations of pair potentials in their
bility to describe metals. Rather, it is simply meant to highlight one
uch limitation for the particular case of using the Lennard Jones N-
potential to describe the bulk modulus. Studies focusing on other

roperties/phenomena should carefully consider whether other intrin-
ic issues with the form of the chosen potential might invalidate their
esults.
6

6. Summary

In conclusion, an error was identified in the method used by Zhen
and Davies to calculate Lennard Jones N-M parameters for metals.
This error was corrected for, and new Lennard Jones plus Lennard
Jones N-M parameters were calculated for 38 different elements. Morse
and Mie parameters were also calculated for these same elements. For
the special case of silver, using the N-M coefficients from this study
resulted in reduced error in calculating the cohesive energy, lattice
constant, and bulk modulus. The greatest reduction in error occurred
for the bulk modulus where relative error dropped from 40% using
Zhen and Davie’s parameters to less than 2% using the parameters from
this study. Finally, the influence of cutoff radius is considered and the
inability of certain potentials to accurately describe particular materials
is analyzed. Although N-M parameters can be determined for all metals,
small ratios of bulk modulus to cohesive energy result in potentials that
describe nonphysical bonding behavior over long distances.
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Appendix. Potential fitting

A.1. Nomenclature

𝑎𝑖 = Number of 𝑖th nearest neighbor atoms
𝐵 = Bulk modulus
𝐸𝑐𝑜 = Per atom cohesive energy
𝜆𝑖 = Distance between the 𝑖th nearest neighbor atoms assuming the
lattice constant equals 1.
𝜎 = Distance at which interatomic potential equals 0
𝑟𝑙𝑎𝑡 = Lattice constant
𝑟𝑙𝑎𝑡,0 = Equilibrium lattice constant
𝑟𝑚𝑖𝑛 = Distance at which interatomic potential is minimized
𝜏 = Ratio of n to m
𝑉 = Equilibrium per atom volume
0
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K

𝑈

A.2. Preliminaries

Bulk Modulus Potential Relationship
Traditional definition of bulk modulus in terms of the interatomic

potential:

𝐵 = 𝑉0
𝜕2𝑈𝑎𝑡𝑜𝑚

𝜕𝑉 2
|𝑉 =𝑉0 (A.1)

Desired: to express the bulk modulus in terms of a partial derivative of
radius rather than a partial derivative of volume.

𝜕2𝑈
𝜕𝑉 2

= 𝜕
𝜕𝑉

𝜕𝑈
𝜕𝑉

(A.2)

𝜕𝑈
𝜕𝑉

= 𝜕𝑈
𝜕𝑟

𝜕𝑟
𝜕𝑉

(A.3)

𝜕𝑟
𝜕𝑉

= ( 𝜕𝑉
𝜕𝑟

)−1 (A.4)

𝜕2𝑈
𝜕𝑉 2

= 𝜕
𝜕𝑉

( 𝜕𝑈
𝜕𝑟

𝜕𝑟
𝜕𝑉

)

= 𝜕𝑈2

𝜕𝑟2
( 𝜕𝑟
𝜕𝑉

)2 + 𝜕𝑈
𝜕𝑟

𝜕2𝑟
𝜕𝑉 2

(A.5)

𝜕𝑈
𝜕𝑟

|𝑟=𝑟𝑚𝑖𝑛 = 0 (A.6)

𝜕2𝑈
𝜕𝑉 2

|𝑟=𝑟𝑚𝑖𝑛 = 𝜕𝑈2

𝜕𝑟2
|𝑟=𝑟𝑚𝑖𝑛 (

𝜕𝑟
𝜕𝑉

)2 (A.7)

Volume–Lattice Constant Relationships

For Simple Cubic Metals:

(𝑑𝑉
𝑑𝑟

)2|𝑟=𝑟𝑙𝑎𝑡,0 = 9𝑟2𝑙𝑎𝑡,0 (A.8)

For Body Centered Cubic Metals:

( 𝑑𝑟
𝑑𝑉

)2|𝑟=𝑟𝑙𝑎𝑡,0 =
9𝑟2𝑙𝑎𝑡,0
4

(A.9)

For Face Centered Cubic Metals:

( 𝑑𝑟
𝑑𝑉

)2|𝑟=𝑟𝑙𝑎𝑡,0 =
9𝑟2𝑙𝑎𝑡,0
16

(A.10)

For Hexagonal Close Packed Metals (assume 𝑐 =
√

8
3 ):

( 𝑑𝑟
𝑑𝑉

)2|𝑟=𝑟𝑙𝑎𝑡,0 = 3
√

2𝑟2𝑙𝑎𝑡,0 (A.11)

A.3. General fitting method

Assumptions:

1. All atoms are equidistant
2. Contributions from distant lattice points are neglected. The cut-
off distance is 2.5 times the nearest neighbor distance.

Equations:

𝑈𝑎𝑡𝑜𝑚 =
∑

𝑖
𝑎𝑖𝑈𝑏𝑜𝑛𝑑 (𝑟𝑖) (A.12)

The index ‘‘i’’ refers to the 𝑖th neighbor. Thus, 𝑎𝑖 refers to the number
of neighbor atoms that are a distance 𝑟𝑖 from the central atom.

1. 𝑈𝑎𝑡𝑜𝑚(𝑟𝑙𝑎𝑡,0) = 𝐸𝑐𝑜

2. 𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟𝑙𝑎𝑡

|𝑟𝑙𝑎𝑡=𝑟𝑙𝑎𝑡,0 = 0

3. ( 𝜕
2𝑈𝑎𝑡𝑜𝑚 )( 𝑑𝑟 )2|𝑟=𝑟 = 𝐵
7

𝜕𝑟2𝑙𝑎𝑡 𝑑𝑉 𝑙𝑎𝑡,0 𝑉0
A.4. Lennard Jones fitting

Variables to be solved for:

• 𝜖
• 𝜎

Key potential equations:

𝑈𝑏𝑜𝑛𝑑 (𝑟𝑙𝑎𝑡) = 4𝜖
[

(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]

(A.13)

𝑈𝑎𝑡𝑜𝑚 = 2𝜖
∑

𝑖
𝑎𝑖

[

(

𝜎
𝑟𝑙𝑎𝑡,0

)12
𝜆−12𝑖 −

(

𝜎
𝑟𝑙𝑎𝑡,0

)6
𝜆−6𝑖

]

(A.14)

𝑈𝑎𝑡𝑜𝑚 = 2𝜖

[

(

𝜎
𝑟𝑙𝑎𝑡,0

)12
𝑆12 −

(

𝜎
𝑟𝑙𝑎𝑡,0

)6
𝑆6

]

(A.15)

𝑆𝑗 =
∑

𝑖
𝑎𝑖𝜆

−𝑗
𝑖 (A.16)

𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟𝑙𝑎𝑡

= 12𝜖

[

−2𝑟−1𝑙𝑎𝑡

(

𝜎
𝑟𝑙𝑎𝑡,0

)12
𝑆12 + 𝑟−1𝑙𝑎𝑡

(

𝜎
𝑟𝑙𝑎𝑡,0

)6
𝑆6

]

(A.17)

Simplified fitting criteria:

𝜎 =
(

𝑆6
2𝑆12

)1∕6
𝑟𝑙𝑎𝑡,0 (A.18)

𝜖 =
−2𝑆12𝐸𝑐𝑜

𝑆2
6

(A.19)

A.5. Lennard Jones N-M fitting

Variables to be solved for:

• 𝜖
• 𝑟0
• m
• n

Additional Fitting criteria:

• 𝑛 = 2𝑚

ey potential equations:

𝑏𝑜𝑛𝑑 (𝑟𝑙𝑎𝑡) = 𝜖
[ 𝑚
𝑛 − 𝑚

( 𝑟0
𝑟

)𝑛
− 𝑛

𝑛 − 𝑚

( 𝑟0
𝑟

)𝑚]
(A.20)

𝑈𝑎𝑡𝑜𝑚 = 𝜖
𝑛 − 𝑚

∑

𝑖
𝑎𝑖

[

𝑚
(

𝑟0
𝑟𝑙𝑎𝑡

)𝑛
𝜆−𝑛𝑖 − 𝑛

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑚
𝜆−𝑚𝑖

]

(A.21)

𝑈𝑎𝑡𝑜𝑚 = 𝜖
𝑛 − 𝑚

[

𝑚
(

𝑟0
𝑟𝑙𝑎𝑡

)𝑛
𝑆𝑛 − 𝑛

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑚
𝑆𝑚

]

(A.22)

𝑆𝑗 =
∑

𝑖
𝑎𝑖𝜆

−𝑗
𝑖 (A.23)

𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟𝑙𝑎𝑡

= 𝜖𝑚𝑛
𝑛 − 𝑚

[

−𝑟−1𝑙𝑎𝑡

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑛
𝑆𝑛 + 𝑟−1𝑙𝑎𝑡

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑚
𝑆𝑚

]

(A.24)

𝜕2𝑈𝑎𝑡𝑜𝑚

𝜕𝑟2𝑙𝑎𝑡
= 𝜖𝑚𝑛

𝑛 − 𝑚

[

(𝑛 + 1)𝑟−2𝑙𝑎𝑡

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑛
𝑆𝑛 + (𝑚 + 1)𝑟−2𝑙𝑎𝑡

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑚
𝑆𝑚

]

(A.25)

Simplifications to fitting criteria:

𝜖 = −
𝐸𝑐𝑜

𝑚𝑆𝑚

(

𝑟0
𝑟𝑙𝑎𝑡

)𝑚 (A.26)

𝑟0 =
(

𝑆𝑚
)𝑚∕𝑛

𝑟𝑙𝑎𝑡,0 (A.27)

𝑆𝑛
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𝑆

Table A.1
Simple Cubic Neighbor Data.
point family [1, 0, 0] [1, 1, 0] [1, 1, 1] [2, 0, 0] [2, 1, 0] [2, 1, 1]

multiplicity (a) 6 12 8 6 24 24
distance (𝜆) 1

√

2
√

3 2
√

5
√

6

Table A.2
Body Centered Cubic Neighbor Data.
point family [0.5, 0.5, 0.5] [1, 0, 0] [1, 1, 0] [1.5, 0.5, 0.5] [1, 1, 1] [2, 0, 0] [1.5, 1.5, 0.5]

multiplicity (a) 8 6 12 24 8 6 24
distance (𝜆)

√

3∕4 1
√

2
√

11∕4
√

3 2
√

19∕4

Table A.3
Face Centered Cubic Neighbor Data.
point family [0.5, 0.5, 0] [1, 0, 0] [1, 0.5, 0.5] [1, 1, 0] [1.5, 0.5, 0] [1, 1, 1] [1.5, 1, 0.5]

multiplicity (a) 12 6 24 12 24 8 48
distance (𝜆)

√

1∕2 1
√

3∕2
√

2
√

11∕4
√

3
√

13∕4

Table A.4
Hexagonal Close Packed Neighbor Data.
neighbor number 1 2 3 4 5 6 7 8 9

multiplicity (a) 12 6 2 18 12 6 12 12 6
distance (𝜆) 1

√

2 1.633 1.7321 1.9149 2 2.2361 2.3805 2.4495

𝑚 =

√

√

√

√

−𝐵𝑟2𝑙𝑎𝑡
2𝐸𝑐𝑜𝑉0

𝑑𝑟
𝑑𝑉

(A.28)

𝑛 = 0.5 𝑚 (A.29)

A.5.1. Determining 𝜎 from N-M parameters
Equating the Mie and N-M Potentials:

𝜖
[

𝑚
𝑛 − 𝑚

(

𝑟𝑚𝑖𝑛
𝑟𝑖

)𝑛
− 𝑛

𝑛 − 𝑚

(

𝑟𝑚𝑖𝑛
𝑟𝑖

)𝑚]

= 𝑛
𝑛 − 𝑚

( 𝑛
𝑚

)
𝑚

𝑛−𝑚 𝜖
[(𝜎

𝑟

)𝑛
−
(𝜎
𝑟

)𝑚]
(A.30)

Simplifying:
[

𝑚
(

𝑟𝑚𝑖𝑛
𝑟𝑖

)𝑛
− 𝑛

(

𝑟𝑚𝑖𝑛
𝑟𝑖

)𝑚]

= 𝑛
( 𝑛
𝑚

)
𝑚

𝑛−𝑚
[(𝜎

𝑟

)𝑛
−
(𝜎
𝑟

)𝑚]
(A.31)

Equating the repulsive terms:

𝑚
(

𝑟𝑚𝑖𝑛
𝑟𝑖

)𝑛
= 𝑛

( 𝑛
𝑚

)
𝑚

𝑛−𝑚
(𝜎
𝑟

)𝑛
(A.32)

Simplifying:

𝑚𝑟𝑛𝑚𝑖𝑛 = 𝑛
( 𝑛
𝑚

)
𝑚

𝑛−𝑚 𝜎𝑛 (A.33)

Solving for 𝜎:

𝜎 =
(𝑚
𝑛

)
1

𝑛−𝑚 𝑟𝑚𝑖𝑛 (A.34)

A.6. Morse fitting

Variables to be solved for:

• 𝜖
• 𝛼
• 𝑟0

Key potential equations:

𝑈 (𝑟 ) = 𝜖
[

𝑒−2𝛼(𝑟−𝑟0) − 2𝑒−𝑎𝑙𝑝ℎ𝑎(𝑟−𝑟0)
]

(A.35)
8

𝑏𝑜𝑛𝑑 𝑙𝑎𝑡
𝑈𝑎𝑡𝑜𝑚 = 𝜖
∑ 𝑎𝑖

2
[

𝑒−2𝛼(𝑟𝑙𝑎𝑡𝜆𝑖−𝑟0) − 2𝑒−𝑎𝑙𝑝ℎ𝑎(𝑟𝑙𝑎𝑡𝜆𝑖−𝑟0)
]

(A.36)

𝑈𝑎𝑡𝑜𝑚 = 𝜖
2
[

𝑆0,2𝑒
2𝛼𝑟0 − 2𝑆0,1𝑒

𝛼𝑟0
]

(A.37)

𝑗,𝑘 =
∑

𝑖
𝑎𝑖𝜆

𝑗
𝑖 𝑒

−𝑘𝛼𝑟𝑙𝑎𝑡𝜆𝑖 (A.38)

𝜕𝑈𝑎𝑡𝑜𝑚
𝜕𝑟𝑙𝑎𝑡

= −𝜖𝛼
[

𝑒2𝛼𝑟0𝑆1,2 − 𝑒𝛼𝑟0𝑆1,1
]

(A.39)

𝜕2𝑈𝑎𝑡𝑜𝑚

𝜕𝑟2𝑙𝑎𝑡
= 𝜖𝛼2

[

2𝑒2𝛼𝑟0𝑆2,2 − 𝑒𝛼𝑟0𝑆2,1
]

(A.40)

Fitting Method:

Write a function with argument 𝛼 that carries out the following
procedure. Use a root finding method to determine the appropriate
value of 𝛼 and then back substitute to determine 𝑟0 and 𝜖.

1. solve for 𝑟0
𝑟0 = 𝛼−1𝑙𝑛( 𝑆1,1

𝑠1,2
)

2. solve for 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
𝜖 = 𝐸𝑐𝑜

[

𝑆0,2𝑒2𝛼𝑟0−2𝑆0,1𝑒𝛼𝑟0
]

3. Calculate the bulk modulus
𝐵 = 𝑉0(

𝜕2𝑈𝑎𝑡𝑜𝑚
𝜕𝑟2𝑙𝑎𝑡

)( 𝑑𝑟
𝑑𝑉 )2|𝑟=𝑟𝑙𝑎𝑡,0

4. return the calculated bulk modulus minus the physical bulk
modulus

A.7. Neighbor data

See Tables A.1–A.4.
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