Computational Materials Science 205 (2022) 111206

journal homepage: www.elsevier.com/locate/commatsci

Contents lists available at ScienceDirect

Computational Materials Science

COMPUTATIONAL
AIERIALS
CE

t.)

Check for

Revisting Lennard Jones, Morse, and N-M potentials for metals e

David W. Jacobson, Gregory B. Thompson

The University of Alabama Tuscaloosa, Al 35404, United States of America

ARTICLE INFO ABSTRACT

Keywords:

Interatomic potentials
Leonard-Jones potential
Morse potential

Mie potential

Force fields

Molecular dynamics

A significant source of error was found in the paper by Zhen and Davies which is highly cited for use in
calculating Lennard Jones N-M potential parameters. This error was corrected for and a new more easily
implemented method for determining N-M parameters was developed. N-M parameters for 38 metallic elements
were calculated using this new method in addition to Morse and Lennard Jones 6-12 parameters. Molecular
dynamics simulations were carried out to illustrate the increased accuracy of the new parameters. The predicted
bulk modulus of silver using Zhen and Davies parameters was off by approximately 40%, while the bulk

modulus calculated using the parameters generated in this study was within 2% of the experimental value.
Finally, a discussion on the limitations of each potential type for describing different metallic systems is
presented. In particular, the overly slow decay rate of the N-M potential with distance is addressed for small

values of parameter “m

1. Introduction

Interatomic potentials are a class of mathematical functions used to
describe the change in potential energy between a group of atoms as
a function of the coordinates of all the atoms present. Such functions
are useful for carrying out molecular dynamics (MD) and molecular
Monte Carlo (MC) simulations that bridge the gap between quantum
and mesoscale descriptions of materials. The oldest and most basic
potential types are pair potentials. This sub class of interatomic poten-
tials describes bond energy purely in terms of interatomic separation.
Their simplicity makes them easy to implement and computationally
efficient. As a result, they are used to simulate a wide variety of
different phenomena [1-3].

The use of pair potentials for describing metallic solids is some-
what outdated given the development of bond order potentials that
are both more accurate and exhibit greater functionality [4-6]. Pair
potentials are unable to correctly describe the energetics of defects and
generally predict close packed crystal structures as having the lowest
energy state regardless of whether the physical crystal structure is
close packed or not. Despite their limitations, pair potentials are still
relevant for a variety of reasons: (1) Most bond order potentials have
a pair potential component [7,8]. For example, the Tersoff potential
is a modified/improved Morse potential [7]. (2) Pair potentials have
a low computational overhead and can accelerate simulations when
appropriately used. (3) Pair potentials can be used to extend bond order
potentials by describing bonding behavior that the bond order potential
was not fitted for. An example of which is the use of pair potentials to
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describe interaction between a substrate and foreign atoms deposited
through physical vapor deposition [9]. As a result of their continued
relevance to the scientific community, it is important to ensure that
tabulated pair potential parameters as well as the descriptions of the
methods used to generate pair potentials are accurate.

Four pair potentials are studied in this paper. They include the
Lennard Jones potential, Morse potential, Lennard Jones N-M potential,
and the Mie potential. Their mathematical forms are given below, with
a description of variables used throughout the document provided in
the appendix.

Lennard Jones:
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The Lennard Jones potential is arguably the most famous and well
studied pair potential. This is largely due to its age as well as its
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mathematical simplicity [10,11]. The N-M potential is the generalized
form of the Lennard Jones potential, where the 6 and 12 exponent
values are made variable. As a result, there are two additional degrees
of freedom that provide extra versatility when it comes to fitting. The
Mie potential is simply a reformulated N-M potential [12]. Rather than
expressing the characteristic length in terms of the distance at which
the potential is minimized (r,,;,), the distance at which the potential is
zero (o) is used. The Morse potential is an exponential type potential
that differs from the three aforementioned potential types in that the
Morse potential does not approach infinity as interatomic separation
goes to zero [13]. It has three tunable parameters (¢, A ) that can
be manipulated to achieve different bonding behavior.

The defacto reference for Lennard Jones and Lennard Jones N-M
parameters for metals is a publication by Zhen and Davies (it has
been cited over 200 times) [14]. In their work, a method is outlined
for determining the m, n, ¢, and r,,;, values associated with the N-
M potential using lattice constant, cohesive energy, and bulk modulus
data. This method assumes that the minimum potential well distance
(r,.in) is equal to the equilibrium nearest neighbor distance. Make such
an assumption greatly simplifies calculations, but also greatly reduces
the accuracy of the calculated parameters. A subsequent study by
Magomedov tabulates Lennard Jones N-M parameters, but suffers from
additional poor assumptions such as only considering nearest neighbor
contributions [15].

The authors of this study seek to correct the issue that hindered
Zhen and Davies approach to calculating N-M parameters while also
providing the parameters for the Lennard Jones and Morse potentials.
The assumption that r,,;, equals the equilibrium nearest neighbor dis-
tance is relaxed. Additionally, the constraint equations used to fit each
set of parameters are simplified so that each parameter can be solved
using analytical or simple iterative methods. The cohesive energy, lat-
tice constant, and bulk modulus were calculated for silver using Zhen’s
and Davies’ parameters in addition to the parameters developed here
in order to illustrate the difference in accuracy. Finally, a discussion is
included on the fundamental limitations of the potential types studied
to physically describe different metallic properties. Although this study
and the work by Zhen and Davies is targeted towards metals, it can be
shown that the N-M potentials is fundamentally incapable of correctly
describing interatomic bonding for certain metals. We illustrate this
point by giving particular attention to the influence of the cutoff
distance and the rate at which pair interactions decay.

The objectives of this publication are the following: (1) To pro-
vide detailed descriptions of the methods needed to generate potential
parameters. (2) To provide a list of Lennard Jones, Morse, and N-M
parameters for a significant number of metals. (3) To highlight the
fundamental limitations associated with using these potentials.

s> Pmin

2. Theory

The total internal energy of a perfect crystal at 0 K can be expressed
as follows:

a.
Uatom = z ElUbond(ri) (5)
i

where i refers to the ith nearest neighbor and a is the multiplic-
ity/number of equidistant atoms associated with the ith nearest neigh-
bor position. The fitting criteria used in this study are given below:
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Uarom(req) = ECO (6)
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nx2m (C)]

Potentials with two free parameters (Lennard Jones) will be fit to
reproduce the correct lattice constant and cohesive energy (criteria
1 and 2). Potentials with three free parameters (Morse) will be fit
to reproduce the correct lattice constant, cohesive energy, and bulk
modulus (criteria 1, 2, and 3). Potentials with 4 parameters (Mie and
Lennard Jones N-M) will have an additional constraint placed on the
ratio of m to n (criteria 4).

2.1. Lennard Jones fitting

Fitting Lennard Jones parameters is rather trivial, but we include
a description of the process below for completeness as well as to
demonstrate the derivation process without the complexity of the Morse
or N-M potential types. From Eq. (5), the per atom energy of a Lennard
Jones solid at 0 K is:

a pu 12 . 6
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It is more convenient to express the interatomic separation (r;) in terms
of the lattice constant multiplied by a scalar: r = r;4;. 4; is the
normalized distance between an atom and its ith nearest neighbor.
Factoring the resulting expression yields the following new equation
for per atom energy:
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Taking the first derivative of the potential energy (Eq. (10)):
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Applying criteria 2 (Eq. (7)) to Eq. (13) yields the following expression
for o:

1
S 6
=e(3)

Applying criteria 1 (Eq. (6)) to Eq. (10) and substituting the above
expression for sigma provides an expression for e.
2851, E,
e= 21270 (15)
55

2.2. Morse and Lennard Jones N-M potential fitting

The above subsection illustrates the general method for determining
potential parameters. The four fitting criteria (Egs. (6)-(9)) are applied
to an expression for the per atom energy that consists of an interatomic
potential summed over nearest neighbor lists and multiplicities. We re-
peat this process here for the Morse and Lennard Jones N-M potentials,
with more detailed derivations included in the appendices. The results
of these derivations are provided below in terms of the fitting criteria.
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From Criteria 2:
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Of the potentials addressed here, the Morse potential is unique
in that it cannot be solved analytically. “A” can be explicitly solved
for using Eq. (19), but then r,,;, must be solved for iteratively using
Eq. (18). Once r,,;, is determined, ¢ can then be calculated using
Eq. (17).

Lennard Jones N-M
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2.3. Mie potential coefficients from N-M parameters

The Mie potential is functionally the same as the N-M potential.
The only difference is that it has been expressed in terms of ¢ (the
r value corresponding to a potential of 0.) If the Lennard Jones N-M
potential parameters are known for a given metal, the value of ¢ can
be determined using Eq. (26). The derivation of Eq. (26) is found in the
appendix.

1
m\ n-m
o= ()" run (26)
3. Methods

The cohesive energy, lattice constant, and bulk modulus data were
taken from the paper by Zhen and Davies, the values of which are
included in Table 1 [14]. For the Lennard Jones, N-M, and Mie po-
tentials, all of the parameters can be calculated analytically. For the
Morse potential, Eq. (18) must be solved for numerically. The python
“fsolve” function was used to solve for Eq. (18), while Egs. (17) and
(19) were solved analytically.

The multiplicity and normalized distance (a; and 4;) values for
different crystal types are tabulated in the appendix. Their values
were generated using brute force numerical calculations. The numerical
method consisted of generating a lattice out to a given distance from a
central atom, calculating the distance between the central atom and
all neighboring atoms, and then determining the number of unique
interatomic separation distances. Additionally, the number of atoms
existing at each unique separation distance was calculated
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In order to make sure that the parameters generated are correct,
the cohesive energy, lattice constant, and bulk modulus were calculated
using Eq. (6), (7), and (8). The resulting values were compared with the
experimental values in Table 1 that were used to the fit the potentials.
For the Lennard Jones potential, only Egs. (6) and (7) were used. Silver
was chosen as a special case for further study. Molecular dynamics
simulations were carried out to quantify the differences in accuracy
between the new parameter set and the parameter set generated by
Davies. The cohesive energy, lattice constant, and bulk modulus were
calculated using the LAMMPS MD simulator [16].

4. Results

The interatomic potential parameters associated with the Lennard
Jones, Morse, N-M, and Mie parameters are presented in Table 2.

4.1. Comparison of parameters with Zhen and Davies

Fig. 1 plots the N-M potential for silver using the parameters gen-
erated in this study and the study carried out by Zhen and Davies.
Additionally, material properties calculated from the MD simulations
using both sets of parameters are also tabulated beneath the plot. The
difference in potential well geometries is visually obvious in Fig. 1. The
variation in computed material properties from the experimental values
for silver is highly dependent on the parameter set being calculated.
The calculated cohesive energy and lattice constant using Zhen and
Davie’s parameters yields values within 10 percent of the experimental
values, but the calculated bulk modulus is off by more than of 50
percent. The parameters generated in this study result in less than 2
percent error for all of the calculated material properties.

4.2. Effect of cutoff distance

Restated below is the lattice sum used to fit the M-N and Morse
potentials.

M-N sum

Sn= 2 @k @7
i

Morse sum

Sp(ria) = 2 a;e” FAC 1A= min) 8

1

These sums were calculated using the following method. Values of a
(the multiplicity) and 4 (the interatomic distance divided by the lattice
constant) were explicitly determined out to a given distance (r,). These
values were used to fit the potential parameters, and the influence
of all more distant atoms were neglected. We can estimate the total
contribution of the atoms beyond the cutoff distance by modeling the
remaining atoms as a continuum. The multiplicity can be recast as the
molar density multiplied by a spherical differential volume.

a; = pArnrldr 29)
Expressing r in terms of A yields the following expressions for multi-

plicity in terms of A.

a; = pAn(ri A)*d (1 A) (30)

a; = panrd A*dA (€X0)]

lat

For FCC materials, p = 242 thus:

lat
a; = 1624%d A (32)

The N-M and morses sum can now be converted to the following
integral form:
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Table 1

Experimental values for lattice constant, cohesive energy, and bulk modulus of various metals.
Species Fra(A) E.(J) B (GPa) Species Frar(A) E.(J) B (GPa) Species o (A) E.(J) B (GPa)
FCC metals BCC metals HCP metals
Ag 4.07 2.84E5 100 Ba 4.98 1.83E5 13.5 Be 2.25 3.20E5 112
Al 4.04 3.27E5 87.7 Cr 2.88 3.97E5 172 Cd 3.11 1.12E5 55.6
Au 4.07 3.68E5 167 Cr 2.88 3.97E5 172 Co 2.49 4.26E5 185
Ca 5.54 1.78E5 16.2 Fe 2.86 4.14E5 164 Dy 3.55 2.97E5 44.6
Ce 5.16 4.23E5 21.7 Li 3.47 1.61E5 11.3 Er 3.50 3.22E5 44.6
Cu 3.60 3.38E5 133 K 5.24 9.00E4 3.57 Hf 3.16 6.18E5 106
Ir 3.83 6.69E5 357 Na 4.23 1.08E5 7.40 Mg 3.19 1.45E5 34.1
Ni 3.51 4.30E5 182 Nb 3.31 7.19E5 189 Re 2.75 7.82E5 357
Pb 4.92 1.96E5 41.3 Rb 5.61 8.28E4 2.23 Ru 2.67 6.49E5 303
Pd 3.88 3.80E5 188 Ta 3.31 7.06E5 189 Ti 2.93 4.68E5 103
Pt 3.92 5.65E5 278 v 3.01 5.15E5 169 Tl 3.41 1.81E5 31.8
Rh 3.80 5.55E5 333 A 3.01 5.15E5 169 Y 3.58 4.23E5 41.8
Th 5.08 5.76E5 56.5 Zn 2.76 1.30E5 70.9

Zr 3.20 6.09E5 94.3
Table 2

Interatomic potential parameters for the Lennard Jones, Morse, N-M, and Mie potentials. Species symbols with a star next to them represent ill fitting N-M potential parameters
as a result of small ratios of bulk modulus to cohesive energy.

Species Lennard Jones Morse N-M/Mie
e (1070 ) o (A) € A Fnin € Fonin m n Cie O e

FCC metals

Ag 5.518e-20 2.638e-10 5.146e-20 1.353e+10 3.123e-10 2.584e-20 3.280e-10 4.010e+00 8.019e+00 4.000e+00 2.759e-10
Al 6.354e—20 2.619e-10 5.001e-20 1.160e+10 3.262e-10 1.965e—20 3.506e-10 3.461e+00 6.922e+00 4.000e+00 2.869e-10
Au 7.150e—-20 2.638e-10 7.499e-20 1.549e+10 3.031e-10 4.537e-20 3.132e-10 4.552e+00 9.104e+00 4.000e+00 2.690e-10
Ca 3.459e-20 3.591e-10 2.492e-20 7.854e+09 4.608e-10 8.736e—-21 5.007e-10 3.237e+00 6.475e+00 4.000e+00 4.042e-10
Ce 8.219e-20 3.345e-10 5.293e-21 2.198e+09 1.015e—-09 6.631e-21 6.317e-10 2.185e+00 4.370e+00 4.000e+00 4.600e-10
Cu 6.567e—-20 2.334e-10 5.292e-20 1.329e+10 2.885e-10 2.147e-20 3.091e-10 3.526e+00 7.052e+00 4.000e+00 2.539%-10
Ir 1.300e-19 2.483e-10 1.352e-19 1.628e+10 2.858e-10 8.068e-20 2.957e-10 4.506e+00 9.012e+00 4.000e+00 2.535e-10
Ni 8.355e-20 2.275e-10 6.720e—20 1.361e+10 2.814e-10 2.719e-20 3.016e-10 3.521e+00 7.042e+00 4.000e+00 2.477e-10
Pb 3.808e-20 3.189%-10 3.652e—-20 1.153e+10 3.747e-10 1.915e-20 3.920e-10 4.123e+00 8.245e+00 4.000e+00 3.313e-10
Pd 7.383e-20 2.515e-10 7.559e—-20 1.576e+10 2.907e-10 4.398e-20 3.013e-10 4.424e+00 8.848e+00 4.000e+00 2.576e-10
Pt 1.098e-19 2.541e-10 1.136e-19 1.581e+10 2.929e-10 6.728e—-20 3.032e-10 4.480e+00 8.960e+00 4.000e+00 2.597e-10
Rh 1.078e-19 2.463e-10 1.164e-19 1.725e+10 2.811e-10 7.390e-20 2.893e-10 4.722e+00 9.444e+00 4.000e+00 2.498e-10
Th 1.119e-19 3.293e-10 7.048e—-20 7.707e+09 4.440e-10 2.125e-20 4.892e-10 2.951e+00 5.902e+00 4.000e+00 3.868e-10
BCC metals

Ba 3.718e-20 4.034e-10 2.865e—-20 7.594e+09 5.035e-10 2.763e-20 4.689e-10 4.968e+00 9.936e+00 4.000e+00 4.079e-10
Cr 8.066e—20 2.333e-10 6.723e-20 1.409e+10 2.843e-10 6.714e-20 2.674e-10 5.295e+00 1.059e+01 4.000e+00 2.346e-10
Fe 8.412e-20 2.317e-10 6.553e—20 1.335e+10 2.882e-10 6.351e-20 2.687e-10 5.010e+00 1.002e+01 4.000e+00 2.340e-10
Li 3.271e-20 2.811e-10 1.624e-21 2.246e+09 9.030e-10 5.296e-21 4.333e-10 2.819e+00 5.637e+00 4.000e+00 3.388e-10
K 1.829e-20 4.245e-10 2.261e-21 2.365e+09 1.081e-09 7.928e-21 5.344e-10 3.932e+00 7.864e+00 4.000e+00 4.480e-10
Na 2.194e-20 3.427e-10 2.714e-21 2.930e+09 8.724e-10 8.341e-21 4.412e-10 3.748e+00 7.496e+00 4.000e+00 3.667e—-10
Nb 1.461e-19 2.681e-10 1.158e-19 1.172e+10 3.317e-10 1.132e-19 3.100e-10 5.082e+00 1.016e+01 4.000e+00 2.705e-10
Rb 1.682e-20 4.544e-10 2.080e—-21 2.209e+09 1.157e-09 5.649e-21 5.985e-10 3.589e+00 7.178e+00 4.000e+00 4.934e-10
Ta 1.434e-19 2.681e-10 1.150e-19 1.183e+10 3.305e-10 1.130e-19 3.094e-10 5.128e+00 1.026e+01 4.000e+00 2.703e-10
A 1.046e—19 2.438e-10 7.972e-20 1.244e+10 3.054e-10 7.643e-20 2.841e-10 4.924e+00 9.847e+00 4.000e+00 2.467e-10
W 1.723e-19 2.560e-10 1.562e-19 1.393e+10 3.047e-10 1.610e-19 2.895e-10 5.706e+00 1.141e+01 4.000e+00 2.563e-10
HCP metals

Be 6.213e-20 2.063e-10 7.121e-21 4.646e+09 5.485e-10 2.687e-20 2.597e-10 3.908e+00 7.816e+00 4.000e+00 2.175e-10
cd 2.175e-20 2.851e-10 2.571e-21 3.405e+09 7.519e-10 2.650e—-20 3.142e-10 7.564e+00 1.513e+01 4.000e+00 2.867e-10
Co 8.271e-20 2.283e-10 9.486e-21 4.199e+09 6.069e-10 6.465e—20 2.636e-10 5.068e+00 1.014e+01 4.000e+00 2.299e-10
Dy 5.766e—20 3.255e-10 6.614e—-21 2.945e+09 8.653e-10 4.516e-20 3.757e-10 5.073e+00 1.015e+01 4.000e+00 3.277e-10
Er 6.252e—-20 3.209e-10 7.161e-21 2.986e+09 8.534e-10 4.357e-20 3.760e-10 4.770e+00 9.540e+00 4.000e+00 3.252e-10
Hf 1.200e-19 2.897e-10 1.376e—20 3.308e+09 7.703e-10 7.585e—-20 3.441e-10 4.554e+00 9.107e+00 4.000e+00 2.955e-10
Mg 2.815e-20 2.925e-10 3.226e-21 3.276e+09 7.777e-10 2.449e-20 3.334e-10 5.408e+00 1.082e+01 4.000e+00 2.933e-10
Re 1.518e-19 2.521e-10 1.739e-20 3.800e+09 6.706e—-10 1.527e-19 2.828e-10 6.031e+00 1.206e+01 4.000e+00 2.521e-10
Ru 1.260e-19 2.448e-10 1.442e-20 3.913e+09 6.511e-10 1.218e-19 2.757e-10 5.835e+00 1.167e+01 4.000e+00 2.449e-10
Ti 9.086e—-20 2.686e—10 1.042e-20 3.569e+09 7.142e-10 5.887e-20 3.179e-10 4.605e+00 9.211e+00 4.000e+00 2.735e-10
Tl 3.514e-20 3.126e-10 4.024e-21 3.064e+09 8.316e-10 2.840e-20 3.595e-10 5.166e+00 1.033e+01 4.000e+00 3.144e-10
Y 8.213e-20 3.282e-10 9.413e-21 2.920e+09 8.728e-10 4.210e-20 4.021e-10 4.168e+00 8.336e+00 4.000e+00 3.405e-10
Zn 2.524e-20 2.530e-10 2.894e-21 3.788e+09 6.728e-10 2.794e-20 2.812e-10 6.628e+00 1.326e+01 4.000e+00 2.533e-10
Zr 1.182e-19 2.934e-10 1.355e-20 3.266e+09 7.802e-10 6.949e-20 3.521e-10 4.409e+00 8.818e+00 4.000e+00 3.009e-10
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Fig. 1. Comparison of interatomic potential curves and calculated properties for Ag, using the parameters from this study and the study by Zhen and Davies. The cutoff distance
used was five times the nearest neighbor distance. All of the calculated property values were taken from equilibrium MD simulations carried out in LAMMPS. It should be noted
that the bulk modulus calculation for Davie’s parameters was carried out assuming a lattice constant of 0.407 nm. If the lattice constant predicted by the potential is used, the

bulk modulus is overestimated by 80%.
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Fig. 2. Each of the above charts depict how much of the neighbor sum remains as a function of neighbor distance for an FCC crystal. The left chart corresponds to the Mie

potential. The right picture corresponds to the Morse potential.
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SuN-m = g{ ani" + = (35)
S L,morse
—LA a AC_ min
=Y ge”tACahi=rmin) 4 1ome” A0l Trm) i e _ %
i Arlat Arlar (Arlat)
(36)

The accuracy of this calculation can be increased to arbitrary precision
by increasing the cutoff distance r.. In order for the summation to
converge, it is necessary that expressions (33) and (34) take on a finite
value. For the Mie potential, this requires that m > 3. For the Morse
potential convergence is guaranteed.

One can see in Table 2 that certain elements have an asterisk by
their elemental symbol to denote m values less than three. The resulting
potentials are wildly inaccurate due to the cohesive energy diverging
with increasing cutoff radius. The fourth fitting criteria (Eq. (9)) can be
relaxed in order to increase the value of m by as much as a factor of /2.
Even so, the resulting values of m are still relatively low (near 3) and
require extremely large cutoff values that are both non-physical and
highly computationally expensive. Fig. 2 demonstrates the convergence
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rate of the sums associated with the Mie potential and the Morse
potential for different sets of parameters (m, A * r;,,).

5. Discussion
5.1. Zhen and Davies error source

The substantial difference in potential shape between this study and
the study carried out by Zhen and Davies is made evident in Fig. 1.
The source of the difference in potential shape and the accuracies of
computed material properties results from criteria 2 (Eq. (7)). In their
derivation, Zhen and Davies assumed that the nearest neighbor distance
and the potential well minimum were equivalent. This implicitly as-
sumes that the cutoff distance is somewhere inbetween the first and
second nearest neighbor atom. It is obvious that this assumption is
poor and unintentional on the part of Zhen and Davies, because they
calculated lattice sums out to 14 times the nearest neighbor distance.

5.2. Recognizing the importance of cutoff distance

Interatomic potential strength should decay with distance such that,
for a suitably large cutoff, increasing the cutoff distance has negligible
effect on computed material properties. How large this cutoff distance
should be depends on the nature of the physical bonding being de-
scribed. This is important for two reasons. First, the goal of interatomic
potentials is to accurately describe the bonding of real materials. As
such, the decay in bond strength as a function of distance should
match that of real materials. Second, simulation performance drops
precipitously as cutoff distance increases.

Traditionally, the Lennard Jones cutoff radius is set to 2.5¢ which
corresponds to approximately the 5th nearest neighbor distance for FCC
crystals. The error introduced by truncating the lattice sum beyond this
point is less than 5 percent. It is clear from Fig. 2 that low values of
m (m ~ 4) and A * r;, correspond to slow convergence of the lattice
sum and large required cutoff distances. The authors urge caution in
the use of potentials with such parameters. At best, they will need
to be used with large cutoff radii that are non physical and result in
slow simulations. At worst, they will be used with short cutoff radii
that result in large inaccuracies in simulation behavior and calculated
material properties.

It is desirable to have a set of tabulated interatomic potential
parameters for a single potential that works well [14,15,17,18]. In
reality the situation is more nuanced. Certain pair potentials are fun-
damentally limited in their ability to describe particular materials. The
Lennard Jones N-M/Mie potential is an excellent example in that it
cannot physically model materials with small ratios of bulk modulus to
cohesive energy. The authors advise that researchers wanting to use the
parameters listed in Table 2 should consider their associated limitations
and look into other potential types whenever m and A = r;, values are
small. The fitting procedures outlined in the appendices can be used to
derive parameters for other potential types whose interactions decay
more appropriately with distance.

This work corrects the pair potential parameters determined by
Zhen and Davies. We go one step further to show that even though
bulk modulus is used to fit the N-M potential, the N-M potential is
fundamentally incapable of accurately modeling certain metals without
depending on arbitrary cutoff distances. This paper is not intended to
be an exhaustive analysis on the limitations of pair potentials in their
ability to describe metals. Rather, it is simply meant to highlight one
such limitation for the particular case of using the Lennard Jones N-
M potential to describe the bulk modulus. Studies focusing on other
properties/phenomena should carefully consider whether other intrin-
sic issues with the form of the chosen potential might invalidate their
results.
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6. Summary

In conclusion, an error was identified in the method used by Zhen
and Davies to calculate Lennard Jones N-M parameters for metals.
This error was corrected for, and new Lennard Jones plus Lennard
Jones N-M parameters were calculated for 38 different elements. Morse
and Mie parameters were also calculated for these same elements. For
the special case of silver, using the N-M coefficients from this study
resulted in reduced error in calculating the cohesive energy, lattice
constant, and bulk modulus. The greatest reduction in error occurred
for the bulk modulus where relative error dropped from 40% using
Zhen and Davie’s parameters to less than 2% using the parameters from
this study. Finally, the influence of cutoff radius is considered and the
inability of certain potentials to accurately describe particular materials
is analyzed. Although N-M parameters can be determined for all metals,
small ratios of bulk modulus to cohesive energy result in potentials that
describe nonphysical bonding behavior over long distances.
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Appendix. Potential fitting

A.1. Nomenclature

a; = Number of ith nearest neighbor atoms
B = Bulk modulus

E,, = Per atom cohesive energy

A; = Distance between the ith nearest neighbor atoms assuming the
lattice constant equals 1.

o = Distance at which interatomic potential equals 0

r = Lattice constant

Flar0 = Equilibrium lattice constant

rmin = Distance at which interatomic potential is minimized

m
7 = Ratio of n to m

V, = Equilibrium per atom volume
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A.2. Preliminaries

Bulk Modulus Potential Relationship
Traditional definition of bulk modulus in terms of the interatomic
potential:
U,

atom

B=V,
0 gp2

lv=r, (A1)

Desired: to express the bulk modulus in terms of a partial derivative of
radius rather than a partial derivative of volume.

2

ov 99U (A2)
ov? av v

oU _ oU or

= =2 A.3
v dar vV (A-3)
ar aV

2o (= A.4
%4 ( ar ) (A4
?U _ a U or )
===

aV oV " or oV (A.5)

U drp OU P
T o2 oV or ov’?
oU
o =t =0 (A6)
o*U oU? or o
2 V=i = 53 = () (A7)
Volume-Lattice Constant Relationships
For Simple Cubic Metals:
dav ., a2
(E) lr=ria0 = aro (a8
For Body Centered Cubic Metals:
2

dr _ rIaI,O
(W) |f:f1m,o ) (A.9)
For Face Centered Cubic Metals:

d e

F 2 _ at,

(W) |r=r1ar,o =6 (A.10)
For Hexagonal Close Packed Metals (assume ¢ = \/g ):

dr 2 _ 2
G e = 3V 27 (A1)

A.3. General fitting method

Assumptions:

1. All atoms are equidistant
2. Contributions from distant lattice points are neglected. The cut-
off distance is 2.5 times the nearest neighbor distance.

Equations:

Uaiom = Z a; Ubond (ri)

1

(A.12)

The index “i” refers to the ith neighbor. Thus, g; refers to the number
of neighbor atoms that are a distance r; from the central atom.

1. Uatom(rlar,()) = EAco

()ULUUWI —_—
2. 0ryg |’lat=’lar,0 =0

0 Ugiom ~, dr \2 _ B
3 (G ey =
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A.4. Lennard Jones fitting

Variables to be solved for:

*€

Key potential equations:

12 6
Upond (1ar) = 4€ [(%) - (%) } (A.13)
s \ 2 s\
Ugyom =2 ; (=) i Al
aom ‘ Za, [(’mzn) ! <"1az,0> ! (A-19
12 6
Uyiom = 2€ ( g ) Spy— ( g ) Se (A.15)
Tlar0 Tlat,0
S; = ai’ (A.16)
i
aUatom —1 c 12 —1 c 6
— =12¢ |2 S — ) S A.17
Oy ‘ Tt e 27 T1ar0 ¥ ( )
Simplified fitting criteria:
S 1/6
o= (E) Flat0 (A.18)
28, E,
€= 12%co (A]g)
Se
A.5. Lennard Jones N-M fitting
Variables to be solved for:
*€
< r
e m
°n
Additional Fitting criteria:
*n=2m
Key potential equations:
m o \" n o \™
Upona i) = € [ = (2 ) = = (2} (A.20)
Upom = —— Y a; |m [ 2= D () e (A21)
atom n—m i ! Flat i Flat i '
= — ) S, - — ] 5 A.22
Uﬂlom n—m [m (rlat> nn <rlat> m] ( )
S; = ai’ (A.23)
i
aU n m
atom _ emn _rl_1’ r_O Sn +r1—l r_o Sm (A24)
arlat n—m “ Tlat a“ v
azUarom emn 2 ro " 2 ro "
——atom _ T N+ 2 (L) S, +m+Dr2 (X)) S
i =i () s (GL) s
(A.25)
Simplifications to fitting criteria:
E,
€= —#m (A.26)
o
msy (72)
Sm m/n
o = (S_n> Flat0 (A-27)
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Table A.1

Simple Cubic Neighbor Data.
point family [1,0,0] [1,1,0] [1,1,1] [2,0,0] [2,1,0] [2,1,1]
multiplicity (a) 6 12 8 6 24 24
distance (4) 1 \/5 \/5 2 \/g \/E

Table A.2
Body Centered Cubic Neighbor Data.

point family

[0.5,0.5,0.5] [1,0,0] [1,1,0] [1.5,0.5,0.5] [1,1,1] [2,0,0] [1.5,1.5,0.5]

multiplicity (a) 8 6 12 24

distance (4) \/3/4 1 \/5

V1174

8

V3

6
2

24

V1974

Table A.3
Face Centered Cubic Neighbor Data.

point family

[0.5,0.5,0] [1,0,0] [1,0.5,0.5] [1,1,0] [1.5,0.5,0] [1,1,1] [1.5,1,0.5]

multiplicity (a) 12 6 24 12 24 8
distance (1)  +/1/2 1 V32 V2 o JTTJA 3 (134
Table A.4
Hexagonal Close Packed Neighbor Data.
neighbor number 1 2 3 4 5 6 7 8 9
multiplicity (a) 12 6 2 18 12 6 12 12 6

distance (4) 1

\/5 1.633 1.7321 1.9149 2 22361 2.3805 2.4495

A.5.1. Determining o from N-M parameters
Equating the Mie and N-M Potentials:

() 0]
< (T ()]

Simplifying:

() = (5) =G I

Equating the repulsive terms:

() =37 (3

Simplifying:
n\im
mry. =n (; ) "

Solving for o:

A.6. Morse fitting

Variables to be solved for:

*€
ca

ro

Key potential equations:

Upona(ria) = € [e—2a(r—r0) _ ze—alpha(r—ro)]

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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Ugiom = % [50,2€2ar0 _ 250’16‘”0] (A.37)
Sk = Z ai)»{e_k“”ﬂ"li (A.38)
i
aU,
atom _ —ea [eZarO Sl,2 _ earosl,l] (A.39)
or, lat
0%U,
ar;tam — €a2 [2e2ar0 S2,2 — %0 S2’1] (A.40)
lat
Fitting Method:

Write a function with argument « that carries out the following
procedure. Use a root finding method to determine the appropriate
value of « and then back substitute to determine r, and e.

A.7.

1. solve for ry

1y, SL1
rg=a 'ln(—
0 (SL2 )
2. solve for epsilon

€=

[So.zelaro _250.1 e‘"O]
3. Calculate the bulk modulus
B = V(Do) 1 2
TN Ry r=ria
4. return the calculated bulk modulus minus the physical bulk
modulus

Neighbor data

See Tables A.1-A.4.
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