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Abstract—Cell-free (CF) structures are expected to be a
game changer for beyond-5G wireless networks. With all users
potentially communicating with all the base stations, cooperation
at a central processing point is poised to provide much higher
spectral efficiencies. At the same time, the growing interest in
unmanned aerial vehicles (UAVs) makes CF-UAV networks an
appealing scenario. In this paper, we investigate the uplink of
a CF network where UAVs serve as flying base stations. It is
shown that the optimization of the UAV locations can markedly
increase the minimum local-average signal-to-interference-plus-
noise ratio, which in turn yields an increase in spectral efficiency.
The improvements are associated to pilot contamination and to
geometry.

I. INTRODUCTION

The evolution towards software-defined architectures mo-
tivates the interest in centralized, possibly cloud-based, radio
access networks [1]. The corresponding base stations consist
only of antennas and RF stages, with the baseband processing
concentrated at some suitable point. This naturally invites a
cell-free (CF) structure where every user potentially connects
to every base station, and takes the principles of cell coop-
eration to the limit [2]-[8]. To render CF networks scalable
while retaining their main features, the users connecting to
each base station can be limited to appropriate subsets [7].

There is growing interest in unmanned aerial vehicles
(UAVs) for a multitude of applications, including serving as
flying base stations (FBSs), but most of the related work has
taken place within the confines of the cellular paradigm [9]—
[16]. In addition, the challenge of deploying FBSs for an
optimal performance has received a lot of attention [17]—
[19]. However, the problem of deploying FBSs in CF-
UAV networks remains largely unexplored. For the sake of
tractability, existing works on FBS deployment and trajectory
optimization broadly assume simplified channel models and
perfect channel-state information (CSI) [11]-[13].

The present paper tackles the FBS deployment optimization
with imperfect channel estimation and MMSE combining
and serves as a starting point in the investigation of pilot
assignment techniques for CF-UAV networks. These networks
differ from ground networks in three major ways:

(a)  Limited signal processing capabilities at FBSs.
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Fig. 1: Geometry for a given transmitter-receiver pair.

(b)  Different propagation conditions.

(c)  Deployment density.

Point (a) is naturally addressed in centralized CF networks,
as the FBSs merely relay their data via wireless fronthaul
links, possibly at mmWave frequencies. In turn, (b) can
be addressed via a realistic ground-to-air channel model,
including the dependence on the elevation angles and the
probability of the links being in line-of-sight (LoS). Finally,
UAVs have limited on-board energy and ability to carry large
arrays, in contrast with ground BSs. While it is a common
assumption in ground CF networks to have more base stations
than users on each signaling resource, in CF-UAV networks
the number of FBSs is necessarily limited as advanced in (c).

In this paper:

1) A complete and tractable framework is provided to
analyze CF-UAV networks, including imperfect CSI,
MMSE combining, pilot contamination, and realistic
antenna radiation patterns at the UAVs.

2) Closed-form expressions are derived for the local-
average signal-to-interference-plus-noise ratio (SINR)
when the number of users is large, considering central-
ized MMSE combining and MMSE channel estimation.

3) Two algorithms are provided for the optimization of the
max-min local-average SINR.

II. NETWORK AND CHANNEL MODEL

The CF networks under consideration feature M FBSs with
the mth one located at q,, = (2, y,,) and altitude H. There
are K cochannel single-antenna ground users (GUs) at wy, =
(X, yg) for k=1,..., K.

We denote by gy ., the channel coefficient between the
kth GU and the mth FBS, following a Rician distribution



comprised of (i) a dominant LoS component and (ii) a
Rayleigh-distributed small-scale component. Therefore:
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where 3y and k are the pathloss intercept at a 1-m reference
distance and the pathloss exponent, respectively, and dj ,,
denotes the distance from the kth GU fo the mth FBS. The
Rician factor is Ky ,, = Aje Az arcsin(z 7 for environment-
dependent parameters A; and Ag [20]. In addition, v ., ~
U[0,2x] and ay,, ~ Nc(0,1) account, respectively, for the
phase rotation of the LoS component and for the small-scale
fading. Finally, g,,, (6%, ) models the antenna gain at the mth
FBS given the angle 0 ,,,, as shown in Fig. 1. Based on the
analysis provided in [19], [21],

gm(aknn) =2 (O‘m + 1) cos™ (Qk,nb)a (2)

where parameter o, controls the trade-off between gain and
beamwidth. Thus, the overall channel, gj ., is a zero-mean
r.v. with average power satisfying

Qm
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A. Channel Estimation

Channel estimation is tackled explicitly by means of 7
orthogonal pilot sequences of length 7. Let o, € C™*! be the
pilot sequence assigned to the kth user, where ||, [*> = 7.
Upon pilot transmissions by all GUs, the observation at the
mth FBS is

K
= Gkm Pr\/P} + Tom, @
k=1

where p}. is the pilot power of GU k and n,,, ~ N (0, 0%I).
The number of orthogonal pilots is necessarily limited, i.e.
7 < K, which gives rise to pilot contamination. Let us denote
by Sy the set of GUs sharing the same pilot sequence with
GU k, including GU k. From z,,, the mth FBS produces the
MMSE channel estimate [22]
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Therefore, the average channel estimate power is
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The channel estimation error is gi m = gk,m — Jk,m, being

uncorrelated with gy ,,, and satisfying cx.m = E{|gk.m|?} =
Tkom — Vk,m-

B. Uplink Data Transmission

In a given uplink time-frequency resource, the channel
matrix is

G:(glﬂ"'ugK)7 (7)

where g, € CM*! is the channel vector from GU k to all
FBSs. Considering (5), the channel matrix can be decomposed
as G = G+G, where G is the channel estimate matrix and G
is the channel error matrix. To take into account that not every
FBS participates in the reception of every GU, we introduce
a binary matrix M*® = (m3, ..., m%) € Z*X defined as

s 1 if FBS m regards GU k as signal
(M1, . = { : S ®

0 otherwise

We also define the complementary matrix M' = 1 — M?®,
whose nonzero entries indicate the GUs that each FBS
disregards and that therefore constitute interference. In a fully
cooperative network, all entries of M*® are equal to one.

At the centralized processing point, the observations from
the M APs can be pooled into the vector

y=M'oGzr+ M oGz +n )
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signal noise + interference: v

where @ = (\/p151,...,/PgsK) ", with symbols s, having
unit power, while py, is the transmit power of GU k, o denotes
Hadamard product, and n ~ Ng(0,02I). The noise-plus-
interference term satisfies ¥ = E{vv*} = Dy + D3y + o1,
where
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with U, = {k + [M’], , =1, k=1,
GUs regarded as signal by the mth FBS.

, K} the set of

IIT. CENTRALIZED CF NETWORK WITH
MMSE SUBSET RECEPTION

Let F, = {m : [Ms]m)k =1, m=1,...,M} be the
subset of FBSs involved in the reception of GU k. From the
rows of y whose indices are in Fj, we obtain the |Fy| x 1
vector

Yy, = Mj o Gy + vy, (13)

where

= (Mg, mi ) € Z5 (14)



while G, € CZ* XK apnd v, € C*I*1 The MMSE
combiner associated with GU k, wy, € CFxIx1 is [7]
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where P = diag(p1,...,pk). In turn, §, contains the Fy
rows of the M-dimensional channel estimate of GU k, and
3j is defined similarly. The SINR achieved by GU k is

—1
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with an ergodic spectral efficiency of
(1 - T) E{log,(1 + SINRy)}, (17)
Te

where 7. represents the coherence of the channel in symbols
and = is hence the pilot overhead.

Proposition 1. For the MMSE subset combiner,
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Proof. The proof, omitted for the sake of brevity, hinges on
applying Tchebyshev’s theorem to (16). O

The expectation of the SINR over the small-scale fading
yields the local-average SINR

Jim E{SINRy} = >
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Proposition 2. For MMSE subset combining with K — oo,
E{SINRy} is a decreasing function of |Sk|.

Proof. Straightforward calculations show that E{SINRy} is
an increasing function of < ,, and, from (6), Vxm is a
decreasing function of |Sy|. O

IV. PROBLEM FORMULATION

The main motivation of this work is to study the FBS
deployment in CF-UAV networks with E{SINRy} as the
metric to optimize. Defining the set of FBS locations by
Q = {q,,form = 1,...,M}, we can formulate the
maximization of the minimum local-average SINR as

max  min E{SINRy}, (19)
which is nonconvex. Capitalizing on Prop. 1, we study this
problem in the regime of large but finite K. To deal with
(19), different methods can be utilized to obtain solutions.
First, given (18), the gradient can be obtained. By virtue of
that, a gradient based (GB) algorithm can be implemented to
iteratively update the FBS locations. However, the noncon-
vexity of the problem may cause the GB method to meet the
convergence criteria at early stages, resulting in low quality
solutions. To circumvent this challenge, we combine it with

the simulated annealing (SA) technique [23], as discussed
next.

Given (18) and a large K, then, the optimization problem
boils down to

. Yk,m
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where the optimization variables are subsumed within s,
and 1;,,, with v;,, dependant on how pilot sequences
are assigned. Hence, the deployment is influenced by: user
positions, pilot sequence assignment, and power allocation
(on both pilots and data).

From (20), the gradient w.r.t the FBS locations can be
derived. For ease of exposition, we proceed with the com-
putation of the derivative w.r.t the horizontal coordinate of
the mth FBS,
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Plugging (23), (24), and (25) into (22), we obtain 'y,;,m,
which, in conjunction with (25), yields the derivative w.r.t.
.. Similarly, formulating the derivative w.r.t. y,,,, the overall
gradient is obtained with complexity O(K + |Si|). Finally,
the GB updates for the max-min E{SINRy} problem are

QY+ QY + pVVE{SINR} g_qu, 2]

where j is the GB iteration number and p¥) is a decreasing
function of j. Due to the nonconvexity of the problem, the
updates provided by (27) may quickly converge to local



solutions. Therefore, given a suboptimal GB deployment,
the SA stage aims to relocate the FBSs with the objective
of further improving min E{SINRy}. The core of the SA
stage relies on low-SINR users being given a higher weight
and the FBS locations being updated accordingly. We use a
logarithmic scale, i.e., L = logy(C +E{SINRy}), where C
is a positive constant (C' = 1 in our simulations). The main
steps are

1) Create the weight vector a € RE*1 in which, with the
aim of increasing fairness, users with smaller SINRs
are given a higher weight. A possible formulation for
a is

K
Zfil Li Zj:l Lj
ap = &= — |max | = —=
Ly, p L,

2) Displace the FBSs in the direction of the GUs with
lower SINRs. Specifically, let n denote the SA iteration
number. Then,

qszl,)new = qgv?) + Z ak \Ij(n) (Wk? B qm)’
keunz

-1
k=1,... K.

(28)

where U(™) defined in the next section, is a decreasing
function of n for convergence reasons. Note that FBSs
only move towards users they are providing service to,
i.e., users within U,,.

3) If the update in (28) improves the cost function, the
solution is accepted. Otherwise, the solution is accepted
with probability exp (£esxzteld ) where ji1q and finew
are the minimum GU L, before and after applying (28),
respectively. Otherwise, a new neighboring solution is
generated from qg,?,)ncw ~ N (qglf), T T). Addition-
ally, we define 7™ as the temperature at Iteration n
as indicated in the SA literature [23].

Remark. For small K, the gradient becomes analytically
intractable. However, one can still apply the GB updates and
the SA, with E{SINRy} replaced by its sample mean.

V. NUMERICAL RESULTS

For the purpose of performance evaluation, we consider a
600m x 600m wrapped-around universe to avoid boundary
effects. Table I lists the parameters used in the simulations,
which are based on the CF and UAV literature [5], [14], [15].
Pilot sequences are randomly assigned, with an average reuse
factor of K /7 [24]. Unless otherwise specified, T = 70, with
a 7% pilot overhead. As far as M® is concerned, the [m, k]
entry will be 1 if dj, ,,, < 100m. The learning rate of the GB
algorithm is p/) = 200-1.0057 while, for the SA algorithm,
T+ =100 0.77 and W@+ = 0.0015;2E2 . (Changes
in the learning rate or in the SA parameters would only affect
the speed of convergence.) Finally, the maximum number of
iterations for each of the algorithms is set to 1000.

Simulations are conducted for two different user position
distributions, namely square regular grid and Gaussian mix-

TABLE I: Simulation Parameters

Description Parameter Value
GU data power Pk 100 mW
GU pilot power Pt 100 mW
Path loss reference Bo -30 dB
Path loss exponent K 2
Dense urban parameters A1, As 0,64dB
FBS altitude H 30 m
Noise power o? -120 dBm
Antenna beamwidth Qm 2
Channel coherence (symbols) Te 1000
1 T T T T \’ L
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Fig. 2: Local-average SINR using (16) and (18).

0.2

ture, denoted by RG and GM in our simulations, respectively.
In the latter, user positions are sampled from the mixture

Jy) = SN (ma 40°T) + A (ma, 80°1)

with m; = [200150] and ms = [300300]. Taking as
benchmark a square regular grid FBS deployment, we define

. opt
can= (1 T S
Tec

ming SE%Ml ’

where SE™" and SE%rid are the kth user spectral efficien-
cies after deployment optimization and when the FBSs are
arranged in a square regular grid, respectively. Although
the optimization is SINR-based, our aim is to show that
improving the min-SINR is directly related to improving min-
SE. Finally, we measure the gain over 100 realizations and
the results are presented using boxes containing the median,
25th and 75th percentiles, and the most extreme points.

We first measure the accuracy of (18) compared to the
sample mean (SM) of (16) with the aim of setting a proper
value for our large-K simulations. Fig. 2 compares the
aforementioned expressions for M = 49 under both user
distributions for K = 49 and K = 81. This observation
verifies that K = 81 makes (18) sufficiently accurate when
M = 49. Therefore, unless specified, in our large- /K results
we set M =49 and K = 81.

As mentioned, the performance is influenced by geometry-
based parameters, pilot sequence assignment, and power
allocation. As the latter is kept homogeneous for all GUs,

(29)



we focus on the other two. Especially, to understand the
impact of pilot contamination and the importance of the FBS
optimization even if users conform a square regular grid, we
include Figs. 3a and 3b. To create meaningful surface repre-
sentations, and only for this case, we have used M = 400 and
K = 625, which gives a similar M /K ratio as the one used
throughout this work. Fig. 3a presents E{SINR} for each
GU when there is no pilot contamination, i.e., for 7 > K.
Given the symmetry of the problem, such a deployment is
optimal. However, the case of practical interest includes pilot
contamination, i.e., 300 < K, whose E{SINR} is
presented in Fig. 3b. The local-average SINR values are lower
compared to Fig. 3a and the symmetry is broken, such that a
reallocation of the UAVs is able to increase min E{SINR}.
Hence, even for homogeneous user distributions, there is a
deployment gain because of pilot contamination. Superposed
to that, there will be a gain associated to geometry-based
parameters, such as the GU-FBS distances or how M is
generated. To quantify these gains, we subsequently provide
extensive results.

T =

Figs. 4a and 4b depict the gain for different values of
7 for RG and GM user distributions, respectively. We also
include the evolution of the minimum local-average spectral
efficiency before and after optimization, denoted by SEerid
and SE°P', respectively. Finally, to focus on the gain induced
by pilot contamination, we measure it over the same GU loca-
tions only varying the pilot assignment between realizations.
Clearly, the gain decreases as more pilots are available, i.e.,
larger 7. This is mainly a consequence of Prop. 2: while
having more pilots results in better local-average SINR, and
thus spectral efficiencies, it is more challenging to improve
them via optimization. In fact, for the limiting case, i.e.,
7 = K, the gains in Figs. 4a and 4b originate only from the
geometry of the scenario. While for the RG there is an average
gain at 40%, for the GM case it increases up to 50% given
the irregular user distribution, with the pilot gain superposed,
achieving a maximum of 250%.

In Figs. 5a and 5b, we include the variation of the gain
over M, for a fixed 7 = 70. For the RG case, the following
conclusion can be extracted: while increasing M results in
higher spectral efficiencies, the gain tends to decrease, as it
is more challenging to improve the FBS deployment. In the
limiting case, M = K, the gains would be one given the
symmetry of the problem. However, as depicted in Fig. 5b,
for a non-uniform user distribution, the gain increases as more
UAVs can adapt their deployment to the irregularities in the
user distribution.

Finally, in Fig. 6, we include the average gain of our
method when applied to smaller networks with 7 = 70
considering M = 4 and M = 16. To see the variation with
respect to K, we consider M*® = 1. First, only the case
K = 92 would suffer from pilot contamination, thus for the
rest of K, the gains are produced by the geometry of the
problem and in particular by the distances between GUs-
FBSs as M* = 1. In addition, for the RG case, the gain

« Average SINR [dB]
., Average SINR [dB]
IS

Fig. 3: E{SINR} when the user distribution is RG (a) without
pilot contamination and (b) with pilot contamination.
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Fig. 4: Gain vs 7 for K = 100 : (a) RG, (b) GM.

does not follow a trend, as for the cases where the problem
is symmetric, the gain is (1 — W) x 1. Although for the
GM M = 4 case, gains decrease, for M = 16, they follow
an increasing curve. The main reason for that is having more
UAVs allows the FBS to have a better match with respect to

the GU distribution.

VI. SUMMARY

This paper has investigated the FBS deployment problem in
CF networks with a realistic system model. We have formu-
lated a max-min E{SINRy} optimization problem, which is
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nonconvex, and tackled it by means of various algorithms that
markedly improve the min-SINR, and therefore the minimum
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