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Abstract

In this paper, we investigate dynamic resource scheduling (i.e., joint user, subchannel, and power
scheduling) for downlink multi-channel non-orthogonal multiple access (MC-NOMA) systems over time-
varying fading channels. Specifically, we address the weighted average sum rate maximization problem
with quality-of-service (QoS) constraints. In particular, to facilitate fast resource scheduling, we focus
on developing a very low-complexity algorithm. To this end, by leveraging Lagrangian duality and
the stochastic optimization theory, we first develop an opportunistic MC-NOMA scheduling algorithm
whereby the original problem is decomposed into a series of subproblems, one for each time slot.
Accordingly, resource scheduling works in an online manner by solving one subproblem per time slot,
making it more applicable to practical systems. Then, we further develop a heuristic joint subchannel
assignment and power allocation (Joint-SAPA) algorithm with very low computational complexity, called
Joint-SAPA-LCC, that solves each subproblem. Finally, through simulation, we show that our Joint-
SAPA-LCC algorithm provides good performance comparable to the existing Joint-SAPA algorithms
despite requiring much lower computational complexity. We also demonstrate that our opportunistic
MC-NOMA scheduling algorithm in which the Joint-SAPA-LCC algorithm is embedded works well

while satisfying given QoS requirements.
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I. INTRODUCTION

With the exponential proliferation of mobile devices, overall mobile data traffic is expected
to grow to 77 exabytes per month by 2022 [2]. Such surge in mobile data traffic will exacer-
bate resource shortages, which in turn will necessitate high levels of connectivity and spectral
efficiency. In these circumstances, non-orthogonal multiple access (NOMA) has been envisioned
as a promising technology for future cellular networks thanks to its potential to achieve high
connectivity and high spectral efficiency compared to orthogonal multiple access (OMA)-based
technologies [3]-[6]. Especially, in [7], the potential performance gains of NOMA over OMA
have been extensively studied in various system setups. Unlike OMA, which essentially excludes
inter-user interference (IUI), NOMA is based on the premise that IUI is acceptable, and two
popular categories of NOMA include power-domain NOMA and code-domain NOMA [8]. This
paper focuses on the power-domain NOMA that multiplexes multiple users on the same resource
based on superposition coding in the power domain, and then, at the receiver, multi-user detection
is realized by mitigating IUI based on successive interference cancellation (SIC) (see [9]-[11] and
references therein). However, despite the high network performance, the presence of IUI makes
resource scheduling, which is very important in wireless networks, more difficult in NOMA
systems. In addition, resource scheduling techniques developed for the OMA systems, e.g., [12]—
[14], cannot be easily applied to the NOMA systems, and provide limited performance even if
they can. In this vein, resource scheduling with low computational complexity is one of the most
paramount issues in NOMA systems, and thus, many studies have been conducted. Nevertheless,

they still have practical limitations, especially in terms of computational complexity.

A. Related Work

Early studies in this area have focused on single-channel NOMA (SC-NOMA). Accordingly,
various studies have been conducted in SC-NOMA systems, in terms of power allocation [15]—
[19], and power allocation and user selection [20], [21]. More recently, the research focus
in this area has been shifted from SC-NOMA to multi-channel NOMA (MC-NOMA). MC-

NOMA systems take multi-channel transmission into account; however, compared to SC-NOMA
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systems, resource allocation becomes much more complicated because of the additional burden
of subchannel assignment. As a result, the algorithms for SC-NOMA are usually inapplicable to
MC-NOMA, and even if they are applicable, they provide limited performance. Thus, to take full
advantage of MC-NOMA, a new joint subchannel assignment and power allocation (Joint-SAPA)
algorithm tailored to MC-NOMA systems is needed.

Joint-SAPA for minimizing total power consumption in MC-NOMA systems has been investi-
gated thanks to the corresponding simple linear objective function [22]-[24]. Later, it has shown
that the sum rate becomes a concave function of power allocation even though each user’s data
rate is a nonconcave function [25]. Therefore, a basic power allocation problem to maximize
the sum rate can be easily solved with well-known convex optimization solvers. However, the
convexity in optimization gets lost in more general Joint-SAPA problems that take into account
subchannel assignment and practical constraints, e.g., a so-called SIC capacity constraint that
limits the number of users who can be served simultaneously through the same resource. Hence,
many heuristic Joint-SAPA algorithms have been proposed, e.g., [25]-[27], but almost all of
them are still based on the concavity of the sum rate function with respect to power allocation.

Despite many studies on the sum rate maximization, the relative importance and/or fairness
among users have not been addressed therein due to the nature of the sum rate performance
metric. Thereby, users with poor channel conditions may experience starvation because no
resource might be allocated to them. On the other hand, different tradeoffs can be achieved
between the sum rate performance and the user fairness by controlling user weights in the
weighted sum rate maximization problem. However, unlike the (equally weighted) sum rate,
the weighted sum rate is generally a nonconcave function of power allocation (even in SC-
NOMA [19]), and accordingly the Joint-SAPA problem to maximize the weighted sum rate is
known to be a strongly NP-hard problem [28]. Hence, in most cases, the ideas and underlying
theory exploited in the sum rate maximization cannot be fully leveraged in the weighted sum
rate maximization. To address these, the Joint-SAPA problem to maximize the weighted sum
rate has received much attention [29]-[36]. In [29], the power allocation for each subchannel in a
two-user MC-NOMA system has been investigated. In [30], the Joint-SAPA problem in a multi-
user MC-NOMA system has been investigated without considering the essential SIC capacity
constraint. In [31], the authors have proposed a heuristic Joint-SAPA algorithm, considering the
SIC capacity constraint, based on the fractional transmit power control (FTPC) and exhaustive

search (ES) algorithms. In [32], [33], heuristic Joint-SAPA algorithms using the difference-
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TABLE 1

COMPARISON OF STUDIES ON THE WEIGHTED SUM RATE MAXIMIZATION IN THE MC-NOMA SYSTEM (v': CONSIDERED)

Constraint Optimization
Ref.
Total Subchannel SIC QoS Subchannel Power Scheduling
power limit power limit capacity requirement | assignment allocation over fading
[29] v v
(30] v v v v
[31]-[35] v v v v v
[36] v v v v v
Our work v v v v v v v

of-convex programming (DCP) approach have been developed under the assumption that each
subchannel is occupied by up to two users. In [34], the power allocation and the subchannel
assignment are performed based on the geometric programming (GP) approach and the many-to-
many matching game, respectively. In [35], the authors have proposed a Joint-SAPA algorithm
utilizing the Lagrangian dual and dynamic programming (DP) approaches. Most recently, in [36],
the authors have studied a Joint-SAPA problem with further considering the individual subchannel
power limits. They have developed a Joint-SAPA algorithm based on the DP approach and the
projected gradient descent (PGD) method. The weighted sum rate maximization studies related

to resource allocation for the MC-NOMA system are summarized in Table 1.

B. Motivation and Contributions

Joint-SAPA algorithms to maximize the weighted sum rate have been extensively studied
in the literature. However, all of them are still based on approaches that typically need high
computational complexity (e.g., approaches based on FTPC and ES [31], DCP [32], [33], GP
and matching game [34], and DP [35], [36]). Such high computational complexity will become
increasingly burdensome for practical use in future cellular networks with very short time slots.'
Hence, Joint-SAPA algorithms with much lower computational complexity are needed to make

it possible to generate transmit signals at the base station (BS) in a very short time slot.

n recent standardization trends, the length of the slot, which is a unit to transmit 14 orthogonal frequency division multiplexing
(OFDM) symbols, is reduced to achieve higher spectral efficiency and traffic capacity and lower user plane latency. For example,
5G New Radio (NR) supports flexible OFDM numerology with subcarrier spacing from 15kHz to 240kHz, resulting in a slot
length as short as 62.5 us [37]. Even more, 5G NR introduces a unit of mini-slot, which is even shorter than a slot, for the sake

of fast data transmission for ultra-reliable low-latency communication (URLLC).
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In addition, not all weighted sum rate maximization studies have considered explicit QoS
requirements, as shown in Table I. Instead, the authors in [30]-[35] have realized proportional
fair scheduling based on their own Joint-SAPA algorithms in simulation, using the fact that
the proportional fair scheduling is a specific use case of the weighted sum rate maximization
problem. Although the proportional fair scheduling provides high sum rate performance while
closing the performance gap between users to some extent, it cannot explicitly guarantee given
QoS requirements. Accordingly, in a practical QoS-aware system with individual user QoS
requirements, a new scheduling technique that can meet the individual QoS requirements as
well is needed. In particular, in wireless network systems that are subject to time-varying fading
channels, the development of a scheduling technique that meets QoS requirements by exploiting
the variability of the channels is necessary. Hence, in this paper, we aim to develop a novel low-
complexity opportunistic resource scheduling algorithm for the downlink MC-NOMA system,
which fully exploits the stochasticity of fading channels to maximize the weighted average sum
rate while ensuring the individual QoS requirements of users.

The main contributions of this paper are summarized as follows:

o We address a dynamic resource scheduling problem for the downlink MC-NOMA system
over time-varying fading channels. To the best of our knowledge, this is the first work to
maximize the weighted average sum rate while ensuring explicitly given QoS requirements
via joint optimization of user, subchannel, and power scheduling.

o We develop a Joint-SAPA algorithm with very low computational complexity, called Joint-
SAPA-LCC, to maximize the instantaneous weighted sum rate. It has much lower computa-
tional complexity compared to the existing Joint-SAPA algorithms with the same objective.

o We prove that it is optimal to select up to two users per subchannel, assuming that
the noise power of users suffering from interference is neglected, and propose a very
simple optimal user selection rule based on it.

o In accordance with the proposed user selection rule, we derive closed-form optimal
user power allocation formulas and a simple subchannel power allocation algorithm.

o Through simulation, we verify that our Joint-SAPA-LCC algorithm provides good
performance comparable to the existing Joint-SAPA algorithms despite requiring much

lower computational complexity.

» By leveraging the Lagrangian duality and the stochastic optimization theory, we develop
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an opportunistic MC-NOMA scheduling algorithm that fully exploits time-varying fading
channels. It operates in an online manner using the Joint-SAPA-LCC algorithm, and thus,
it is very effective for practical use. Through simulation, we show that our opportunistic

MC-NOMA scheduling works well and properly meets various QoS requirements.

C. Paper Structure and Notations

Paper Structure: The rest of the paper is organized as follows. In Section II, we formulate the
system model and the dynamic resource scheduling problem. In Section III and Section 1V, we
develop the Joint-SAPA-LCC algorithm and the opportunistic MC-NOMA scheduling algorithm,
respectively. We present simulation results in Section V and conclude in Section VI.

Notation: Scalars, vectors, and sets are denoted by italic, boldface, and calligraphic letters,
respectively. A vector that consists of elements in the set {x; : i € X} is denoted by (x;)viex.
The expectation operator is denoted by E[-]. For a complex number x, |x| denotes its absolute
value. For a real number x, y, and z, [x]" = max(0,x), and [x]; = min(max(x,y),z). For a

real-valued vector X, [X]* is a vector whose ith element is [x;]*. We denote by 14} an indicator

function taking the value of one if the statement A is true, and zero otherwise.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a single cell in the MC-NOMA system, in which one single-
antenna BS transmits signals to N single-antenna users over K subchannels. The index sets of
users and subchannels are denoted by N = {1,2,...,N} and K = {1,2,..., K}, respectively.
We assume that the entire system bandwidth, By, is divided into K orthogonal subchannels, so
that there is no interference among them. The bandwidth of Subchannel & is denoted by By.

We consider a time-slotted system over doubly block fading channels, where the channel gain
of each wireless link is time-varying and frequency-selective but remains constant during a time
slot and flat within a subchannel. Let {// L= 1,2,...} be the fading process associated with
User i on Subchannel k, where hﬁw. is a complex-valued continuous random variable representing
the channel gain from the BS to User i on Subchannel k in time slot . The fading process is
assumed to be stationary and ergodic. Note that the channel gain includes path loss, shadowing,
and multipath fading. We assume that information on the underlying distributions of the fading
process is unknown to the BS due to the practical difficulties in obtaining such information

a priori. However, we assume that instantaneous channel gains are known to the BS at the
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beginning of each time slot,”> so that the BS can jointly perform user scheduling, subchannel
assignment (i.e., user pairing per subchannel), and power allocation based on them.

In MC-NOMA, a subchannel can be assigned to multiple users simultaneously by power-
domain multiplexing. Let x; ., satisfying E[|x} | ] =1, be the information-bearing signal trans-
mitted to User i on Subchannel k in time slot ¢, and p?(’l. be the power allocated for signal ngi.
Also, let qﬁw. be the subchannel assignment indicator taking the value of one if Subchannel k
is assigned to User i in time slot ¢, and zero otherwise. Then, the received signal at User i on
Subchannel & in time slot ¢ is given by

hqukl\/gz,ix;m+ Z hqukj\/axkj + 1y (1)
JEN:j#i

where 7!

«; 1s the additive zero-mean complex Gaussian noise with variance 0'2l., and the first,

second, and third terms are the desired, interference, and noise signals, respectively. For compact

notation, we define the noise-to-channel ratio (NCR) of User i on Subchannel & in time slot 7 as

2
Ok

i P 2

t

Mei =

The NCR can be interpreted as the effective noise power when the channel gain is normalized
to unity.

After receiving signal y! g User i performs SIC to decode its own signal, x/ ., from it. User i
first decodes the signals for each User j whose NCR is not smaller than its NCR, ie,n k.j > nk’i,
and then subtracts the components associated with them from the received signal. Then, User i
decodes its own signal by treating the signals for the other users whose NCRs are smaller than
its NCR as noise. With a typical assumption that SIC has been successfully done, the maximum
achievable data rate of User i on Subchannel k£ in time slot ¢ is obtained as [42]

qic,ip 2,;‘
T | 3)
jeNat <t Qi jPrj M

Rii(p. q;;h}) = Brlog, |1+

where p;, = (pk IVieNs Q) = (qk Dvien, and b} = (h} )\ﬁeN. From (3), the maximum achievable

data rate of User i over all subchannels in time slot ¢ is obtained as

Ri(p' q'sh') = > Rii(p af hl), @)
ke

2This work focuses on resource scheduling from a system-level optimization perspective. Accordingly, channel estimation is
beyond the scope of this work, as in [29]-[36]. For readers interested in channel estimation, we refer to [38]-[41] and references

therein.
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where p’ = (p})vkex> 4 = (q )vkex, and h’ = (h))yxex. For simplicity, we interchangeably use

R! and R;(p',q';h’) without confusion. We now define the average data rate, R;, of User i as
1 &
R = lim = >" R, 5)

=1
and the weighted average sum rate, Rysg, which is what we are trying to maximize, as
Rwsr = Z wiR;, (6)
ieN
where w; is the weight factor representing the relative importance of User i. Additionally, each

User 7 has its own minimum average data rate requirement, Rmin,i, which is represented as
R; > Ruini, Vi € N. (7

Because of SIC, in each time slot, the BS can schedule multiple users on the same subchannel.
However, due to the high computational complexity and the potential error propagation in
SIC as well as the limited processing capabilities of users, the number of users multiplexed
simultaneously on the same subchannel is typically limited to a small number, M. In this regard,

we define a feasible set for a subchannel assignment indicator vector, q’, in time slot ¢ as

Q= {qf e {0, 1}N

>ldi <M, ke 7(} ®)
ieN
By introducing this SIC capacity constraint with an appropriate M, we assume a perfect SIC
without taking into account the error propagation of the SIC.

In addition, the BS should determine how much power to allocate to the scheduled users under
given transmission power constraints. We assume that the BS has a limited total transmission
power budget of P, and an individual subchannel maximum power constraint of Py for

each Subchannel k. In this regard, we define a feasible set for a power allocation vector, p’, in
time slot ¢ as
ieN Zke’}(pzj < Pmax,
P=1p e ROV ¥ Pl < Pk YR EK, |- )
pz,iZO, VkeK, Vie N
Note that since the sum of the maximum powers over all subchannels is usually greater than the
total transmission power budget of the BS in practice, we assume that > ;cq Pmax.k = Pmax-
With the performance metric function in (6), the QoS constraints in (7), and the feasible

sets for decision variables in (8) and (9), we finally formulate the dynamic resource scheduling
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problem for joint user, subchannel, and power scheduling in the downlink MC-NOMA system
over time-varying fading channels as
(P1) maximize Rwsr
p’.q',Vt
subject to  R; > Ruini, Vi €N,

peP, q eQ, Vi

We first note that dealing with Problem (P1) is not easy due to the nonconcave objective function,
the QoS constraints composed of neither convex nor concave functions, integer decision variables,
and the average operation over an infinite time horizon. To resolve these challenges, we first
develop an opportunistic MC-NOMA scheduling algorithm by leveraging the Lagrangian duality
and the stochastic optimization theory, whereby Problem (P1) is decomposed into a series of
deterministic optimization subproblems, one for each time slot. More specifically, a subproblem
is the Joint-SAPA problem to maximize the instantaneous weighted sum rate without the QoS
constraints in that time slot, which will be defined as Problem (P’l) in the next section. As a
consequence, we no longer need to solve Problem (P1) directly at once, but rather solve the Joint-
SAPA problem at each time slot in an online manner without considering the average operation
over an infinite time horizon and the QoS constraints. Meanwhile, an important caveat is that
the Joint-SAPA problem needs to be solved by a simple algorithm with very low computational
complexity so that the BS can generate and transmit signals in every short time slot. Hence,
we develop a heuristic algorithm to solve the Joint-SAPA problem with low computational
complexity, called Joint-SAPA-LCC algorithm. The flow chart of the process for solving the
dynamic resource scheduling problem, Problem (P1), is schematically illustrated in Fig. 1. Note
that the Joint-SAPA-LCC algorithm is a built-in algorithm that runs every time slot within the
opportunistic MC-NOMA scheduling algorithm. In the following, for ease of explanation, we
first develop the Joint-SAPA-LCC algorithm in Section III and then the opportunistic MC-NOMA

scheduling algorithm in Section IV.

III. JOINT-SAPA WITH LOW COMPUTATIONAL COMPLEXITY (JOINT-SAPA-LCC)

In this section, we develop our Joint-SAPA-LCC algorithm that solves the instantaneous

weighted sum rate maximization problem for each time slot 7, defined by

(P}) maximize ZW’.R{
p'eP,q'eQ

August 13, 2021 DRAFT



Opportunistic MC-NOMA Scheduling

. Generate a signal to be transmitted in time slot t based on p¢ and q°.

. Transmit the generated signal.

. Determine W/ for all i € V" for the next time slot, taking into account
the users’ degree of QoS satisfaction and channel conditions.

-

w N

Joint-SAPA with low computational complexity
q (Joint-SAPA-LCC)

(Wit )viEN

Fig. 1. The flow chart of the opportunistic MC-NOMA scheduling algorithm operating in an online manner to solve Problem (P1).

where W! is the effective weight of User i in time slot 7. As mentioned before, this problem
is not subject to the QoS constraints. Instead, the effective weights are systematically adjusted
every time slot so that the QoS constraints in (7) are met. It is worth noting that the effective
weight, w!, differs from the weight, w;, in (6) in that it is systematically adjusted in every time
slot based on the degree of QoS satisfaction of User i and its channel condition. This systematic
update process will be rigorously elaborated later in Section IV. Although the QoS constraints
are not considered in Problem (P}), it is still an NP-hard problem and very difficult to solve
using conventional methods since it contains not only a nonconcave objective function but also
integer variables. Furthermore, we need a fast solution because the transmission signal should be
generated and transmitted according to the solution in every short time slot. For these reasons, we
develop a heuristic suboptimal algorithm that provides a near-optimal performance despite very
low computational complexity. In the remainder of this section, since Problem (Ptl) is focusing
only on time slot #, we omit the superscript ¢ for notational brevity.
To solve Problem (P} ), we exploit the primal decomposition method [43], [44]. By introducing
a new coupling vector P = (P;)ykex, we reformulate Problem (P}) equivalently as
(P2) maximize Z Wi Z Riei (P> q; hy)
p.q.P ieN  keK

subject to Z Pr < Praxs
keXK

0< Pk < Pmax.k> Vk € K,

Zpk,i < Py, Vk €K,
ieN

pri =20, Yk e K, Yie N,
ZCIk,i <M, Yk € K,

ieN
qri €{0,1}, Vk e K, Vie N.
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It is worth noting that Problem (P,) could be decoupled for each Subchannel k if the coupling
vector P were fixed. Hence, we separate it into two levels of optimization. At the lower level,
we have K subproblems, one for each Subchannel k, defined by
(Sx) maximize Z WiRki (Pr> qi; i)
Pk, 4k ieN

subject to Zpk,i < Py,
ieEN
Pri =0, VieN,

Z(]k,i <M,

dr,; € {O, 1}, Vie N.
At the higher level, we have an optimization in charge of updating the coupling vector P, defined
by
M) maximize ¢*(P) = (P
(M) maximize ¢"(P) = ) ¢} (Py)

keXK

subject to Z Pr < Praxs
keXK

0< Pk < Pmax k> Yk € K,

where ¢ (Py) is the optimal value of Problem (S;). Then, we can obtain a suboptimal solution,
{p*, q*, P*}, to Problem (P,) by alternately solving Problems (Sy), Yk € K, and Problem (M)
until convergence. The pseudocode for this process is summarized in Algorithm 1. We can show

that Algorithm 1 converges to a stationary point.
Theorem 1. Algorithm 1 converges to a stationary point.

Proof. Due to the page limit, we leave the proof in Appendix A of the arXiv version [45]. O

In the primal decomposition method, if the primal problem is a convex problem, not only the
subproblems but also the master problem becomes a convex problem, resulting in the convergence
to a global optimal solution. In our case, however, since Problem (Ptl) is not a convex problem, the
convergence to a global optimal solution is not guaranteed. Nevertheless, we show by simulation

results that the algorithm provides a near-optimal performance with very low computational
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Algorithm 1: Joint-SAPA-LCC

1 Initialize: Py < Puax/K,Vk € K.

2 repeat

3 Obtain ¢>}‘C(Pk) by solving Problem (Sy) for the given Py, Yk € K, using Algorithm 2.
4 Obtain the solution, P*, to Problem (M) for the given ¢*(P) using Algorithm 3.

5 Update P « P*

6 until convergence

7 Obtain {p;,q;} by solving Problem (Sj) for the given Py, Vk € K, using Algorithm 2.

8 return {p*,q*}.

complexity.®> Also, it is worth noting that we will derive ¢ (Py) in a closed form in Section III-A,

and effectively use it to solve Problem (M) in Section III-B.

A. Solution to Problem (Sy)

In this subsection, we discuss how to solve Problem (S;) for a given P;. To be specific, to
maximize the weighted sum rate over Subchannel k, we find out which users to be assigned to
Subchannel k& and how much power to be allocated to them under the limited power of Py. In
addition, we derive the corresponding objective value, gbZ (Py), as a closed-form function of Py.

Problem (Sy) is difficult to solve mainly due to the integer variables, i.e., the subchannel
assignment indicators, qi. To address this difficulty, we first consider the following problem:

(Qx) maxgkmize ;{WiRk,i(Pk;hk)

subject to Zpk,i < Py,
ieN
Pri =0, VieN,

where
Pk,i
JEN K, j<nk.i Pk,j + Mk,

Ryi(pr;hy) = By log, |1+ (10)

3In [36], it is demonstrated that the proposed Joint-SAPA algorithm therein (called Joint-SAPA-DP later in simulation
results) achieves near-optimal performance. Accordingly, by comparing our Joint-SAPA-LCC algorithm with the Joint-SAPA-
DP algorithm via simulation, we verify that our algorithm provides near-optimal performance with very low computational

complexity.
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Although Problem (Q,) is different from Problem (S), we can easily derive the optimal solution

to Problem (Sj) from that to Problem (Qy) if a certain condition is met, by the following theorem.

Theorem 2. Let pZ = (pi Ivien be an optimal solution to Problem (Qy), and suppose that it

satisfies

Z l{pZ,i>0} <M. (11)

ieN

Then, an optimal solution, {p,q;}, to Problem (Sy) can be obtained as
p; =p, and q = (g} )vien- (12)

where qzizl{ for all i € N.

pz’i>0}
Proof. Due to the page limit, we leave the proof in Appendix B of the arXiv version [45]. O

Note that in the remaining of this subsection, we focus on developing a low-complexity
heuristic algorithm that solves Problem (Qj) without considering (11). However, it will be
revealed later that the solution to Problem (Q;) obtained by our proposed algorithm always
satisfies (11) as long as M > 1. Hence, a solution to Problem (Sj) can be easily obtained from
the solution to Problem (Q) based on Theorem 2.

We now discuss how to solve Problem (Qg). Even though Problem (Q;) does not have any
integer variables, it is still known to be strongly NP-hard [28]. Hence, we focus on developing
a heuristic algorithm that provides a near-optimal solution to Problem (Q;) with very low
computational complexity. To this end, we first find candidate users who might be allocated
positive power on Subchannel k. Then, we derive the optimal power allocation for them in closed
forms. For compact notation, we assume, without loss of generality, that users are ordered such

that ng; > n¢,; if i < j, and define a last SIC user as follows.

Definition 1. A last SIC user refers to a user who does not experience any interference signals

after the SIC process.

We start with the assumption that User ¢y is the last SIC user on Subchannel k and has
been allocated a certain amount of power. Accordingly, we assume that py ,, is given as a fixed
positive value, and pj; for i > ¢ is given as zero so that User ¢; does not experience any

interference signals after the SIC process. Under this assumption, py;’s for i > ¢ are no longer
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decision variables. Note that how to select the last SIC user and how much power to allocate to

it will be discussed later. Now, Problem (Q;) can be reformulated as

=1
o - k.i ~ Pk,
(QYY) maximize Z W;iBj log2(1 + Pk ) + Wy, Bk log2(1 + ‘pk)
’ Pr.is I<¢k P 2j>i Phej + ki Mk,
=1

subject to Z P+ Phogr < Pr,
i=1

Pri =0, 1 < .
The purpose of this problem is not to find power allocation to users but to find candidate users
when User ¢y is selected as the last SIC user on Subchannel k. Note that, in general, enough
power is usually allocated to the last SIC user’s signal for its successful decoding. Accordingly,
the amount of interference power experienced by users other than the last SIC user will usually
be non-negligible and exceed the thermal noise power. In other words, we assume that the mode
of operation is interference limited, so that the noise power of the users suffering from the
interference signals is neglected, i.e., O'I?J. = 0 (accordingly, 1 ; = 0) for i < ¢;. Then, letting

Oki = Zﬁipk,j for i < ¢y, we can approximate Problem (Qf"l) as

S Pk Pk
(Qf%) maximize Z W;Bj logz( . ) + Wy, Bk 10g2(1 + 2 )
’ Pl,i» <Pk P Pk.i+1 Nk, Pk

pr—1
: ki P
subject to l_[ . <t )
il Pkitl  Pkgy
P > 1, I < Dl
Pk.i+1
where the inequality constraints are equivalent to those in Problem (Q",f"l), which can be derived

by simple arithmetic operations. In succession, by letting ri; = log,(pk.i/pri+1) for i < @i
and ry o, = 10g,(pk.,), and taking the logarithm of the both sides of the constraints, we can

reformulate Problem (kaz) equivalently as

or—1 2rk,¢k
(Q‘,f"3) maximize Z WiBri i + W, By log2(1 + )
’ Fk,is 1<@k =1 Nk, Pk

or—1

subject to Z ri; <102y (Pi) = i,
i=1
rei 20, i < .

Note that since ry o, is not a decision variable, the second term, W, By log, (1 + 24k [ni, ¢y),

of the objective function and the right-hand side, log,(P) — ri.,. of the first constraint are
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constants. Also, the decision variables are linearly combined in the objective function, and the
feasible set is a unit simplex. Hence, it is obvious that the objective function is maximized when
all the decision variables, except the one with the largest weight, are zero. Also, by the definition
of rr;, we can easily see that, for any i < ¢k, pi,; 1s zero if and only if r¢; is zero. Thus, only
one user with the largest weight is selected as the other candidate user on Subchannel k together

with the last SIC user, i.e., User ¢;. We state this result in the following theorem.

Theorem 3. Under the assumption that the noise power of users suffering from the interference
signals is neglected, on each Subchannel k, at most two users are allocated power according
to the optimal solution to Problem (fo‘l). To be specific, when User ¢y has been selected as
the last SIC user on Subchannel k, User i (py) is accordingly selected as the other candidate

user, where

Yi(er) = argmax{w;}. 13)

i<<pk
By Theorem 3, we can reduce Problem (Q‘,f"l) to the power allocation problem for the two-user

case as

- - Py ~
(Q¥*) maximize Wy, By log2(1 + —) + W, Bk log2(1 +
k.4 Phos Phogy Vi Proor + Tk Pk

subject 0 pry, + Phogp < Py,

pk’(pk )
nk,(pk

pk,(ﬂk Z 0’ pk,(’pk Z 0,

where ¥y (¢r) is replaced with ¢ for notational simplicity. This two-user power allocation

problem can be optimally solved in closed forms.

Theorem 4. Let {p} " I (pk} be the optimal solution to Problem (Qf’i‘). It can be obtained as

0, if Wy, /Wy, < Cp,

) o 5 -
Phoe =3 Py, if Wy, /Wy, > Ci(Pr), (14)

W —W

L mi’(’ok — itk g , otherwise,
Wor — Wy
PXuw = P =Pl (15)
where _
_ Py +
Cl=TE% and C2(Py) = T Thek (16)
Nk Pr+ Nk yy

Proof. Due to the page limit, we leave the proof in Appendix C of the arXiv version [45]. O
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All derivations so far have been made on the assumption that User ¢, is allocated a certain

. ~ 1
amount of power as the last SIC user. However, in the case where W, /ka(sok) < Ck, the
optimal power allocation to the last SIC user becomes zero. Thus, we consider this case to
be contradictory, and set the objective value (i.e., the weighted sum rate on Subchannel k) to a
negative infinity in this case. Then, the weighted sum rate on Subchannel £ under the assumption

that User ¢y is the last SIC user on this subchannel can be obtained as

px Px
Wy Bilogy| 1+ —— ) 43, B logy| 1+ —25 |, if vy, /iy, > C).
Prop T ki Nk.x

P (Prs gx) =

—00 otherwise,

b

A7)
where p}¥ ok and p} g, are given by (14) and (15), respectively. Then, the optimal last SIC user

on Subchannel k, indexed by ‘PZ’ can be determined as

¢}, = argmax ¢ (Py; ¢x), (18)
PkEN

and the corresponding optimal value is given by

¢ (Pr) = i (Prs 7). (19)

Consequently, Users ¢; and ¥ (¢;) are selected as the optimal candidate users on Subchannel k.
Then, by Theorem 4, the power allocation solution to Problem (Qj) can be obtained as pz =
(PZ’,-)\ﬁeN, where p,t’(pz = pz’%, pz’wk(%) = pz’wsz), and p}:’i =0 for all i € N'\ {@}, ¥ (¢})}.
Finally, the solution, {p7,q;}, to Problem (Si) can be derived from PZ using Theorem 2. We
summarize this process in Algorithm 2.

Before moving on to the next subsection, we analyze the computational complexity of Algo-
rithm 2. First, once any one user is selected as the last SIC user, the computational complexity
to find the other candidate user based on (13) is O(N). Then, thanks to the closed-form
power allocation formulas in Theorem 4, the two candidate users’ power allocation and the
corresponding weighted sum rate can be calculated in O(1). Consequently, since the number of
cases in which any one user is selected as the last SIC user is at most N, the overall computational

complexity of Algorithm 2 is O(N?).

B. Solution to Problem (M)

In this subsection, we discuss how to solve Problem (M) for the given ¢*(P) = ¥ i ¢’,§(15k).

To be specific, we find an optimal coupling vector, P*, that maximizes ¢*(P) under the limited
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Algorithm 2: Solution to Problem (Sy)

1 for each User ¢, € N do

2 Suppose that User ¢y is the last SIC user.

3 Select the other candidate user using (13).

4 Obtain their power allocation using Theorem 4.
5 Obtain ¢y (Py; ¢x) using (17).

6 Obtain ¢, and ¢’,‘((I3k) using (18) and (19), respectively.
7 Let Users ¢; and Y« (¢} ) be the optimal candidate users.
8 Obtain pz using Theorem 4.

9 Derive {p;.q;} from pz using Theorem 2.

10 return {p;.q;.d;(Pr)}.

total transmission power budget of Pn,x. For compact notation, we write the optimal last SIC
user, ¢y, and the other candidate user, Y (¢}), on Subchannel k as @i and yy, respectively, if
there is no confusion.

By plugging the optimal power allocation solution derived in Theorem 4 into (19), we can

obtain ¢} (Py) as
P _

£ )+c3, if Wy, /Wy, < CH(Py),
nk,lﬂk

Wy, Bk 10g2(1 +

o1 (Pr) = (20)

P
W, Bi 10g2(1+ k ) otherwise,
Nk,px

where C7(Py) is defined in (16), and

- \
)+w¢k8klog2("’i’“’k T Ze ) @
Wor =Wy Tlkgy

Wer = Wy T
Meor = My Wy

C,f = Wy, Bk logz(

Note that, in (20), the case where W, /Wy, < C| is excluded since W, /Wy, is always greater
than C /1 as long as the optimal candidate users are selected by Algorithm 2. In succession, since

dealing with (20) is difficult due to C]%(Pk) that varies with Py, we reformulate it equivalently

as _
Wy, Br 10g2(1 + L )+C3, if Wy, /Wy, <1 and P, > Ct,
0, (P) = s 22)
W, B log2(1 + k ), otherwise,
Mk, ok
where
Cct = Wy ko — W‘Pknk,wk. 23)

Wor = Wy
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The proof of the equivalence of (20) and (22) is provided in Appendix D of the arXiv version [45].
From (22), we can see that if w,, /Wy, > 1, ¢,’;(f_’k) is a continuous logarithmic function.
However, if W, /Wy, < 1, it is a piecewise nonlinear function with a breakpoint at Py = C,‘:.

Nevertheless, we can show that it is a continuously differentiable concave function.

Proposition 1. The function ¢, in (22) is a continuously differentiable concave function of Py

on [0, ).

Proof. Due to the page limit, we leave the proof in Appendix E of the arXiv version [45]. O

By Proposition 1, we can conclude that the objective function, ¢*, of Problem (M) is a concave
function of P, and accordingly, Problem (M) is a convex optimization problem. Hence, we can

obtain its optimal solution using the Karush—Kuhn-Tucker (KKT) conditions [46].

Theorem 5. The optimal solution, P* = (15}:)\;1{67(, to Problem (M) is provided as follows. For
each Subchannel k € K,

* o~ Prax L o~ ~ *
) [ Wy, Br —nk,l/,k]o KA Wy, /Wy, < 1 and p* > C3,
PZ = 24)

3 Pr -
[ Wy B — nk,wk]om“’k, otherwise,

where

Ci Nk = Mk (25)

- Bk(w‘%’k - WWk)’

and p* is chosen to satisfy Y jcx P}: = Phax.

Proof. Due to the page limit, we leave the proof in Appendix F of the arXiv version [45]. O

Note that ISZ is continuous, piecewise-linear, and increasing with respect to u*. Hence, there
exists a unique solution, u*, which can be easily found by any simple root-finding method such
as a bisection method. Once u* is determined, the optimal solution, P*, to Problem (M) can be
obtained using (24). The pseudocode based on the bisection method is provided in Algorithm 3.
Finding the root of a single variable u*, as needed in our algorithm, in general, is much faster
than standard convex programming tools required to solve Problem (M) consisting of K variables
and 2K + 1 constraints.

We now analyze the computational complexity of Algorithm 3. In each iteration, the computa-
tion of f(unew) dominates the others, and its computational complexity is O(K) due to the sum

over K. Thus, letting « be the number of iteration until convergence, the overall computational
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Algorithm 3: Solution to Problem (M)

1 Let f(u) = Yeg Py (1) — Pmax. Where Pj (u) is obtained by (24) with u* = p.
2 Initialize wj, to zero, and uy to a sufficiently large value.

3 repeat

4 Hnew < (UL + pu)/2.

5 if f(ur) - f(tnew) <O then py — finew.

6 if f(uu) - f(pnew) <O then py — pnew.

7 until convergence
8 Obtain P* by plugging u* = (uz + uy)/2 into (24).

9 return P*.

complexity of Algorithm 3 can be given by O(kK). Note that the exact value of « cannot be

derived rigorously, but is usually considered to have an order of log K [47], [48].
Consequently, the total computational complexity of Algorithm 1, running Algorithm 2 K

times and Algorithm 3 once in each iteration, can be expressed as O(£K(N? + «)), where & is

the number of iterations until convergence.

Remark. We can achieve the proportional fair scheduling by solving Problem (P}) in every time

slot using the Joint-SAPA-LCC algorithm, where the effective weight of User i in time slot 7 is

given by
1
Wi = : (26)
l R%MA,i
where Ry, , . is the exponential moving average data rate of User i in time slot #, and it can be
recursively updated by
1 1
1
R, = (1 - ;)RIIEMAJ + ;Rz{’ (27

where 7 is the time-averaging window coefficient.

This remark shows that our Joint-SAPA-LCC algorithm can be easily extended to the propor-
tional fair scheduling algorithm. However, it is worth noting that the purpose of the proportional
fair scheduling is to reduce the performance differences among all users, so it cannot guarantee
the QoS constraints in (7). Hence, in the next section, we develop a scheduling algorithm that

guarantees given QoS constraints by utilizing the Joint-SAPA-LCC algorithm.
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IV. OPPORTUNISTIC MC-NOMA SCHEDULING

In this section, we finally develop an opportunistic MC-NOMA scheduling algorithm that
works in an online manner by decomposing Problem (P1) into a series of Joint-SAPA problems
over time slots, i.e., Problem (Ptl) for each time slot. To this end, we first take advantage of
the well-known property that if the fading process is stationary and ergodic, the long-term time
average converges almost surely to the expectation for almost all realizations of the fading
process [42], [49]. Thereby, by denoting a random vector representing the channel vector in a
generic time slot by h and replacing the superscript ¢ of the decision variables with h, we can
reformulate Problem (P1) equivalently as

(P2) maximize Ep
p".q" Vh

Z wiR;(p", q";h)
ieN
subject to Eh[Rl-(ph,qh;h)] > Rmin,i, Vie N,

p"eP, " €Q, Vh.

At each time slot 7 where the channel vector is realized as h’, subchannel assignment and power
allocation can be done according to the solution for p" and g™ obtained by solving Problem (P2)
with h = h'.

There is still a big challenge in solving Problem (P2). Since no information on the underlying
distributions of the fading process is provided, we have to solve the stochastic optimization
problem without such information. To resolve it, we leverage the Lagrangian duality and the
stochastic optimization theory to develop the opportunistic MC-NOMA scheduling algorithm. Its
core mechanism is to take advantage of the time-varying channel conditions opportunistically to
maximize the weighted average sum rate. Also, the effective weights are systemically adjusted
so that the QoS requirements (i.e., the individual minimum average data rate requirements) are
fulfilled. To develop the algorithm, by introducing a Lagrange multiplier, 4;, for the minimum
average data rate constraint of User i, we first define a Lagrangian function, L, associated with

Problem (P2) as

L(B.@ 1) = En| ) wiRi(P" a" ) [ + 3" 4i(En[Ri (0" 4" B)] = Ruin )

lieN ieN
= Ep Z(Wi + ) R:(p", q";h) | - Z AiRin i (28)
lieN ieEN
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where p = (p")vh, @ = (q")vn, and A = (A;)vien. Then, the dual problem associated with
Problem (P2) can be defined by

(D) mini{nize F(})
subject to A; >0, Vie N,
where

F(A) = maximize L(p,q,A). (29)
pheP, qhe@, vh

Since Problem (P2) is nonconvex, even though its dual problem, Problem (D), is optimally
solved, there may be a duality gap. However, the duality gap vanishes in our problem, resulting

in no loss of optimality.

Theorem 6. The strong duality (i.e., zero duality gap) holds between Problem (P2) and its dual
problem, Problem (D).

Proof. Due to the page limit, we leave the proof in Appendix G of the arXiv version [45]. O

We thus develop an algorithm that solves Problem (D). To this end, we first focus on obtaining
its objective function, F(A). The first (expectation) term in (28) is separable for each channel
realization, and the second term is independent of the decision variables, p and . Hence, for
a given Lagrange multiplier vector, A, the maximization in (29) can be solved by separately

solving the subproblem for each channel realization, defined by

(DM nl}aximize Z(w[+/l,-)Ri(ph,qh;h)-
pheP, qhe@ pyvs

Since the expectation has disappeared in Problem (D"), it can be solved without knowledge
of the underlying distributions of the fading process once the channel realization is provided.
Thus, for any given A and h, Problem (D") turns into a deterministic optimization problem for
Joint-SAPA that aims to maximize the instantaneous weighted sum rate with weight w; + A;
for User i. This problem can be solved using the Joint-SAPA-LCC algorithm developed in the
previous section with letting w; = w; + A;.

We now focus back on solving Problem (D). Even though Problem (D") can be solved for
given h and A, the underlying distributions of the fading process are still fundamentally needed
to solve Problem (D). Nevertheless, thanks to the fact that Problem (D) is a form of convex

stochastic optimization problems, we can solve it without resorting on the distributions using
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Algorithm 4: Opportunistic MC-NOMA Scheduling

1 Initialize: =1 and A" = 0.

2 for each time slot t do

3 Solve Problem (D") with h = h’ and A = A" using the Joint-SAPA-LCC algorithm (Algorithm 1).
4 Transmit the signal generated by the obtained solution.

5 Calculate A'*! according to (30) and (31).

6 t—t+1.

the stochastic subgradient method [50], where the Lagrange multiplier vector, A, is iteratively
updated by
}\’l+l — [)\IZ _ gtvt]"', (30)

where A’ and ¢’ are the Lagrange multiplier vector and the positive step size in time slot 7,
respectively, and v/ = (v)yien is the stochastic subgradient of F(A) with respect to A at A = 2.

By Danskin’s min-max theorem [51], the stochastic subgradient, v’, can be obtained by

Vi = R' = Ruin.i» Vi € N, 31)

4 ]

where Rl? is the instantaneous data rate of User i in time slot ¢ defined as in (4), which is
achieved when the subchannel assignment and power allocation are performed according to the
solution to Problem (D") with h = h’ and A = A’. With the update process of (30), the Lagrange
multiplier vector converges almost surely to the optimal solution, A", of Problem (D) if the step

size (' is square-summable, but not summable [52], i.e.,
>0, Z{’=oo, and Z(ét)2<°°- (32)
=1 =1

The proposed algorithm for the opportunistic MC-NOMA scheduling is outlined in Algorithm 4.

It is worth noting that, due to the stationary ergodic fading process, Problem (P1) and
Problem (P2) are equivalent with probability one, and according to Theorem 6, there is no
duality gap between Problem (P2) and Problem (D). Therefore, there is no loss of optimality in
solving Problem (P1) by our algorithms as long as Problem (D"), i.e., Problem (P}), is optimally
solved. Accordingly, we can expect that our opportunistic MC-NOMA scheduling provides near-
optimal performance by showing via simulation that the Joint-SAPA-LCC algorithm provides

near-optimal performance.
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V. SIMULATION RESULTS

Now, we present simulation results to evaluate the performance of our proposed algorithms.
We first investigate the Joint-SAPA-LCC algorithm in Section V-A and then the opportunistic
MC-NOMA scheduling algorithm in Section V-B. Throughout the simulations, we consider a
circular cell with a radius of 300 m, in which one BS located at the center of the cell serves
N users over K subchannels. The system bandwidth, By, 1s set to 5MHz, and the bandwidth
of each subchannel is set equally to Byy/K. Unless otherwise specified, the numbers of users
and subchannels are set to 10, i.e., N = 10 and K = 10. The total transmission power budget,
Pmax, of the BS is set to 43 dBm, and the transmission power budget for each subchannel is set
to ¥ Pmax/K with v = 1.15. The large-scale path loss is modeled by the HATA model for urban
environments [53], [54]. Specifically, the path loss in dB over distance dg,, in kilometers is set
to 69.55 +26.161og,o(fc) — a(hm, hp) + b(hp) log,o(dkm), where a(hy,, hp) = 13.8210g,o(hp) +
3.2[logo(11.75h,,)]* — 4.97, b(hy) = 44.9 — 6.5510g,0(hy), f. is the carrier frequency, and
h, and hj are effective antenna heights of the BS and users, respectively. The parameters are
set as follows: f. = 900 MHz, h, = 30m, and &, = 2m. Also, we set the antenna gains of
the BS and the users to 15dBi and 0dBi, respectively. Then, we consider the shadow fading
with a standard deviation of 8 dB and the Rayleigh small-scale fading with unit variance. The
noise power spectral density, Ny, is set to —174 dBm/Hz. Thus, the noise power of User i on
Subchannel k is given by O'Iil. = BiotNo/K. In the following simulation results, the data rates are
considered in units of bps/Hz. In Algorithm 4, the step size in (30) is set to /' = 1/¢, which

satisfies the conditions in (32) so that the convergence of the algorithm is guaranteed.

A. Joint Subchannel Assignment and Power Allocation

In this subsection, we provide the performance of our Joint-SAPA-LCC algorithm that aims
to maximize the weighted sum rate by solving Problem (P}). For comparison, we additionally
provide the performance of three other algorithms. The first one is the Joint-SAPA-FTPC algo-
rithm [31], where Joint-SAPA is performed based on the FTPC and ES algorithms. The second
one is the Joint-SAPA-DCP algorithm [32], where Joint-SAPA is performed based on the DCP
approach. The last one is the Joint-SAPA-DP algorithm [36], where Joint-SAPA is performed
based on the DP approach and the PGD method. In the following simulations, we assume that N
users are uniformly distributed within the circular cell with at least 30 m away from the BS, and

their weights are randomly set between 0 and 1. Also, taking into account the high computational
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complexity of the above baseline algorithms, we assume that each subchannel can be assigned to
up to 5 users, i.e., M = 5. All the simulation results are averaged over 3000 independent trials.
For each trial, locations, weights, and channel gains of all users are independently generated.
Note that the Joint-SAPA algorithms (including ours) do not deal with any QoS constraints. The
purpose of this subsection is to verify that our Joint-SAPA-LCC algorithm provides good enough
performance despite requiring very low computational complexity compared to the baseline Joint-
SAPA algorithms.

We first compare the computational complexity of the Joint-SAPA algorithms. To this end, we
define the relative computational cost of an algorithm as its execution time normalized to that of
our Joint-SAPA-LCC algorithm, and then show the corresponding results for different numbers
of users and subchannels in Figs. 2 and 3, respectively. The execution times were measured by
MATLAB R2020a software on a computer with Intel Core 17-9700K CPU (3.60 GHz) and 32.0
GB RAM. From the figures, we can see that our Joint-SAPA-LCC algorithm is much faster
than the other algorithms. For example, when N = 10 and K = 10, the computational cost
of Joint-SAPA-LCC is about 100, 250, and 550 times lower than those of Joint-SAPA-FTPC,
Joint-SAPA-DCP, and Joint-SAPA-DP, respectively. The main reason why our Joint-SAPA-LCC
algorithm is fast is that the candidate users who might be allocated positive power are determined
simply based on the closed-form power allocation formulas. Furthermore, although not proven
theoretically, we were able to observe experimentally that Algorithm 1 converges in only a single
iteration in most cases. That is, in most cases, the Joint-SAPA-LCC algorithm is performed in a
3-step procedure: i) to obtain ¢* by selecting candidate users based on equal subchannel power
allocation, ii) to refine the subchannel power allocation P based on ¢* obtained in the first
step, and iii) to obtain the final Joint-SAPA solution based on P obtained in the second step.
This computational complexity comparison confirms that our Joint-SAPA-LCC algorithm is very
effective and well suited to be implemented in practical systems where Joint-SAPA should be
performed in every very short time slot.

In Figs. 4 and 5, we compare the weighted sum rate performance with varying the numbers of
users and subchannels, respectively. First, as shown in Fig. 4, as the number of users increases,
the weighted sum rates increase in all the Joint-SAPA algorithms thanks to the increase in the
multi-user diversity gain. Also, we can see that our Joint-SAPA-LCC algorithm, despite its very
low computational complexity, has only a little performance drop compared to the Joint-SAPA-

DP and Joint-SAPA-DCP algorithms, and provides higher performance compared to the Joint-
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SAPA-FTPC algorithm. On the other hand, Fig. 5 shows that the weighted sum rates for all the
Joint-SAPA algorithms tend to remain constant regardless of the number of subchannels. These
results indicate that, as also seen in [55], [56], the effects of the number of subchannels on the
weighted sum rate performance are negligible in the system where the transcievers for different
subchannels operate independently. Meanwhile, the order between the Joint-SAPA algorithms
in terms of the weighted sum rate performance remains the same as in Fig. 4. For example,
when N = 10 and K = 10, the weighted sum rate of our Joint-SAPA-LCC algorithm is only
0.86 % and 0.12 % lower than those of the Joint-SAPA-DP and Joint-SAPA-DCP algorithms,
respectively, but 4 % higher than that of the Joint-SAPA-FTPC algorithm.

Next, since the Joint-SAPA-DP algorithm provides the highest weighted sum rate performance,
we compare our Joint-SAPA-LCC algorithm with it in more depth for the case where N = 10
and K = 10 in Fig. 6. Fig. 6a shows the frequency histogram of the number of assigned users
per subchannel. As can be seen in the figure, at most five users are assigned per subchannel in

the Joint-SAPA-DP algorithm, unlike our algorithm with at most two users per subchannel. As a
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Fig. 6. The comparison between the Joint-SAPA-LCC and Joint-SAPA-DP algorithms for the case where N = 10 and K = 10.

result, the user assignment patterns of the two algorithms are different, and the Joint-SAPA-DP
algorithm has a larger solution space for user assignment patterns compared to our algorithm.
Accordingly, the Joint-SAPA-DP algorithm has the possibility to provide higher performance
than ours. On the other hand, Fig. 6b shows the achieved weighted data rates of individual
assigned users in a subchannel. In this figure, the value of the bar for Index i represents the
average weighted data rate of the user that achieves the ith highest data rate among the assigned
users in a subchannel. We can see that more than 95 % of the weighted sum rate performance
is assigned to the top two indices in the Joint-SAPA-DP algorithm, which implies that the
remaining bottom three users have a very little impact on the weighted sum rate performance.
Since most of the weighted sum rates correspond to the first two indices, whether in our Joint-
SAPA-LCC algorithm or in the Joint-SAPA-DP algorithm, the weighted sum rate performance
of our Joint-SAPA-LCC algorithm is very close to that of the Joint-SAPA-DP algorithm despite
the different user assignment patterns. In summary, the simulation results thus far confirm that
not only does our Joint-SAPA-LCC algorithm provide good performance close to that of the
Joint-SAPA-DP algorithm, but it also has much lower computational complexity compared to
the other Joint-SAPA algorithms, which is critical for implementation in practical systems.
Lastly, we further investigate the effects of the imperfection of instantaneous channel state
information (CSI) on the weighted sum rate performance since perfect knowledge of CSI at the
BS is practically impossible. To this end, as in [57], [58], we first model an estimated channel
gain corresponding to fy; as i;; = hy;+ey;, where ey ; is the channel estimation error generated
by the complex Gaussian distribution with zero mean and variance of o-?/PL;, and PL; is the

path loss of User i. Fig. 7 shows the weighted sum rate performance of our Joint-SAPA-LCC
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Fig. 7. The weighted sum rates of the Joint-SAPA-LCC algorithm under the imperfect CSI environments.

algorithm in the imperfect CSI environments. The parameter settings for Figs. 7a and 7b are
the same as for Figs. 4 and 5, respectively, only except that the imperfect CSI environments are
applied. As expected, the weighted sum rates are slightly degraded as the channel estimation error
variance increases because the imperfect CSI distorts subchannel assignment (i.e., user pairing
per subchannel) as well as power allocation. Nevertheless, the performance degradation is not
much, which means that the Joint-SAPA-LCC algorithm can tolerate some degree of channel

estimation errors.

B. Opportunistic MC-NOMA scheduling

In this subsection, we provide the performance of our opportunistic MC-NOMA scheduling
algorithm, taking into account the time-varying and frequency-selective channel conditions and
various QoS requirements, i.e., the required minimum average data rates of users. To show the
effectiveness of our MC-NOMA scheduling algorithm, we compare its simulation results with
those of two other scheduling algorithms: MC-NOMA scheduling without QoS requirements
and proportional fair scheduling. To be specific, the MC-NOMA scheduling without QoS re-
quirements is achieved by solving Problem (P1) using our opportunistic MC-NOMA scheduling
algorithm, where Rmm,i is set to O for all i € N. Meanwhile, the proportional fair scheduling
is achieved by solving Problem (P) using our Joint-SAPA-LCC algorithm at each time slot,
where the weight of each user is given as the reciprocal of its time-averaged data rate up until
to that time slot as in (26). The time-averaging window coefficient, 7, in (27) is set to 1000.
Throughout the following simulations, we consider a system where there are 10 users with equal
weights in the cell, and the ith user is 30X/ m away from the BS. Thus, the lower the user index,

the closer it is to the BS, resulting in a higher channel gain on average. The performance results
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of the scheduling algorithms are investigated in the following two scenarios. In one scenario,
we assume that all users have the same QoS requirements. Specifically, the minimum average
data rates of all the users are set to 2bps/Hz. In the other scenario, we assume that the users
have individually different QoS requirements. Specifically, the minimum average data rates of
Users 1, 2, 5, 6, 9, and 10 are set to 3.5 bps/Hz, while those of Users 3, 4, 7, and 8 are set to
1 bps/Hz.

Figs. 8 and 9 show the performance results for the first and second scenarios, respectively.
In Figs. 8a and 9a, we can see that the average sum rates of the MC-NOMA scheduling
without QoS requirements are slightly higher than those of the MC-NOMA scheduling with
QoS requirements in both cases. As can be expected, this result is obvious because the feasible
space of Problem (P1) with positive Run;’s is a subspace of that of Problem (P1) with zero
Rmm,i’s. However, the lack of the QoS requirements makes the performance of users with poor
channel conditions compromised to maximize the sum rate. Consequently, as can be seen in
Figs. 8b and 9b, only a few users close to the BS exploit the resources exclusively, and thereby
users far from the BS do not meet their QoS requirements. On the contrary, the QoS requirements
of all users are satisfied well in the MC-NOMA scheduling with QoS requirements. Meanwhile,
the proportional fair scheduling follows the principle of giving high effective weights to users
with low time-averaged data rates. Accordingly, not only does it prevent users from starvation,
but it also provides similar average data rate performance among users to gratify its purpose of
maximizing the fairness utility function. However, since it concentrates on the fairness between
users and does not take into account the QoS requirements explicitly, a situation where the given
QoS requirements are not satisfied may occur. Fig. 9b shows the case where the proportional
fair scheduling cannot meet the QoS requirements, whereas our MC-NOMA scheduling with
QoS requirements well satisfies them. In summary, the simulation results demonstrate that our
proposed scheduling algorithm not only provides good performance, but also guarantees given

QoS requirements.

VI. CONCLUSION

In this paper, we have studied the dynamic resource scheduling problem for joint user,
subchannel, and power scheduling in the downlink MC-NOMA system over time-varying fading
channels, which has the goal of maximizing the weighted average sum rate while ensuring

given QoS requirements. To this end, we have first developed the Joint-SAPA-LCC algorithm
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Fig. 9. Performance comparison results between scheduling algorithms when users have individually different QoS requirements.

to maximize the instantaneous weighted sum rate. By its characteristic that it leverages very
simple user selection and power allocation based on closed-form equations, we could achieve
much lower computational complexity compared to the existing Joint-SAPA algorithms. In
succession, along with the proposal of the proportional fair scheduling based on our Joint-SAPA-
LCC algorithm, we have developed the opportunistic MC-NOMA scheduling algorithm that
systematically adjusts the effective weights so that the weighted average sum rate is maximized
while the QoS requirements are met. Then, through the extensive simulation results, we have
demonstrated that our Joint-SAPA-LCC algorithm provides good performance comparable to
the Joint-SAPA-DP algorithm despite its much lower computational complexity, and that our
opportunistic MC-NOMA scheduling algorithm satisfies given QoS requirements. As a final
remark, the issue of SIC error propagation has not been discussed in this paper. We leave
this issue for our future work. This study will be the cornerstone for our future work on the
development of scheduling for more complex systems, such as multi-cell MC-NOMA systems

and massive MIMO MC-NOMA systems.
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