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Abstract
For an ordering of the blocks of a design, the point sum of an element is the sum of the indices
of blocks containing that element. Block labelling for popularity asks for the point sums to
be as equal as possible. For Steiner systems of order v and strength t in general, the average
point sum is O(v2t−1); under various restrictions on block partitions of the Steiner system,
the difference between the largest and smallest point sums is shown to be O(v(t+1)/2 log v).
Indeed for Steiner triple systems, direct and recursive constructions are given to establish
that systems exist with all point sums equal for more than two thirds of the admissible orders.

Keywords Steiner system · Steiner triple system · Transversal design · Group-divisible
design · Hill-climbing algorithm
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1 Introduction

A set system D = (X ,B) consists of X , a set of elements (points), and B, a multiset of
subsets of X (blocks). We examine block and point labellings (orderings) for a number of
classes of set systems. Let k ≥ t ≥ 1. A t-(v, k, λ) packing is a set system (X ,B) with
|X | = v and |B| = k for each B ∈ B for which every t-subset of X is contained in at most λ
blocks. The packing is a t-(v, k, λ) design when every t-subset of X is a subset of exactly λ

blocks. The replication number of the design is r = λ(v−1
t−1)

(k−1
t−1)

; every element appears in exactly

r blocks. A t-(v, k, 1) design is a Steiner system or Steiner t-design, denoted by S(t, k, v).
A 2-(v, 3, 1) design is a Steiner triple system of order v, denoted by STS(v). A 3-(v, 4, 1)
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design is a Steiner quadruple system of order v, denoted by SQS(v). A t-(v, k, 1) packing is
also referred to as a partial S(t, k, v) or partial Steiner system.

A t-(v, k, λ) packing, (X ,B), is s-partitionable of type (τ1, . . . , τ�) when B admits a
partition into � classes {Bi : 1 ≤ i ≤ �} so that (X ,Bi ) is an s-(|X |, k, τi ) design for each
1 ≤ i ≤ �. (Often we write types in exponential notation.) When s = 1, the class Bi is an α-
parallel classwhen τi = α. A set system that admits a 1-partitioning with τ1 = · · · = τ� = 1
is resolvable, the 1-partitioning is a resolution, and each class in it is a parallel class. A
Steiner triple system STS(v), together with a resolution of it, is a Kirkman triple system,
KTS(v). For relevant background in design theory, see the standard texts [7,48], and for
triple systems in particular, see [22].

Steiner systems arise in numerous ways in assigning data items to storage units in storage
systems; see [12,23] and references therein, as well as [6,50]. Dau and Milenkovic [23]
identify the need to consider the long-termpopularities of the data items storedwhen selecting
a particular design for such applications. They propose a combinatorial model that ranks data
items by popularity. We introduce their model next using an equivalent matrix formulation.

Let A = (ai j ) ∈ {0, 1}n×m , in which rows are indexed by {0, . . . , n − 1} and columns
by {0, . . . ,m − 1}. In the intended applications, each row corresponds to a data item, and
each column corresponds to a storage location; an entry is 1 if and only if the item is stored
at that location. The data items are totally ordered by popularity (long-term frequency of
access). A data item d is associated with row i when there are exactly i data items that are
less popular than d; this is the popularity labelling of the rows. The order of the columns is
(for the moment) inconsequential.

The column sum
∑n−1

i=0 ai j counts the data items placed at location j . In data placement,
typically one wants these counts to be all equal so that each storage location maintains the
same number of data items. As a surrogate for the frequency of access to this location, Dau
and Milenkovic [23] suggest also considering the weighted column sum σ j = ∑n−1

i=0 i · ai j ;
this is a block sum. For a specific n × m matrix A, define MinSum(A) = min(σ j : 0 ≤
j < m} and MaxSum(A) = max(σ j : 0 ≤ j < m}. Then ‘large’ MinSum ensures that
no location contains only unpopular items, while ‘small’ MaxSum ensures that no location
contains only very popular items. To treat both simultaneously, define the difference sum
DiffSum(A) = MaxSum(A) − MinSum(A); when the DiffSum is ‘small’, accesses to each
storage location have been, to an extent, balanced.

In [12,23], the ratio sumMaxSum(A)/MinSum(A) is also proposed as ameasure of access
balance. Because the ratio sum is closely related to the difference sum, we do not pursue
ratio sums here. In [51], minimizing the variance of the block sums is proposed. Because we
are concerned with the worst case rather than the average, we do not pursue variance sums
here.

Once the association of data items with storage units is fixed by matrix A, the summetrics
are determined. Nevertheless, we can relabel or permute the rows of A to alter, and perhaps
improve, these metrics. We pursue this next. Let D = (X ,B) be a set system with |X | = n
in which the multiset B consists of m blocks on X . Given a labelling (x0, . . . xn−1) of X and
a labelling (B0, . . . Bm−1) of B, an incidence matrix for D is the n × m matrix A = (ai j ) in
which ai j = 1 when xi ∈ Bj , and 0 otherwise. Let Inc(D) be the set of all incidence matrices
for D. We are free to choose any incidence matrix from Inc(D). We extend the sum metrics
to set systems by definingMinSum(D) = max(MinSum(A) : A ∈ Inc(D)),MaxSum(D) =
min(MaxSum(A) : A ∈ Inc(D)), and DiffSum(D) = min(DiffSum(A) : A ∈ Inc(D)).
(AlthoughDiffSum(D) ≥ MaxSum(D)−MinSum(D), equality is not ensured.) The reverse
of incidence matrix A is the matrix R obtained by interchanging row i and n − 1 − i for
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Egalitarian Steiner triple systems for data popularity 2375

0 ≤ i ≤ � n−1
2 �; when column j has k ‘1’ entries, itsweighted column sums in A and in R total

k(n − 1). Hence when each block has size k in D,MaxSum(D) = k(n − 1) −MinSum(D).
The dual DT of a set system D = (X ,B) is the set system whose incidence matrix is the

transpose of an incidencematrix of D.When there are no repeated blocks, the dual is obtained
by interchanging blocks and elements. Applying the framework to the dual set system treats
(weighted) row sums (i.e., point sums) in an incidencematrix, rather than column sums (block
sums).

One may be free to choose not only point and block labellings, but also the set sys-
tem itself. When Dn,m is a set of set systems, each having n points and m blocks, define
MinSum(Dn,m) = max(MinSum(D) : D ∈ Dn,m), MaxSum(Dn,m) = min(MaxSum(D) :
D ∈ Dn,m), and DiffSum(Dn,m) = min(DiffSum(D) : D ∈ Dn,m). In order to make these
metrics meaningful in an application, numerous criteria dictate requirements on the set sys-
tems to select (and label). Because of the many applications in which Steiner systems are
used for data placement, Dau and Milenkovic [23] focus on set systems that are Steiner sys-
tems, and duals of Steiner systems. In particular, they establish bounds on the sum metrics
for S(t, k, v) designs:

Theorem 1 [23] Let St,k,v be the set of all S(t, k, v) designs.

MinSum(St,k,v) ≤ 1

2
(v(k − t + 1) + k(t − 2));

MaxSum(St,k,v) ≥ 1

2
(v(k + t − 1) − kt);

DiffSum(St,k,v) ≥ (v − k)(t − 1).

Moreover, MinSum(St,t+1,v) ≤ (v − 1) + (t
2

)
, MaxSum(St,t+1,v) ≥ t(v − 1) − (t

2

)
, and

DiffSum(St,t+1,v) ≥ (t − 1)(v − t − 1). Finally, DiffSum(S2,3,v) ≥ v.

They establish the existence of an STS(v) D with MinSum(D) = v, the largest possible
by Theorem 1. Chee et al. [12] construct dense t-(v, t + 1, 1) packings that meet these
bounds; they also improve on the DiffSum lower and upper bounds for Steiner triple systems
to establish that DiffSum(S2,3,v) ≥ v + 1 when v ≥ 13, and that for every admissible v, an
S(2, 3, v) D exists having DiffSum(D) ≤ v + 7.

Our focus in this paper is instead with the duals of Steiner systems. Throughout, letDt,k,v

be the set of duals of S(t, k, v) designs.Applying the generalmatrix framework to the dual has
a natural interpretation for the S(t, k, v) design itself. Labelling the b blocks of an S(t, k, v)

design (X ,B) as B0, . . . , Bb−1, the (weighted) sum for a point x ∈ X is
∑

j :x∈Bj
j . The sum

metrics for point sums of any set system are just the sum metrics for the block sums of its
dual set system. We typically treat block labellings of a set system and examine point sums,
rather than point labellings of its dual and associated block sums; naturally, either perspective
can be used.

Let Mv,b,k be the set of all set systems on v elements having b blocks, each of size k, in
which each element occurs in exactly r = bk/v blocks. Let M ∈ Mv,b,k . A block labelling
ofM is split if the number b of blocks is even, and every point appears equally often in the first
b/2 blocks and the last b/2 blocks. A block labelling of M is egalitarian if the corresponding
incidence matrix X ∈ Inc(M) has DiffSum(XT) = 0, so that DiffSum(MT) = 0. In this
case MinSum(MT) = MaxSum(MT) = b(b−1)k

2v . A block labelling that is both split and
egalitarian is split egalitarian.

Wegive an example tomake themanydefinitionsmore clear. There is exactly oneSQS(10),
D, and it admits a cyclic automorphism [29]; its blocks are {{i, i+1, i+3, i+4}, {i, i+1, i+
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111111110000011110000000000000 000111010010000011010111000100
111000001111110000000011100000 010100010011101000100100110010
100110000100101001110001011000 110000110001000111001000001110
100001010011000101010110001010 010010001110000101111000100001
001011001000100010011110010001 101100000001011010011001100001
001000110110001000111000100011 111000001100001000010110011100
010100010001100010101100101100 100101101000010001100010010011
010010101010000101100101000101 001011001000110110000100101010
000101101101010001001000010110 000010110100111000101011001000
000000000000011110000011111111 001001100111100100000001010101

Fig. 1 Incidence matrices A1 and A2 for the SQS(10)

2, i + 6}, {i, i + 2, i + 4, i + 7} : 0 ≤ i < 10}. Two incidence matrices, A1, A2 ∈ Inc(D),
are given in Fig. 1.

The average weighted column sum (block sum) in each is 18, but the two incidence
matrices differ in the sum metrics. In particular, MinSum(A1) = 6, MaxSum(A1) = 30,
and DiffSum(A1) = 24; in contrast, MinSum(A2) = 11, MaxSum(A2) = 25, and
DiffSum(A2) = 14. There is a point labelling for D yielding an incidence matrix A3

with MinSum(A3) = 12. An exhaustive treatment of incidence matrices establishes that
MinSum(D) = 12,MaxSum(D) = 24, and DiffSum(D) = 14, each equality being realized
a different incidence matrix. Because there is only one SQS(10) up to isomorphism, the same
equalities hold for S3,4,10.

Considering instead theweighted row sums (point sums) of A1 and A2, the average for each
incidence matrix is 174 = 1

212 · 29. We find that MinSum(AT
1) = 86, MaxSum(AT

1) = 262,
and DiffSum(AT

1) = 176. The metrics for AT
2 are dramatically different: MinSum(AT

2) =
MaxSum(AT

2) = 174, and DiffSum(AT
2) = 0. So A2 gives an egalitarian block labelling.

HenceDiffSum(DT) = DiffSum(D3,4,10) = 0, the best one could hope for. Although b = 30
is even and each point occurs in 12 blocks, neither A1 nor A2 is a split block labelling.

In [18], a complete characterization is given of orderings for which an S(2, 2, v), a trivial
design equivalent to a complete graph, admits an egalitarian edge ordering; see also [47] The
Steiner triple systems form the next (and more interesting) case. In Sect. 2 we establish lower
and upper bounds on the sum metrics for duals of Steiner systems using the probabilistic
method. In Sect. 3, we establish that certain transversal designs can be block-labelled to have
all point sums equal. In Sect. 4, we apply an inflation method to these egalitarian labellings
to produce egalitarian labellings of more general group-divisible designs. In Sect. 5, we treat
duals of Steiner triple systems, first specializing the general bounds. We then establish the
existence of an egalitarian STS(v) whenever v ≥ 13, and v ≡ 1, 9 (mod 12) or v ≡ 3, 27
(mod 36); existence is also established for infinitely many orders in each of the congruence
classes v ≡ 7, 15, 19, 31 (mod 36).

2 Steiner systems in general

In the first part of this paper, we employ probabilistic methods; see [2] for the important
background, and [14] for relevant work on concentration inequalities.

An S(t, k, v) has b = (v
t)

(kt)
blocks, and every point appears in r = (v−1

t−1)

(k−1
t−1)

blocks.
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Egalitarian Steiner triple systems for data popularity 2377

2.1 Elementary necessary conditions

Dau and Milenkovic [23] present bounds for duals of S(2, 3, v)s, which we state more
generally next.

Lemma 1 For every M ∈ Mv,b,k , MinSum(MT) ≤ k
v

(b
2

) ≤ MaxSum(MT).

Proof Label the blocks of M arbitrarily as B0, . . . , Bb−1. The sum of the v point sums is∑b−1
j=0 j |Bj | = k

∑b−1
j=0 j = k

(b
2

)
, so the average point sum is k

v

(b
2

)
. �	

Naturally, an egalitarian system could exist only when k
v

(b
2

)
is an integer.

Corollary 1 MinSum(Dt,k,v) ≤ 1
2r(b − 1) = 1

2
(v−1
t−1)

(k−1
t−1)

[
(v
t)

(kt)
− 1

]

≤ MaxSum(Dt,k,v).

Proof An S(t, k, v), D, has b = (v
t)

(kt)
and r = (v−1

t−1)

(k−1
t−1)

, and D ∈ Mv,b,k . Because vr = bk, the

average point sum is r(b−1)
2 = 1

2
(v−1
t−1)

(k−1
t−1)

[
(v
t)

(kt)
− 1

]

. �	

Because b and r are integral for any S(t, k, v), the bound of Corollary 1 is always either
integral or half-integral (i.e., twice the bound is an integer). Specializing to S(2, k, v)s, we
obtain:

Lemma 2 MinSum(D2,k,v) ≤ (v+k−1)(v−1)(v−k)
2k(k−1)2

= (v+k−1)(r(r−1))
2k ≤ MaxSum(D2,k,v).

This bound is integral except possibly when k = 2sk′ for k′ odd with s ≥ 1, and r ≡ 2s + 1
(mod 2s+1).

Proof Algebraic simplification of the average given in Corollary 1 when t = 2 yields the
average stated. Because v(v−1) ≡ 0 (mod k(k−1)), we have (r(k−1)+1)(r(k−1)) ≡ 0
(mod k(k−1)), so (−r+1)(r) ≡ 0 (mod k). When k is odd, r(r−1) ≡ 0 (mod 2k), so the
average is an integer.When k and r are both even, v+k−1 = (r+1)(k−1)+1 ≡ 0 (mod 2),
so the average is an integer. Now r ≡ 0, 1 (mod 2s) because r(r−1) ≡ 0 (mod 2sk′); when
r ≡ 1 (mod 2s+1), r(r − 1) ≡ 0 (mod 2k), so the average is an integer. �	

There are cases in which the bound is not integral: An S(2, 4, v) has integral average point
sum when v ≡ 1, 4, 13 (mod 24), half-integral when v ≡ 16 (mod 24). An S(2, 4, 16) has
average point sum 19·15·12

2·4·3·3 = 19·5
2 , for example. Similar results can be established for larger

values of t . For example, a Steiner quadruple system (S(3, 4, v)) has integral average point
sum when v ≡ 2, 4, 10, 14, 20, 22 (mod 24), half-integral when v ≡ 8, 16 (mod 24).

2.2 General sufficient conditions

There is a large literature on ordering the blocks of various classes of designs [24] to address
practical concerns. None appears to address the sum metrics studied here; “pessimal order-
ings” [15,20] ask for block labellings in which, for every point, every two blocks Bi and Bj

containing that point have | j − i | exceeding a stated threshold. Although these labellings
certainly determine bounds on the point sums, we obtain better bounds for our sum metrics
directly.

A straightforward probabilistic argument establishes the following.
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2378 C. J. Colbourn

Theorem 2 [17] Fix k and t. When D is an S(t, k, v), DiffSum(DT) is O(v3t/2).

Theorem 2 demonstrates that, for k and t fixed, k > t ≥ 3, and v sufficiently large, all
Steiner systems admit a block labelling far better than the worst labelling. To obtain better
bounds for specific Steiner systems, one can employ structural restrictions. By labelling all
blocks in each class of a block partition consecutively, one obtains:

Theorem 3 [17] Let D = (X ,B) be an S(t, k, v) that is s-partitionable of type (τ1, . . . , τ�),
and let DT be its dual. Then

MinSum(DT) ≥ r(b − 1)

2
+ r

2
− b

2

[
∏s−1

i=1

v − i

k − i
+ 1

r

[∏s−1

i=1

v − i

k − i

]2 �∑

i=1

τi (τi − 1)

]

,

MaxSum(DT) ≤ r(b − 1)

2
− r

2
+ b

2

[
∏s−1

i=1

v − i

k − i
+ 1

r

[∏s−1

i=1

v − i

k − i

]2 �∑

i=1

τi (τi − 1)

]

,

DiffSum(DT) ≤ b

[
∏s−1

i=1

v − i

k − i
+ 1

r

[∏s−1

i=1

v − i

k − i

]2 �∑

i=1

τi (τi − 1)

]

− r , .

Corollary 2 [17] Let D = (X ,B) be an S(t, k, v) that is 1-partitionable of type (τ1, . . . , τ�),
and let DT be its dual. Then

MinSum(DT) ≥ 1

2

[

r(b − 1) − (b − r) − b

r

�∑

i=1

τi (τi − 1)

]

,

MaxSum(DT) ≤ 1

2

[

r(b − 1) + (b − r) + b

r

�∑

i=1

τi (τi − 1)

]

,

DiffSum(DT) ≤ b − r + b

r

�∑

i=1

τi (τi − 1), .

When in addition α = max{τi },

MinSum(DT) ≥ 1

2
[r(b − 1) − (bα − r)] ,

MaxSum(DT) ≤ 1

2
[r(b − 1) + (bα − r)] ,

DiffSum(DT) ≤ bα − r .

The best bounds from Theorem 3 appear to arise from 1-partitionable systems, as in
Corollary 2. Among the 1-partitionings, the best bounds arise from partitions with � = r and
τ1 = · · · = τr = 1 (i.e., from resolvable designs).

Corollary 3 [17] Let D = (X ,B) be a resolvable S(t, k, v), and let DT be its dual. Then

MinSum(DT) ≥ 1

2
[r(b − 1) − (b − r)] ,

MaxSum(DT) ≤ 1

2
[r(b − 1) + (b − r)] ,

DiffSum(DT) ≤ b − r .
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Egalitarian Steiner triple systems for data popularity 2379

A resolvable S(t, k, v) can exist only when v ≡ 0 (mod k). To treat cases when no
resolvable S(t, k, v) exists, or when none is known, we consider other partitions. Suppose
that the automorphism group of an S(t, k, v), D, contains a v-cycle, so that the Steiner system
is cyclic. The blocks of D are partitioned into orbits B1, . . . ,B� by the cyclic automorphism.
When |Bi | = v, the orbit is full. Otherwise v/(|Bi |) ≥ 2 is a divisor of k, and the orbit is
short. It follows that the action of the cyclic automorphism yields a 1-partitioning of type
(τ1, . . . , τ�) in which τi is a divisor of k for 1 ≤ i ≤ �. Hence Corollary 2 yields

Corollary 4 Let D = (X ,B) be a cyclic S(t, k, v), and let DT be its dual. Then

MinSum(DT) ≥ 1

2
[r(b − 1) − (bk − r)] ,

MaxSum(DT) ≤ 1

2
[r(b − 1) + (bk − r)] ,

DiffSum(DT) ≤ bk − r .

We expect that better probabilistic methods can improve upon these results. To illustrate
this, we refine Corollary 3.

Theorem 4 Let D = (X ,B) be a resolvable S(t, k, v), and let DT be its dual. Then

DiffSum(DT) ≤ 4 ln(2v)
√
r(v−k)

k , which is O(v
t+1
2 log v) for fixed t and k.

Proof Let r = (v−1
t−1)

(k−1
t−1)

. Let {B0, . . . ,Br−1} be the partition ofB into r parallel classes.We label

the blocks so that the blocks of Bi are labelled with a random permutation of the integers
{ ivk , . . . ,

(i+1)v
k − 1} for 0 ≤ i < r . For each x ∈ X and each 0 ≤ i < r , denote by �x,i the

integer in {0, . . . , v
k − 1} for which iv

k + �x,i is the label of the unique block containing x in
Bi .

We define a number of random variables. Because the permutation of Bi is chosen ran-
domly, �x,i is the value of a random variable Rx,i , with values {0, . . . , v

k − 1}, each equally

likely. Let random variable Rx = ∑r−1
i=0 Rx,i . Define the random variable Tx,i = k

v−k Rx,i ,
so that Tx,i takes on values between 0 and 1 (inclusive), and define random variable
Tx = ∑r−1

i=0 Tx,i . The point sum of x ∈ X is the random variable Px = ∑r−1
i=0

( iv
k + Rx,i

) =
vr(r−1)

2k + Rx . We tabulate the expected value (mean) and variance for each. Using linearity
of expectations and the mutual independence of {Rx,i : 0 ≤ i < r}, the calculations are
routine (see, e.g., [40]).

Tx,i Tx Rx,i Rx Px
Expected Value 1

2
r
2

(v−k)
2k

r(v−k)
2k

1
2r(b − 1)

Variance (v+k)
12(v−k)

r(v+k)
12(v−k)

(v−k)(v+k)
12k2

r(v−k)(v+k)
12k2

r(v−k)(v+k)
12k2

Now we employ a concentration inequality (see [14] for relevant background). Apply the

two-sided Chernoff bound [13,14] Pr [|X − μ| ≥ εμ] ≤ 2 exp(− ε2μ
2+ε

) (to X = Tx with

μ = r
2 ) to get Pr [|Rx − r(v−k)

2k | ≥ ε
r(v−k)

2k ] ≤ 2 exp(− ε2

2+ε
r
2 ). Choose ε = 4 ln(2v)√

r
. Then

rε2
4+2ε = 16

√
r ln2(2v)

4
√
r+8 ln(2v)

> ln(2v). So Pr [|Rx − r(v−k)
2k | ≥ 4 ln(2v)

√
r(v−k)

2k ] < 1
v
.

The union bound (or Boole’s inequality) states the elementary observation that the
probability that at least one of a set of events occurs does not exceed the sum of the prob-
abilities of occurrence for each event. Then applying the union bound, the probability that

|Rx − r(v−k)
2k | ≥ 4 ln(2v)

√
r(v−k)

2k for at least one x ∈ X is strictly less than v · ( 1
v
) = 1. Hence
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2380 C. J. Colbourn

the probability that |Rx − r(v−k)
2k | <

4 ln(2v)
√
r(v−k)

2k for all x ∈ X is strictly greater than 0,
Therefore a block ordering exists that meets the stated bound on the DiffSum. �	

When s = 1 and α is fixed, the corollaries of Theorem 3 yield a DiffSum (for fixed t and
k) that is O(vt ), while the average point sum is �(v2t−1). Theorem 4 demonstrates that a
reduction is possible for resolvable designs, and this can be generalized to the cyclic case and
other partitionings. However, we pursue a different direction, next exploring certain partial
Steiner systems in which the DiffSum bound can be further reduced.

3 Transversal designs

A transversal design of order v, blocksize k, and strength t , denoted by T D(t, k, v), is a
triple (X ,G,B) so that

1. |X | = kv;
2. G = {G1, . . . ,Gk} is a partition of X into groups, where each group Gi contains v

elements of X ;
3. B is a set of k-subsets (blocks) of X , for which |B ∩ Gi | = 1 whenever B is a block and

Gi is a group; and
4. every t-subset of X either appears in exactly one block, or contains two or more elements

from a group (but not both).

Whenever T is a T D(t, k, v), T ∈ Mvk,vt ,k . By Lemma 1, the average point sum of T is
1
2v

t−1(vt − 1), which is always integral when t ≥ 2.

Theorem 5 Whenever a T D(t, k + t, v) exists with k ≥ t ≥ 2, there exists an egalitarian
resolvable T D(t, k, v). It is split egalitarian when v is even.

Proof Let T ′ = (X ′,G′,B′) be a T D(t, k + t, v) with X ′ = {0, . . . , v − 1}× {1, . . . , k + t},
and G′ = {G1, . . . ,Gk+t } with G j = {0, . . . , v − 1} × { j}. We form the T D(t, k, v),
T = (X ,G,B), with X = {0, . . . , v−1}×{1, . . . , k}, and G = {G1, . . . ,Gk}. To define and
label the blocks B0, . . . , Bvt−1 ofB, proceed as follows.Whenever B = {x1, . . . , xk+t } ∈ B′
so that {x j } = B∩G j for 1 ≤ j ≤ k+t , write x j = (a j , j) and computeβ = ∑t−1

i=0 ak+1+iv
i

and set Bβ = {x1, . . . , xk}. Because we obtain a T D(t, t, v) from T ′ by considering only
the last t groups, each block Bβ with 0 ≤ β < vt is defined exactly once by this procedure.
Moreover, partitioning blocks according to the vt−1 tuples using the last t − 1 groups of T
gives the parallel classes of a resolution of B.

Consider a point x ∈ X . In order to calculate the point sum of x , one can calculate the
contribution to the point sum from each of the groups Gk+1, . . . ,Gk+t , as follows. When a
block containing x contains y ∈ Gk+1+i , writing y = (a, k + 1+ i), the contribution is avi .
For every choice of x and y ∈ (Gk+1 ∪ · · · ∪Gk+t ), {x, y} appears in exactly vt−2 blocks of
B′. When x is fixed, the total contribution from the group Gk+1+i is vt−2

(
v
2

)
vi because there

are vt−2 occurrences of each of the v coordinates in Gk+1+i and
∑v−1

i=0 i = (
v
2

)
. Summing

the contributions over all groups Gk+1, . . . ,Gk+t , the point sum of x is
∑t−1

i=0 vt−2
(
v
2

)
vi =

vt−1

2

∑t−1
i=0(v

i+1 − vi ) = 1
2v

t−1(vt − 1). Because every point of X has the same point sum,
DiffSum(T T) = 0. Every point of X appears equally often in blocks with elements of the
(k + t)th group, so the labelling is split when v is even. �	

Theorem 5 exploits not just one partition (or resolution) of the T D(t, k, v) into parallel
classes, but rather employs t orthogonal resolutions. Ingredients for the theorem arise from
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the well-known equivalence of transversal designs and orthogonal arrays of index one [32].
Perhaps unfortunately,while aT D(t, k, v) is a partial S(t, k, vk)withvt blocks, an S(t, k, vk)
would have (vk)!(k−t)!

(vk−t)!k! blocks, a larger number.

4 GDDs

A group divisible design (GDD) is a triple (X ,G,B)which satisfies the following properties:

(1) G is a partition of a set X (of points) into subsets (groups),
(2) B is a set of subsets of X (blocks) such that a group and a block contain at most one

common point,
(3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset {|G| : G ∈ G}. We usually use
exponential notation for the group-type. The group-type is uniform when all groups have the
same size, in which case it is of the form gu . If K is a set of positive integers, none less than
2, then a GDD (X ,G,B) is a K -GDD if |B| ∈ K for every block B ∈ B. When K = {k},
we simply write k for K . In this notation, a transversal design T D(2, k, v) is a k-GDD of
group-type vk .

We extend certain definitions given earlier. Let D be a k-GDD of group-type gu . An
m-suitable set for D is a set of incidence matrices A1, . . . , Am ∈ Inc(D) for which each
is obtained from each other by permuting columns (and hence each has the same point
labelling) . If A1, . . . , Am is an m-suitable set for D, the gu × bm array A = (A1 · · · Am),
and DiffSum(AT) = 0, then D is m-egalitarian and A1, . . . , Am is an m-egalitarian set for
D. When A1, . . . , Am is an m-suitable set, the set is split if m is even, or if m is odd and
A(m+1)/2 is split.

We collect some easy observations:

Lemma 3 Let D be a k-GDD of group-type gu, which has b = g2u(u−1)
k(k−1) blocks.

1. D is split m-egalitarian for every even m.
2. If D is both m1-egalitarian and m2-egalitarian, it is (m1 + m2)-egalitarian.
3. D is b-egalitarian.

Proof For the first statement, let A be any incidence matrix of D. Let A1 = · · · = Am/2 = A.
Let A′ be the result of reversing the block order for A, and set Am/2+1 = · · · = Am = A′.
Then A1, . . . , Am is a split m-egalitarian set. For the second statement, if A1, . . . , Am1 is an
m1-egalitarian set and B1, . . . , Bm2 is anm2-egalitarian set, then A1, . . . , Am1 , B1, . . . , Bm2

is (m1 +m2)-egalitarian. For the third statement, let A be any incidence matrix of a k-GDD
of group-type gu . For 0 ≤ j < b form incidence matrix A j from A by letting each column
c of A j be column (c + j) mod b of A. Then {A j : 0 ≤ j < b} is a b-egalitarian set. �	

Next we describe a method for inflation.

Theorem 6 Suppose that there exist

1. an m-egalitarian k-GDD of group-type gu having a 1-partition of type xr11 · · · xr�� , and
2. an egalitarian resolvable T D(2, k,m) from Theorem 5.

Then an egalitarian k-GDD of group-type (gm)u exists having a 1-partition of type
xmr1
1 · · · xmr�

� . If either ingredient is split, the resulting GDD is also split.
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Proof Let (X ,G,D) be the m-egalitarian k-GDD of group-type gu , which is split when

possible. This k-GDD has d = g2u(u−1)
k(k−1) blocks; denote its replication number by r . Let

({0, . . . ,m − 1} × {1, . . . , k}, {{0, . . . ,m − 1} × { j} : 1 ≤ j ≤ k}, T )

be an egalitarian resolvable T D(2, k,m) from Theorem 5, which is split when possible.
Although blocks in D are unordered sets, we treat each as a k-tuple by selecting an arbitrary
but fixed order for the elements in each; this is used throughout. We form the k-GDD of
group-type (gm)u as (X × {0, . . . ,m − 1},H = {G × {0, . . . ,m − 1} : G ∈ G},B). When
D = (z1, . . . , zk) and T = {(y1, 1) . . . , (yk, k)}, we denote {(z1, y1), . . . , (zk, yk)}by D�T .
Then set B = {D� T : D ∈ D, T ∈ T }. The verification that (X ×{0, . . . ,m − 1},H,B) is
a k-GDD of group-type (gm)u is straightforward. Moreover, when D′ forms an x j -parallel
class of the GDD of type gu and T ′ forms a parallel class of the TD, {{(z1, y1), . . . , (zk, yk)} :
(z1, . . . , zk) ∈ D′, ((y1, 1) . . . , (yk, k)) ∈ T ′} forms an x j -parallel class of the GDD of type
(gm)u , yielding the stated 1-partitioning.

Let T0,0, . . . , T0,m−1, T1,0, . . . , T1,m−1, . . . , Tm−1,0, . . . Tm−1,m−1 be the blocks of the
TD in an egalitarian labelling (split when possible), so that {Tj,0, . . . , Tj,m−1} is a parallel
class for 0 ≤ j < m. Consider anm-egalitarian set (A0, . . . Am−1) for (X ,G,D) (split when
possible); for 0 ≤ j < m, let Dj,0, . . . Dj,d−1 be the block labelling of D specified by the
column ordering of A j .

Now label the blocks of the k-GDD of group-type (gm)u as (Bi : 0 ≤ i < m2d),
defined by Bβmd+αm+γ = Dβ,α � Tβ,γ for 0 ≤ β, γ < m and 0 ≤ α < d . Partition the
labelling into m consecutive intervals of md blocks each; each point appears r times in each
interval because each interval is isomorphic to m disjoint copies of the k-GDD of group-
type gu , which together span all points of the k-GDD of group-type (gm)u . Hence when the
egalitarian T D(2, k,m) is split, because m is even, the labelling is split. When m is odd but
the k-GDD of group-type gu is split, recall that Am−1

2
is split. Consider the middle interval,

with β = m−1
2 . (In the preceding intervals, each point appears in the same number of blocks

as in the following intervals, so we focus on this middle interval.) Now because Am−1
2

is split,
each point appears in the first half of the middle interval the same number of times as in the
second half, and hence the labelling is split.

Consider a point (x, y) with x ∈ X and 0 ≤ y < m. Form m intervals as before. Let fβ
denote the point sum of (x, y) within the interval β for 0 ≤ β < m (to be specific, index
the blocks within each interval from 0 to md − 1). The point sum of (x, y) can be written as∑m−1

β=0 r ·β ·md+∑m−1
β=0 fβ .We focus on

∑m−1
β=0 fβ , because the first sumdepends only on the

parameters but neither on x nor on y.Within the interval β, let {aβ,�m+bβ,� : 0 ≤ � < r , 0 ≤
bβ,� < m} be the indices of blocks containing (x, y), noting that fβ = ∑r−1

�=0 aβ,�m + bβ,�.
Let dβ be the point sum of x in Dβ,0, . . . Dβ,d−1, for 0 ≤ β < m. Then

∑m−1
β=0

∑r−1
�=0 aβ,� =

∑m−1
β=0 dβ , which is the same for every choice of x and y because the k-GDD of group-type gu

is m-egalitarian. Finally consider
∑m−1

β=0
∑r−1

�=0 bβ,�. Because blocks of D have been treated
as k-tuples, each point x is associated with each of the m parallel classes of the transversal
design, r times each. Because the T D is egalitarian,

∑m−1
β=0

∑r−1
�=0 bβ,� is the same for every

choice of x and y, Hence the point sums do not depend on which point is considered, and
the GDD produced is egalitarian. �	
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5 Steiner triple systems

We refer the reader to [22] for an in-depth discussion of Steiner triple systems. Dau and
Milenkovic [23] use the Bose [8] and Skolem [30,46] constructions to establish that there
exists a block labelled STS(v) whose dual has MinSum at least 55

1728v
3 + O(v2), achieving

a MinSum for the dual that approaches 55
72 of the average point sum. First we improve upon

these to obtain bounds on the MinSum of the dual approaching 1
24v

3 + O(v2), agreeing in
the dominant term with the average point sum.

Onemight hope that everySteiner triple system admits a 1-partitioning of type (τ1, . . . , τ�)

in which the largest of the {τi } is ‘small’, in order to apply Theorem 3 effectively to all Steiner
triple systems. However, little is known about 1-partitionings for arbitrary STSs; see [16].
We therefore focus on specific classes of Steiner triple systems.

By Corollary 4, for a cyclic STS(v), D, we have MinSum(DT) ≥ v(v−1)(v−7)
24 ,

MaxSum(DT) ≤ (v−1)(v2+5v−12)
24 , andDiffSum(DT) ≤ (v−1)2

2 . A cyclic STS(v) exists when-
ever v ≡ 1, 3 (mod 6) and v �= 9 [42]. An improvement results from considering cyclic
STSs with disjoint starter blocks. Such STS(v)s are studied in [25,34] when v ≡ 1 (mod 6),
and in [9,26] when v ≡ 3 (mod 6). Consider a cyclic STS(v = 6t + 1); suppose that it has
starter blocks (orbit representatives) {{ai , bi , ci } : 0 ≤ i < t} so that |∪t−1

i=0 {ai , bi , ci }| = 3t .
Labelling the triples within the orbit of {ai , bi , ci } so that {ai + j, bi + j, ci + j} (reducing
modulo v) is placed in position j , we find that the 3t positions in which a specific element
σ appears are all distinct. This increases the bound on the MinSum by at least

(
(v−1)/2

2

)
, to

(v−1)(v2−4v−9)
24 , and reduces the DiffSum to (v+1)(v−1)

4 . Novák [41] advances a strong con-
jecture, which would imply that every cyclic STS(6t + 1) can have starter blocks chosen to
be disjoint, and this holds at least for all v ≤ 61 [22]. Recently Novák’s conjecture has been
shown to hold for all admissible orders, with finitely many possible exceptions [27].

By Corollary 2, whenever a Kirkman triple system KTS(v), D, exists, we have
MinSum(DT) ≥ v(v−1)(v−3)

24 , MaxSum(DT) ≤ (v+4)(v−1)(v−3)
24 , and DiffSum(DT) ≤

(v−1)(v−3)
6 . A KTS(v) exists if and only if v ≡ 3 (mod 6) [35,44].

Parallelling Theorem 5, one can also employ multiple resolutions of an STS. When an
STS(v), (X ,B), has a resolution into parallel classes {P1, . . . ,P(v−1)/2}, and a resolution into
parallel classes {Q1, . . . ,Q(v−1)/2} so that |Pi ∩Q j | ≤ 1, it is a doubly resolvable Kirkman
triple system, DRKTS(v). From aDRKTS(v) one can form a certain type ofKirkman square,
a (v − 1)/2 × (v − 1)/2 array in which the cell in row i and column j contains the triple in
Pi ∩Q j , if one exists; otherwise the cell is empty. The existence of DRKTS(v) is settled with
fewpossible exceptions [1,21].ApplyingCorollary 2 using the resolution {P1, . . . ,P(v−1)/2},
labelling the triples within each so that a triple fromQ j is placed in position j − 1, for each
1 ≤ j ≤ v/3, we obtain:

Lemma 4 Whenever a doubly resolvable Kirkman triple system DRKTS(v), D, exists,
MinSum(DT) ≥ v(3v+1)(v−3)

72 , MaxSum(DT) ≤ (v+3)(3v−4)(v−3)
72 , and DiffSum(DT) ≤

(v−3)2

18 .

Each restrictionmentioned reduces theDiffSum, but although the coefficient of v2 has been
reduced, the rate of growth has not. Theorem 4 reduces the rate of growth to O(v3/2 log v)

when v ≡ 3 (mod 6) using Kirkman triple systems. Next we outline an analogue for cases
when v ≡ 1 (mod 6). Write v = 6s + 1. An STS(6s + 1), (V ,B), together with a partition
of B into sets {B0, . . . ,B3s} so that B j is a set of 2s disjoint blocks for 0 ≤ j < 3s, and B3s is
a set of s disjoint blocks, is a Hanani triple system, HATS(6s + 1). A HATS(v) exists if and
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only if v ≡ 1 (mod 6) and v ≥ 19 [49]. Without loss of generality, we write a HATS(6s+1)
on symbols {0, . . . , 6s} so that (1) for 0 ≤ j < 3s,

⋃
B∈B j

B = {0, . . . , 6s} \ { j}, and (2)
B3s = {{i, s + i, 2s + i} : 0 ≤ i < s}. Letting Ci = Bi ∪ Bs+i ∪ B2s+i ∪ {{i, s + i, 2s + i}}
for 0 ≤ i < s, we have that C0, . . . , Cs−1 is a 1-partitioning of type 3s .

In order to label the blocks, we label blocks in Ci−1 before blocks in Ci for 0 < i < s.
To label the blocks of Ci , we label the blocks in Bi with a random permutation of {i(6s +
1), . . . , i(6s + 1) + 2s − 1}; those in B2s+i with a random permutation of {i(6s + 1) +
2s, . . . , i(6s + 1) + 4s} \ {i(6s + 1) + 3s}; and those in Bs+i with a random permutation of
{i(6s + 1) + 4s + 1, . . . , i(6s + 1) + 6s}. Finally label {i, s + i, 2s + i} with i(6s + 1)+ 3s.
Then within the blocks of Ci , the expected values of the point sums are 3i(6s + 1) + 9s,
except that point i has expected point sum 3i(6s+1)+11s + 1

2 and point s + i has expected
point sum 3i(6s + 1) + 7s − 1

2 . Then computing variances and applying Chernoff bounds,
an analogue of Theorem 4 can be established when v ≡ 1 (mod 6). However, we pursue a
different direction next.

For Steiner triple systems, we can do much better. In the remainder of the paper we show
that, in most cases, the DiffSum can be 0.

5.1 Small orders

When D is the STS(7), D = DT , and DiffSum(DT) = 7 [23]. Hence it is not egalitarian, but
it is m-egalitarian except possibly when m ∈ {1, 3, 5} by Lemma 3.

When D is the STS(9), DT is a T D(2, 4, 3). When the point labelling of the T D(2, 4, 3)
has groups {{3i, 3i + 1, 3i + 2} : 0 ≤ i < 4}, define an array A that contains row (a, b, c, d)

whenever {a, b + 3, c + 6, d + 9} is a block of the T D(2, 4, 3). Then A is an orthogonal
array, an OA(4, 3) on symbols {0, 1, 2}. The block sums of the T D(2, 4, 3) (equivalently,
the point sums of the STS(9)) are obtained from the row sums of A by adding 18 to each.

Lemma 5 There is an OA(4, 3) with minimum row sum 2, but none with 3. There is an
OA(4, 3)with maximum row sum 6, but none with 5. There is an OA(4, 3)with the difference
between the maximum and minimum row sums equal to 5, but none with 4.

Proof The OA(4, 3) with rows 0011, 0120, 0202, 1022, 1101, 1210, 2000, 2112, and 2221
has smallest row sum 2 and largest row sum 7. Interchanging symbols 0 and 2 throughout
gives an OA(4, 3) with maximum row sum 6.

Now suppose to the contrary that some OA(4, 3) has minimum row sum at least 3.
Because the three rows containing 0 in a specified column must have total row sum 9, each
row containing a 0 must have row sum 3. Then no row can contain three 0s, and there must be
six containing two 0s, and three containing no 0s. Without loss of generality, three of the six
containing two 0s are 0012, 0201, and 0120. But for some x, y, row x00y must be present,
but y /∈ {1, 2}, a contradiction. Hence the minimum row sum is at most 2, and the maximum
is at least 6 (by reflecting symbols).

Next suppose to the contrary that there is an OA(4, 3) with the difference between the
maximum and minimum row sums equal to 4, so that the minimum row sum is 2 and the
maximum is 6. No row can contain four 0s. If a row contains three 0s, the fourth entry is a
2. The sum of the three rows containing a 2 in the same coordinate is 15, so one of these
rows has row sum at least 7, which cannot be. Symmetrically, no row can contain more than
two 2s. Because in each of the

(4
2

) = 6 pairs of columns, a row contains 00 in the specified
columns, the same holds for 22, and there are nine rows in total, we must have at least three
rows each containing two 0s and two 2s. Without loss of generality, one is 0022. But the

123



Egalitarian Steiner triple systems for data popularity 2385

only row consistent with this is 2200, and hence three such rows cannot arise, which is a
contradiction. �	
Lemma 6 TheSTS(9), D, hasMinSum(DT) = 20,MaxSum(DT) = 24, andDiffSum(DT) =
5.

Proof Dau andMilenkovic [23] establish the bounds forMinSum andMaxSum by examining
all 12! block labellings; we give a computer-free proof. We consider point labellings of a
T D(2, 4, 3). When {a, b, c} is a group, the three blocks containing a have total block sum
66+2a−b−c. If theMinSum is greater than 20, the groupsmust be {{3i, 3i+1, 3i+2} : 0 ≤
i < 4}. So apply Lemma 5 to the corresponding OA(4, 3) to establish that MinSum(DT) =
20, MaxSum(DT) = 24 by reversal, and DiffSum(DT) ≤ 5. (Unfortunately, this does not
establish that DiffSum(DT) �= 4, because the application of Lemma 5 is predicated on the
labelling of groups.)

Suppose to the contrary thatDiffSum(DT) = 4, and consider point labellingswithMinSum
20 and MaxSum 24. Whenever {x, x + a, x + b} with 0 ≤ x < x + a < x + b ≤ 11 is a
group, the blocks containing x have total block sum 66− a − b, and those containing x + b
have total block sum 66 + 2b − a. Because each block sum must be between 20 and 24,
a + b ≤ 6 and 2b − a ≤ 6. Hence 3b ≤ 12, so b ≤ 4. If b = 4, then a = 2.
Case 1. The group containing 0 is {0, 2, 4}. The three blocks containing 0 have total block
sum 60, so each has block sum 20. But the three block sums containing 11 have total block
sum at least 69, so none has block sum 20, a contradiction because some block contains
{0, 11}.
Case 2. The group containing 0 is {0, 2, 3}. No group {1, 1 + a, 1 + b} disjoint from the
group containing 0 with b ≤ 4 can be chosen except when b = 4 and a = 3, a contradiction.
Case 3. The group containing 0 is {0, 1, 3}. Some block contains {2, 11}. Blocks containing
2 must have total block sum at most 61, while those containing 11 have total block sum
at least 69, so the block containing {2, 11} has block sum 21. For a block containing 2 to
have block sum at least 21, the group containing 2 is {2, 4, 5}. For a block containing 11
to have block sum at most 21, the group containing 11 is {9, 10, 11}. Hence the final group
is {6, 7, 8}. Two possibilities arise; we treat them with a single argument. For a ∈ {0, 1}, if
{{0, 2, 8, 10 + a}, {1, 2, 7, 11 − a}, {2, 3, 6, 9}} are blocks, no block containing {a, 11} can
have block sum 24 (the two remaining elements are each at most 6).
Case 4. The group containing 0 is {0, 1, 2}. If the group containing 11 is not {9, 10, 11} then
reverse the labelling to obtain an earlier case. If the group containing 3 is {3, 4, 6}, then the
final group is {5, 7, 8}. But every block containing 5 has block sum at most 21, and every
block containing 6 has block sum at least 21, and {5, 6} must be in a block of sum 21. The
other two blocks containing 5 have block sum 20, and the other two containing 6 have block
sum 24. It follows that 0 must be in the block containing {5, 6} (for otherwise 0 must be in
blocks with sums 20 and 24), so it must be {0, 5, 6, 10}. The other two blocks containing 5
must be {2, 4, 5, 9} and {1, 3, 5, 11}. But then no block can contain {2, 6}, because it cannot
contain 5 or 9, but must have block sum 24. So the remaining two groups must be {3, 4, 5}
and {6, 7, 8}, and Lemma 5 completes the proof. �	

The STS(7) and STS(9) are not good indicators of the best DiffSum for larger orders.
Indeed, for certain v ≥ 13, we find an STS(v), D, that is egalitarian, i.e., hasDiffSum(DT) =
0.

To construct small egalitarian STSs, we employ a local optimization (hill-climbing)
method, described next. For a fixed STS(v), (V ,B), the target point sum is computed as
ρ = (v+2)(v−1)(v−3)

24 . Denote the point sum of x ∈ V as ps(x), once a block labelling is
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chosen. The score of the block labelling is
∑

x∈V |ps(x)−ρ|. Initially select a random block
labelling and compute its score. Repeatedly choose two blocks whose indices in the labelling
do not differ by more than the current score, and interchange them in the block labelling if
the score is not increased by the exchange. If the score becomes 0, an egalitarian labelling
has been found. If a threshold number of block exchanges is examined without reducing the
score, the search is restarted from scratch. If a threshold number of restarts complete without
success, the search is abandoned in failure. We set both thresholds at 10000, so that a search
typically completes in minutes of computation time.

We present STS(v)s using lower- and upper-case letters as elements, with the blocks in
an egalitarian labelling. An STS(13) is given next; such an STS is necessarily partitionable
into two 3-parallel classes [22]. Every point sum equals 75. For example, point b appears in
blocks 0, 6, 10, 18, 20, and 21.

bij adg fil hkm elm cfh bgh ceg cik djk abm aek dfm afj gjl acl dei ehj
bcd dhl bef bkl cjm fgk gim ahi

The STS(15) is isomorphic to the first of eighty STS(15)s from [37], and hence is resolv-
able into seven parallel classes.

hlm cik dno gln afk bef abo ejn gio cfh cjl fjm deh agj eko bij dil adm
bcd bgh gkm hkn cmo eim ahi dfg bmn ael acn djk bkl ceg fin flo hjo

The STS(19) is cyclic (it is isomorphic to {{i, i+1, i+5}, {i, i+2, i+8}, {i, i+3, i+10} :
0 ≤ i < 19}), and hence is partitionable into three 3-parallel classes.

gps jlr adk cnp gio bir him enq aln fqs efj ahq hkr fip cjs jko ajm bmo
ghl dei bpq dmp dfl bkn clo doq egm cek cqr bhs cfm bel aes agr bcg fhn
for kms cdh nos drs klp bdj dgn mnr aop fgk eho gjq ikq ijn abf ils epr
aci lmq hjp

The STS(21) is cyclic and resolvable. Every point has sum 345 = 10·69
2 . Moreover, it is

split egalitarian, because every point appears five times in the first 35 blocks and five times
in the last 35.

jkm bfg bce qrt eno dmu fnr gkt ost pqs fhp dhq kln ait cjq bip cdf rsu
alu bmo els ghs aef imn cko ajr ijl ptu hlm giq bju dkr cnp deg aho
chu anq ams gjo glr dlp fiu eku dio clt emq hjn bhr hik abd cis akp opr
djt gmp ejp flo eir fjs bnt acg bks blq gnu dns eht fmt oqu cmr fkq

The STS(25) is cyclic (it is isomorphic to {{i, i +1, i +6}, {i, i +2, i +11}, {i, i +3, i +
10}, {i, i + 4, i + 17} : 0 ≤ i < 25}), and hence is partitionable into four 3-parallel classes.
The ordering shown is split egalitarian.

ips dhu cfu cjm bow bet ksw aim bjn cko muy hly anv hpt gnq gjy ehw fnr
ovy gos bqx aer dlp ads cry hor dkn ltx emq ahk dgv fix cgt fjw apw kru
cpx bil iqu elo jqt bfs mtw dqy gkx nux jrv eiv lsv fmp
pqv ijo klq cdi dwx ajx ftv efk kmv fhq egp npy gir rsx exy jlu lmr fgl
lnw sty abg buv bdm esu atu not hvx bpr qrw mox drt ikt cvw hjs cqs mns
guw cen aoq afy bch iwy acl dfo opu ghm hin dej jkp bky

The STS(31) is cyclic (it is isomorphic to {{i, i +1, i +7}, {i, i +2, i +11}, {i, i +3, i +
20}, {i, i + 4, i + 23}, {i, i + 5, i + 21} : 0 ≤ i < 31}), and hence is partitionable into five
3-parallel classes.
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jmD glB jlu qsB abh bfy npy iCE hsv alo ksw ejz fhq nxC dwE owA jkq eCD
aqA prA cko mnt dtD tvE bdm pAD agE bvx ilC hrw aex rtC gos bzA cvD uvB
fqt lwz pxB tuA hio ghn cwy isx rsy suD kuz fDE dek fnr arC hkB xyE cfw
gqv aim cdj buC opv cAB oqz gir efl muy bjn cmr cgz ikt acl diy cen bev
gkD fzB ijp qyC dlp emq hpt bgw fiz pzE dBC euE joE mxA fpu ehy dxz eps
mox mwB jux dor nyB stz dgx atB adu rzD knE hmC gjA jrv dfo lvA wxD eyA
chx nou inD klr nvz ctE lms lnw jty kmv akp kvy cnq eiB gru sAE bmp bkE
ayz iqu fgm bsD qBE dns itw fjC brB fkA gAC vwC blq egp csC bci ltx eot
pqw qrx hBD hlE ozC hjs oyD auw afv ajD dhA

The STS(33) is cyclic and can be partitioned into four 3-parallel classes and four parallel
classes. The ordering given is split egalitarian.

hmG dmt ktA bjo oAG cix ams duD glF ckp ajq myE afz bsB mvC lty bqC gnE
eqw rzE luB gpw diC cwE ahy frx qzG emr ioD nwD flA dxF jsz bhw bnt hqx
lxD dpv nzF etF dkB iuA hpu ksx elC agv pyF nvA owB hoF jpE iry fuG fns
kwC cls hnC tBG djy apB cjA htz dsE bgA biz iqv oxE ekz kqF jvB crD auC
fmD fwF ipG enu gxG lrG gsy ejD cou ctC bkr qyD arA fov evE gmB
rsu fjt cvz alw kvG bvD rvF grC efh juF bfp gku DEG quE eis nrB eyG jnx
koy lmo cgq cny epA lpz fyC got itE iBF fqB zAC ABD abd deg vwy noq BCE
exB cmF hsD hik uvx ijl akD acG dnG hAE gzD sAF jrw bmx opr wxz ain chB
pxC pqs dwA osC ptD dhr imw CDF doz atx fkE bce swG mqA aeo xyA buy jCG
cdf ghj bFG jkm qrt stv kln yzB tuw hlv dlq aEF blE muz mnp fgi

We have established

Lemma 7 An egalitarian STS(v) exists for v ∈ {13, 15, 19, 21, 25, 31, 33}. It is split egali-
tarian when v ∈ {21, 25, 33}.

5.2 A doubling construction

To obtain infinite families of egalitarian Steiner triple systems, we adapt some standard direct
and recursive constructions (see [22]). First we consider a direct construction.

Theorem 7 Let � = (X ,⊕) be an abelian group of order v = 6t + 1 with v > 7. Suppose
that D = ((X × {1, 2}) ∪ {∞},B) is a KTS(2v + 1) with a parallel class P whose orbits
under the action of � form the partition of D into parallel classes, and so that |{B ∈ P :
B ⊂ X × {1}}| �= 1 or t − 1. Then D is egalitarian.

Proof For a triple B and any z ∈ X , let B + z be the triple obtained by replacing (x, i) by
(x ⊕ z, i) for x ∈ X , leaving ∞ fixed. For each z ∈ X , define Pz = {B + z : B ∈ P}. Then
{Pz : z ∈ X} forms the v parallel classes of the KTS. Arbitrarily label the nonzero elements
of X as e1, . . . , ev−1.

First we label the blocks of P as {Bi : 0 ≤ i ≤ 4t}. In the process, we define μ(∞) = i
when ∞ ∈ Bi and 0 ≤ i ≤ 4t , and μ( j) = 1

v

∑{i : (x, j) ∈ Bi , 0 ≤ i ≤ 4t, x ∈ X} for
j ∈ {1, 2}. Because μ(∞) + (6t + 1)μ(1) + (6t + 1)μ(2) = 3

(4t+1
2

)
, we have μ(2) = 2t

whenever μ(1) = μ(∞) = 2t .
There is exactly one block ofP that contains∞. Label this block as B2t so thatμ(∞) = 2t .

For 0 ≤ � ≤ 3, let P� be the set {B ∈ P \ {B2t } : |B ∩ (X × {1})| = �, and let ρ� = |P�|.
(These counts satisfy 3ρ0 + ρ1 = ρ2 + 3ρ3 = 3t and ρ1 + ρ2 = 3t , so ρ0 + ρ3 = t . By
hypothesis, {ρ0, ρ3} ∩ {1, t − 1} = ∅.)

Now we treat cases, ensuring that μ(1) = 2t for each:
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2388 C. J. Colbourn

Case 1. t is even and ρ0 is even. Then ρ1, ρ2, and ρ3 are all even. Label the remaining 4t
blocks so that B2t− j ∈ Pi if and only if B2t+ j ∈ Pi for all 1 ≤ j ≤ 2t .
Case 2. t is even and ρ0 is odd. Then ρ1, ρ2, and ρ3 are all odd. Choose one block in P0 to
be B2t−1, one block in P1 to be B2t+3, one block in P2 to be B2t−3, and one block in P3 to
be B2t+1. Label the remaining 4t − 4 blocks so that B2t− j ∈ Pi if and only if B2t+ j ∈ Pi

for j = 2 and all 4 ≤ j ≤ 2t .
Case 3. t is odd and ρ0 is even. Then ρ1 and ρ3 are odd, but ρ2 is even. Choose three blocks
in P1 to be B2t−2, B2t−1,and B2t+3, and three blocks in P3 to be B2t+2, B2t+1,and B2t−3.
Label the remaining 4t − 6 blocks so that B2t− j ∈ Pi if and only if B2t+ j ∈ Pi for all
4 ≤ j ≤ 2t .
Case 4. t is odd and ρ0 is odd. Then ρ1 and ρ3 are even, but ρ2 is odd. This is symmetric to
Case 3, by swapping the second coordinate of the points.

Extend the labelling ofP = P0 as B0, . . . , B4t to all triples by setting Bi(4t+1)+ j = Bj+ei
for all 1 ≤ i ≤ v − 1 and 0 ≤ j ≤ 4t . The point sum of ∞ is (4t + 1)

(
v
2

) + (4t + 1)μ(∞).
For x ∈ X and j ∈ {1, 2}, the point sum of (x, j) is (4t + 1)

(
v
2

) + (4t + 1)μ( j). Hence all
points have the same point sum, and the labelling is egalitarian. �	
Corollary 5 An egalitarian resolvable STS(v) exists when v = 12t + 3, t ≥ 2, and either
every prime divisor of 6t + 1 is congruent to 1 mod 6, or 6t + 1 is a prime power.

Proof AKTS(2t +1) is constructed in [4,5] when 6t +1 is a prime, satisfying the conditions
of the lemma and having ρ3 = t , ρ0 = ρ2 = 0, and ρ1 = 3t . Anderson [3] generalizes this to
handle cases when every prime divisor of 6t + 1 is congruent to 1 mod 6. The same pattern
is obtained when 6t + 1 is a prime power in [44]; also see [22, Theorem 19.10]. See also
[10,11] for related work. �	

Corollary 5 establishes that an egalitarian resolvable STS(v) exists when v ∈ {27, 39, 51,
63, 75, 87, 99}, for example. An STS(v) having an automorphism whose orbits consist of
one fixed point and two (v − 1)/2-cycles is 2-rotational. A 2-rotational STS(v) exists if and
only if v ≡ 3, 7 (mod 12) [43]; however the existence of a resolvable 2-rotational STS(v)

when v ≡ 3 (mod 12) appears to be open in general. In light of Theorem 7, a complete
solution for this problem would be useful.

5.3 Filling in holes

Next we fill holes in egalitarian 3-GDDs from Theorem 6. We need a technical lemma.

Lemma 8 Let u ≥ 3 be an integer. Let (V ,B) be an STS(v) whose triples admit a partition
into τs s-parallel classes (1 ≤ s ≤ v−1

2 ), so that for every s either τs is even, or τs �= 1
and u is odd. There exist u (not necessarily proper) block colourings γ0, γ1, . . . , γu−1 with
γ j : B �→ {0, 1, . . . , u − 1} for which
1. for B ∈ B, {γ0(B), γ1(B), . . . , γu−1(B)} = {0, 1, . . . , u − 1}; and
2. for x ∈ V ,

∑u−1
j=0

∑
B:x∈B γ j (B) = v−1

2

(u
2

)
.

Proof For each 1 ≤ s ≤ v−1
2 , let Ps,0, . . . ,Ps,τs−1 be the s-parallel classes in the partition.

We colour blocks in the s-parallel classes as follows. Write τs = 2� when τs is even,
τs = 2� + 3 when τs is odd. For 0 ≤ i < 2� and each B ∈ Ps,i , for 0 ≤ j < u,
set γ j (B) = j if i is even or γ j = u − 1 − j if i is odd. This provides the required
colourings when each of {τs} is even. To complete the colourings in the remaining cases, we
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must provide the colourings for blocks in Ps,τs−3,Ps,τs−2,Ps,τs−1 when τs is odd. When
B ∈ Ps,τs−3, set γ j (B) = j for 0 ≤ j < u. When B ∈ Ps,τs−2, set γ j (B) = u − 1 − 2 j
for 0 ≤ j ≤ u−1

2 , and γ j (B) = 2u − 1 − 2 j for u−1
2 < j ≤ u − 1. When B ∈ Ps,τs−1, set

γ j (B) = u−1
2 + j for 0 ≤ j ≤ u−1

2 , and γ j (B) = j − u+1
2 for u−1

2 < j ≤ u − 1. Note that
j + u − 1 − 2 j + u−1

2 + j = j + 2u − 1 − 2 j + j − u+1
2 = 3 u−1

2 .
The verification is routine. �	

Lemma 9 Let u ≥ 3 be odd. Suppose that there exists an egalitarian STS(v) having a 1-
partitioning of type (sτs : 1 ≤ s ≤ v−1

2 ) with τs �= 1, for 1 ≤ s ≤ v(u−1)
2 . Further

suppose that an egalitarian 3-GDD of type vu exists, having a 1-partitioning of type (sμs :
1 ≤ s ≤ v(u−1)

2 ). Then there exists an egalitarian STS(uv) having a 1-partitioning of type

(sτs+μs : 1 ≤ s ≤ v(u−1)
2 ).

Proof Let D = (X ,D) be the STS(v) with b = v(v−1)
6 blocks having egalitarian labelling

D0, . . . , Db−1, so that every point sum is κ . Let E = ({0, . . . , u − 1} × X , {{ j} × X :
0 ≤ j < u}, E) be the egalitarian 3-GDD of type vu , with d blocks, egalitarian labelling
E0, . . . , Ed−1, and each point with sum σ . Apply Lemma 8 to produce u block colourings
γ0, γ1, . . . γu−1 for the blocks of D.

To form the STS(uv) we form a set B of blocks, by starting with the blocks of E , and
adjoining a copy of the blocks of D on { j}×X for 0 ≤ j < u.Wemust order these d+u v(v−1)

6
blocks to produce an egalitarian labelling. To do this, define Bi = Ei for 0 ≤ i < d . Then
set Bd+u j+γ�(Dj ) = {�} × Dj for 0 ≤ � < u and 0 ≤ j < b. Then every point has point sum

σ + d v−1
2 + uκ + (v−1)(u−1)

4 , and the STS(uv) is egalitarian. �	
Next we describe some (but by no means all) of the consequences.

Corollary 6 Suppose that v ≥ 13 and there exists an egalitarian STS(v) having a 1-
partitioning of type (sτs : 1 ≤ s ≤ v−1

2 ) so that τs �= 1 when 1 ≤ s ≤ v−1
2 . Then

there exist

1. an egalitarian STS(3v) having a 1-partitioning of type (1τ1+v)(sτs : 2 ≤ s ≤ v−1
2 ).

2. an egalitarian STS(7v) having a 1-partitioning of type (1τ1)(2τ2)(3τ3+v)(sτs : 4 ≤ s ≤
v−1
2 ).

3. an egalitarian STS(13v) having a 1-partitioning of type (1τ1)(2τ2)(3τ3+2v)(sτs : 4 ≤
s ≤ v−1

2 ).
4. an egalitarian STS(25v) having a 1-partitioning of type (1τ1)(2τ2)(3τ3+4v)(sτs : 4 ≤

s ≤ v−1
2 ).

Proof We employ 3-GDDs of type 13, 17, 113, and 125 with 1-partitioning of type 11, 31,
32, and 34, respectively, taking m = v; there is a T D(2, 5,m) in each of these cases. By
Lemma 3, the first 3-GDD is m-egalitarian for all m ≥ 1 and the second is m-egalitarian for
allm ≥ 7. The rest are egalitarian by Lemma 7. Apply Theorem 6 to construct the egalitarian
3-GDD of type vu . Now apply Lemma 9. �	
Lemma 10 Let u ≥ 3 and v ≥ 13. Suppose that there exists an egalitarian STS(v) having
a 1-partitioning of type (sτs : 1 ≤ s ≤ (v−1)(u−1)

2 ), with u odd and τs �= 1, or u even and

τs even, for 1 ≤ s ≤ (v−1)(u−1)
2 . Suppose that a split egalitarian 3-GDD of type (v − 1)u

having a 1-partitioning of type (sμs : 1 ≤ s ≤ (v−1)(u−1)
2 ) exists. Then an egalitarian

STS(u(v − 1) + 1) exists.
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Proof Let D = (X ∪ {∞},D) be the STS(v) with b = v(v−1)
6 blocks having egalitarian

labelling D0, . . . , Db−1, so that every point sum is κ . Apply Lemma 8 to produce u block
colourings γ0, γ1, . . . γu−1 for the blocks of D. Let E = ({0, . . . , u − 1} × X , {{ j} × X :
0 ≤ j < u}, E) be the split egalitarian 3-GDD of type vu , with d blocks, split egalitarian
labelling E0, . . . , Ed−1, and each point with sum σ . In E , each point appears in an even
number r = (v−1)(u−1)

2 of blocks because the labelling is split. Hence d is also even.
We form the STS(u(v − 1) + 1) on elements ({0, . . . , u − 1} × X) ∪ {∞}, whose block

set B is obtained by starting with the blocks of E , and adjoining a copy of the blocks of D on
({ j}× X)∪{∞} for 0 ≤ j < u. We must order these d+ub blocks to produce an egalitarian
labelling. To do this, first define Bi = Ei for 0 ≤ i < d

2 , and Bub+i = Ei for d
2 ≤ i < d .

(This orders the prefix of d/2 blocks and the suffix of d/2 blocks, leaving a consecutive set
of ub blocks to be determined “in the middle”.)

For 0 ≤ � < u, let π� be a function that maps x to (�, x) for x ∈ X , and maps ∞ to itself.
When D ⊆ X ∪{∞}, let π�(D) denote {π�(y) : y ∈ D}. Then set Bd/2+u j+γ�(Dj ) = π�(Dj )

for 0 ≤ � < u and 0 ≤ j < b.
Now following the proof of Lemma 9, every point of {0, . . . , u − 1} × X has the same

point sum. Because this point sum equals the average point sum. the point sum of ∞ is the
same and the block labelling is egalitarian. �	

We do not specify the type of a 1-partitioning of the egalitarian STS(u(v − 1) + 1) from
Lemma 10 in general, because we cannot simply append the classes of the ingredient designs
as in Lemma 9. Nevertheless we determine these types for some specific applications.

Corollary 7 Suppose that v ≥ 13 and there exists an egalitarian STS(v) having a 1-
partitioning of type (sτs : 1 ≤ s ≤ v−1

2 ), with τs �= 1 for 1 ≤ s ≤ v−1
2 . Then there

exist

1. an egalitarian STS(3v − 2) having a 1-partitioning of type ((3s)τs : 1 ≤ s ≤ v−1
2 ).

2. an egalitarian STS(5v − 4) having a 1-partitioning of type ((5s)τs : 1 ≤ s ≤ v−1
2 )

provided that v ≡ 1 (mod 6) and v /∈ {19, 31}.
3. an egalitarian STS(7v − 6) having a 1-partitioning of type ((7s)τs : 1 ≤ s ≤ v−1

2 ).
4. an egalitarian STS(11v − 10) having a 1-partitioning of type ((11s)τs : 1 ≤ s ≤ v−1

2 )

provided that v ≡ 1 (mod 6), v /∈ {19, 31}, and τs = 0 unless s ≡ 0 (mod 3).
5. an egalitarian STS(19v − 18) having a 1-partitioning of type ((19s)τs : 1 ≤ s ≤ v−1

2 ).

If in addition the 1-partitioning satisfies τs even for 1 ≤ s ≤ v−1
2 (and hence v ≡ 1, 9

(mod 12)), then there exists

6. an egalitarian STS(4v − 3) having a 1-partitioning of type ((4s)τs : 1 ≤ s ≤ v−1
2 )

provided that v ≥ 25.

Proof In each case, we apply Theorem 6 tomake an egalitarian 3-GDDof group-type (v−1)u

and apply Lemma 10 to fill the holes. Next we give details.
For u = 3, use a 3-GDD of group-type 13 with weight m = v − 1 to construct an

egalitarian 3-GDD of group-type (v − 1)3 having a 1-partitioning of type 1v−1. The 1-
partitioning of the egalitarian STS(3v − 2) from Lemma 10 is obtained by first forming the
union of corresponding s-parallel classes from the three STS(v)s to obtain a set of blocks
in which ∞ appears 3s times and each other element appears s times. Adjoining 2s parallel
classes of the egalitarian 3-GDD of group-type (v − 1)3 yields a (3s)-parallel class.

For u ∈ {5, 11}, form a 3-GDD of group-type 3u by treating the blocks of one parallel
class of a KTS(3u) as groups; this has a 1-partitioning of type 13(u−1)/2. Because v−1

3 is
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even, the GDD is v−1
3 -egalitarian. Give weight m = v−1

3 (a T D(2, 5, v−1
3 ) exists because

v /∈ {19, 31}) to construct an egalitarian 3-GDDof group-type (v−1)u having a 1-partitioning
of type 1(u−1)(v−1)/2. The 1-partitioning of the egalitarian STS(uv−(u−1)) from Lemma 10
is obtained by first forming the union of corresponding s-parallel classes from the STS(v)s to
obtain a set of blocks in which ∞ appears us times and each other element appears s times.
Adjoining (u−1)s 1-parallel classes of the egalitarian 3-GDD of group-type (v −1)u yields
a (us)-parallel class.

For u ∈ {7, 13, 19}, use a 3-GDD of group-type 1u (having a 1-partitioning of type
3(u−1)/6) with weight m = v − 1 to construct an egalitarian 3-GDD of group-type (v − 1)u

having a 1-partitioning of type 3(v−1)(u−1)/6. The 1-partitioning of the egalitarian STS(uv −
(u − 1)) from Lemma 10 is obtained by first forming the union of corresponding s-parallel
classes from the STS(v)s to obtain a set of blocks in which ∞ appears us times and each
other element appears s times. Adjoining s(u−1)

3 3-parallel classes of the egalitarian 3-GDD
of group-type (v − 1)u yields a (us)-parallel class.

For u = 4, use a 3-GDD of group-type 24 (having a 1-partitioning of type 31) with weight
m = v−1

2 (noting that a T D(2, 5, v−1
2 ) exists when v ≥ 25) to construct an egalitarian

3-GDD of group-type (v − 1)4 having a 1-partitioning of type 3
3(v−1)

2 . The 1-partitioning
of the egalitarian STS(4v − 3) from Lemma 10 is obtained by first forming the union of
corresponding s-parallel classes from the STS(v)s to obtain a set of blocks in which ∞
appears 4s times and each other element appears s times. Adjoining s 3-parallel classes of
the egalitarian 3-GDD of group-type (v − 1)4 yields a (4s)-parallel class. �	

One application of Lemma 10 uses a special ingredient.

Lemma 11 There exists a split egalitarian STS(49).

Proof Using the hill-climbng method described earlier, a split egalitarian 3-GDD of type 44

follows:

flm cij den djk hno ajp ekl bhi agh iop efo gmn abk fgp bcl cdm
gil bmo acf bdg cnp fhk kmp ado bep ceh egj aln hjm ikn jlo dfi

Interpret each triple as an ordered set, as shown. Then within the first 16 triples and within
the last 16, every element appears once each as the first, second, and third element of a triple.
Form a 3-GDD of type 33 with ordered triples {B� = (i, j, (i + j) mod 3) : 0 ≤ i, j <

3, � = 3i + j}. We inflate the GDD of type 44 giving weight 3, treating the ordered triples
in the order specified. In the first half, replace the triple (a, b, c) by the ordered list of nine
triples ((ai , b j , cm) : B� = (i, j,m), 0 ≤ � < 9). In the second half, replace the triple
(a, b, c) by the ordered list of nine triples ((ai , b j , cm) : B8−� = (i, j,m), 0 ≤ � < 9). The
result is a split egalitarian 3-GDD of type 124. Now apply the strategy of the proof of Lemma
10 using four copies of an egalitarian STS(13) to fill the holes. �	

We apply an extension of Lemma 10 next.

Lemma 12 There exists an egalitarian STS(v) having a 1-partitioning into two v−1
4 -parallel

classes whenever v ≡ 1, 9 (mod 12) and v �= 9.

Proof When v ∈ {13, 21, 25, 33}, apply Lemma 7. When v ∈ {45, 57, 81}, apply Corollary
6(1). When v = 49, apply Lemma 11. Otherwise write

v =

⎧
⎪⎪⎨

⎪⎪⎩

24m + 25 i f v ≡ 1 (mod 24), setting s = m, g = 6 and u = 6
24m + 33 i f v ≡ 9 (mod 24), setting s = m, g = 6 and u = 8
24m + 13 i f v ≡ 13 (mod 24), setting s = 2m, g = 3 and u = 3
24m + 21 i f v ≡ 21 (mod 24), setting s = 2m, g = 3 and u = 5
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Then a 3-GDD of type gsu1 exists [19]. Each of these 3-GDDs is 4-egalitarian (by Lemma
3) and has a 1-partitioning of type ((gs + u)/2)1. When v ≡ 1 (mod 24), apply Theorem 6
to get a split egalitarian 3-GDD of type 24m+1 having a 1-partitioning of type (3m)4. Apply
Theorem 10 with v = 25 (noting that the STS(25) from Lemma 7 has a 1-partitioning of type
34) to produce an egalitarian STS(24m + 1), When v ≡ 13 (mod 24), apply Theorem 6 to
get a split egalitarian 3-GDD of type 122m+1 having a 1-partitioning of type (3m)4. Apply
Theorem 10 with v = 13 (noting that the STS(13) from Lemma 7 has a 1-partitioning of
type 32) to produce an egalitarian STS(24m + 13).

Now we treat cases with v ≡ 9 (mod 12), which are more involved. The STS(21) and
STS(33) from Lemma 7 are split egalitarian. Inflate the non-uniform 3-GDD of type gsu1

to form a 3-GDD of type (4g)s(4u)1 using the method in the proof of Theorem 6. The
ordering of the resulting 3-GDD is split and has d = 1

6 [
(s
2

)
16g2 + 16gsu] blocks; most

importantly, every point in a group of size g appears in 2g(s − 1) + 2u blocks and has point
sum (g(s − 1) + u)(d − 1), and every point in the group of size u appears in 2gs blocks and
has point sum gs(d − 1).

To form the STS(4gs + 4u + 1), add an infinite point to the 3-GDD of type (4g)s(4u)1,
placing an STS(4g + 1) or STS(4u + 1) on each group along with the infinite point. Now
we order its blocks. As in the proof of Lemma 10, the prefix of the ordering is the first half
of the blocks of the 3-GDD of type (4g)s(4u)1, and the suffix is the last half. Following this
prefix, place the first half of the blocks of the (split egalitarian) STS(4u + 1); immediately
preceding the suffix, place the last half. In the ‘middle’, place the blocks of the s copies of
the STS(4g + 1), ordered as in the proof of Lemma 10. The 1-partitioning is obtained by
observing that the 3-GDD of type (4g)s(4u)1 is split, the STS(4u + 1) is split egalitarian,
and the STS(4g + 1) partitions into two g-parallel classes. �	
Lemma 13 There exists an egalitarian STS(v) whenever v ≡ 3, 27 (mod 36).

Proof For v = 27, apply Lemma 7. Otherwise apply Corollary 6(1) to an egalitarian
STS(v/3) from Lemma 12. �	

5.4 Consequences

An egalitarian STS(v) exists whenever v ≡ 1, 3, 9, 13, 21, 25, 27, 33 (mod 36) except
when v = 9 by Lemmas 12 and 13. It remains to treat cases with v ≡ 7, 15, 19, 31 (mod 36).
Because 3v − 2 ≡ 7, 19 (mod 36) when v ≡ 3, 7 (mod 12), it follows from Corollary 7(1)
that if an egalitarian STS(v) exists whenever v ≡ 15, 31 (mod 36) and v ≥ 15, then an
egalitarian STS(v) exists for all admissible v ≥ 13. Unfortunately the remaining construc-
tions fail to treat all values of v ≡ 15, 31 (mod 36). Table 1 reports the current status for the
existence of egalitarian STS(v)s with v < 720.

6 Concluding remarks

One can treat block labellings for other classes of Steiner systems starting with the techniques
developed here. For example, a Steiner quadruple system, SQS(v), has average point sum
(v−1)(v−2)(v−4)(v2+v+6)

288 . A resolvable SQS(v) exists for all v ≡ 4, 8 (mod 12) [31,33];
doubly resolvable SQSs are studied in [38]. A Steiner quadruple system with a 1-partitioning
of type (τ1, . . . , τr/2) with each τi = 2 is (1,2)-resolvable; such an SQS(v) exists whenever
v ≡ 2, 10 (mod 12) except when v = 10 [39]. Cyclic SQSs are also well-studied; see
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Table 1 Existence of egalitarian STS(v) for v ≡ 7, 15, 19, 31 (mod 36) and v < 720

v (mod 72)
7 15 19 31 43 51 55 67

7 × 15 � 19 � 31 � 43 C1 51 A 55 C1 67 ?

79 C1 87 A 91 C1 103 ? 115 C1 123 A 127 C1 139 ?

151 C1 159 A 163 C1 175 B2 187 C1 195 A 199 ? 211 C3

223 C1 231 B2 235 C1 247 B3 259 C1 267 A 271 C1 283 ?

295 C1 303 A 307 ? 319 ? 331 C1 339 A 343 C1 355 ?

367 C1 375 B4 379 C1 391 C2 403 C1 411 ? 415 ? 427 B2

439 C1 447 A 451 C1 463 C4 475 C1 483 A 487 C1 499 ?

511 C1 519 A 523 C1 535 ? 547 C1 555 A 559 C1 571 C5

583 C1 591 ? 595 B2 607 ? 619 C1 627 A 631 C1 643 ?

655 C1 663 A 667 C1 679 B2 691 C1 699 A 703 C1 715 B3

Entries provide a � when it is produced by Lemma 7, A when it is an application of Corollary 5, B j when
it is produced by statement ( j) of Corollary 6, C j when it is produced by statement ( j) of Corollary 7, or ‘?’
when no construction for an egalitarian system is known

[28,36,45], for example. Each of these results can be employed in a variant of Theorem 4 to
produce useful bounds on the DiffSum of their duals. However, as for STS(v)s, such general
bounds are probably weak for SQS(v)s. Although DiffSum(D3,4,8) = 4, the SQS(10) is
egalitarian (see Fig. 1). Unlike STS(v)s, there cannot be an egalitarian SQS(v) for every
admissible order v that is large enough, because DiffSum(D3,4,v) ≥ 1 when v ≡ 8, 16
(mod 24). Nevertheless, we expect that the DiffSum is, in some sense, small for all orders.

Returning to Steiner triple systems, although every STS(v) with v ≥ 13 has DiffSum
at least v + 1 [12], a reasonable conjecture is that there is an egalitarian STS(v) for every
admissible v ≥ 13. Moreover, for v sufficiently large, there exists an STS(v) whose DiffSum
is at least 3v − o(v) [12]; but in contrast it may happen that the dual of every STS(v) has
small DiffSum, say at most v. Indeed it is conceivable that, for v sufficiently large, every
STS(v) is egalitarian. If so, much different techniques would be needed to establish this.

Acknowledgements Thanks to YeowMeng Chee, Dylan Lusi, and OlgicaMilenkovic for helpful discussions.
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