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Abstract—Trades, introduced by Hedayat [9], are two sets of
blocks of elements which may be exchanged (traded) without
altering the counts of certain subcollections of elements within
their constituent blocks. They are of importance in applications
where certain combinations of elements dynamically become
prohibited from being placed in the same group of elements, since
in this case one can trade the offending blocks with allowed ones.
This is particularly the case in distributed storage systems, where
due to privacy and other constraints, data of some groups of users
cannot be stored together on the same server. We introduce a
new class of balanced trades, important for access balancing of
servers, and perturbation resilient balanced trades, important for
studying the stability of server access frequencies with respect
to changes in data popularity. The constructions and bounds on
our new trade schemes rely on specialized selections of defining
sets in minimal trades and number-theoretic analyses.

Index Terms—access balancing, combinatorial trades, dis-
tributed storage, data popularity changes

I. INTRODUCTION

An important problem in distributed storage is to balance
access requests to servers in order to prevent service time
bottlenecks. Access balancing aims to limit the number of
server session logon requests and queues excess requests until
server resources become available. As data access directly
relates to the popularity of items on a server, it is important
to design storage systems that balance the popularity of data
chunks on each server.

Existing distributed storage systems categorize data into hot,
warm and cold based on their popularity and use different
mechanisms for storing them [4], [11], [14]. High-level parti-
tions like these fail to account for popularity-variability within
each class and the resulting dynamic changes in data demands,
and they do not couple the balancing process with distributed
storage repair solutions [7], [8], [15]. As a result, although is-
sues such as delay-storage tradeoffs, volume (load) balancing,
and chunk allocation have been studied in depth [1], [11], [12],
access balancing has received significantly less attention. To
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address this problem, the authors of [6] introduced MaxMin
Steiner triple systems and related combinatorial designs for
fractional repetition distributed storage coding [8]. MaxMin
Steiner triple systems maximize the minimum average popu-
larity score of items stored on different servers in the system
and thereby ensure control of the discrepancy of average server
popularity scores [2], [3], [S5]. These systems are constructed
by selecting a specific packing or design, and associating data
items of given popularities with elements of the packing or
design. The MaxMin Steiner balancing approach can also be
integrated with batch codes [8], [15], [16].

In [9], the following question was posed: “In the application
of t-designs we may be confronted with a situation where
some blocks become too costly to be selected for experi-
mentation. For example, combining certain tasks within one
block may be unacceptable to the experimenter. Suppose the
available f-designs in the literature contain such blocks and by
renaming we cannot dispose of these undesirable blocks. The
theory of trade-offs can tell us how to trade undesirable blocks
with those which are acceptable to the experimenter.” In access
balancing such situations arises when one needs to redistribute
files or data chunks on servers to account for constraints on
items which cannot be stored together or to mitigate the effect
of dynamical changes in the popularity of items.

This work demonstrates that such constrained trading prob-
lems may be resolved through the use of new classes of bal-
anced and swap-robust trades. A trade with parameters (v, k, f)
is a pair of disjoint sets of blocks TW, 7@ of equal size over a
ground set of v points such that all blocks are of size k and any
subset of t points appears the same number of times in blocks
of T™) and blocks of T(?). The set of blocks in T!) and T(?)
are subgroups of blocks in combinatorial designs which are
used for distributed and batch code constructions. Replacing
blocks in T() by blocks in T2 when the need arises does not
change the global block intersection properties. In the setting
of access-balanced storage with dynamically changing item
popularities, undesirable blocks may represent blocks whose
average popularity has decreased or increased significantly or
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blocks who are dynamically faced with storing disallowed
combinations of data items. Importantly, for dynamic access
balancing, blocks in T can be traded by blocks in T®
without changing the properties of the underlying design but
changing the points (e.g., data chunks or files) allocated to the
blocks (e.g., servers). Due to space limitations, we relegate the
detailed description of how to use trades in distributed storage
system to the journal version of this work.

The first question of interest is: Can trades themselves
be made “balanced”? Labeling the points with numbers in
{1,2,...,v}, the question of balancing translates to ensuring
that all blocks in T(!) and T® have the same sum of label
values. Our first result is that minimal trades (i.e., trades with
the smallest number of blocks) can be easily balanced (see
Section III). Balancing is needed even when no changes in
popularities are present to ensure maintaining near-uniform
server access; minimal trades are of interest since they re-
quire replacing (trading) the smallest number of blocks to
achieve the desired rebalancing or to meet a given placement
constraint. The second question is how to design balanced
trades that are as robust as possible to limited-magnitude
swaps in popularities of items? For v = 4(f + 1), where f is
a positive integer, we show that there exist balanced trades
whose popularity sums do not change more than roughly
2(t + 1) when all popularity values are allowed to undergo
arbitrary adjacent swaps. Interestingly, for v = 16 and v = 20
the corresponding balanced minimal trades are unique.

II. BASICS OF TRADES

We start our exposition with some important definitions.

Given a set of elements V = [v] = {1,...,0}, let P(v)
denote the power set of V and let Py(v) < P(v) be the set of
all subsets (blocks) of P(v) that have cardinality k, for some
positive integer k < v.

Definition 1. A (v,k, ) trade is a pair of sets {T(}), T},
TO < P(v),i = 1,2, such that [TW| = |T@)| and
TO ATO® = &, satistying the following property: For any
B € Pi(v), the number of blocks in T that contain By is
the same as the number of blocks in T that contain Bt.
The volume of the trade is the number of blocks in T!) and
ITMW| = |T@)|. A (v,k, t) trade is termed minimal if it has the
smallest possible number of blocks.

We start by describing a construction of minimal trades
based on Hwang [10] which allows one to balance the sum
of elements in blocks (i.e., ensure discrepancy = 0) of both
T and T@), using specialized choices of the sets defining
the blocks of the trades. We describe the construction and
an accompanying new proof that immediately reveals how
to perform balancing (note that no proof for this result was
provided in [10]). For each ¢ € {1,2,...,n}, let

Pg = {(il,i1+1)~--(ig,ig+1) ‘ {il,...,ig} c {1,...,271—1}},

be a set of permutations over a set of 2n elements, where
(i1,i1 + 1)(iz,ip + 1) ... (ig, iy + 1) denotes the permutation
which swaps i]- with i]- +1, for j = 1,...,¢, and leaves all

other elements fixed. Furthermore, let P,
the identity permutation e. Also, define

A2n = U Pg and AZn = U Pg.
£ even £ odd

Theorem 2.( [10]) There exists a (v,k,t) trade of volume 2!
This volume is the smallest (minimal) possible volume for the
given choice of parameters.

{(e)} consist of

Proof: We provide a simple proof for the first claim. Let
51,52,...,524+3 be subsets of the point set V' that can be
partitioned into ¢ + 1 pairs of the form

51,52;53,54; - .- St 41, S2t42,

with the addition of one unpaired set Sp;;3. We henceforth
refer to the sets as defining sets and the pairs as companions.
Assume that the defining sets have the following properties:
1) SimSj:Qfori?éj;
2) |52i—1‘ = |Szi| =1, fori=1,...,t+1,;
t+2

3) X ISzu-1l =k
i1

Respectively, define T = {T(1), T} as
{(So(1) Y Se(3) U -+ U Sp(ar41) Y Sat+3) 1 0 € Dorya},
{(Ss1) U So(3) U -+ U Sa(ar41) Y Sat+3) 1 0 € Bopya}.

We used (50(1) U S(T(3) U...U S(T(Zt-i-l) U 52t+3) and (S(‘r(l) U
Ss(3) Y -+ Y Sp(2e41) Y Sat43) to denote blocks whose ele-
ments represent the unions of the corresponding sets S.

Claim 3. The trade T has volume 2.

Proof: Since Ay represents the set of all permutations
with an even number of transpositions, for ¢ even we have

t+1 t+1 t+1
7D = A = =2t
[TV | = |Bat42] <0>+<2>+ +<t) ,
) _IA _ t+1 t+1 t+1 _ ot
[T | = |Ags12] ( 1 )t )t Fil 2"

The same results hold for odd ¢. |
Claim 4. T is a (v, k, t)-trade.

Proof: We show that every block has size k and that every
t-subset of V is contained in the same number of blocks in
T and T®.

Firstly, the claim that every block has size k follows
from Property (3) of the collection of sets Sqi,S»,...,Sot43.
Secondly, to show that every f-subset of V is contained in the
same number of blocks in T(1) and T(z), let U be a t-subset
of the ground set V.

Case 1: There exists some i € {1,...,¢t+ 1} such that U n
Syi_1 # & and U N Sy; # . Then, the construction of the
trade ensures that U is not contained in any block.

Case 2: For each pair Sy; 1,5y, 1 < 1 < t+1, U
has a nonempty intersection with at most one of the sets.
Without loss of generality, assume that U n Sy; 1 # & for
indices i € {i1,ip,...,i,} and U n Sp; # J for indices
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j € {ki,ko, ..., kp,}. Furthermore, without loss of generality,
assume that (i + hy) is odd and that ¢ is even. Then U is
contained in

t+1—h —hy t+1—h—hy
() (T

blocks of T(!) and
t+1—hy—h 1—hy—
1o (P
0 t+1—h—hy
blocks of T). In both cases, the sums equal 2t=hi—ha Thig
establishes the claim. [ |
This completes the proof of the theorem. ]

We remark that all trades of volume 2f must have a structure
as described in the above proof, as shown in [10].

III. BALANCED MINIMAL TRADES

We introduce next the notion of block-sums and block-
discrepancies needed for our subsequent discussion.

Definition 5. Let B = (by,by,...,b) be a block in T,
where i € {1,2}. The block-sum of B equals X5 = 21;1 b;,
while the minimum and maximum block sums of TU) are
defined as ming ) Xp and maxg.p) X, for i € {1,2}.
The block-discrepancy of T is defined as maXp () 2B —
minBeT@ ZB, fori e {1,2}.

Henceforth, we tacitly assume that the points are labeled
according to their popularity score so that no two popularities
are the same: Label “1” indicates the most popular data chunk,
while label “0” denotes the least popular data chunk.

We ask the following questions: Can we ensure that both
TM and T have zero block-discrepancy? We affirmatively
answer this question in the following lemma.

Lemma 6. There exists a minimal (v,k,t) trade T =
(T, T@Y of volume 2! with v = 4(t + 1) points such that
both T and T are perfectly balanced: Every block has the
same size k = 2(t + 1) and block-sum equal to (t + 1)(4t + 5).

Proof: Let T = {T(), T} be defined as in the previous
theorem, and select the companion sets as

S1 ={1,4},S, = {2,3},55 = {5,8},84 = {6,7},...,

Sori1 = {4t+1,4t+4}, 50410 = {4t +2,4t+ 3}, Sop43 = .

Clearly, this choice of sets satisfies the conditions required of
the construction to result in a trade. It is also easy to see that
every block has the same size 2t 4+ 2 and that the sum of the
labels in each block equals (f + 1)(4t +5). |

Another obvious choice for the defining sets
S1,S52,...,50¢42 for doubly-even v is

the best of the authors’ knowledge, this question has not
been previously addressed in the literature and appears to be
difficult. Computer search shows that for v = 12,16, 20, 24 the
number of valid partitions equals 86,1990, 74323, 4226026.

A straightforward, yet loose, lower bound, equals (ﬁq)%
This follows as one can first choose a pair of integers in
{1,2,...,2(t+1)}, say a and b, and then select a +2(f + 1)
and b+2(t+1) in {2(t+1)+1,2(t+1)+2,...,4(t+ 1)}
as these four elements constitute two balanced companion sets.

An upper bound can be obtained by viewing the problem
of counting balanced set partitions as a problem pertaining
to integer partitions. Specifically, the sum of all elements
in {1,2,...,0} equals s = oorl) _ 2(t +1)(4t +5) and
needs to be partitioned into 2(f 4+ 1) positive parts. Each part
represents the sum of two elements in one defining set. A result
from [13] shows that the number of partitions of an integer
with additional constraints on the number and size of the parts
can be determined asymptotically as follows. Let V; denote the
number of parts of size i in a randomly chosen partition, where
i = 1,2,.... Assume that V;,V,,... are independent and
geometrically distributed random variables with parameters

A, A%, ..., respectively, where A = exp (—ﬂ 61”) Then,

the asymptotic partition count of interest can be obtained by
performing all computations under the previous model. The
formula for A is a consequence of the well-known asymptotic

formula by Hardy and Ramanujan for the number of partitions

of a positive integer n, p(n) ~ ﬁ exp (714 /27”)
Note that by the definition of balanced defining sets, the

smallest possible sum of a defining set is 5 (i.e., 1 + 4), and
the largest possible sum is 2v — 3 (i.e., v — 3 + v), implying
that V; # 0 and has to be even for 5 < i < 2v — 3. Therefore,
the overall probability of drawing valid constrained partition
for an integer that is the sum s equals

S

PS _ Z /\2[5X5+6XG+'"4’(227*3)3(21,73] H(l o )\l)
X5,/ X203 i=1
24208 = ; /1
_(4 s Al A — _ -
( oo — 8 )/\ g(l AD; A exp( T 65)
20—3 s

The last line follows from the facts that >75"jx; = 3

and 2]22;3 Xj = 7. For the sum of two elements in each
defining set, there are at most % possibilities. Therefore, the

final asymptotic upper bo;md for the number of valid partitions
(v/2)°/?
(w/2)!

IV. BALANCED AND SWAP-ROBUST MINIMAL TRADES

equals Ps x p(s) x

. Details of the proof are omitted.

Among the large number of valid balanced defining sets,

Sy ={1,0-1},8 = {2,0—-2};S3 = {3,0—3}, 54 = {4, v— 4};We now wish to select those that are most resilient to what we

o Sopi1 = {2t+1,0—2t—1},Sppsn = {26 +2,0—2t —2}.

We determine next how many balanced partitions into pairs
of companion sets of cardinality two, i.e. partitions such
that Xjeg, € = Yies, ¢, where i = 1,2,...,t+1. To

call popularity-swaps. We introduce the following definitions.

Definition 7. We say that a data chunk labeled i, where i €
[v], experienced a popularity change of magnitude p if its label
changes to a value ip, i, € [v], so that |i —iy| < p. Note that
the most and least popular items, labeled by 1 and v, can only
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increase or decrease their popularity, respectively and hence the
rankings are not to be viewed as cyclic. Since in the presence
of popularity changes the structure of a ranking (permutation)
needs to be preserved, a popularity increase has to be matched
by a popularity decrease. We say that (i, j), i, j € [v], experience
a popularity change of magnitude p if the rankings of i and j
swap and |i — j| = p.

For example, the transposition (1,2) corresponds to the top-
ranked element becoming the second-ranked one and vice
versa. The magnitude of the popularity change equals p = 1.
As another example, for p = 1, and v = 4, allowed popu-
larity swaps include (1,2),(2,3),(3,4), but only collections
of swaps that do not involve the same element (number)
can be used simultaneously. Two “adjacent” swaps involving
one common element are considered as one “non-adjacent”
swap that could result in larger popularity drops by our
definition. For example, allowing both swaps (1,2) and (2, 3)
simultaneously would result in 1 dropping to 3 and 3 rising
to 1, which is a popularity change of magnitude p = 2. For
simplicity, we focus on the case p = 1 and only provide a
sample result for p = 2.

Example 8. Suppose that t = 3 and that the defining sets are
defined as in the proof of Lemma 6. Based on Theorem 2, the
following two blocks belong to T

By = {1,4,6,7,9,12,14,15}, B, = {2,3,5,8,10,11,13,16}.

Consider the swaps (1,2),(4,5),(7,8),(9,10),(12,13),
(15,16) which change the defining sets S to

S1=12,5}, S2={1,3}; S3=1{47}, Ss={6,8};
Ss = {10,13}, S¢ ={9,11}; Sy = {12,15}, Sg = {14,16},

and the blocks By and B, to
By ={2,5,6,8,10,13,14,16},B, = {1,3,4,7,9,11,12,15}.

The discrepancy of the sum of the two blocks equals 12,
which equals 3(t + 1). In general, the block-discrepancy can
increase to 3(t + 1) if each pair of sets Sy;_1, S; is modified by
increasing/decreasing the values of two elements from one of
the sets S € {S»;_1,S;} and decreasing/increasing the values of
two elements {So;_1,S;}\S; this results in a contribution of 3
to the total change in the block sum for every pair of defining
sets. Assuming each of the defining sets S contains exactly
two elements and a similar reasoning as described above, it is
clear that the block-discrepancy can increase to at most 4(t + 1)
following popularity changes of magnitude p = 1. O

Based on the example, it appears that different choices of
balanced defining sets of minimal trades may have different
tolerance to popularity swaps of magnitude p = 1. The
question of interest is to determine which choices of balanced
defining sets have the smallest sums of discrepancies between
companion sets, termed fotal set discrepancy, under worst-case
popularity changes of magnitude p = 1.

Lemma9. The total set discrepancy of minimal trades with
(v=4(t+1),k=2(t+1),t) and defining sets of cardinality

2, under popularity changes of magnitude p = 1, is at least
2(t+2).

Proof: We model the set of potential popularity changes
of magnitude 1 as edges of a digraph G = (V,E) with |V| =
2(t +1). The graph G has the following properties:

1) Each vertex v; € V corresponds to the defining set S;;

2) There is a directed arrow from vertex v;, to v;,, denoted

by (v;,,v;,), if 3s such that s € S; and s +1¢€S;. We

allow for parallel edges but do not allow self-loops.
Since the trade is balanced, if any defining set S; contains
a pair of consecutive elements, then the elements in its
companion set cannot contain a pair of consecutive integers.
Since self-loops are not allowed, it follows that the number
of edges in E is at least 3(¢ + 1) — 1: From the 4(t+1) — 1
possible pairs (s,s + 1), there can be as many as f + 1 such
pairs that belong to the same defining set.

“Edge selection” refers to the process where we select edges
(vi,,vj,) that correspond to the popularity of an element in
S;, changed to that of an element in S;,. In order to ensure
that the edges selected correspond to popularity changes of
magnitude at most 1, the following needs to hold: For any
vertex, if an incoming directed arc into the vertex is selected,
then an outgoing arc from the same vertex cannot be selected.
Similarly, if for a vertex an outgoing arc is selected, no
incoming arcs can be selected for that vertex.

Let E’ stand for a set of arcs describing a collection of pop-
ularity changes of magnitude one. For j € {1,2,...,2t+2}, S;
denotes the defining sets after the popularity changes induced
by E’. It is straightforward to see that because the trades
are balanced, the change in discrepancy after the Topularity

. P
updates equals Y e 5 111 ’Zie%j i— Zi’esgj_l i'|, where

(D

oo Dli= D) < 2E

je{1.2,..t+1} ieSéj i'esgj%

We exhibit an edge set E’ so that (1) holds with equality.
If (vil,viz) € E/, where i1 € {2]1 -1, 2]1} and iz € {2]2 -
1,2j,}, then the following hold:
1) For any vy € V, (v;,v;) and (v;,,vy) cannot both be
included in E’;
2) Let Sg,s = i1 =1, be the companion defining set for
S;,. For any v, € V, we cannot select (vs,vy);
3) Let S;,s = ip £ 1, be the companion defining set for
S;,. For any v, € V, we cannot select (v, vs).
If we select E’ according to (1)-(3), we will select at least
1 out of every 9 edges in E. Given that |[E| > 3(t + %), the
resulting change in discrepancy is at least 2|E'| > 2 (@) >
2
6(t3_ 3) . .
Due to space limitations, we omit a similar proof for the
following sharper lower bound.

Theorem 10. Provided 19|(t + 1), the total set discrepancy is
at least %(t +1).
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Lemma 11. There exists a minimal balanced trade withv = 16
that has total set discrepancy < 6 for any collection of popular-
ity swaps of magnitude p = 1.

Proof: Choose the following defining sets, pictured in
Figure 1, top:

S1=1{1,16},52 = {8,9}; S3 = {4,5},54 = {2,7};
Ss = {10,15},Se = {12,13}; Sy = {3,14}, Sg = {6,11}.

For any popularity swaps of p = 1 involving elements in
S3,54, S5, Sg, one has

Dl D il<2 (2)

jes;  jesiyy

where i € {3,5}. First consider i = 3. Note that the adjacent
swap (4,5) does not change the balance. A simultaneous
pair of adjacent swaps (3,4) and (4,5) is impossible, while
the pair of adjacent swaps (3,4) and (5,6) leaves the sum
unchanged. In this case, the only allowed adjacent swaps
involving elements 2,7 would be (1,2) and (7, 8), which when
applied together leave the sum of elements in S} unchanged.
The same is true for i = 5. Hence, only one transposition per
set is possible, leading to the upper bound above. Similarly,

DIWEDIIEE: 3)

jes;  jesh
This follows since the only swaps that can affect 1 and 16
are (1,2) and (16,15), which in combination leave the sum
unchanged. On the other hand, the sum of the second set, Sy,
can change by at most 1, either due to the transposition (7, 8)
or the transposition (9,10). As before, one can have at most
one transposition per defining set, which produces the desired
upper bound. A similar line of reasoning suggest that

Dli-Dlil<4 €

jest €S
since it is possible to simultaneously increase/decrease both el-
ements in both defining sets. Nevertheless, it is straightforward
to show that if the above inequality is an equality, the second
and third pair of defining sets do not change their sums, i.e.,
Sy =1{4,6},S, = {3,7} and S; = {11,14},S; = {12,13}. A
similar analysis can be used to examine the remaining choices
for discrepancies of the first pair of defining sets. Hence, in
the worst case, the discrepancy cannot exceed 6. ]
Given the large number of balanced defining sets, we only
performed computer simulations for v = 12,16, 20,24 which
show that the optimal total set discrepancies for these cases
equal 6,6,8,10, respectively. In particular, for v = 12,
the smallest possible change equals 2(f + 1) as opposed to
the value 3(f + 1) described above. There are exactly 10
collections of balanced defining sets with discrepancy 6.
Interestingly, for v = 16 and v = 20, the defining sets of
minimum discrepancy under popularity changes of magnitude

@@@5@

@@@@@"@”@

Figure 1. Defining sets with smallest discrepancy for popularity changes of
magnitude p = 1 and v = 16 (top) and v = 20 (bottom).

p = 1 are unique, and depicted in Figure 1. For v = 24, there
are exactly 22 optimal collections of defining sets.

To construct defining sets for for arbitrary values v =
4(t +1) > 28, one can “concatenate” the structures for
v = 12,16,20,24 by subdividing the elements of the sets
into largest possible groupings of 24 or 20 or 16 elements
and then grouping the remaining elements into one set. For
example, the defining sets for v = 28 can be constructed using
the optimal patterns for defining sets with respect to elements
in {1,2,...,16} and {1,2,...,12}. In this case, one has to
account for the discrepancy arising from swaps of elements
at the “border” of the two groups (in this case, involving 16
and 17). It is easy to check that in this case, an additional
discrepancy of 2 may arise, which for the given example gives
rise to a total discrepancy of 6+ 6 +2 = 14 = 2(t + 1).
Similarly, for v = 32, we would group the first 20 and the
last 12 elements together and obtain a total set discrepancy
84+6+2 =16 = 2(t + 1). Clearly, to reduce the boundary
effects, one should maximize the size of groups of integers on
which the individual patterns described above are to be used.
A formal statement of this result follows.

Theorem 12. Letv = 4(t + 1), m = |5 | and m’ = v — 24m.
Then there exists a balanced trade with block-size k = 2(t + 1)
and total set discrepancy

F+1

12m + A = 12[%] +A,
where A = —2,2,4,6,6,8 form’ = 0,4,8,12,16,20, respec-
tively.
For p = 2, we also have the following result.
Theorem 13. Letv = 4(t + 1), m = |5} | and m’ = v — 20m.
Then there exists a balanced trade with block-size k = 2(t + 1)
and total set discrepancy

1
26m+ A = 26[%] + A,

where A = —4,4,8,12,18 form’ = 0,4,8,12,16, respectively.

The result is a consequence of the fact that for v = 12,16, 20,
the optimal total set discrepancies equal 12,18,22, respec-
tively. For v = 12, there is unique defining sets of minimum
discrepancy, while there are 12,7 optimal choices of defining
sets for v = 16, 20, respectively.

Many open problems remain, pertaining to tighter bounds
on discrepancies for p > 1, constructions of (optimal) defining
sets of cardinality > 2 and others.
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