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We would like to thank all discussants for their thoughtful
and stimulating comments. We are especially glad to hear that
our dataset is a valuable contribution to modern large-scale
datasets and that our approaches and findings will likely inspire
many other research projects. Below are our responses.

1. The Two Traditions: Data-First and Model-First

We thank David Donoho for very encouraging comments. As
always, his penetrating vision and deep thoughts are extremely
stimulating. We are glad that he summarizes a major philo-
sophical difference between statistics in earlier years (e.g., the
time of Francis Galton) and statistics in our time by just a
few words: data-first versus model-first. We completely agree
with his comment that “each effort by a statistics researcher to
understand a newly available type of data enlarges our field;
it should be a primary part of the career of statisticians to
cultivate an interest in cultivating new types of datasets, so that
new methodology can be discovered and developed”; these are
exactly the motivations underlying our (several-year) efforts
in collecting, cleaning, and analyzing a large-scale high-quality
dataset.

We would like to add that both traditions have strengths,
and combining the strengths of two sides may greatly help
statisticians deal with the so-called crisis of the 21st century in
statistics we face today.

Let us explain the crisis above first. In the model-first tra-
dition, with a particular application problem in mind, we pro-
pose a model, develop a method and justify its optimality by
some hard-to-prove theorems, and find a dataset to support
the approach. In this tradition, we put a lot of faith on our
model and our theory: we hope the model is adequate, and
we hope our optimality theory warrants the superiority of our
method over others. Modern machine learning literature (espe-
cially the recent development of deep learning) provides a differ-
ent approach to justifying the “superiority” of an approach; we
compare the proposed approach with existing approaches by the
real data results over a dozen of benchmark datasets. To choose
an algorithm for their dataset, a practitioner does not necessarily
need warranties from a theorem; a superior performance over
many benchmark datasets says it all. To some theoretical statis-
ticians, this is rather disappointing, as they come from a long

CONTACT Jiashun Jin jiashun@cmu.edu Carnegie Mellon University, Pittsburgh, PA; Zheng Tracy Ke zke@fas.harvard.edu, Harvard University, Cambridge,
MA.

model-first tradition where they believe that numerical study
alone is inadequate for justifying the optimality of a method,
and the best way to construct a superior method is by careful
modeling and careful analysis. What is even more disappointing
to them is that, frequently, over these benchmark datasets, the
methods with support of optimality theorems underperform
those without. This is what some statisticians call the crisis of
statistics in the 21st century: Statistical models and methods—
bread and butters to statisticians—face unprecedented chal-
lenges in finding their relevance and significance in modern
scientific research, and fears that statistics will be crushed by
some other fields spread on social media such as Facebook and
WeChat, day after day, in recent years.

There are no easy ways to deal with such a major challenge,
but many statisticians are trying. In doing so, we must combine
the strengths of both traditions, and especially, put a lot more
efforts in generating large-scale modern datasets. Our article is
a combined effort of both traditions: On one hand, we collected
and cleaned a large-scale high quality dataset, which motivates
a long list of interesting problems and generates several research
areas. On the other hand, to solve these problems, we need to use
our training in statistical modeling and theory to develop new
methods. Especially, since we emphasize on methods that are
truly effective in analyzing our dataset instead of methods with
strong theoretical support, our methods are more competitive
in real applications. Our results will be much less satisfying if
we only do one of the two. By combining the strengths of the
two traditions, we believe that we can firmly keep the statistical
models and theories in the central stage of modern scientific
research.

2. The Dataset We Collected and Cleaned (MADStat)

While small-size datasets on scientific publications are easily
accessible nowadays (e.g., by queries with Google Scholar), they
are no substitute for large-scale high-quality datasets which
require many online resources and web scraping techniques and
demand substantial efforts in cleaning and wrangling the data.

Recent literature discusses a few well-known datasets on sci-
entific publications (based on CiteSeer, Cora, PubMed, WebKB,
and ArXiv; see https://linqs.soe.ucsc.edu/data and https://getoor.
soe.ucsc.edu/bio). Compared with those sources, our dataset
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is the first high-quality large-scale paper-level dataset on the
publications of statisticians; it not only has many more entries
(each entry being one paper) but also has more features. Our
dataset offers 83,331 entries, while most earlier datasets provide
no more than 4K entries (the ArXiv dataset is larger, with
about 30K entries). For each entry, our dataset contains many
attributes or features including title, authors, abstract, keywords,
MSC subject classification, references, and citation counts.

We call our dataset MADStat (which stands for Multi-
Attribute Dataset on Statisticians). Note that the dataset reported
in Ji and Jin (2016) is a subset of MADStat.

In comparison, each entry of the ArXiv dataset only contains
a binarized word count vector and a list of keywords. Other
datasets are similarly short on features, and only one of them
(CiteSeer for Entity Resolution) contains author information.
Using these features in MADStat, we can tackle many problems
that cannot even be properly stated based on other datasets.
For example, we can use MADStat to study the citation patterns
and personalized co-authorship networks of individual authors,
dynamic evolvement of citations and co-authorships (for an
individual or for a group of authors), and journal ranking;
such studies are out of reach for alternative datasets, lacking,
as they do, author attributes, publication year, or journal infor-
mation. We can also apply Natural Language Processing (NLP)
tools, since MADStat contains the original text of abstract of
each article. Competing datasets may only contain word counts
(insufficient for advanced NLP). Our forthcoming article Ke
et al. (2022) uses MADStat for text learning, journal ranking,
topic ranking, and citation prediction.

3. Incorporating Edge Weights in the Citee Networks

The dynamic citee network in Section 2 in our article is a
collection of 21 unweighted citee networks, each for a different
time window. These unweighted networks are constructed from
the original weighted networks by hard thresholding the edge
weights. As a result, the adjacency matrix of each unweighted
network is binary, so DCMM model is natural. The DCMM
model is well-studied; see Jin and Ke (2021) for a survey of recent
literature.

Weng and Feng pointed out that using the DCMM model
may lose some information hidden in edge weights, and pro-
posed to study the 21 original weighted citee networks instead,
modeling each of them by a Poisson-DCMM model (a variant
of DCMM which assumes that the upper triangle of A contains
independent Poisson variables). They made a great point by
arguing that one can continue to use mixed-SCORE for anal-
ysis of Poisson-DCMM, as mixed-SCORE is a nonparametric
method that is robust to parametric model specification and is
expected to work well as long as the model is first-order correct.
Weng and Feng also reported that the memberships inferred
from a Poisson-DCMM model differ notably from a DCMM
model (e.g., some nodes have purer memberships).

Weng and Feng’s study is very interesting and opens door
for a new line of research. We also agree that the membership
matrix � under the DCMM and the membership matrix under
the Poisson-DCMM (denoted by �̃) can be quite divergent.
For explanation, let Ã be the adjacency matrix of an original
weighted network, and let A be the binary adjacency matrix

by hard thresholding the entries of Ã at a threshold t > 0.
We model A with DCMM, where E[A] = � − diag(�) and
� = ��P�′�. We model Ã with Poisson-DCMM, where we
similarly have E[Ã] = �̃ − diag(�̃) and �̃ = �̃�̃P̃�̃′�̃. By
definitions, for 1 ≤ i �= j ≤ n,

�̃(i, j) = E[Ã(i, j)], and �(i, j) = P(Ã(i, j) ≥ t).

Therefore, while perhaps for some parameter range both models
turn out to be reasonable, in general the two triplets, (�̃, �̃, P̃)

and (�, �, P), can be quite different, and we should not be
surprised by divergences in membership estimation. Also, the
two matrices � and �̃ should be interpreted differently: the
former is the membership matrix where we use the co-citation
counts in a conservative way (by only considering whether the
count exceeds t), and the latter corresponds to a more aggressive
use of co-citation counts.

We chose to use the unweighted networks for two main
reasons. First, on one hand, the co-citation counts have severe
heterogeneity: they may range from 1 to a few thousands for
different nodes; on the other hand, co-citation counts should be
largely ancillary to the membership vectors πi: for example, an
adviser and his/her advisee may have very different co-citation
counts but similar research interests. We believe DCMM is
more robust than Poisson-DCMM to severe heterogeneity in co-
citation counts (this was also noted by Weng and Feng in Section
1.1 of their discussion). Second, from a theoretical perspective,
membership estimation under DCMM has been carefully ana-
lyzed (Jin, Ke, and Luo 2017; Zhang, Levina, and Zhu 2020; Ke
and Wang 2022), while Poisson-DCMM lacks such results.

Chen and Loyal also noted the possible information loss by
using unweighted networks, and proposed to tackle the problem
by a Latent Space Model (LSM). For 1 ≤ t ≤ 21, let At be
the adjacency matrix for the tth weighted citee network. They
proposed to model At with a generalized mixed effect model:

g(E[At(i, j)]) = βTXijt + hψ(uit , ujt),

where g and hψ are prespecified functions, Xijt are covariates,
and uit are latent variables similar to πit in our dynamic DCMM
model. Chen and Loyal further proposed to model uit with
a Markov process prior and obtain the posterior of uit with
a Markov chain Monte Carlo (MCMC) algorithm. See Sewell
and Chen (2015, 2016) for details. In comparison, LSM is more
flexible to incorporate edge weights and dyadic covariates than
DCMM, but the MCMC algorithm for model fitting can be
harder to analyze and computationally more challenging than
mixed-SCORE (mixed-SCORE is a spectral method, which is
computationally fast and minimax optimal (Ke and Wang 2022).
It remains unclear which of the two approaches perform better
in analyzing the citee networks. For limit of space, we leave the
study to future work.

4. Dynamic Network Modeling

As pointed out by MacDonald, Levina and Zhu, there are two
common approaches to modeling the citation counts. The first
one is the event approach, where we treat citation counts as a
stream of time-stamped events. For example, Zhu and Kola-
cyzk used this approach in their discussion and constructed a
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dynamic citation network with directed and time stamped edges
(see Section 7 for more discussions). The second one is the
aggregation approach: we divide time into a number of windows,
treat data points in each window as a snapshot, and aggregate the
data of each snapshot to obtain a static network. We took the sec-
ond approach in modeling the citee network. This approach is
popular in dynamic network analysis and has some advantages.
First, aggregating many time-stamped citation counts together
is an important step to ensure the stability of downstream anal-
ysis. Second, aggregating the data into 21 (slightly overlapping)
static networks allows us to conveniently adapt the well-studied
tools for static networks (e.g., Jin, Ke, and Luo 2017; Zhang,
Levina, and Zhu 2020) to analyze dynamic networks.

While MacDonald, Levina and Zhu largely agreed that the
aggregation approach is a reasonable choice for dynamic net-
work modeling, they pointed out some practical issues: (a) the
window size needs to be chosen carefully, (b) there may be
an identifiability issue and an alignment issue across different
snapshots, (c) there may be a smoothness issue across different
snapshots, and (d) the node set may not remain constant across
different snapshots. Some of these issues are faced by a general
dynamic network modeling strategy, not necessarily tied to the
approach in our article.

For (a), we completely agree. In fact, as the statistical commu-
nity has been steadily growing, in our dataset, we see far more
authors per year in 2010s than in 1990s. Therefore, we allow
the window sizes to vary, so that the networks corresponding
to different time windows have similar numbers of nodes.

For (b)–(c), our approach was designed to tackle such issues.
In the proposed dynamic network embedding algorithm, we
create a universal embedding that embeds all nodes at all time
t to the same low-dimensional space (i.e., the Statistics Triangle
defined by the reference network). This offers an alignment for
networks corresponding to different snapshots that is naturally
smooth; for a detailed explanation, see the paragraphs above
Theorem 2.1 of our article. McDonald, Levina and Zhu agreed
that this is a solution to the alignment issue and raised a great
question—how much the approach “relies on the assumption of
homogeneity of the community structure matrix over time.” We
indeed need some temporal smoothness conditions on parame-
ters of the dynamic DCMM model, to guarantee that the embed-
ding, which is defined by the eigenvalues and eigenvectors of
the first snapshot, maintains high signal-to-noise ratios for all
snapshots. Such conditions are given explicitly in our forth-
coming article (Cammarata et al. 2022). McDonald, Levina and
Zhu also pointed out other approaches to network alignment in
a dynamic setting, such as Procrustes analysis (Sanna Passino
et al. 2021) and the omnibus embedding (Levin et al. 2017). We
note that, first, these approaches still need temporal smoothness
conditions to maintain high signal-to-noise ratios for all snap-
shots; second, they, at least in their current form, do not allow
for degree heterogeneity. In comparison, our dynamic network
embedding approach always accommodates degree heterogene-
ity. We believe our approach provides a reasonably good solution
to the alignment issue and the smoothness issue. It is of great
interest to study other alignment approaches and adapt them to
the dynamic DCMM model, which we leave to future work.

For (d), this is an issue faced by all approaches that use the
snapshot data. Fortunately, in the citee networks, most of the

“leading nodes” (i.e., authors with large degrees) are also “active
nodes,” who remain active across the whole range of time. For
the dynamic network embedding approach in our article, the
effect of high-degree nodes is considerably larger than of small-
degree nodes, so at least for some tasks (e.g., following the
trajectory of a representative author), this issue does not have
a major effect in our analysis. Furthermore, in our forthcoming
article (Cammarata et al. 2022), we propose a slightly different
embedding approach where instead of using the first citee net-
work as the reference network, we use the pooled network (the
network constructed by using all data points in the whole time
range) as the reference network. This can largely alleviate the
issue.

Loyal and Chen proposed an alternative aggregation
approach, where they used the same way to construct the 21
citee networks. However, instead of modeling each of these
citee networks with a DCMM model, they proposed to model it
with a latent space model (LSM). This gives rise to the dynamic
LSM. They proposed to analyze dynamic LSM with a Bayesian
nonparametric approach, and use the results to infer changes
of communities and to measure “research attraction.” Loyal
and Chen argued, by studying a concept called edge attraction
in dynamic LSM, one can visualize co-movements of research
interests of multiple authors, and also illustrate how individuals
influence the research trajectories of each other; see Sewell
and Chen (2015) for details. These comments suggested new
research topics and pointed out new uses of the MADStat
dataset, worthy of careful investigations in the future.

5. The Spectral Embedding and Visualization of the
Estimated Memberships

At the heart of our citee network analysis is the SCORE embed-
ding (Jin 2015), which produces the low-dimensional vectors
r̂1, r̂2, . . . , r̂n. Weng and Feng raised several questions about
this embedding: (a) In Figure 1, which is the better way to
visualize the research triangle, the plot of r̂1, . . . , r̂n or the plot
of π̂1, . . . , π̂n? (b) How to derive the limiting distribution of r̂i,
and (c) how to utilize such limiting distribution to improve com-
munity detection, diversity metric and other inference tasks?
(d) What is an appropriate distance metric for ri or πi that can
faithfully reflect the closeness of author research interests?

For (a), we think both visualization approaches are inter-
esting, but to save space, we chose the first approach, and the
main reason is that r̂1, . . . , r̂n contain more information from
the raw data. To see the point, recall that π̂1, . . . , π̂n are obtained
as follows. First, we use r̂1, . . . , r̂n to estimate the vertices of
the Research Triangle, and use the leading eigenvalues and
eigenvectors of A to obtain an estimate of b by b̂ (see Jin,
Ke, and Luo 2017 for details). We then express each r̂i as a
convex combination of the estimated vertices, with ŵi being the
resulting combination coefficient vector. Finally, letting π̃i be
the vector where π̃i(k) = ŵi(k)/b̂(k), 1 ≤ k ≤ K, we obtain
π̂i by first replacing each negative entry of π̃i by 0 and then
rescaling the resultant vector so all of its entries sum up to 1.
Due to regularization in the last step, it is relatively easy to find
π̂i by r̂i, but harder to find r̂i by π̂i. Moreover, π̂i depends on
the algorithm of estimating the vertices but r̂i does not. Vertex
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hunting can bring additional errors. For the above reasons,
the plot of r̂1, r̂2, . . . , r̂n is more informative and less prone to
noise. For (b), we echo that this is an important problem, as
knowing the limiting distribution of r̂i and π̂i can help many
inference problems (e.g., confidence band for πi, ranking of πi
in a multiple testing setting, and membership pairwise compar-
ison; see, e.g., Huang, Weng, and Feng 2020). This problem is
closely related to the literature of entry-wise eigenvector analysis
(Tang and Priebe 2018; Abbe et al. 2020; Fan et al. 2022). In
the case of severe degree heterogeneity, Ke and Wang (2022)
derived sharp large-deviation bounds for every r̂i and charac-
terized precisely how these bounds vary with the individual
degree parameters. This proved Weng and Feng’s conjecture
that the “the asymptotic covariance matrix of each r̂i may vary
considerably.” For (c), we completely agree that it is beneficial
to account for the asymptotic behavior of r̂i in estimation and
inference. For example, we may draw a confidence ball for each
r̂i; since these confidence balls have different diameters, we may
use them to have a better assessment of author closeness in the
Research Triangle or develop a better test for the null hypothesis
of πi = πj. For (d), Weng and Feng suggested that a good
distance metric should satisfy some faithfulness properties such
that d(πi, πj) < d(πi, πk) always implies π ′

i Pπj > π ′
i Pπk. This is

an interesting point. In fact, for those real data where K is small
and P is strongly diagonal dominating, the Euclidean distance
metrics (�2-norm or �1-norm) seem to work reasonably well for
visualization and interpretation of memberships, but we agree
with Weng and Feng that designing a more appropriate distance
metric is practically valuable.

6. Joint Modeling of Different Data Sources

The MADStat dataset provides several different data sources,
including but not limited to (a) co-authorships, (b) citation
relationships, and (c) title, keywords, and abstracts (which can
be used as text documents). In Section 2 of our article, we focus
on a dynamic citee network constructed from (b); in Section 3,
we focus on a dynamic co-authorship network constructed from
(c). Seemingly, our study only covers a very small proportion
of research one can do with the dataset. The discussants have
suggested a few ideas for future research. Among them, joint
modeling and analysis of different data sources is especially
interesting, so we discuss it below.

First, several discussants (Loyal and Chen, Weng and Feng)
suggested a combined analysis of the co-authorship network
and the co-citation network. This is a very interesting problem.
To approach it, one possibility is modeling these two networks
with two different DCMM models, with some constraints on
parameters (e.g., the two models share the same membership
matrix). The spectral method, mixed-SCORE, in our article can
be extended to this setting. Let r̂coau

i and r̂cite
i be the embeddings

of node i in the co-authorship network and the co-citation net-
work, respectively. We concatenate them to get an embedding

r̂i =
[

r̂coau
i
r̂cite

i

]
, where r̂i is of dimension 2(K − 1).

It is not hard to see that r̂i inherits the simplex geometry, as
long as the two models share the same membership matrix.

Therefore, we can similarly develop a spectral method for esti-
mating the common membership matrix �. Another possibility
is suggested by Loyal and Chen, where they proposed to model
the two networks with two different latent space models (LSMs)
sharing the same latent space. Let A(1) and A(2) be the adja-
cency matrices of the co-authorship network and the co-citation
network, respectively. In their discussion, they suggested the
following models:

logit(E[A(m)(i, j)]) = θ
(m)
i +θ

(m)
j +uT

it

(m)ujt , m ∈ {1, 2}.

Here, the latent variables uit are shared by two models. Similar to
the DCMM approach, the LSM approach also pools information
of two networks.

Moreover, Weng and Feng suggested a combined analysis
of the networks with the text documents (title, abstract and
keywords) in our dataset. This is a great idea, and in fact, in our
forthcoming article (Ke et al. 2022), we have done two lines of
research. In the first one, we combine ideas on journal ranking
and text learning and propose the Hoffman–Stigler model as
a new model for jointly modeling citation counts and article
abstracts. We then analyze it by the topic-SCORE algorithm (Ke
and Wang 2017) and use the results to identify representative
topics in statistics, study how topic weights of a given author
evolve over time, identify the friendliest journal for a given topic,
and perform topic ranking and journal ranking. In the second
line, we extract 22 features by combining the text learning results
above with manual efforts and use them to predict whether a
given article will be highly cited in the near future.

Finally, Weng and Feng also suggested us to combine the
MADStat dataset with other data resources, such as the math-
ematical genealogy, for analysis. This is a very interesting sug-
gestion, as the adviser-advisee relationship is one of the most
important co-authorship patterns; see Section 3 of our article.
If we have the mathematical genealogy data, we can have a
more careful study on how the relationship of adviser-advisee
affects the long-term co-author relationships and evolvement
of research interest. To incorporate such additional features to
our network analysis, we may use the LSM approach. In the
discussion of Loyal and Chen, they mentioned that the LSM
framework can admit dyadic attributes such as the advisor-
advisee dummy and geographical proximity between nodes.
They suggested to use this model-based approach to study those
factors that affect the formation of collaboration. These are all
great suggestions, which we leave to future work.

7. Counting Motifs, Graphlets, and Cycles

Zhu and Kolacyzk raised an excellent point that we may gain
interesting insights of the networks by counting the numbers of
small-size subgraphs (e.g., motifs, cycles, graphlets). Especially,
by treating the citation counts in MADStat as a time-stamped
stream of events, they closely investigated the frequencies of 36
motifs in four different settings, and discovered some interesting
patterns of these motifs. For example, they found that the recip-
rocal citations across time occur relatively rare in the statistical
community. Their study points out a new use of the MADStat
dataset and opens doors for new research.

In connection with their study, we proposed to apply the
SgnQ test on personalized networks to measure the coauthor-
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ship diversity and citation diversity of individual authors; see
Section 3.3 of our article. The SgnQ statistic is a member of the
class of Signed-Polygon test statistics (Jin, Ke, and Luo 2021)
constructed from cycle counts. Such test statistics can be viewed
as some (properly centered and normalized) motif counts in a
symmetrical network, with the appealing property of a limiting
distribution of N(0, 1) under a null DCMM model with K = 1.
This poses an interesting question: Is it possible to borrow the
idea of SgnQ to develop a statistic from the temporal motif
counts such that it has a tractable distribution? We believe this
is possible. Assuming a dynamic DCMM model with K = 1, we
can estimate the mean and standard deviation of the temporal
motif counts and come up with a properly standardized test
statistic. At least for those two-node and three-node temporal
motifs discussed by Zhu and Kolacyzk, it is feasible to derive
the asymptotic distributions of such test statistics. We leave
the study to future work. It is worth mentioning that Zhu and
Kolaczyk (2022) and Chang, Kolaczyk, and Yao (2022) have
studied the distributions of temporal motif counts, have studied
the distributions of temporal motif counts in some related but
different settings.

We further point out some other applications of temporal
motif counts in the MADStat dataset. First, we can use the per-
sonalized motif counts (i.e., count of motifs in a properly defined
ego dynamic citation network of a given author) to measure the
citation diversity of this author. Second, the personalized motif
counts can be used for citation prediction. Given an author, the
problem of citation prediction is to use his/her past citation
patterns to predict his/her total citation counts in the next 5
years (say). In our forthcoming article (Ke et al. 2022), we use
the MADStat dataset to extract 22 features and show that these
features are relatively powerful in predicting future citations.
Zhu and Kolacyzk mentioned that the motifs M34-36 reflect the
broad impact of some seminal works and that if an individual
frequently serves as the top left node in their motifs M34-36
(see Figure 1 of their discussion), then he/she is likely to receive
high citations. These findings suggest that the counts of some
particular motifs may be predictive for future citations.

8. Goodness of Fit (GoF) and Model Diagnostics

The DCMM model allows for severe degree heterogeneity and
mixed-memberships, and achieves a good balance between
practical feasibility and mathematical tractability. An interesting
question is whether DCMM is adequate for most real networks.
Weng and Feng proposed a deviance residual plot for model
diagnostics, and their results suggest that, at least for the
reference citee network, the DCMM model is adequate.

Weng and Feng’s approach is very interesting, but they did
not provide a goodness-of-fit (GoF) test that can output an
explicit p-value. From a practical perspective, it is desirable to
have a GoF metric with an explicit limiting null distribution. We
now borrow the ideas of model fitting and cycle counting (Jin
et al. 2022) to propose such a GoF metric. Given a symmetric
network with K communities, we test whether it satisfies a
DCMM model with K communities (i.e., goodness of fit). We
prefer not to specify the alternative hypothesis, leaving it flexible
to incorporate various cases where the assumed model does not
hold (e.g., misspecified K, outlier nodes, edge dependency, etc.).

Our approach is a 4-step recipe. In step 1, we estimate � by a
spectral method (e.g., mixed-SCORE). In Step 2, we estimate �

and P by refitting the adjacency matrix A using the estimated �.
This gives rise to an estimate of �, denoted by �̂. In step 3, we
apply a cycle count statistic (see Section 7 and Jin, Ke, and Luo
2021) to the matrix Â = A − �̂. In Step 4, we standardize the
statistic by its estimated mean and standard deviation. Details
are in the forthcoming article (Jin and Ke 2022). In this recipe,
Steps 1–2 share a similar spirit as the approach of Weng and Feng
by creating a residual matrix A − �̂ (Weng and Feng also used
mixed-SCORE to estimate � first, but their refitting procedure
to obtain �̂ is different), and Steps 3–4 serve to create a GoF
metric with a known limiting null distribution.

The above approach has been justified in the simpler DCBM
setting (i.e., the network satisfies a DCBM model with K com-
munities in the null hypothesis, where DCBM is a special case
of DCMM with no mixed-memberships). In this case, we use
SCORE (Jin 2015) as the spectral method in Step 1, and our
recipe coincides with one step of the StGoF algorithm (Jin et al.
2022) at m = K (StGoF is a stepwise algorithm where we run a
GoF test successively for m ≥ 1). By Theorem 3.1 of Jin et al.
(2022), under the null hypothesis, the test statistic converges
to N(0, 1) in law as n diverges to ∞, and so we can use it
as a GoF metric. For the DCMM setting of interest here, we
follow the same recipe but use mixed-SCORE as the spectral
method in Step 1 and modify Steps 2–4 to accommodate mixed
memberships; the study of the asymptotic null distribution of
the GoF metric is technically more demanding, and details are
in Jin and Ke (2022).
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