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Abstract. We prove that the interface of critical site percolation on the triangular lattice converges to SLE6 in its natural parametriza-
tion, where the discrete interface is parametrized such that each edge is crossed in one unit of time, while the limiting curve is
parametrized by its 7/4-dimensional Minkowski content. We also prove that the scaling limit of counting measure on the pivotal
points, which was proved to exist by Garban, Pete, and Schramm (J. Amer. Math. Soc. 26 (2013) 939–1024), is its 3/4-dimensional
Minkowski content up to a deterministic multiplicative constant.

Résumé. Nous montrons que l’interface de la percolation du site à paramètre critique sur le réseau triangulaire converge vers la courbe
SLE6 dans sa parmétrisation naturelle, où l’interface discrète est paramétrisée de telle sorte que chaque arête est traversée en une unité
de temps, tandis que la courbe limite est paramétrée par son contenu 7/4-dimensionnel de Minkowski. Nous montrons également que la
limite d’échelle de la mesure de comptage sur les points pivots, dont l’existence a été confirmée par Garban, Pete et Schramm (J. Amer.
Math. Soc. 26 (2013) 939–1024), est son contenu 3/4-dimensionnel de Minkowski jusqu’à une constante multiplicative déterministe.
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1. Introduction

Percolation is one of the most studied statistical mechanics models in probability. Since the breakthrough works of
Smirnov [28], who proved the conformal invariance of critical site percolation on the triangular lattice, and of Schramm
[25], who introduced the Schramm-Loewner evolution (SLE), the understanding of the scaling limit of percolation on
planar lattices has greatly improved.

Garban, Pete, and Schramm [7–9] made important contributions in this direction. In [8] they proved scaling limit
results for several important classes of points for critical percolation, including pivotal points and points on the percolation
interface. They proved that the limiting measures are conformally covariant, and that they are measurable with respect to
the scaling limit of percolation.

In the continuum, a substantial effort has been made to understand natural measures on special points of SLEκ curves.
For example, SLEκ curves have non-trivial 2 ∧ (1 + κ/8)-dimensional Minkowski content, which defines a parametriza-
tion of the curve called the natural parametrization. SLE with its natural parametrization is uniquely characterized by
conformal invariance and domain Markov property, with the constraint that the parametrization is rescaled in a covariant
way under the application of a conformal map. See [15,16,20]. SLE with its natural parametrization is believed to de-
scribe the scaling limit of curves in statistical physics models parametrized such that one edge/face/vertex is visited in
one unit of time. This conjecture was proved for the case of the loop-erased random walk (LERW) and SLE2 by Lawler
and Viklund [17,18].
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In this paper, we link the limiting measures in [8] with the natural measures on special points of SLE6. The purpose of
building the link is two-fold:

1. It makes the limiting measures in [8] more intrinsic and concrete. In the case of percolation pivotal points, this link is
important for the work of the first and third authors on the conformal embedding of uniform triangulations [12].

2. It allows us to prove that the percolation interface converges to SLE6 in its natural parametrization.

1.1. The scaling limit of the percolation interface under its natural parametrization

Let us briefly recall the definition of SLE. Fix κ > 0, and let (Bt )t≥0 be a standard linear Brownian motion. Consider the
Loewner differential equation

∂tgt (z) = 2

gt (z) − √
κBt

, g0(z) = z, ∀z ∈ H.

Then for each z ∈ H, gt (z) is well-defined up to some time τz ∈ [0,∞]. Let Kt = {z : τz < t}. Then a.s. there exists a
unique continuous non-self-crossing curve γ such that Kt is the closure of points disconnected from ∞ on H by γ ([0, t]).
We call γ the chordal SLEκ on H from 0 to ∞ (under the capacity parametrization). Let � be a simply connected domain
whose set of prime ends ∂� is a continuous image of a circle.4 Let a, b be two distinct points on ∂�. Consider a conformal
map f : H → � with f (0) = a and f (∞) = b. Although there is one degree of freedom when choosing f , the law of
f (γ ) (viewed as a continuous curve modulo increasing reparametrizations) does not depend on this choice. We call this
probability measure the chordal SLEκ on � from a to b, or simply SLEκ on (�,a, b).

Let T denote the regular triangular lattice where each face is an equilateral triangle. For η > 0, let ηT be T rescaled
by η. Each vertex on ηT is called a site. Let ηT∗ denote the regular hexagonal lattice dual to ηT such that each vertex on
T corresponds to a hexagonal face on ηT∗. Given an edge e of ηT, let e∗ be its dual edge in ηT∗. Recall that a Jordan
domain is a bounded simply connected domain on C whose boundary is homeomorphic to a circle. A Jordan domain D

is called a η-polygon if ∂D lies on the lattice ηT. A vertex v on ηT is called an inner vertex (resp., boundary vertex) of
D if v ∈ D (resp., v ∈ ∂D). We similarly define boundary/inner edges of D.

Suppose � is a Jordan domain. Let �η be the largest η-polygon whose set of inner vertices is contained in � and forms
a connected set on ηT. (In case of a draw, choose �η arbitrarily from the set of largest η-polygons, but note that �η will
be uniquely determined for all sufficiently small η.) Including all inner vertices and edges of �η, we obtain a planar graph
embedded in C which we call the η-approximation of � and still denote by �η.5 To distinguish with the continuum, we
write the union of boundary vertices and edges of �η as ��η. A path on a graph is a sequence of vertices such that each
vertex is adjacent to its successor. Given two distinct boundary edges of �η, removing {e, e′} from ��η gives two paths
on the boundary. We let �e,e′�η denote the one tracing ��η counterclockwise from e to e′. Given x ∈ ∂�, let xη be the
edge on ��η closest to x (if there is a tie, choose one arbitrarily).

A site percolation on �η is a black/white coloring of inner vertices of �η. The critical Bernoulli site percolation on �η,
which we denote by Ber(�η), is the uniform measure on site percolations on �η. A coloring of vertices on ��η is called
a boundary condition. A site percolation on �η together with a boundary condition determines a coloring of vertices on
�η. The (a, b)-boundary condition is the coloring where vertices on �aη,bη�η (resp., �bη,aη�η) are black (resp., white).
Note that this is well-defined since we required that �η does not have any cut vertices. Given a site percolation ωη on �η

with (a, b)-boundary condition, there is a unique path γη on ηT∗ from a∗
η to b∗

η , such that each edge on the path has a
white vertex on its left side and a black vertex on its right side. We call γη the percolation interface of ωη on (�η, aη, bη).

Let (U , dU ) denote the separable metric space of continuous curves modulo reparametrization, with the distance dU
between curves γ 1 : [0, T1] →C and γ 2 : [0, T2] →C defined by

dU (γ1, γ2) = inf
α,β

[
sup

0≤t≤1

∣∣γ 1(α(t)
) − γ 2(β(t)

)∣∣], (1)

where the infimum is taken over all choices of increasing bijections α : [0,1] → [0, T1] and β : [0,1] → [0, T2]. It is
proved in [4,28] that γη converges to an SLE6 on (�,a, b) for the dU -metric (see Theorem 2.1). Although this conver-
gence result gives a powerful tool for analyzing large scale properties of percolation (e.g. arm exponents [29]), a more
natural notion of convergence would be under the parametrization where γη traverses each edge in the same amount of

4This is the necessary and sufficient boundary condition for the Riemann mapping from the unit disk to � to continuously extend to the boundary. (See
e.g. [24].)
5A notion of η-approximation of the Jordan domain � is also introduced in Definition 4.1 of [3], which is denoted by Dη in their notation. One can
check that Dη equals the union of Dη and its so-called external boundary defined in [3, Section 4].
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time. We prove this result in Theorem 1.4 below. Before stating this result, we need the notions of Minkowski content
and occupation measure.

Definition 1.1. Given a set A ⊂ C, for r > 0, let Ar = {z ∈ C : B(z, r) ∩ A �= ∅}. For d ∈ [0,2] we define the d-
dimensional Minkowski content of A to be the following limit, provided it exists

Minkd(A) := lim
r→0

rd−2 Area
(
Ar

)
. (2)

If the limit does not exist, then the d-dimensional Minkowski content of A is not defined.

Definition 1.2. Fix d ∈ [0,2]. Let A ⊂ C be a random closed set and let μ be a random Borel measure on C. Suppose
P[μ(U) = Minkd(A ∩ U)] = 1 for each Jordan domain U with piecewise smooth boundary. We call μA the occupation
measure of A and say that it is (a.s.) defined by the d-dimensional Minkowski content of A.

Let γ be an SLE6 on (�,a, b), where � is a Jordan domain with smooth boundary and a, b are two distinct boundary
points. Assume the parametrization of γ comes from the image of a capacity-parametrized SLE6 on (H,0,∞) under a
conformal map f : H → � with f (0) = a, f (∞) = b. By [15], we know the following.

1. For each t ∈ (0,∞], a.s. the 7/4-dimensional Minkowski content of γ ([0, t]) exists and defines the occupation measure
of γ ([0, t]) as in Definition 1.2. We denote the occupation measure of γ ((0,∞)) by mγ .

2. The function t �→ Mink7/4(γ ([0, t])) is a.s. strictly increasing and Hölder continuous.

Definition 1.3. Suppose � is a Jordan domain with smooth boundary. Let γ be an SLE6 on (�,a, b), where a, b are two
distinct boundary points. Let γ̂ : [0,mγ (�)] → � be the parametrization of γ such that Mink7/4(γ ([0, t])) = t for any
t ∈ [0,mγ (�)]. Then γ̂ is called the natural parametrization of γ .

In fact [15] mainly focuses on the upper half plane. However, as explained below Theorem 1.1 there, the case of
Jordan domains with smooth boundary can be easily obtained by the covariance of Minkowski content under conformal
mappings.

Define the following distance ρ between two parametrized curves γ 1 : [0, T1] →C and γ 2 : [0, T2] →C.

ρ
(
γ 1, γ 2) =

[
|T2 − T1| + sup

0≤s≤1

∣∣γ 2(sT1) − γ 1(sT2)
∣∣]. (3)

As mentioned above, for statistical mechanical models where SLE is the scaling limit in the dU -metric, it is believed that
the convergence should also hold in the ρ-metric under the natural parametrization. In this paper, we prove this for the
percolation interface.

Theorem 1.4. Let (�,a, b), γ , and γ̂ be as in Definition 1.3. For η > 0, sample ωη from Ber(�η) and let γη be the
interface of ωη from aη to bη. Pick cl > 0, write ξη = clη

2/α
η
2 (η,1), and let γ̂η be the parametrization of γη with constant

speed (with respect to the Euclidean metric) such that each edge is crossed in ξη units of time. Then with an appropriate
choice of cl, the curve γ̂η converges weakly to γ̂ in the ρ-metric.

Fix cl > 0, and let the (normalized) interface measure τη on γη be defined by

τη := cl

∑
e∈γη

δe

η2

α
η
2 (η,1)

, (4)

where α
η
2 (η,1) is a normalizing constant depending on η that we will specify in Section 2.4, and δe is the measure

assigning unit mass uniformly along e and 0 elsewhere. The following is proved in [8].

Theorem 1.5 ([8]). In the setting of Theorem 1.4, there is a coupling of (ωη)η>0 and γ such that as η → 0, it holds a.s.
that γη converges to γ in the dU -metric, and τη in (4) converges to a random Borel measure τ supported on the range of
γ in the weak topology. Moreover, τ is measurable with respect to γ .

It was not proved in [8] that the measure τ defines a parametrization of γ . Some of the challenges in proving this are
discussed in [8, Sections 1.2 and 5.3].

As a first step towards proving Theorem 1.4, we prove the following in Section 3.
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Theorem 1.6. In Theorem 1.4, one can choose cl in (4) such that τ =mγ a.s.

We end this subsection by commenting on our proof ideas for Theorems 1.6 and 1.4. On the one hand, the proof of
Theorem 1.6 closely follows [8, Section 4] with the simplification that we work directly in the continuum, hence our
one-point and two-point estimates are power laws with no sub-polynomial corrections, in contrast to the arm exponent
estimates for percolation. On the other hand, an additional technicality arises when we try to implement the continuum
analog of a strong coupling result from [8, Section 4]. See the beginning of Section 3 for more discussion. Our proof
of Theorem 1.9 below uses the same idea as in Theorem 1.6. However, Theorem 1.6 itself is not sufficient for proving
Theorem 1.4 due to the presence of double points in SLE6. To deal with this issue, we prove that the occupation measure
of the frontier of SLE6 is 0 and use it to conclude the proof of Theorem 1.4 in Section 5.

1.2. The natural measure on pivotal points

Let � be a Jordan domain with smooth boundary and sample ωη from Ber(�η). Let a, b, c, d ∈ ∂� be four distinct points
ordered counterclockwise. For η small enough such that aη, bη, cη, and dη are distinct. the following three sentences
describe the same event.

• There is a path {vi}1≤i≤n such that v1 and vn are on �bη,cη�η and �dη,aη�η respectively, while vi is a white inner
vertex for all 1 < i < n.

• Let eη be the first edge crossed by the percolation interface on (�η, aη, cη) with one endpoint lying on �bη,dη�η. Then
eη has an endpoint on �bη,cη�η.

• Let eη be the first edge crossed by the percolation interface on (�η, cη, aη) with one endpoint lying on �dη,bη�η. Then
eη has an endpoint on �dη,aη�η.

Denote this event by Eη. Consider the pair of curves (γ 1
η , γ 2

η ) defined as follows. When Eη occurs, let γ 1
η and γ 2

η be the
percolation interfaces on (�,aη, bη) and (�η, cη, dη), respectively. Otherwise, let γ 1

η and γ 2
η be the percolation interfaces

on (�,aη, dη) and (�η, cη, bη), respectively. Given an event defined in terms of ωη, a site in �η is called a pivotal point
for this event if flipping the color of the site changes the outcome of the event. Let Pη be the set of pivotal points for Eη.
Then a site of �η belongs to Pη if and only if it is the endpoint of one edge crossed by γ 1

η and one edge crossed by γ 2
η .

The picture above has a natural scaling limit. Let ∂a,b� be the counterclockwise arc on ∂� between a and b. By
locality, we can couple the chordal SLE6 on (�,a, b) to the chordal SLE6 on (�,a, d) such that the two curves agree
until hitting the arc ∂b,d�, after which they evolve independently. Let E be the event that the hitting location on ∂b,d�

lies on ∂b,c�. If E occurs (resp., does not occur), let γ 1 be the SLE6 from a to b (resp., d) so that there exists a unique
connected component of �\γ 1 whose boundary contains c and d (resp. b). Conditioning on γ 1, let γ 2 be a chordal SLE6

on this component from c to d (resp. b).
A point is called a pivotal point for E if and only if it is on the range of both γ 1 and γ 2. Let P denote the set of pivotal

points of E. Fix cp > 0 and define

μη := cp

∑
z∈Pη

δz

η2

α
η
4 (η,1)

, (5)

where α
η
4 (η,1) is a normalizing constant which will be specified in Section 2.4.

The following theorem follows from [8].

Theorem 1.7. There is a coupling of (γ 1
η , γ 2

η ) and (γ 1, γ 2) such that a.s.,

(1) 1Eη
converges to 1E ,

(2) (γ 1
η , γ 2

η ) converges to (γ 1, γ 2) in the dU -metric, and
(3) μη converges to a measure μ supported on P .

Certain basic properties of μ were also proved in [8], for example that μ is measurable with respect to the scaling limit
of percolation in quad-crossing space (see Section 2 for definitions) and the conformal covariance of μ.

As we will explain in more detail in Section 4, (see the discussion above Lemmas 4.1 and 4.3) the set P is locally ab-
solutely continuous with respect to the set of cut points of two-dimensional Brownian motion, whose occupation measure
is the subject of [11]. Using the relationship between P and Brownian cut points we will prove the following result in
Section 4.
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Proposition 1.8. The occupation measure mP of P a.s. exists and is defined by its 3/4-dimensional Minkowski content
in the sense of Definition 1.2.

In Section 4, we use the same arguments as for Theorem 1.6 to conclude the following.

Theorem 1.9. In Theorem 1.7, one can choose cp in (5) such that μ =mP a.s.

Theorem 1.9 confirms that the scaling limit of the pivotal measure in [8] is in fact induced by the 3/4-dimensional
Minkowski content of the continuum pivotal points. We can also consider double points of SLE6 and the points of
intersection of CLE6 loops, which describe the full scaling limit of the interfaces between black and white clusters in
critical percolation [3]. In these cases, the analog of Theorem 1.9 holds since their local pictures are absolutely continuous
with respect to each other and the Minkowski content is defined locally. We restrict to the formulation in Theorem 1.9 for
concreteness.

Theorem 1.9 is an important ingredient of the first and third authors’ proof [12] of the convergence of uniform trian-
gulations to Liouville quantum gravity (LQG) with parameter

√
8/3 under the so-called Cardy embedding, which is a

discrete conformal embedding based on percolation. A key tool in the proof is the Liouville dynamical percolation (LDP)
introduced in [6], which is a variant of the ordinary dynamical percolation considered in [9]. The discrete (ordinary)
dynamical percolation in [9] is defined as follows. We start from a sample of critical Bernoulli site percolation and then
use i.i.d. exponential clocks at each site to update the color. The discrete LDP is defined in the same way except that the
rates of the exponential clocks are not identical but depend on a background LQG surface. The continuous LDP is the
continuum limit of the discrete LDP as the lattice size and the clock rates are rescaled appropriately. By the existence of
the scaling limit of the pivotal measure from [8], the existence of the continuous LDP was proved in [6] in the so-called
quad-crossing topology (see Section 2.2), similarly as in [9].

The key idea of [12] is to consider ordinary dynamical percolation (namely, with i.i.d. clocks) on a uniform triangula-
tion and realize that under the conformal embedding the scaling limit of this dynamic is the continuous LDP. Once this is
proved, ergodicity of continuous LDP proved in [6] implies that uniform triangulations under the Cardy embedding con-
verge to LQG. The quad-crossing topology allows [6] to apply the powerful machinery of noise sensitivity developed in
[7] to prove the desired ergodicity of continuous LDP. However, it is not the natural topology to describe the scaling limit
of the ordinary dynamical percolation on uniform triangulations. The natural topology is given by the mating-of-trees
framework of Duplantier, Miller, and Sheffield [5]; also see [10].

The technical bulk of [12] is to show that the quad-crossing and mating-of-trees descriptions of continuous LDP are
equivalent. In both descriptions, the dynamic is determined by its initial configuration and a Poisson point process whose
intensity measure is supported on the set of pivotal points, and the equivalence of the LDP descriptions can therefore be
reduced to the equivalence of two notions of pivotal measure. The notion of pivotal measure coming from [6] is given
by the ordinary pivotal measure in [8] weighted by the exponential of a Gaussian free field. The notion coming from
mating-of-trees, which is introduced in [2], is defined using Brownian motion and involves neither the ordinary pivotal
measure from [8] nor Gaussian free field. To show the equivalence of these two notions of pivotal measure, the description
of ordinary pivotal measure in terms of Minkowski content as in Theorem 1.9 plays an important role. In particular, with
this definition the equivalence of the two pivotal measures becomes a natural and concrete statement for CLE6. See [12,
Section 5] for the detail of this argument and see [12, Section 1.4] for an overview of the entire program.

2. Preliminaries

In this section we review some basic facts about percolation which are used in later proofs. Most facts are either known
or easy consequences of known results. Therefore we will be brief and refer to [8,26,29,30] for more details.

2.1. Basic notations

Throughout the paper, we use γ and γη to represent SLE6 and the percolation interface, respectively. Both γ and γη are
understood as continuous curves modulo reparametrization unless otherwise specified. When there is no risk of confusion,
we also use γ , γη to denote the range of the curves.

For all R > 0 and z ∈ C = R2, we let BR(z) = z + [−R,R]2 denote the square of side length 2R centered at z.
We call a set a box if it can be written on this form. We write BR for BR(0) and cBR(z) for z + [−Rc,Rc]2 (instead of
cz+[−Rc,Rc]2) for all c > 0. For 0 < r < R, let A(r,R) = BR \Br . We call a domain A an annulus if A is topologically
equivalent to A(1,2), and we use ∂1A and ∂2A to denote its inner and outer boundaries, respectively.
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Given any two sets X,Y ⊂ R2, we write dist(X,Y ) := inf{|x − y| : x ∈ X,y ∈ Y }. Let X denote the closure of X. If
X ⊂ Y , we write X � Y .

We use classical asymptotic notations. Given two non-negative functions f and g, we write f � g (resp., f � g) if
there is a constant C > 0 such that f (x) ≤ Cg(x) (resp., f (x) ≥ Cg(x)) for all x. We also write f = O(g) when f � g.
We write f � g if f � g and g � f . We say f (x) = ox(1) as x → a if limx→a f (x) = 0.

2.2. Quad-crossing representations of percolation

There are various ways to represent the scaling limit of critical planar percolation (see e.g. the introduction of [26]). One
way is to use its crossing information, as we review now.

A quad in C is a homeomorphism Q : [0,1]2 → C. Let

∂1Q := Q
({0} × [0,1]), ∂2Q := Q

([0,1] × {0}),
∂3Q := Q

({1} × [0,1]), ∂4Q := Q
([0,1] × {1}).

We will identify a quad Q with (Q[0,1]2,Q(0,0),Q(1,0),Q(1,1), (0,1)), so quads giving the same such tuple are
identified. Let Q be the space of quads in C, equipped with the uniform topology. A crossing of a quad Q is a closed
set in C containing a connected closed subset of Q([0,1]2) that intersects both ∂1Q and ∂3Q. Given Q1, Q2 in C, we
say Q1 ≤ Q2 if every crossing of Q2 contains a crossing of Q1. We say Q1 < Q2 if there exists a neighborhood of Ni

(i = 1,2) of Qi in Q such that N1 ≤ N2 for any Ni ∈Ni . A quad-crossing configuration on C is a function ω : Q→ {0,1}
such that the set ω−1(1) is closed in Q and for any Q1, Q2 with Q1 < Q2, we have ω(Q2) ≤ ω(Q1). We denote the
space of quad-crossing configurations on C by H. The set H can be endowed with a metric dH such that (H, dH) is
compact and separable.

Let � � C be an open set and let Q� be the space of quads with image in �. By restricting to Q�, each element in
H induces a quad-crossing configuration on �. Let H� be the space of such configurations, endowed with the metric
induced by dH, which we still denote by dH. We refer to [8,26] for more details on (H�,dH). Here we only record the
following facts. Suppose � is a Jordan domain and that ωη is sampled from Ber(�η). We identify ωη with an element
in H� by setting ωη(Q) = 1 if and only if the white sites of ωη form a crossing of Q. Then ωη weakly converges to a
random variable ω in H� under the dH-metric. Moreover,

1. for each deterministic quad Q ∈Q�, in any coupling where ωη → ω a.s., we have ωη(Q) → ω(Q) in probability;
2. there exists a countable collection {Qn}n∈N ⊂ Q� such that Qn has piecewise smooth boundary and {ω(Qn)}n∈N

generates the Borel σ -field of (H�,dH).

2.3. Some scaling limit results

The following scaling limit result is from [3] and [8].

Theorem 2.1. Suppose � is a Jordan domain. Sample ωη from Ber(�η). Then there is a coupling of (ωη)η>0 such that
the following hold.

1. For any fixed x, y ∈ ∂� with x �= y, the interface γ
xy
η on (�η, xη, yη) converges in probability to an SLE6 curve γ xy

on (�,x, y) under the dU -metric.
2. The quad-crossing configuration ωη converges to ω in probability under the dH-metric.

In particular, this provides a coupling of ω and {γ xy : x �= y, x, y ∈ ∂�}.

Theorem 2.1 is obtained by considering the collection of disjoint loops �η which are interfaces between black and
white clusters of ωη. They converge to a random collection of loops � called the conformal loop ensemble with κ = 6
(CLE6) on �. Moreover, both {γ xy}x,y∈∂� and ω are measurable with respect to the CLE6 (see [3] and [8, Section 2.3]).
We will not give more detail on CLE6 as it is not needed, but refer to [3,27] for further details.

We have seen several classes of domains so far. For the definition of SLE6, we assumed that the boundary is a con-
tinuous image of a circle. For quad-crossing space, we considered general domains. For Theorem 2.1, we considered
Jordan domains. In Theorems 1.4 and 1.9, we assumed that ∂� is a smooth Jordan curve. We will carefully organize the
argument so that Theorem 2.1 does not have to be extended to domains with rougher boundary. See Remark 3.7.

The following gives the convergence of the interface at the hitting time of certain domains. The lemma will be used to
prove Lemmas 2.9, 2.10, and 5.1.
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Lemma 2.2. In the setting of Theorem 1.4, view γ, γη : [0,1] → � as parametrized curves coupled together such that
limη→0 sup0≤t≤1{|γη(t) − γ (t)|} = 0 a.s. (The existence of such parametrizations and couplings is guaranteed by dU -
convergence of γη to γ .) Let ση, σ be stopping times for γη and γ , respectively, such that ση → σ a.s. Fix a piecewise
smooth simple curve � � � such that P[γ (σ ) ∈ �] = 0. Let λ = inf{t ≥ σ : γ (t) ∈ �} and λη = inf{t ≥ ση : γη(t) ∈ �}.
Then λη → λ a.s.

Proof. With probability 1, there exist sequences of rational times tη ↓ λ and sη ↑ λ for η → 0 in a countable set such
that γ ([sη, tη]) ∩ � �= ∅. This can be easily proved by way of contradiction, by using that an SLE6 curve will a.s. cross a
deterministic smooth curve upon hitting it. Now the lemma follows from the continuity of γ . �

2.4. Arm events

Given a percolation configuration ωη and an annulus A, we say that an alternating 4-arm event occurs for A if and only
if there are four disjoint monochromatic paths connecting ∂1A and ∂2A such that the color sequence of the four paths
is alternating between black and white. There is an ambiguity in the definition due to the lattice effect at the boundary.
However the precise convention does not matter as η → 0 so we ignore it. In the continuum, suppose A is an annulus
such that ∂1A and ∂2A are piecewise smooth. For A � �, a quad-crossing configuration ω ∈ H� is said to belong to the
alternating 4-arm event of A if there exist quads Qi ⊂Q�, i = 1,2,3,4, with the following properties:

(i) Q1 and Q3 are disjoint and at positive distance from each other, and the same hold for Q2 and Q4.
(ii) For i ∈ {1,3}, the side ∂1Qi lies inside ∂1A and the side ∂3Qi lies outside ∂2A; for i ∈ {2,4}, the side ∂2Qi lies

inside ∂1A and the side ∂4Qi lies outside ∂2A; all these sides are of positive distance away from A and from the
other Qj ’s.

(iii) The four quads are ordered cyclically around A according to their indices.
(iv) ω(Q1) = ω(Q3) = 1 and ω(Q2) = ω(Q4) = 0.

In both the discrete and the continuum, the general k-arm event in A given any prescribed color pattern can be defined
similarly. For ωη coming from a percolation configuration, the two definitions of arm events agree.

Convention 2.3. In the rest of the paper, for each k = 2,3,4,5, we focus on arm events with particular color conditions.
For k = 4, it is the alternating 4-arm event. For k = 2,3,5, it is the k-arm event where not all arms have the same color.
We will call these events the k-arm event without mentioning the color pattern. We will not need the case k �= 2,3,4,5.

Now we are ready to describe the normalizing constants in (4) and (5).

Remark 2.4 (Normalizing constants). We use α
η
k (η,1) (k = 2,4) to denote the probability of the k-arm event (under

Convention 2.3) from the single site at the origin to ∂B1. Then α
η
2 (η,1) and α

η
4 (η,1) are the normalizing constants in (4)

and (5), respectively. It is known that α
η
k (η,1) = η(k2−1)/12+oη(1) [29]. The up-to-constant asymptotics are open.

In the coupling of Theorem 2.1, for k = 2,3,4,5, let Ak be k-arm events for an annulus A ⊂ � as in Convention 2.3.
Then the event Ak is a.s. measurable with respect to the Borel σ -algebra of (H�,dH) [8, Section 2]. As explained in
[29], the events Ak can be expressed in terms of percolation exploration to give

lim
η→0

P[ωη ∈ Ak] = P[ω ∈Ak] for k = 2,3,4,5. (6)

Lemma 2.9 in [8] gives the following stronger version of (6) when k = 2,3,4. (This is expected to be true also for k = 5,
but this is not proved in [8] and is not needed.)

Lemma 2.5. limη→0 P[{ω ∈Ak} � {ωη ∈ Ak}] = 0 for k = 2,3,4.

For R > r > 0 and A = A(r,R) write αk(r,R) = P[ω ∈ Ak]. The up-to-constant asymptotic for αk(r,R) is well-known
[29, Equation (14)] (c.f. Remark 2.4):

αk(r,R) � (r/R)(k
2−1)/12, for k = 2,3,4,5. (7)

An important property of ω as an element in H is the monotonicity built in its definition. The following monotonicity
results will be used repeatedly.
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Fig. 1. Left: Illustration of Lemma 2.6, Assertion 2. The arms are shown in blue and orange instead of black and white, respectively. Middle: Illustration
in light blue of the face D(B,�) at B induced by γ as defined in Section 2.5. Double points of ∂D(B,�) are marked in red and correspond to local
cut points for γ (see Remark 3.7). Right: Illustration of the event G�(B,U).

Lemma 2.6. In the coupling of Theorem 2.1, let γ := γ ab and γη := γ ab
η for two given distinct points a, b ∈ ∂�. View

(γη, γ ) as parametrized curves as in Lemma 2.2. For each fixed t ∈ (0,1), let Kt be the hull of γ ([0, t]). Namely, Kt is
the complement of the connected component of � \ γ ([0, t]) containing the target of γ . For any annulus A � �, let A1
be the inside of ∂1A and A2 be the outside of ∂2A. Then for the quad-crossing configuration ω,

1. if ∂1A ∩ γ �=∅, then the 2-arm event for A occurs a.s., and
2. if there exists t ∈ [0,1] such that ∂Kt ∩ A1 �=∅ and γ (t) ∈ A2, then the 3-arm event for A occurs a.s.

Proof. For Assertion 1, choose t, δ ∈ (0,1) such that γ (t) is inside ∂1A and dist(γ (t), ∂1A) > δ. Since
limη→0 sup0≤t≤1{|γη(t) − γ (t)|} = 0 a.s., we have dist(γη(t), ∂1A) > 0.5δ for small enough η. In this case the 2-arm
event for A occurs for ωη. Sending η → 0 and applying Lemma 2.5, we get Assertion 1.

Assertion 2 can be proved similarly. See Figure 1. Since γ (t) is a boundary point of Kt , there exists a δ > 0 and
a path ρ starting from some point in A1 and ending at some point in A2 such that dist(ρ, γ ([0, t])) > δ. Without loss
of generality assume the set ∂Kt ∩ A1 contains a point on left frontier of γ ([0, t]). Now for small enough η, we have
dist(ρ, γη([0, t])) > 0.5δ. On the other hand, by the argument for Assertion 1, for η small enough the there exists a black
arm β of ωη from ∂1A to ∂2A. In this case, there must be a white arm of ωη on each connected component of A \ (ρ ∪ β)

from ∂1A to ∂2A, hence the 3-arm event for A occurs for ωη. Now Assertion 2 follows from Lemma 2.5. �

The following variant of Lemma 2.6 can be proved similarly. We omit the details.

Lemma 2.7. Consider a coupling where both the conditions in Theorems 1.7 and 2.1 are satisfied so that (ω, γ 1, γ 2) are
coupled. Let A, A1, A2 be defined as in Lemma 2.6. Then on the event P ∩ A1 �=∅, the 4-arm event for A occurs a.s. for
ω.

The event γ ∩ A1 �= ∅ in Lemma 2.6 is simply the 2-arm event with the further requirement that each of the two
boundary arcs contain one endpoint of the arm. The similar statement holds for P ∩ A1 �= ∅ in Lemma 2.7. By the
following lemma, these endpoint requirements only decrease the probability by a constant factor.

Lemma 2.8. In the setting of Lemmas 2.6 and 2.7, let B ⊂ � be a box of radius ε whose center is r > 10ε away from
∂�. Then P[γ ∩ B �= ∅] � α2(ε, r) and P[P ∩ B �= ∅] � α4(ε, r), where the implicit constants in � only depend on �

but not on other parameters.

Proof. The 2-arm case follows from the classical one-point estimate of SLE6. See e.g. [15]. The 4-arm case follows from
[8, Proposition 4.9]. �

2.5. Face induced by the percolation exploration

Given a box B and two distinct points x1, x2 ∈ ∂B, let θ1 (resp., θ2) be a simple path joining x1 and x2 (resp., x2 and x1).
If the pair of paths � = {θ1, θ2} is such that there exists a domain D� with B ⊂D� and ∂D� = θ1 ∪ θ2, then we call � a
face at B with endpoints x1, x2.

Let � be a simply connected domain whose boundary is a continuous curve and let a, b ∈ ∂� be such that a �= b.
Suppose γ is a SLE6 on (�,a, b) parametrized in an arbitrary way and B ⊂ � is a box. Throughout this subsection we
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write (�,a, b) as � whenever it simplifies the notation and cause no confusion. For example, we use A(B,�) to denote
the event {γ ∩B �=∅} although this event depends on a, b. On A(B,�), let

¯σ = inf{t : γt ∈ B}, σ = sup{t : γt ∈ B},
x1 = γ (¯σ), x2 = γ (σ ).

Let D(B,�) be the connected component of � \ (γ [0, ¯σ ] ∪ γ [σ,∞)) containing B. Then D(B,�) can be viewed as a
(random) face at B with the arcs ∂x1,x2D(B,�) and ∂x2,x1D(B,�), which we call the face at B induced by γ . By setting
D(B,�) = ∅ when A(B,�) does not occur, we can view D(B,�) as a random domain with two ordered boundary
marked points x1, x2 when it is nonempty. Given a simply connected domain U with piecewise smooth boundary such
that B � U � �, set

G�(B,U) := A(B,�) ∩ {
D(B,�) ⊂ U

}
. (8)

See the right part of Figure 1 for an illustration. The picture above has a discrete counterpart. Suppose � is a Jordan
domain and ωη is sampled from Ber(�η). Let γη denote the associated interface on (�η, aη, bη) for some a �= b ∈ ∂�.
Let Aη(B,�) be the event that there exists an edge on γη such that the two hexagons containing the edge are both in
B. Consider the first and last such edges on γη, whose visiting time are denoted by ση and ση, respectively. Let �η

denote the face at B induced by γη, which forms the boundary of the domain Dη(B,�). Similarly as in (8), define
G�η(B,U) := Aη(B,�) ∩ {Dη(B,�) ⊂ U}. We have the following two lemmas.

Lemma 2.9. Suppose � is a Jordan domain and that B and U are defined as above. Suppose we are in the coupling
of Theorem 2.1. We view γη and γ as parametrized curves as in Lemma 2.2. Then Dη(B,�) converges to D(B,�) in
probability for the Hausdorff metric as closed sets with two ordered marked points.

Proof. It suffices to show that

lim
η→0

P
[{
B′ ∩Dη(B,�) =∅

}
�

{
B′ ∩D(B,�) =∅

}] = 0, for a fixed box B′ � �. (9)

Given a fixed piecewise smooth curve p : [0,1] → � with p(0) ∈ ∂�, p(1) ∈ B and p((0,1)) ⊂ �. If p∩∂D(B,�) =∅,
since γη converges to γ in the dU -metric, for small enough η we must have p ∩ Dη(B,�) = ∅. If p ∩ ∂D(B,�) �= ∅,
then by Lemma 2.2 for small enough η we must have p ∩ Dη(B,�) �= ∅. This implies (9) by elementary topological
consideration. �

Lemma 2.10. In the setting of Lemma 2.9, let A3 represent the 3-arm event for U \ B. Then P[A(B,�) \ G�(B,U)] ≤
P[ω ∈A3].

Proof. By Lemma 2.2, P[D(B,�) ⊂ U ] = P[D(B,�) ⊂ U ]. By Lemma 2.9 it suffices to show that Aη(B,�) ∩ {ωη /∈
A3} ⊂ G�η(B,U). To prove this, we see that if Aη(B,�) ∩ {ωη /∈ A3} occurs, the black sites adjacent to γη([0, σ η]) and
γη([0, σ η]) must share a common hexagon within U \ B. The similar statement holds for the white sites. This concludes
the proof. �

In the setting of Theorem 2.1, it is clear that ω inherits the spatial independence property from ωη. By Lemma 2.9, we
get the following.

Lemma 2.11. In the setting of Lemma 2.9, let �1, �2 be two disjoint open subsets in �. Then ω restricted to Q�1 and
to Q�2 are independent as random variables in H�1 and H�2 , respectively. Moreover, ω restricted to QB is independent
of D(B,�).

3. Equivalence of the two measures on the interface

This section is devoted to proving Theorem 1.6 hence we retain the notations in the statement of the theorem. To prove
Theorem 1.6, we use the L2 framework as in [8], which is based on a strong coupling scheme and the spatial independence
of percolation. Since we work in the continuum, some issues in [8, Section 4] can be simplified. In particular, the required
one-point and two-point estimates that we will rely on are are power laws with no sub-polynomial corrections (see
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Lemmas 3.3–3.5), while a major novelty of [8, Section 4] is obtaining scaling limit results despite the unknown sub-
polynomial corrections in the percolation estimates. After we prepare the one-point and two-point estimates, we reduce
Theorem 1.6 to a strong coupling estimate (21). This reduction is a straightforward adaptation of the L2 argument in [8,
Section 4], nevertheless we still include the full argument for completeness and hence follow closely both the method and
the presentation in [8, Section 4]. To prove the strong coupling estimate (21), we would like to apply its discrete analog
from [8] and then pass to the continuum. However, a straightforward implementation of this idea only gives Lemma 3.6, a
weaker variant of (21). The reason is that when we pass from percolation to its continuum limit, we rely on Theorem 2.1,
which is for Jordan domains. On the other hand, the domain boundary considered in (21) is the exterior boundary of
SLE6, which is not simple. Instead of trying to strengthen the convergence in Theorem 2.1 to include certain non-Jordan
domains, we will use an argument directly in the continuum to go from Lemma 3.6 to the desired (21). We now carry out
the plan above in detail.

Let B � � be a box whose four vertices are on
⋃

k∈N 2−kZ2. Let ε ∈ {2−k : k ∈ N}. Assume ε is small enough such that
ε < dist(B, ∂�). Then B is partitioned by certain boxes of radius ε centered at points on the lattice 2εZ2. Let Q1, . . . ,Qp

be a list of these boxes in arbitrary order. For i ≥ 1, let qi denote the center of Qi . Let

Y ε = #{1 ≤ i ≤ p : γ ∩ 2Qi �=∅}.
In [8, Section 5.3], the following is proved.6

Proposition 3.1. There exists a deterministic constant c > 0 such that

τ(B) = lim
ε→0

cY ε

ε−2α2(ε,1)
in L2.

Consider the square Q0 := Bε(0). Let γ 0 be a chordal SLE6 on (B1,−i, i) and x0 := mγ 0(Q0), where mγ 0 is the
occupation measure of γ 0. Let A0(2ε,1) be the event that γ 0 ∩ 2Q0 �=∅, and define

βε := E
[
x0|A0(2ε,1)

]
. (10)

Theorem 1.6 is an immediate consequence of Proposition 3.1 and the following.

Proposition 3.2. For each box B � � as above, we have that mγ (B) = limε→0 βεY
ε in L2.

Before proving Proposition 3.2, we first record a few basic estimates in Lemmas 3.3–3.5.
Define yi to be the indicator function of the event that γ ∩ 2Qi �=∅ so that Y ε = ∑p

1 yi . Similarly, for any 1 ≤ i ≤ p,
let xi =mγ (Qi) such that mγ (B) = ∑p

1 xi . We first record some a priori estimates for the x′
is and the yi ’s. These estimates

would trivially follow from known Green function estimates for SLE6 [19]. However, we instead present an argument
that can be readily extended to the case of pivotal points in Section 4. The following result is classical, and we refer to [1]
for a proof.

Lemma 3.3. In the above setting, for all 1 ≤ i, j ≤ p with i �= j ,

E[yi] � ε1/4 and E[yiyj ] � ε1/2

|qi − qj |1/4
. (11)

where the constants in � and � only depend on B and �.

A similar argument based on arm exponents gives the following.

Lemma 3.4. For all 1 ≤ i, j ≤ p with i �= j , we have

E[xi] � ε2, E[xixj ] � ε4

|qi − qj |1/4
and E

[
x2
i

]
� ε15/4, (12)

where the constants in � only depend on B and �.

6To obtain Proposition 3.1 from [8, Section 5.3] we use that, in the notation of that paper, X appropriately renormalized converges to τ , E[(X −
βtwo−armY )2] = o(E[X2]), and βtwo−arm � ε2η−2α

η
4 (η, ε).
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Proof. For r ∈ (0,0.01ε) and • = i, j , let X• = γ ∩ 2Q• and X r• = {z : dist(z,X•) ≤ r}. It is clear that X r
i ⊂ 4Qi . By

Lemma 2.6 and (7), P[dist(z,Xi ) ≤ r] � r1/4 for all z ∈ 4Qi . Therefore, by Fubini’s theorem, we have

E
[
Area

(
X r

i

)] =
∫

4Qi

P
[
z ∈ X r

i

]
dz � ε2r1/4.

Now Fatou’s lemma and Definitions 1.1 and 1.2 yield E[xi] � ε2.
For the second inequality, by Fubini’s theorem, we have

E
[
Area

(
X r

i

)
Area

(
X r

j

)] =
∫

4Qi×4Qj

P
[
z ∈ X r

i ,w ∈X r
j

]
dzdw.

By Lemma 3.3, we have P[z ∈ X r
i ,w ∈ X r

j ] � r1/2/|z − w|1/4. Now the second inequality follows from Fatou’s lemma
and Definitions 1.1 and 1.2.

The third inequality follows from a similar argument as for the second one. �

By Lemmas 3.3 and 3.4, we have

βε ≤ E[x0]
P[A0(2ε,1)] � ε2

ε1/4
= ε7/4. (13)

Lemma 3.5. In the above setting, for all 1 ≤ i ≤ p, let

X̃i =
⋂
δ>0

{
z ∈ Qi : the 2-arm event occurs for the annulus B

(
qi,

3

2
ε

)
\B(z, δ)

}

and X̃ r
i = {z : dist(z, X̃i ) ≤ r}. Let x̃i = lim infr→0 r−1/4 Area(X̃ r

i ). Then

xi ≤ x̃i and E[̃xi] � ε7/4 for all 1 ≤ i ≤ p

where the constant in � is independent ε, i, B, �.

Proof. Lemma 2.6 and (2) imply that xi ≤ x̃i . The bound E[̃xi] � ε7/4 follows from the same argument as for the
first inequality in Lemma 3.4. Here the domain � is replaced by 3

2Qi . Therefore we get the upper bound ε7/4 instead
of ε2. �

The advantage of considering x̃i instead of xi is that it is completely determined by ω restricted to B(qi,
3
2ε), hence is

independent of what happen outside 2Qi .
Now we proceed to prove Proposition 3.2. Fix some r > 0 to be determined later. Write �i = xi − βεyi for 1 ≤ i ≤ p

and

E
[(
mγ (B) − βεY

ε
)2] =

p∑
i,j=1

E[�i�j ].

Split the summation into an “on-diagonal” term and an “off-diagonal” term:

E
[(
mγ (B) − βεY

ε
)2] =

∑
|qi−qj |≤r

E[�i�j ] +
∑

|qi−qj |>r

E[�i�j ]. (14)

To estimate the on-diagonal term, take any i, j such that |qi − qj | ≤ r , and observe that since all variables and constants
are positive, we have

E[�i�j ] ≤ E
[
xixj + β2

ε yiyj

]
. (15)

There are O(1)ε−2 choices for the box Qi (where O(1) depends on B). For a fixed box Qi and any k ≥ 0 such that
2kε < r , there are O(1)22k boxes Qj satisfying 2kε ≤ |qi − qj | < 2k+1ε. For any of these boxes, Lemma 3.4 gives
E[xixj ] � ε4/(2kε)1/4.
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Therefore

∑
|qi−qj |≤r

E[xixj ] � ε−2
∑

k≤log2(r/ε)

22k · ε4

(2kε)1/4
. (16)

By Lemma 3.3 and (13) we obtain the same bound on
∑

|qi−qj |≤r E[β2
ε yiyj ]. Therefore

∑
|qi−qj |≤r

E[�i�j ] � r7/4. (17)

Now consider the off-diagonal term in (14). We claim that for fixed δ, if ε is small enough, for any i, j such that
l := |qi − qj | > r we have

E[�i�j ] ≤ δ · ε4

l1/4
. (18)

Let ζ ∈ (2ε, r/4) be some intermediate distance whose value will be fixed later. For k = 2,3 and • = i, j , let A•
k =

A•
k(ζ, l/2) be the k-arm event for the annulus B(q•, l/2) \ B(q•, ζ ). Following the notations of Section 2.5, let D• :=

D(B(q•, ζ ),�) and �• be the face at B(q•, ζ ) induced by γ . Let G• = G(B(q•, ζ ),B(q•, l/2)). Note that by Lemma 2.6,
we have G• ⊂A•

2.

Let W = Gi ∩ Gj and Z = (Ai
2 ∩Aj

2) \W . By Lemma 2.6, if �i�j �= 0, the event Ai
2 ∩Aj

2 must occur. Therefore

E[�i�j ] = E[�i�j 1Z ] +E[�i�j 1W ]. (19)

Let Ai,j be the event that two-arm events occur in the annuli B(qj , l/2) \ 2Qj , B(qi, l/2) \ 2Qi and � \ B(
qi+qj

2 , l).
Observe that if (xixj + β2

ε yiyj ) �= 0 then Ai,j occurs. Recall x̃i in Lemma 3.5. We have

E
[|�i�j |1Ai

2\Gi

] ≤ E
[(

xixj + β2
ε yiyj

)
1Ai

2\Gi

] ≤ E
[(̃

xi x̃j + β2
ε

) · 1Ai
2\Gi

· 1Ai,j

]
.

By Lemma 2.11, x̃i , x̃j and 1Ai
2\Gi

· 1Ai,j
are independent. By Lemma 3.5 and (13), we have

E
[(

x̃i x̃j + β2
ε

) · 1Ai
2\Gi

· 1Ai,j

] = (
E[̃xi]E[̃xj ] + β2

ε

)
P
[(
Ai

2 \ Gi

) ∩Ai,j

]
� ε7/2P

[(
Ai

2 \ Gi

) ∩Ai,j

]
.

By the same argument as in Lemma 2.10, we have P[(Ai
2 \ Gi ) ∩Ai,j ] ≤ P[ω ∈ Ai

3 ∩Ai,j ]. By Lemma 2.11 and (7), we
have P[ω ∈Ai

3 ∩Ai,j ] = oζ/l(1)ε1/2/l1/4. Therefore

E
[|�i�j |1Ai

2\Gi

] = oζ/l(1)
ε4

l1/4
.

Since Z ⊂ (Ai
2 \ Gi ) ∪ (Aj

2 \ Gj ), we have

∣∣E[�i�j 1Z ]∣∣ = oζ/l(1)
ε4

l1/4
. (20)

It remains to bound the second term on the right side of (19). Recall the notations introduced in Section 2.5. For • = i, j ,
on the event G•, let ¯σ• = inf{t : γt ∈ B(q•, ζ )} and σ • = sup{t : γt ∈ B(q•, ζ )}. Let γ • be the curve γ ([¯σ•, σ •]). Then by
the reversibility of SLE6, the curve γ • conditioning on D• is a chordal SLE6 inside D•. We claim that

1W
∣∣E[xi − βεyi |Di]

∣∣ = oε/ζ (1)
ε2

ζ 1/4
and the same with j in place of i. (21)

Let us first wrap up the proof of Proposition 3.2 given (21). On W , the curves γ i , γ j are independent conditioned on Di ,
Dj . Combining with (21), we get

E
[
1W |�i�j |

] = oε/ζ (1)
ε4

ζ 1/2
P[W].
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On W , the 2-arm event occurs in the disjoint annuli � \ B(
qi+qj

2 , l), B(qi, l/2) \ B(qi, ζ ) and B(qj , l/2) \ B(qj , ζ ). By
Lemma 2.11, we have P[W] � ζ 1/2/l1/4. Therefore,

∣∣E[1W�i�j ]
∣∣ = oε/ζ (1)

ε4

l1/4
. (22)

Combining with (20) and setting ζ = r2 = ε1/2, we get (18). Summing over i, j , we see that the off-diagonal term in
(14) is less than δ for sufficiently small ε. Combining with (17), this concludes the proof of Proposition 3.2, and hence of
Theorem 1.6.

Now we focus on the proof of (21), which crucially relies on the following lemma.

Lemma 3.6. Let �′ be a Jordan domain containing 0. Let d = dist(0, ∂�′) and d ′ = d ∧ 1. Let a′, b′ ∈ ∂� and γ ′ be a
chordal SLE6 on (�,a′, b′). Let

x′ = Mink7/4
(
γ ′ ∩B2ε

)
and y′ = 1γ ′∩B2ε �=∅.

Then there exist absolute constants c,C > 0 independent of �′ such that for 0 < ε < d ′/10,

∣∣E[
x′ − βεy

′]∣∣ ≤ C

(
2ε

d ′

)c

· ε7/4 · α2
(
2ε, d ′). (23)

Proof. Recall x0 and A0(2ε,1) in the definition of βε . Also recall the notations in Section 2.5. Set A := A(B2ε,�
′) =

{γ ′ ∩B2ε �=∅}. We have

E
[
x′ − βεy

′|A] = E
[
x′|A] −E

[
x0|A0(2ε,1)

]
.

Suppose ω′
η is a site percolation configuration on �′

η \ B1.9ε . Then the discrete analog Aη(B2ε,�) of A is an event
measurable with respect to ω′

η. Moreover, the face Dη(B2ε,�
′) induced by γ ′ at B2ε is also measurable with respect

to ω′
η. Now assume the law of ω′

η is the critical percolation conditioning on Aη. Let ω0
η be the random site percolation

configuration defined in the same manner as ω′
η with (B1,−i, i) in place of (�′, a′, b′).

By [8, Proposition 3.6], there exist an absolute constant c > 0 independent of �′ and a coupling (ω′
η,ω

0
η) such that for

10η < ε < d ′/10, with probability at least 1 − (2ε/d ′)c , we have Dη(B2ε,�
′) =Dη(B2ε,B1). In fact, [8, Proposition 3.6]

is stated for the 4-arm event but as explained in [8, Section 5.3], the result holds for the 2-arm case here with little
adaption. In this coupling, we extend ω′

η and ω0
η to B1.9ε by coloring each vertex black with probability 1/2 and white

with probability 1/2. Here we use the same randomness for ω′
η and ω0

η on B1.9ε while different vertices are colored

independently. By Theorem 2.1 and Lemma 2.9, letting η → 0, we have a continuum coupling (γ ′, γ 0,ω′,ω0) such that

• γ ′ and γ 0 are the scaling limits of the interfaces of ω′
η and ω0

η, respectively;

• ω′ and ω0 are the scaling limits of ω′
η and ω0

η, respectively, as quad-crossing configurations in the dH metric;
• ω′ has the law of ω as in Theorem 2.1 with �′ in place of �, conditioning on A;
• the law ω0

η is the same as ω′
η with (B1,−i, i) in place of (�′, a′, b′);

• with probability at least 1 − (2ε/d ′)c , we have D(B2ε,�
′) =D(B2ε,B1);

• ω′ = ω0 inside B1.9ε , which is independent of D(B2ε,�
′) and D(B2ε,B1).

Let F be the event that {D(B2ε,�
′) =D(B2ε,B1)}. Let x′, x0 be defined in the same way as x′, x0 with (γ ′, γ 0) replaced

by (γ ′, γ 0). (Here the only difference between (γ ′, γ 0) and (γ ′, γ 0) is that the former is unconditioned and the latter is
conditioned.) Then x′ = x0 on F and P[F ] ≥ 1 − (2ε/d ′)c. Therefore

∣∣E[
x′ − βεy

′|A]∣∣ ≤
(

2ε

d ′

)c(
E

[
x′|Fc

] +E
[
x0|Fc

])
. (24)

Let x̃′ be defined as in Lemma 3.5 with γ ′ in place of γ . Then x′ ≤ x̃′. By the nature of the coupling, x̃′ is independent
of F . Therefore,

E
[
x′|Fc

] ≤ E
[̃
x′] � ε7/4.
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Similarly, we have E[x0
∣∣ Fc] � ε7/4. Combining with (24), and using that x′ − βεy

′ = 0 unless A occurs, we see that
there exists a constant C > 0

∣∣E[
x′ − βεy

′]∣∣ ≤ C

(
ε

d ′

)c

· ε7/4 · P[A].

Now Lemma 2.6 yields (23). �

Remark 3.7. We assume that �′ is a Jordan domain in Lemma 3.6 because our proof crucially relies on the coupling
result of [8] in the discrete and the convergence result Theorem 2.1, which is only established for Jordan domains [3].
Lemma 3.6 is not directly applicable to Di , Dj in (21) since they are a.s. not Jordan (see Figure 1). To overcome this
issue, we extend Lemma 3.6 to Lemma 3.8 below.

Lemma 3.8. Suppose �′ is a simply connected domain containing the origin whose boundary is a continuous curve. Let
φ : I → C be a parametrization of ∂�′ for I ⊂R an interval, and let

dbl = {
z ∈ ∂�′ : ∃s �= t such that φ(s) = φ(t) = z

}
.

Let a′, b′ ∈ ∂�′ \ dbl and φ : H → �′ be a conformal map with φ(0) = a′, φ(∞) = b′. Let γ ′ be an SLE6 on (�′, a′, b′).
We say that (�′, a′, b′) satisfies Property (S) if P[dist(γ ′,dbl) > 0] = 1. If (�′, a′, b′) satisfies (S) then Lemma 3.6 holds
for (�′, a′, b′) with the same constants c, C.

Proof. Suppose dist(γ ′,dbl) > 0 a.s. Then P[dist(φ−1(γ ′),φ−1(dbl)) < δ] = oδ(1) for δ ∈ (0,1). Let Hδ = {z ∈ H :
dist(z,φ−1(dbl)) > δ} and �δ = φ(Hδ). Then P[γ ′ ⊂ �δ] = 1 − oδ(1). Since ∂Hδ is a simple curve, we see that �δ is
a Jordan domain, thus satisfying Lemma 3.6. By the locality property of SLE6, the total variation distance between the
law of γ ′ and the SLE6 on (�δ, a′, b′) is oδ(1). Since c, C in Lemma 3.6 are independent of δ, letting δ → 0, we prove
Lemma 3.8. �

In the notation of Lemma 3.8, we say that (�′, a′, b′) satisfies Property (W) if γ ′ ∩ dbl =∅ a.s. The following lemma
ensures that the complement of SLE6 hulls satisfies Property (W).

Lemma 3.9. Suppose γ is a chordal SLE6 as in Theorem 1.4. Then a.s. there exists no point p ∈ γ such that γ \ {p} is
disconnected and γ visits p at least twice.

Proof. This is proved in [13, Remark 8.8]. �

Recall that D• is a domain induced by a face with two ordered marked points on its boundary. By Lemma 3.9, for
• = i, j , it is a.s. the case that D• (after recentering at 0) satisfies Property (W). However, D• does not satisfy Property
(S) because the two boundary marked points could be accumulation points of dbl. (In fact, one can prove that the two
boundary marked points a.s. are such accumulation points.) We overcome this issue by the following lemma.

Lemma 3.10. For α ∈ (0,1), let Hα = (H \ αD) ∩ α−1D. Let γ 0 and γ α be the chordal SLE6 on (H,0,∞) and
(Hα,αi,α−1i) respectively. Let B ⊂ H be a box. Let σ and σ be the first and last, respectively, time that γ is con-
tained in B. Define σα and σα for γ α similarly. Then the total variation distance between γ |[σ,σ ] and γ α|[σα,σα] as curves
modulo monotone parametrizations is oα(1) as α → 0.

Proof. Let γ̃ α be a chordal SLE6 on (H \ αD, αi,∞). Let σ̃α and τ̃ α be the first and last, respectively, time that γ̃ α is
contained in B. We couple γ̃ α and γ 0 such that when running them backward, the two curves agree until hitting

√
αD; this

is possible by reversibility of SLE6. With probability 1−oα(1), the remaining segments of the two curves will not touch B.
Then the total variation distance between γ |[σ,∞) and γ̃ α|[̃σα,∞) as curves modulo monotone parametrizations is oα(1).
Similarly, the total variation distance between γ̃ α|[̃σα,̃τα] and γ α|[σα,σα] as curves modulo monotone parametrizations is
oα(1). This concludes the proof. �

Now we are ready to prove (21). Let φ be defined as in Lemma 3.8 with D• and x• in place of (�′, a′, b′) and 0. Recall
the notation in Lemma 3.10. We can define the analog of x•, y• with γ • replaced by the SLE6 on (φ(Hα),φ(αi),φ(α−1i))

and denote these two quantities by xα , yα . By Lemma 3.10, the total variation distance between the laws of (x•, y•) and
(xα, yα) is oα(1). On the other hand, (φ(Hα),φ(αi),φ(α−1i)) satisfies the stronger property (S) rather than just (W)
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because the boundary is simple and smooth near φ(αi) and φ(α−1i). Since c, C in Lemma 3.8 are independent of α,
letting α → 0, we arrive at

E[x• − βεy•|D•] ≤ C

(
2ε

ζ

)c

· ε7/4 · α2(2ε, ζ ) = oε/ζ (1)
ε2

ζ 1/4
.

This concludes the proof of (21) and hence of Proposition 3.2.

4. Minkowski content for percolation pivotal points

This section is devoted to proving Proposition 1.8 and Theorem 1.9.
Recall that SLEκ (ρ) and SLEκ(ρ1;ρ2) processes are variants of SLEκ whose driving functions have forcing terms

prescribed by force points with certain weights. SLEκ(ρ) has a single force point of weight ρ, while SLEκ (ρ1;ρ2) has
two force points of weight ρ1 and ρ2, respectively. We will not give the formal definition of these processes and refer
instead to [21, Section 2.2], because we only use a few well-established facts about the processes developed in the
framework of imaginary geometry [21].

We also recall the Brownian excursion on H from 0 to ∞. See [14, Chapter 2] for the precise definition. By the theory
of conformal restriction [13] the left and right boundary of the Brownian excursion and those of SLE6(2;2) have the
same law. (In fact, the hull of both Brownian excursion and SLE6(2,2) are the unique chordal restriction measure with
exponent 1.) Let C denote the intersection of the left and right boundaries of the Brownian excursion, i.e. the set of cut
points. By [11, Theorem 4.7], in the notation of Definition 1.2, we have the following.

Lemma 4.1. The occupation measure of C a.s. exists and is defined by its 3/4-dimensional Minkowski content.

Remark 4.2. In [11, Theorem 4.7], the notion of a cut point is defined via cut times. Namely, given a Brownian excursion
(E(t))t≥0 on H from 0 to ∞, the set of cut points of E is defined by C′ = {η(t) : t ≥ 0 andE((0, t)) ∩ E((t,∞)) = ∅}.
However, it can be checked that C′ = C a.s. The direction C′ ⊂ C a.s. is trivial. For the other direction, let H be the hull
of E, which has the same law as the hull of SLE6(2,2). By the SLE duality, the interior of H is a countable collection
of simply connected open sets, ordered by the order in which they are first visited if we go from 0 to ∞ inside H.
In particular, for each p ∈ C, C \ {p} has two components, one bounded and one unbounded, such that all the sets in
the bounded component are ordered before the sets in the unbounded component. Suppose there exists p ∈ C \ C′. Let
C1 and C2 be the bounded and unbounded component of C \ {p}, respectively. Let t1 be the first time E(t) = p and
q ∈ E((0, t1)) ∩ E((t1,∞)). Then q ∈ C1 and there exists t ′ > t1 such that E(t ′) = q . For a rational s ∈ (t1, t

′), E(s) a.s.
is contained in a component B of the interior of H. Moreover, the closure of B only has two points in C, one of which
must be visited by E twice. Since there are only countably many such points, this can be ruled out by the strong Markov
property of E and the fact that a planar Brownian motion a.s. does not visit any fixed point. This gives C ⊂ C′ a.s.

Run an SLE8/3(2;−4/3) on (H,0,∞) where the force points are at 0− and 0+. Conditioning on this curve, run an
SLE8/3(−4/3;4/3) on the domain to its left. Let H′ ⊂ H be the domain between these two curves. Conditioning on H′,
we run an SLE6(1;1) on (H′,0,∞). Then by the rule of interacting flow lines in [21], the marginal law of this curve is
an SLE6(2;2) on (H,0,∞) with force points at 0+ and 0−. See the left part of Figure 2 for an illustration.

Let ϒ1 be an SLE6(2) on (H,0,∞) where the single force point is at 0+. Then ϒ1 ∩R>0 =∅. Now conditioning on
ϒ1, let ϒ2 be a chordal SLE6 from 0 to ∞ on the domain to the right of ϒ1. By SLE duality (see [31, Theorem 5.1] and
[21, Theorem 1.4]) the right boundary of ϒ1 and the left boundary of ϒ2 have the same joint law as the left and right

Fig. 2. Left: The green curve is an SLE6(1,1) in H′ (which is the domain in light blue) and has the law of an SLE6(2,2) viewed as a curve in H. The
points of intersection of its left and right boundaries (red) have the law of the cut points C of a Brownian excursion in H. Right: The region (light green)
between the right boundary of ϒ1 and the left boundary of ϒ2 has the law of the region enclosed by an SLE6(1,1) in H.
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Fig. 3. Illustration of Lemma 4.4.

boundary of an SLE6(1,1). See the right part of Figure 2 for an illustration. Denote their intersection by P . Combined
with the paragraph above, we have the following.

Lemma 4.3. There is a coupling of C, H′, and P such that P is independent of H′, and C is the image of P under a
conformal map from H to H′ fixing 0 and ∞.

The next lemma links P to the set P in Proposition 1.8 and Theorem 1.9.

Lemma 4.4. Recall (�,a, b, c, d) and γ 1, γ 2 in Theorem 1.7. Let γ 2 be the time-reversal of γ 2. There exist random
times σ and τ for ϒ1 satisfying 0 < σ < τ < ∞ with positive probability, such that the following hold on the event that
0 < σ < τ < ∞.

1. The unbounded component of H \ (ϒ1([0, σ ]) ∪ ϒ1([τ,∞]) can be conformally mapped to � with (ϒ1(σ ),0,∞,

ϒ1(τ )) mapped to (a, b, c, d).
2. Conditioning on the realization of H \ (ϒ1([0, σ ]) ∪ ϒ1([τ,∞]), the joint law of the conformal image of ϒ1([σ, τ ])

and ϒ2 is the same as the conditional law of (γ 1, γ 2) conditioning on Ec.

See Figure 3 for an illustration.

Proof. Let t be the last time where Im(ϒ1) = 1. By [23, Lemma 2.2], ϒ1[0, t] stays close to any deterministic smooth
curve in H from the origin to a point on {z : Im z = 1} with positive probability. Therefore, with positive probability ϒ1

reaches a time s < t when Condition 1 in Lemma 4.4 is achieved with s, t in place of σ , τ . On the event that there is such
a time s ∈ (0, t), let σ be the infimum of such times. Note that σ > 0 a.s. since as s → 0 the extremal distance between
the arc from ϒ1(s) to 0 and the arc from ∞ to ϒ1(τ ) in the unbounded component of H\ (ϒ1([0, s])∪ϒ1([τ,∞])) goes
to zero. We set σ = ∞ if this event does not occur and let τ = t ∨ σ .

Viewing ϒ1, ϒ2 as two counterflow lines of different angles in the same imaginary geometry ([21]), for i = 1,2,
conditioning on ϒi , the law of ϒ3−i is a chordal SLE6. Therefore the domain Markov property and reversibility of SLE6
yield that the same resampling property holds for the conformal image of ϒ1([σ, τ ]) and ϒ2. By convergence of (γ 1

η , γ 2
η )

to (γ 1, γ 2), the same resampling property holds for (γ 1, γ 2) conditioning on Ec. As explained in [22, Appendix A], this
resampling property uniquely determines the law of the pair of curves. Thus we conclude the proof. �

Combining Lemmas 4.1, 4.3, and 4.4, we see that on the event Ec the occupation measure of P exists and is defined by
its 3/4-dimensional Minkowski content. The same argument works when conditioning on E. This gives Proposition 1.8.

The proof of Theorem 1.9 follows from the exact same argument as in the proof of Theorem 1.6. We just need to
replace one interface γ with the pair of interfaces γ 1, γ 2. Here we only point out the substitutes of the ingredients in the
argument in Section 3.

Suppose we are in the coupling of Theorems 1.7 and 2.1. Then Lemma 2.7 and the 4-arm case of Lemma 2.8 and
(7) give the analog of Lemmas 3.3, 3.4, and 3.5, in addition to (13). We can also adapt the concept of face in this
setting, where the number of arcs becomes 4 instead of 2. We use the same notations as in Section 2.5. Given B, let
A(B,�) = {P ∩ B �= ∅}. On the event A(B,�), we trace γ 1 and γ 2 and their time-reversals from a, b, c, d until first
hitting B. This defines a face at � at B induced by (γ 1, γ 2). Moreover, D(B,�) and G�(B,U) can be defined in the
same way as in Section 2.5. Then Lemmas 2.9 and 2.10 still hold with k = 2,3 replaced by k = 4,5. Now if we carry out
the argument in Section 3, Theorem 1.9 will be reduced to the analog of (21), which can still be proved by a coupling
argument as in Lemma 3.6 combined with approximation arguments as in Lemmas 3.8, 3.9, and 3.10.
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5. Convergence of the percolation interface under natural parametrization

In this section we prove Theorem 1.4. We pick the constant cl so that Theorem 1.6 holds.

Lemma 5.1. The curve γ̂η is tight for the ρ-metric.

Proof. We proceed by contradiction and suppose γ̂η is not tight. Then there exist δ0 > 0, ηn ↓ 0 and εn ↓ 0 such that

P
[
osc(εn; γ̂ηn) > δ0

] ≥ δ0, (25)

where osc(ε, f ) = sup|t−s|≤ε |f (t) − f (s)|. Write γ̂ηn as γ̂n and γηn as γn for simplicity. Given a realization of γn, let sn,
tn be the smallest times such that |γ̂n(sn) − γ̂n(tn)| = osc(εn; γ̂n). Then the random variables (sn, tn, γ̂n(sn), γ̂n(tn)) are
tight. By the Skorokhod embedding theorem, we can couple {γn} and γ such that (possibly) along a subsequence (which
is still indexed by n for the sake of simplicity), the following occur a.s.

1. γn converge to γ in the topology of Theorem 1.5;
2. sn and tn converge to the same limit, which we denote by t;
3. there are x, y ∈ � such that γ̂n(sn) → x and γ̂n(tn) → y.

We first observe that both x and y are on the trace of γ a.s. In fact, consider an open ball B(z, r) where z, r are both
rational. (We call such balls rational balls.) Then on the event that x ∈ B(z, r), it holds a.s. that for sufficiently large n,
γn ∩ B(z, r) �=∅. Given condition 1 in the coupling above, γ ∩ B(z, r) �=∅ a.s. (see Lemma 2.2).

By (25), in the coupling above, P[|x − y| ≥ δ0] ≥ δ0. Therefore we can find rational balls B(z1, r1) and B(z2, r2) such
that the following event occurs with positive probability:

1. x ∈ B(z1, r1) and y ∈ B(z2, r2);
2. max{r1, r2} < 0.1δ0 and B(z1,2r1) ∩ B(z2, r2) =∅.

We work on this event hereafter. Let γn and γ be parametrized as in Lemma 2.2 and let

ρ1
n = inf

{
t : γ (t) ∈ B(z1, r1)

}
,

σ 1
n = inf

{
t > ρ1

n : γn(t) /∈ B(z1,2r1)
}
,

λ1
n = inf

{
t > σ 1

n : γn(t) ∈ B(z2, r2)
}
.

Define ρ1, σ 1, λ1 similarly for γ . Note that Kλ1 \ Kσ 1 has non-empty interior a.s., where K· is the hull process of γ .
Therefore there exists a rational ball B(z3, r3) ⊂ Kλ1 \ Kσ 1 such that

γ ∩ B(z3, r3) = γ
([

σ 1, λ1]) ∩ B(z3, r3) �=∅.

By Lemma 2.2, we must have that for all sufficiently large n,

γn ∩ B(z3, r3) = γn

([
σ 1

n , λ1
n

]) ∩ B(z3, r3) �=∅.

Since mγ (∂B(z3, r3)) = 0, by Theorem 1.6, λ1
n − σ 1

n ≥ τn(B(z3, r3)) → c∗mγ (B(z3, r3)) > 0. Since γn([0, ρ1
n]) ⊂

γ̂n([0, sn]) and γ̂n([0, λ1
n]) ⊂ γn([0, tn]), while tn − sn → 0, we must have γn([0, σ 1

n ]) ⊂ γ̂n([0, sn]).
Now for k ≥ 2 we define ρk

n and σk
n inductively by

ρk
n = inf

{
t > σk−1

n : γn(t) ∈ B(z1, r1)
}
,

σ k
n = inf

{
t > ρk

n : γn(t) /∈ B(z1,2r1)
}
.

Then ρ2
n < ∞. By the same argument as above, for any fixed k, for n sufficiently large, we have γn([0, σ k

n ]) ⊂ γ̂n([0, sn])
hence ρk+1

n < ∞. This yields that with positive probability, γ returns to B(z1, r1) after hitting ∂B(z1,2r1) infinitely many
times. This contradicts the fact that almost surely γ is a continuous curve and never returns to B(z1,2r1) after a certain
finite time. �

Before proving Theorem 1.4 we prepare two lemmas.
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Lemma 5.2. Let γ , γ̂ be as in Theorem 1.4 and recall that mγ denotes the occupation measure of γ . For each fixed
t > 0, on the event mγ (�) > t let Kt be the hull of γ̂ ([0, t]) (see Lemma 2.6). Then mγ (∂Kt ) = 0 a.s.

Proof. By Assertion 2 above Definition 1.3, with probability 1, mγ (γ̂ (t)) = 0 for all t ≥ 0. To prove Lemma 5.2, it
suffices to show that for any fixed square Q ⊂ � and δ > 0, we have

mγ

(
Uδ

) = 0 a.s., where Uδ = Q ∩ ∂Kt \ B
(
γ̂ (t), δ

)
For 0 < r < 0.1ε < 0.01δ, let Uδ,ε be the union of all boxes of side length ε on εZ2 that has nonempty intersection with
Uδ �=∅. Let U

δ,ε
r be the r-neighborhood of Uδ,ε ∩γ . Suppose we are in the coupling of Theorem 2.1 so that γ is coupled

with ω ∈H�. By Lemma 2.6, for each x ∈ �, if x ∈ U
δ,ε
r , then we have

1. the 2-arm event occurs for the annulus of B(x, ε) \B(x, r);
2. the 3-arm event occurs for the annulus of B(x,0.5δ) \B(x,2ε).

By (7) and Lemma 2.11, there exists a constant C = C(δ) such that for any x ∈ �,

P
[
x ∈ Uδ,ε

r

] ≤ C(δ)(r/ε)1/4ε2/3 = C(δ)r1/4ε5/12.

By the definition of mγ in Definition 1.2, almost surely mγ (Uδ,ε) = Mink7/4(U
δ,ε ∩ γ ). By Fatou’s lemma and Defini-

tion 1.1,

E
[
mγ

(
Uδ

)] ≤ E
[
mγ

(
Uδ,ε

)] ≤ lim inf
r→0

E
[
r−1/4Area

(
Uδ,ε

r

)] ≤ C(δ)ε5/12.

Sending ε → 0 we have E[mγ (Uδ)] = 0 and we are done. �

Lemma 5.3. In the setting of Theorem 1.4, conditioning on γ , sample U from (0, τ (�)) uniformly and sample z ∈ �

according to τ(·)/τ (�). Then γ̂ (U) has the same law as z.

Proof. For t > 0, let Kt be the hull of γ̂ ([0, t]). Namely At is the set A in Lemma 5.2. For s ∈ [0, t), let Ks,t = Kt \ Ks .
It is proved in [15, Equation (27)] that a.s.

mγ

(
γ̂ [s, t]) = t − s for all t > s ≥ 0. (26)

By Theorem 1.6, Lemma 5.2, and (26), for a fixed pair of s, t we have τ(Ks,t ) = t − s a.s. For each n ∈ N, we can couple
z and U such that both γ̂ (U) and z fall in Ki/n,(i+1)/n for some i < n. By the continuity of γ̂ , we conclude the proof. �

Proof of Theorem 1.4. According to Lemma 5.1, by possibly restricting to a subsequence, we can assume that γ̂η

converge a.s. to a curve γ ′ in the ρ-metric. Furthermore, we can assume that along this subsequence (τη, γη) converges
to (τ, γ ) a.s. in the topology of Theorem 1.5, where γ is a chordal SLE6 (viewed as a curve modulo reparametrization of
time). In this coupling, γ ′ is a parametrization of γ with total length τ(�). Let γ̂ be γ with its natural parametrization. It
suffices to show that γ ′ = γ̂ a.s.

Conditioning on all the data above, we can sample a random time U uniformly in (0, τ (�)) and a random edge
eη according to τη on γη such that P[γ̂η(U) ∈ eη] ≥ 1 − oη(1). Notice that γ̂η(U) converges to γ ′(U) a.s. Therefore
eη converge to γ ′(U) a.s. Here we identify edges on the hexagonal lattice with their midpoints since the difference is
negligible in the scaling limit. On the other hand, since τη converge to τ in the Prokhorov metric a.s., by Lemma 5.3 we
have that eη converges in law to γ̂ (U). This implies that γ ′(U) and γ̂ (U) are equal in law.

Given any fixed t > 0, on the event that t ∈ (0, τ (�)), let A be the hull of γ̂ ([0, t]) and Aε = {z ∈C : dist(z,A)) ≤ ε}.
Since τ(A\∂A) ≤ t and (by Theorem 1.6 and Lemma 5.2) τ(∂A) = 0, we have limε→0 τ(Aε) = t . Thus for all δ > 0 with
t + 2δ < τ(�), we can find a (random) ε > 0 a.s. such that τ(Aε) ≤ t + δ. Therefore lim supη→0 τη(Aε) ≤ t + δ. Hence
for sufficiently small η there exists tδη ∈ [t, t + 2δ] such that γ̂η(t

δ
η) /∈ Aε . By possibly passing to a subsequence, we can

assume limη→0 tδη → tδ . Sending η → 0, we have γ ′(tδ) /∈ γ̂ ([0, t]). Since γ ′ and γ̂ have the same range, we must have
γ̂ (t) ∈ γ ′([0, tδ]). Letting δ → 0, we have γ̂ (t) ∈ γ ′([0, t]). By considering rational t ’s and then using the continuity of γ̂

and γ ′, we see that a.s. γ̂ ([0, t]) ⊂ γ ′([0, t]) for all t ∈ (0, τ (�)). Combined with γ ′(U)
d= γ̂ (U), we have γ ′(U) = γ̂ (U)

hence γ ′ = γ̂ a.s. �



Natural parametrization of percolation interface and pivotal points 25

References

[1] V. Beffara. The dimension of the SLE curves. Ann. Probab. 36 (4) (2008) 1421–1452. MR2435854 https://doi.org/10.1214/07-AOP364
[2] O. Bernardi, N. Holden and X. Sun. Percolation on triangulations: A bijective path to Liouville quantum gravity. Mem. Amer. Math. Soc., to

appear. Available at arXiv:1807.01684.
[3] F. Camia and C. M. Newman. Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 (1) (2006) 1–38. MR2249794

https://doi.org/10.1007/s00220-006-0086-1
[4] F. Camia and C. M. Newman. Critical percolation exploration path and SLE6: A proof of convergence. Probab. Theory Related Fields 139 (3–4)

(2007) 473–519. MR2322705 https://doi.org/10.1007/s00440-006-0049-7
[5] B. Duplantier, J. Miller and S. Sheffield. Liouville quantum gravity as a mating of trees. Preprint. Available at arXiv:1409.7055. MR2819163

https://doi.org/10.1007/s00222-010-0308-1
[6] C. Garban, N. Holden, A. Sepúlveda and X. Sun. Liouville dynamical percolation. Preprint. Available at arXiv:1905.06940.
[7] C. Garban, G. Pete and O. Schramm. The Fourier spectrum of critical percolation. Acta Math. 205 (1) (2010) 19–104. MR2736153

https://doi.org/10.1007/s11511-010-0051-x
[8] C. Garban, G. Pete and O. Schramm. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 (4) (2013)

939–1024. MR3073882 https://doi.org/10.1090/S0894-0347-2013-00772-9
[9] C. Garban, G. Pete and O. Schramm. The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. (JEMS) 20 (5) (2018)

1195–1268. MR3790067 https://doi.org/10.4171/JEMS/786
[10] E. Gwynne, N. Holden and X. Sun. Mating of trees for random planar maps and Liouville quantum gravity: A survey. Panoramas et Synthèses.

To appear. Available at arXiv:1910.04713.
[11] N. Holden, G. F. Lawler, X. Li and X. Sun. Minkowski content of Brownian cut points. Ann. Inst. Henri Poincaré Probab. Stat., to appear.

Available at arXiv:1803.10613.
[12] N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. Preprint. Available at arXiv:1905.13207.
[13] G. Lawler, O. Schramm and W. Werner. Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 (4) (2003) 917–955. MR1992830

https://doi.org/10.1090/S0894-0347-03-00430-2
[14] G. F. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. American Mathematical Society,

Providence, RI, 2005. MR2129588 https://doi.org/10.1090/surv/114
[15] G. F. Lawler and M. A. Rezaei. Minkowski content and natural parameterization for the Schramm–Loewner evolution. Ann. Probab. 43 (3) (2015)

1082–1120. MR3342659 https://doi.org/10.1214/13-AOP874
[16] G. F. Lawler and S. Sheffield. A natural parametrization for the Schramm–Loewner evolution. Ann. Probab. 39 (5) (2011) 1896–1937. MR2884877

https://doi.org/10.1214/10-AOP560
[17] G. F. Lawler and F. Viklund. Convergence of loop-erased random walk in the natural parametrization. Preprint. Available at

arXiv:1603.05203.
[18] G. F. Lawler and F. Viklund. Convergence of radial loop-erased random walk in the natural parametrization. Preprint. Available at

arXiv:1703.03729.
[19] G. F. Lawler and B. M. Werness. Multi-point Green’s functions for SLE and an estimate of Beffara. Ann. Probab. 41 (3A) (2013) 1513–1555.

MR3098683 https://doi.org/10.1214/11-AOP695
[20] G. F. Lawler and W. Zhou. SLE curves and natural parametrization. Ann. Probab. 41 (3A) (2013) 1556–1584. MR3098684 https://doi.org/10.

1214/12-AOP742
[21] J. Miller and S. Sheffield. Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields 164 (3–4) (2016) 553–705. MR3477777

https://doi.org/10.1007/s00440-016-0698-0
[22] J. Miller, S. Sheffield and W. Werner. Non-simple SLE curves are not determined by their range. Preprint. Available at arXiv:1609.04799.

MR4055986 https://doi.org/10.4171/jems/930
[23] J. Miller and H. Wu. Intersections of SLE paths: The double and cut point dimension of SLE. Probab. Theory Related Fields 167 (1–2) (2017)

45–105. MR3602842 https://doi.org/10.1007/s00440-015-0677-x
[24] C. Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-

ematical Sciences] 299. Springer-Verlag, Berlin, 1992. MR1217706 https://doi.org/10.1007/978-3-662-02770-7
[25] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000) 221–288. MR1776084

https://doi.org/10.1007/BF02803524
[26] O. Schramm and S. Smirnov. On the scaling limits of planar percolation. Ann. Probab. 39 (5) (2011) 1768–1814. With an appendix by Christophe

Garban. MR2884873 https://doi.org/10.1214/11-AOP659
[27] S. Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J. 147 (1) (2009) 79–129. MR2494457 https://doi.org/10.1215/

00127094-2009-007
[28] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (3)

(2001) 239–244. MR1851632 https://doi.org/10.1016/S0764-4442(01)01991-7
[29] S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (5–6) (2001) 729–744. MR1879816

https://doi.org/10.4310/MRL.2001.v8.n6.a4
[30] W. Werner. Lectures on two-dimensional critical percolation. In Statistical Mechanics 297–360. IAS/Park City Math. Ser. 16. Amer. Math. Soc.,

Providence, RI, 2009. MR2523462 https://doi.org/10.1090/pcms/016/06
[31] D. Zhan. Duality of chordal SLE. Invent. Math. 174 (2) (2008) 309–353. MR2439609 https://doi.org/10.1007/s00222-008-0132-z

http://www.ams.org/mathscinet-getitem?mr=2435854
https://doi.org/10.1214/07-AOP364
http://arxiv.org/abs/arXiv:1807.01684
http://www.ams.org/mathscinet-getitem?mr=2249794
https://doi.org/10.1007/s00220-006-0086-1
http://www.ams.org/mathscinet-getitem?mr=2322705
https://doi.org/10.1007/s00440-006-0049-7
http://arxiv.org/abs/arXiv:1409.7055
http://www.ams.org/mathscinet-getitem?mr=2819163
https://doi.org/10.1007/s00222-010-0308-1
http://arxiv.org/abs/arXiv:1905.06940
http://www.ams.org/mathscinet-getitem?mr=2736153
https://doi.org/10.1007/s11511-010-0051-x
http://www.ams.org/mathscinet-getitem?mr=3073882
https://doi.org/10.1090/S0894-0347-2013-00772-9
http://www.ams.org/mathscinet-getitem?mr=3790067
https://doi.org/10.4171/JEMS/786
http://arxiv.org/abs/arXiv:1910.04713
http://arxiv.org/abs/arXiv:1803.10613
http://arxiv.org/abs/arXiv:1905.13207
http://www.ams.org/mathscinet-getitem?mr=1992830
https://doi.org/10.1090/S0894-0347-03-00430-2
http://www.ams.org/mathscinet-getitem?mr=2129588
https://doi.org/10.1090/surv/114
http://www.ams.org/mathscinet-getitem?mr=3342659
https://doi.org/10.1214/13-AOP874
http://www.ams.org/mathscinet-getitem?mr=2884877
https://doi.org/10.1214/10-AOP560
http://arxiv.org/abs/arXiv:1603.05203
http://arxiv.org/abs/arXiv:1703.03729
http://www.ams.org/mathscinet-getitem?mr=3098683
https://doi.org/10.1214/11-AOP695
http://www.ams.org/mathscinet-getitem?mr=3098684
https://doi.org/10.1214/12-AOP742
http://www.ams.org/mathscinet-getitem?mr=3477777
https://doi.org/10.1007/s00440-016-0698-0
http://arxiv.org/abs/arXiv:1609.04799
http://www.ams.org/mathscinet-getitem?mr=4055986
https://doi.org/10.4171/jems/930
http://www.ams.org/mathscinet-getitem?mr=3602842
https://doi.org/10.1007/s00440-015-0677-x
http://www.ams.org/mathscinet-getitem?mr=1217706
https://doi.org/10.1007/978-3-662-02770-7
http://www.ams.org/mathscinet-getitem?mr=1776084
https://doi.org/10.1007/BF02803524
http://www.ams.org/mathscinet-getitem?mr=2884873
https://doi.org/10.1214/11-AOP659
http://www.ams.org/mathscinet-getitem?mr=2494457
https://doi.org/10.1215/00127094-2009-007
http://www.ams.org/mathscinet-getitem?mr=1851632
https://doi.org/10.1016/S0764-4442(01)01991-7
http://www.ams.org/mathscinet-getitem?mr=1879816
https://doi.org/10.4310/MRL.2001.v8.n6.a4
http://www.ams.org/mathscinet-getitem?mr=2523462
https://doi.org/10.1090/pcms/016/06
http://www.ams.org/mathscinet-getitem?mr=2439609
https://doi.org/10.1007/s00222-008-0132-z
https://doi.org/10.1214/12-AOP742
https://doi.org/10.1215/00127094-2009-007

	Introduction
	The scaling limit of the percolation interface under its natural parametrization
	The natural measure on pivotal points

	Preliminaries
	Basic notations
	Quad-crossing representations of percolation
	Some scaling limit results
	Arm events
	Face induced by the percolation exploration

	Equivalence of the two measures on the interface
	Minkowski content for percolation pivotal points
	Convergence of the percolation interface under natural parametrization
	References

