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ABSTRACT

This study develops a framework for property prediction and multi-objective optimization of strain-hardening
cementitious composites (SHCC) based on automated machine learning. Three machine learning models are
developed to predict the compressive strength, tensile strength, and ductility of SHCC. A tree-based pipeline
optimization method is enhanced and used to enable automatic configuration of machine learning models, which
are trained using three datasets considering 14 mix design variables and achieve reasonable prediction accuracy.
With the predictive models, five objective functions are formulated for mechanical properties, life-cycle cost, and
carbon footprint of SHCC, and the five objective functions are optimized in six design scenarios. The objective
functions are optimized using innovative optimization and decision-making techniques (Unified Non-dominated
Sorting Genetic Algorithm III and Technique for Order of Preference by Similarity to Ideal Solution). This
research will promote efficient development and applications of high-performance SHCC in concrete and con-

struction industry.

1. Introduction

Strain-hardening cementitious composite (SHCC) is a family of high-
performance fiber-reinforced cementitious composites that are capable
of resisting higher tensile loads after they are cracked. SHCC is also
known as engineered cementitious composite and bendable concrete in
different contexts. SHCC features high crack resistance, ductility,
toughness, and control of crack width (Li, 2003). SHCC attracts
increasing interest in concrete and construction industry since it out-
performs conventional fiber-reinforced concrete in terms of
post-cracking properties (Nguyé;n et al., 2021; Xu et al., 2020, 2021;
Meng and Khayat, 2016) and durability (Liu et al., 2017) under various
threats (Jun and Mechtcherine, 2010). After cracked, SHCC has retained
load-carrying capabilities with controlled crack widths usually narrower
than 100 pm (Li, 2019). The fine cracks benefit long-term durability
because microcracks do not highly compromise the impermeability of
SHCC (Li, 2019). Besides the exceptional mechanical properties and
durability, SHCC can be prepared using high-volume waste materials to
reduce material cost and carbon footprint. For example, high-volume fly
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ash is usually used to prepare SHCC with improved sustainability and
improve fresh and hardened properties (Bao et al., 2019). The use of
supplementary cementitious materials also promoted self-healing of
microcracks in SHCC, which further improved the long-term durability
(Li and Herbert, 2012). The use of polymeric fibers such as polyvinyl
alcohol (PVA) and polypropylene (PP) fibers in SHCC was capable of
significantly enhancing the fire resistance and mitigating explosive
spalling of SHCC exposed to high temperatures (Li et al., 2017a). Due to
the superior material properties of SHCC, many successful structural
applications were reported. SHCC was used to construct and repair en-
gineering structures to enhance the resilience to various threats such as
earthquake, impact, and fire, as well as service life while reducing
maintenance costs (Li et al., 2017b, ¢; Liu et al., 2019).

Since the desired material properties of SHCC vary in different ap-
plications, the mix design of SHCC should be tailored for different use
cases. In the literature, theoretical models based on micromechanics
were developed to design SHCC by mechanistically tuning the matrix,
fiber, and fiber-matrix interface (Kanda and Li, 1999). The micro-
mechanics models intrinsically link the key mechanical properties of
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Fig. 1. Flowchart of the proposed method for prediction and multi-objective optimization.

SHCC with the material parameters that can be quantitatively evaluated
through experiments such as flexural tests for evaluating the toughness
of cementitious matrix and single fiber pullout tests for evaluating the
fiber-matrix interface bond strength and toughness. Other important
methods included lattice models and extended finite element models
(Kang and Bolander, 2016; Huang and Zhang, 2016). However, the
design of SHCC for practical applications still involves extensive
experimental efforts that are time consuming and costly because mul-
tiple parameters must be determined through tests (Kanda and Li, 1999).
The demand for efforts is exacerbated by the fact that the mechanical
properties and sustainability of SHCC are sensitive to many mix design
variables related to adopted raw materials (Lepech et al., 2008;
Tosun-Felekoglu et al., 2017; Zhang et al., 2016). In a nutshell, there is a
lack of effective and efficient methods to simultaneously optimize the
mechanical properties, cost, and sustainability of SHCC for different
intended industrial applications.

Besides the methods based on theoretical models, data-driven
intelligent prediction and optimization methods received increasing
attention in the development of materials. For prediction of material
properties, machine learning models were developed to link mix design
with properties (Huang et al., 2021; Ke and Duan, 2021; Lu et al.,
2021a-c; Sun et al., 2021). Trained machine learning models were used
to predict compressive strengths and elastic moduli of various types of
concrete (Cook et al., 2019; Han et al., 2020; Marani et al., 2020).
Recently, micromechanics models were integrated with machine
learning models to enable reasonable prediction of tensile strength and
ductility (Guo et al., 2021a). On the other hand, advanced optimization
techniques such as metaheuristic optimization were developed to opti-
mize the mix design of concrete (Sun et al., 2021; Zhang et al., 2020),
while the mechanical properties of concrete were predicted by
high-fidelity predictive models. Inspired by the previous studies, it is
hypothesized that predictive models based on machine learning can be
integrated with optimization techniques for property prediction and mix
design optimization of SHCC. It is further posited that multiple objective
functions can be considered simultaneously to optimize the mix design

of SHCC.

With the above hypothesis, this research aims to develop a new
framework for property prediction and multi-objective optimization of
SHCC, to promote the efficacy and efficiency in development and
structural applications of SHCC. To this end, this research has four ob-
jectives and contributions: (1) to establish a framework integrating ca-
pabilities of property prediction and multi-objective optimization for
SHCC; (2) to develop high-fidelity predictive models to predict the
compressive strength, tensile strength, and ductility of SHCC; (3) to
present objective functions for optimizing the compressive strength,
tensile strength, ductility, material cost, and carbon footprint of SHCC;
and (4) to demonstrate the framework for multi-objective optimization
of SHCC mixtures in six design scenarios.

Compared with previous research on prediction and optimization of
concrete with data-driven methods, this research is novel in three as-
pects: (1) This research develops a method to automate the configura-
tion of machine learning models and hyperparameter tuning based on a
Tree-based Pipeline Optimization Tool (TPOT) (Olson and Moore,
2019). The TPOT combines a tree representation of machine learning
models with a genetic algorithm to optimize the prediction accuracy. (2)
This research considers a wide range of raw materials and mix design
variables in datasets used to train machine learning models and in-
tegrates multiple data processing methods to improve the quality of
datasets. (3) This research utilizes Unified Non-dominated Sorting Ge-
netic Algorithm III (UNSGA-III) (Seada and Deb, 2014) for
multi-objective optimization of SHCC and selects Pareto optimal solu-
tions using the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) (Hwang and Yoon, 1981). This study is expected to
promote development of SHCC for the concrete and construction
industry.

The remainder of the paper is organized as follows: Section 2 pre-
sents the methodology of surrogate modeling-based optimization. Sec-
tion 3 discusses the developed machine learning models. Section 4
discusses the optimization process and the optimal design solutions of
SHCC. Section 5 summarizes the conclusions.
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Table 1

Summary statistics of the design variables.
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Number Design variable Unit Range Mean Median Standard deviation
1 Cement-to-binder ratio 1 0.152-1 0.474 0.413 0.218
2 Fly ash-to-binder ratio 1 0-0.848 0.350 0.494 0.306
3 Slag-to-binder ratio 1 0-0.808 0.128 0.000 0.209
4 Rice husk-to-binder ratio 1 0-0.36 0.005 0.000 0.032
5 Limestone-to-binder ratio 1 0-0.577 0.025 0.000 0.083
6 Metakaolin-to-binder ratio 1 0-0.094 0.002 0.000 0.014
7 Silica fume-to-binder ratio 1 0-0.206 0.017 0.000 0.038
8 Sand-to-binder ratio 1 0-1.4 0.406 0.360 0.205
9 Water-to-binder ratio 1 0.11-0.80 0.267 0.260 0.082
10 Superplasticizer content % 0-2.7 0.807 0.500 0.614
11 Fiber volume % 0-3 1.890 2.000 0.434
12 Fiber length mm 6-27 12.01 12.00 3.604
13 Fiber diameter pm 12-39 33.49 39.00 8.611
14 Fiber Young’s modulus GPa 4-200 60.03 42.80 37.71
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Fig. 2. Normal density functions of the investigated mechanical properties of SHCC: (a) compressive strength, (b) tensile strength, and (c) ductility.
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Fig. 3. The variance inflation factors corresponding to the developed datasets. The horizontal axis is in logarithmic scale.

2. Methodology
2.1. Overview

Fig. 1 shows the presented framework for data-driven prediction and
design optimization of SHCC through integrating automated machine
learning, data processing, and multi-objective optimization. The
framework includes seven steps: (1) Three datasets are established by
collecting test data from previous publications such as papers and re-
ports, as elaborated in Section 2.2. (2) Data cleaning is performed using
the isolation forest method to identify and remove anomalous data from
the three datasets, as elaborated in Section 2.3. (3) High-fidelity pre-
dictive models are developed using the processed datasets and the TPOT
for automated machine learning and hyperparameter tuning, as

elaborated in Section 2.4. (4) Different design objectives are defined
using the surrogate models, as elaborated in Section 2.5. (5) Multi-
objective optimization problems are defined, as elaborated in Section
2.6. (6) The UNSGA-III is applied to solve the defined multi-objective
optimization problems, as elaborated in Section 2.7. (7) The TOPSIS is
used to select the optimal solution, as elaborated in Section 2.8.

2.2. Development of dataset

Datasets are essential for development of predictive models based on
machine learning. This study develops three large datasets for the
compressive strength, tensile strength, and ductility of SHCC by
extracting 745 test data from references (Ding et al., 2018a, 2018b; Guo
etal., 2021b; Kim et al., 2007; Lepech et al., 2008; Li et al., 2002, 2017a,
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Table 2

Description of the design objectives.
Design objective Description Goal
F Compressive strength Maximization
Fa Tensile strength Maximization
F3 Ductility Maximization
Fy Carbon footprint Minimization
Fs Material cost Minimization

2019, 2019; Lin et al., 2020; Said and Razak, 2015; Turk and Nehdi,
2018; Wang et al., 2020; Xu et al., 2019a, 2019b; Yu et al., 2017, 2018,
2019, 2020, 2019; Zheng et al., 2018; Zhou et al., 2010, 2019; Zhu et al.,
2012). The numbers of data points for the compressive strength, tensile
strength, and ductility are 264, 244, and 237, respectively. A total of 14
design variables are selected according to reference (Guo et al., 2021a).
Table 1 shows the design variables and their varying ranges, the mean
and median values, as well as the standard deviation. The table indicates
large variations of the units, distributions, and ranges of the variables.

Statistical analysis was performed to evaluate the distributions of
mechanical properties of SHCC in the established datasets. Fig. 2 shows
the normal density functions of the compressive strength, tensile
strength, and ductility. In this research, ductility refers to the ultimate
tensile strain corresponding to peak tensile stress in the constitutive
relationship of a SHCC mixture. The average values of the compressive
strength, tensile strength, and ductility are 50 MPa, 5 MPa, and 3%,
respectively.

Multicollinearity is a common problem in multivariate regression
analysis and compromises the prediction accuracy when the input var-
iables are highly correlated (Chatterjee and Hadi, 2015). This study
diagnoses existence of multicollinearity using the variance inflation
factor as elaborated in reference (Moré, 1978). Overall, the variance
inflation factor increases with the multicollinearity extent. When there
is no multicollinearity, the variance inflation factor is equal to one,
which is the smallest value. A variance inflation factor that is larger than
five indicates significant multicollinearity (James et al., 2013). Fig. 3
shows that 9 out of 14 variables are highly correlated, indicating that it
is necessary to process the data to eliminate multicollinearity.

2.3. Data cleaning

Datasets developed using previous publications generally contain
anomalous data. Anomalies can be generated by different causes such as
the operation errors in experiments, data entry, and data processing
(Zimek and Schubert, 2017). This study performs data cleaning to
identify and remove anomalous data using a decision tree algorithm
based on the isolated forest method (Liu et al., 2008). The idea is that
anomalous data have different features and can be separated from the
normal data. The isolated forest method has two steps: (1) to train an
ensemble of binary decision trees based on a dataset; and (2) to evaluate
the anomaly score of each data point based on the ensemble model.

Table 3
The density, carbon footprint, and cost of materials.
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2.4. Tree-based pipeline optimization (TPOT)

The prediction accuracy of a machine learning model depends on its
architecture, dataset, and hyperparameters (Pappa, 2020). It is tedious
and unreliable to manually optimize the architecture, dataset, and
hyperparameters. This study proposes to maximize the prediction ac-
curacy through employing the TPOT that automatically configures
machine learning models, processes dataset, and tunes hyperparameters
based on a genetic algorithm (Olson and Moore, 2019; Willis et al.,
1997). In this study, the TPOT considers various types of data processing
and machine learning operators. Data processing is conducted to pre-
pare the input data for training of machine learning models. In data
processing, multiple algorithms are considered for feature preprocessing
and construction. Feature preprocessing is applied to make the variables
more meaningful and representative, while feature construction is
applied to generate new variables and eliminate old variables, aiming to
improve the performance of machine learning model. Multiple machine
learning operators, including linear methods such as logistic regression
and Ridge, individual tree-based methods such as decision tree, and
ensemble tree-based models such as XGBoost and random forest (Olson
and Moore, 2019) are considered by TPOT. Combination of machine
learning operators is also considered using a stacking technique, which
applies multiple machine learning operators to the dataset and uses the
predictions of operators as the inputs of a machine learning operator,
called meta-learner (Sikora, 2015).

Since Section 2.2 indicates occurrence of multicollinearity, two
methods are applied to eliminate multicollinearity, which are principal
component analysis (Wold et al., 1987) and independent component
analysis (Comon, 1994). Although TPOT considers the two component
analysis methods for configuration, it is possible that neither of the
methods is selected by TPOT. Therefore, TPOT is modified to select a
component analysis method if multicollinearity is existed. TPOT algo-
rithm follows the following four sequential steps: (1) A set of 100 ma-
chine learning models with random configurations are generated, and
the cross-validation accuracy of the models is evaluated using the
established dataset. (2) The models are evaluated based on two criteria,
which are cross-validation accuracy and number of operators. The top
20 machine learning models are selected by constructing a Pareto-front
based on the two criteria according to NSGA-II (Deb et al., 2002). (3)
New machine learning models are generated by performing three ge-
netic operations (crossover, mutation, and selection) (Olson and Moore,
2019; Willis et al., 1997) with the 20 selected models. (4) Steps 2 and 3
are repeated for 100 times. The configuration of the machine learning
model and the hyperparameters determined from the above steps are
elaborated in Section 3.

2.5. Design objectives

Five objectives are considered for optimization of SHCC, as listed in

Number Material Density (kg/m%) COy-e (kg/kg) Cost ($/kg) References

1 Cement 3130 0.832 0.11 (Chiaia et al., 2014; Heirman et al., 2009)

2 Fly ash 2350 0.009 0.046 (Heirman et al., 2009; Purnell, 2013)

3 Slag 2880 0.019 0.10 (Aydin and Baradan, 2013; Purnell, 2013)

4 Rice husk ash 2140 0.013 0.113 (Gursel et al., 2016; Hossain and Elsayed, 2018; Sathawane et al., 2013)
5 Limestone powder 2700 0.017 0.122 (Heirman et al., 2009; Miiller et al., 2014)

6 Metakaolin 2620 0.42 0.50 (Heath et al., 2014; Poon et al., 2001)

7 Silica fume 2170 0.0003 0.50 (Habert et al., 2013; Nepomuceno et al., 2012)

8 Sand 2640 0.0025 0.014 (Chiaia et al., 2014; Heirman et al., 2009)

9 Water 1000 0.0003 0 (Chiaia et al., 2014; Heirman et al., 2009)

10 Superplasticizer 1080 0.720 3.0 (Heirman et al., 2009; Long et al., 2015)

11 PVA fiber 1300 3.43 8.0 (Pakravan and Ozbakkaloglu, 2019; Yew et al., 2015)

12 PE fiber 970 4.08 11.0 (Pakravan and Ozbakkaloglu, 2019; Ranade, 2014; Yu et al., 2020)

13 PP fiber 900 2.70 1.75 (Ahangari et al., 2013; Chen et al., 2021; Pakravan and Ozbakkaloglu, 2019)
14 Steel fiber 7800 2.75 4.50 (Chen et al., 2021; Chiaia et al., 2014; Pakravan and Ozbakkaloglu, 2019)
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Table 4
The physical and mechanical properties of fibers.
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Table 5
The proposed multi-objective design scenarios.

Fiber type Length (mm) Diameter (pm) Young’s modulus (GPa)
PVA 8-12 39 42.8

PE 12-18 20-25 100

PP 10-12 12-18 6

Steel 27 40 200

Table 2. Three objective functions (F1, Fo, and F3) are defined for the
mechanical properties, including compressive strength, tensile strength,
and ductility. The fourth objective function (F4) is defined to enhance
sustainability by minimizing carbon footprint. The unit carbon footprint
(CF) for 1 m® of SHCC is defined as:

CF = ZM/( X COZ—e,k (1)

k=0

where n is the number of the ingredient types; My is the mass of k-th
ingredient; CO»_.x is the carbon dioxide equivalent of the k-th
ingredient.

The fifth objective function (Fs) is defined to improve economic
benefits by minimizing material cost. The unit material cost for 1 m> of
SHCC is defined as:

C=) M xc @
k=0

where ¢y is the cost of 1 kg of the k-th ingredient.

Table 3 lists the inventory for the unit carbon footprint and cost as
well as density of ingredients of SHCC. Seven types of binder are
considered, including cement and six types of supplementary cementi-
tious materials such as slag, fly ash, and rice husk ash, which were
otherwise landfilled as industrial solid wastes. Four types of fibers are
considered, which are PVA fiber, PP fiber, polyethylene (PE) fiber, and
steel fiber. The unit cost of each ingredient is average of different values
reported in references. The physical and mechanical properties of the
fibers are listed in Table 4.

2.6. Multi-objective design scenarios

Based on the five design objectives, this study investigates six multi-
objective design problems for optimization of SHCC to accommodate
different applications and scenarios, as listed in Table 5. DS; and DSy are
defined to maximize the mechanical properties of SHCC; DS, and DSs
are defined to maximize the mechanical performance and minimize the
carbon footprint; DS3 and DSg are defined to maximize the mechanical
performance and minimize the material cost and carbon footprint.

2.7. Multi-objective optimization

This study adopts an evolutionary algorithm UNSGA-III for multi-
objective optimization (Seada and Deb, 2014). UNSGA-III was devel-
oped based on the Non-dominated Sorting Genetic Algorithm III
(NSGA-III) (Deb and Jain, 2014), which was previously developed and
commonly used for multi-objective optimization (Seada and Deb, 2014).
In general, a multi-objective optimization problem involves conflicting

Design scenarios Design objective

F F» Fs F4 Fs
DS, x v/ v x x
DS, X v v v x
DS x v v v v
DS, v v v x x
DSs v v v v x
DS v v v v v

Note: the symbol “X” means “not included”, and the symbol “/” means
“included”.

objectives, so in general, the optimal solutions of different objectives are
different. UNSGA-III is employed to generate a set of optimal solutions,
called Pareto optimal solutions. With a Pareto optimal solution, none of
the objective functions can be further improved without degrading the
other objective functions, as elaborated in reference (Seada and Deb,
2014). The numbers of iterations and population size are set to 300 and
100. The two values are selected by trial and error to obtain
near-optimal solutions and avoid premature convergence. A design
constraint is imposed to ensure that the mass of binder is equal to the
sum of mass of cement and supplementary cementitious materials:

7 2
(ZV,»—I) <e ()
i=1

where V; is the i-th design variable in Table 1; and ¢ is the tolerance,
which is set to 0.001. The upper and lower bounds of the variables are
defined in Table 1.

2.8. Selection of optimal solutions

This study adopts TOPSIS for decision-making of multi-objective
optimization through ranking the Pareto optimal solutions obtained
from UNSGA-III (Hwang and Yoon, 1981). The Pareto optimal solution
ranked as the highest is selected as the final design solution of SHCC. The
basic mechanism of TOPSIS is to determine the distance from each so-
lution to the ideal solution and the distance from each solution to the
worst solution in a n-dimensional objective space, where n is the number
of objective functions. The solution with the first rank has the shortest
distance from the ideal solution and the longest distance from the worst
solution. The process of TOPSIS to rank m number of Pareto optimal
solutions of a multi-objective problem with n number of objective
functions is as follows:

e The objective function values of the Pareto optimal solutions are
normalized by:

aij
(T
D i A

where g;; and 7;; are the actual and normalized values of the j-th

4

objective function value corresponding to the i-th Pareto optimal
solution.

e The ideal and worst solutions can be determined by:

St={(Min(n;)|i=1,2,...m|je J "), (Max(n,;)|i=1,2,...m|je J")}={s].s3,....s!} (5a)

S™={(Max(n;;)| i=1,2,...m|je J7), Min(n,;)|i=1,2,...m|je J*)}={s7,s;,....5, } (5b)
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Fig. 4. Depiction of the configuration of the machine learning model determined by the TPOT.

o The L?-norm distance from the Pareto optimal solution to the ideal

Table 6 and worst solutions are defined as:

The hyperparameters of the machine learning models.

Machine learning model Hyperparameter name Optimal hyperparameter

(6a)

SVM Epsilon 1

Loss function L1 loss

Regularization parameter 20
AdaBoost Learning rate 0.01

Loss function Squared error (6b)

Number of estimators 200
XGBoost Learning rate 0.1

Loss function Squared error

where d;; and d; w are the distances from the i-th Pareto optimal solution

Maximum depth 9 R K K .
Minimum child weight 4 to the ideal and the worst solutions, respectively; and sj+ ands; are the j-
Number of estimators 100 th components of the ideal and the worst solutions, respectively.
Subsample ratio 0.9

where ST and S~ are the ideal and worst solutions; n and m are the
number of objective functions and solutions; J* is associated with the
objective functions to be maximized; J ~ is associated with the objective

e The similarity score of each of the Pareto optimal solutions can be

determined as:

diw
dij +diw

i

)

e The Pareto optimal solutions are ranked based on the similarity
score. The Pareto optimal solution with the highest similarity score is
ranked the first and selected as the final solution.

functions to be minimized.
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Table 7
The performance metrics of the machine learning models.

Dataset Performance Mechanical properties
metric R , .
Compressive Tensile Ductility
strength strength
Training ~ R2 0.990 0.998 0.993
ME 9.773 0.939 1.619
MAE 0.589 0.072 0.105
MSE 3.614 0.031 0.047
MAD 0.029 0.009 0.040
Testing R? 0.954 0.965 0.931
ME 18.26 1.710 2.454
MAE 4.125 0.568 0.507
MSE 30.01 0.535 0.563
MAD 3.165 0.467 0.287

3. Machine learning models

This section presents the machine learning models developed using
the TPOT. The configuration and hyperparameter tuning of machine
learning models are presented in Section 3.1. The prediction accuracy of
the machine learning models is evaluated in Section 3.2.

3.1. Architecture and hyperparameters

Fig. 4 shows the configuration of machine learning model deter-
mined using the TPOT, which automates the model configuration and
hyperparameter tuning processes through the steps shown in Fig. 1.
Compared with TPOT in previous research, this study modifies the TPOT
by incorporating a component analysis module for eliminating multi-
collinearity of mix design variables. With the modified TPOT, once the
datasets are formed and cleaned, multiple machine learning models are
combined based on a stacking technique for ensemble machine learning
used to predict the properties of SHCC. The predictions from a machine
learning model are used as the input variables of another predictive
model, as elaborated in reference (Pavlyshenko, 2018). In this study, a
linear support vector machine (SVM) (Cortes and Vapnik, 1995) and
adaptive boosting (AdaBoost) (Freund and Schapire, 1996) are applied
to predict the inputs of the meta-learner. Finally, an extreme gradient
boosting algorithm (XGBoost) (Chen and Guestrin, 2016) is selected as
the meta-learner.

Multicollinearity is eliminated through independent component
analysis. New variables are generated through polynomial feature
transform. The new variables include polynomial combinations of input
variables. For example, if the input variables are a and b, the results of
polynomial feature transform include 1, a, b, @, ab, and b> (Swamyna-
than, 2019). Then, the new variables are normalized by Equation (8):

X—Uu
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where x is an input variable; u is the average of the input variable; and ¢
is the standard deviation.

Table 6 lists the hyperparameters of machine learning models
derived by the TPOT. A total of 12 hyperparameters are automatically
tuned to improve the prediction accuracy of the machine learning
models including SVM, AdaBoost, and XGBoost in the ensemble model.

3.2. Prediction accuracy

Five performance metrics are used to assess the developed predictive
models, which are the coefficient of determination (Rz), maximum error
(ME), mean absolute error (MAE), mean square error (MSE), and mean
absolute deviation (MAD).

e The coefficient of determination measures the proportion of vari-
ability of actual values:

diipi — a‘_)z

L I P

©)

where P = {p1, p2, ..., pn}f and A = {a, ao, ..., a,} are two vectors

Ji
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A ® Obtained solutions
Hypervolume indicator

Fig. 7. Hypervolume indicator for a set of solutions determined for an opti-
mization problem with two objective functions to be minimized, namely f; and
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Fig. 6. Comparison of different machine learning methods for (a) compressive strength, (b) tensile strength, and (c) ductility. The filled and empty markers represent
the performance of machine learning models with the test and training datasets, respectively.
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containing the predicted and actual values; n is the number of observed
data points.

e Maximum error measures the worst-case error:

ME(P,A) =max(|py — a1, |p2 — aal, -y |pn — aul) (10)
where the notation |.| denotes the absolute value.

e Mean absolute error measures the average magnitude of prediction
errors:

1 n
MAE(P,A)=— |pi—aj an
i=1

e Mean square error is the average squared difference between the
predicted and actual values:

n 2
MSE(P,A) :72":‘(12 —a) 12)

e Mean absolute deviation (MAD) measures the variability of error:
MAD(P,A) =median(|p, — ai1|, |p2 — azl, ..., |pa — aul) (13)

Fig. 5 compares the prediction results against the actual values. The
smallest R? of the developed machine learning models is 0.93, implying
that the developed models are capable of reasonably predicting the key

mechanical properties of SHCC.

The performance metrics of the developed models for predicting the
compressive strength, tensile strength, and ductility are listed in Table 7.
The results corresponding to the training dataset and testing dataset
show high accuracy. Therefore, the developed models are capable of
predicting the mechanical properties of SHCC with reasonable accuracy.

Fig. 6 compares the prediction accuracy of the proposed method with
the prediction accuracy of a previous research on predictive models
based on artificial neural network (ANN), support vector machine
(SVM), classification and regression trees (CART), and XGBoost as
elaborated in reference (Guo et al., 2021). The proposed method dem-
onstrates higher prediction accuracy in terms of MSE and R

Although the training accuracy of the XGBoost model is comparable
with the training accuracy of the proposed method, the test accuracy of
the proposed method is higher than that of the XGBoost model, espe-
cially for the compressive strength. Taking the results of test dataset of
the compressive strength for example, the MSE of the proposed method
and the XGBoost model in the reference are 30 MPa and 46 MPa,
respectively, and the R? of the proposed method and the XGBoost model
in the reference are 0.95 and 0.92, respectively.

4. Multi-objective optimization
With the predictive models in Section 3, this section presents the

multi-objective optimization of SHCC based on the five objective func-
tions and six design scenarios in Section 2.
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Fig. 9. Parallel coordinates plot of objective designs for the Pareto optimal solutions obtained by UNSGA-III corresponding to (a) DS1, (b) DS2, (c) DS3, (d) DS4, (e)

DS5, and (f) DS6. The red lines represent the final solution selected by TOPSIS.

Table 8
Final solutions for mix design of SHCC.

Design variable Design scenarios

DS DS, DS3 DSy DSs DSe
Cement-to-binder ratio 0.69 0.20 0.13 0.16 0.15 0.44
Fly ash-to-binder ratio 0.07 0.27 0.62 0.63 0.62 0.15
Slag-to-binder ratio 0.04 0.24 0.07 0 0 0.12
Rice husk-to-binder ratio 0.02 0 0 0.10 0.03 0
Limestone-to-binder ratio 0.08 0.07 0.09 0.06 0.07 0.07
Metakaolin-to-binder ratio 0.02 0.06 0.02 0.02 0.08 0.08
Silica fume-to-binder ratio 0.07 0.14 0.06 0.02 0.03 0.04
Sand-to-binder ratio 0.68 1.37 1.39 0.97 1.39 1.4
Water-to-binder ratio 0.18 0.42 0.44 0.13 0.13 0.21
Superplasticizer content 2.21 2.02 1.79 1.98 2.58 2.61
Fiber type PE PP PP PE PE PE
Fiber volume (%) 2.53 2.05 2.63 2.08 1.96 1.82
Fiber length (mm) 17 12 11 15 17 18
Fiber diameter (pm) 21 13 18 25 24 24
Material properties
Compressive strength (MPa) 92.27 57.45 58.34 109.24 95.36 92.75
Tensile strength (MPa) 18.68 15.31 13.37 16.92 18.64 18.19
Ductility (%) 9.53 7.51 8.52 9.16 8.73 9.12
Unit material cost ($/m3) 1588.78 286.25 236.28 1216.87 527.87 673.83
Unit carbon footprint (kg/ms) 733.67 289.19 212.86 534.05 580.44 504.26

4.1. Optimization process

Multi-objective optimization is performed using UNSGA-III and
NSGA-III, respectively. A hypervolume indicator is used to evaluate the
solutions. The hypervolume indicator is defined as the volume of
optimal solutions in the objective space with respect to a reference point
(Zitzler and Thiele, 1998), as shown in Fig. 7. A higher hypervolume
indicator means a better solution. The reference point of each
multi-objective is set by the minimum values of compressive strength,

tensile strength, or ductility, and the maximum values of carbon foot-
print and material cost of SHCC mixtures.

Fig. 8 plots the hypervolume results corresponding to the design
scenarios. The hypervolume indicators increase with the number of it-
erations, indicating improvement of the Pareto solutions. The hyper-
volume gradually increases to a certain value, showing a stabilization
trend. The results indicate that the number of iterations is adequate for
the optimization algorithms to converge. UNSGA-III achieves higher
hypervolume indicators than NSGA-III, meaning that UNSGA-III has
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better performance in multi-objective optimization of SHCC and thus is
recommended.

4.2. Optimal solutions

With the multi-objective optimization solutions, TOPSIS is per-
formed to select the optimal solutions for different design scenarios.
Fig. 9 shows the Pareto optimal solutions obtained by UNSGA-IIL. The
final solutions selected by TOPSIS are shown in red color, and the other
solutions are shown in grey color. Different design objectives and their
ranges are considered in different design scenarios, consistent with Ta-
bles 2 and 3.

A desired solution has large values for F; to F3 and small values for F4
and Fs, so the sequence of values of F4 and Fs is opposite to those of F; to
F3. The selected optimal solutions in different design scenarios represent
the most plausible optimal solutions of mix design for SHCC. For
example, the optimal solution for DSg has desired compressive strength,
tensile strength, ductility, carbon footprint, and cost, simultaneously.
Specifically, the compressive strength, tensile strength, and ductility of
the optimal mixture for DSg are 93 MPa, 18 MPa, and 9 mm, respec-
tively, and its unit carbon footprint and cost are 504 kg and $673 per
cubic meter, respectively. It is noted that the optimal mix designs are
different for different design scenarios. For example, the optimal solu-
tion for DS1, which does consider the carbon footprint and material cost,
achieves a compressive strength, tensile strength, and ductility of 92
MPa, 19 MPa, and 10 mm, respectively.

Table 8 summarizes the final solutions of mix design and the corre-
sponding material properties of SHCC for different design scenarios. The
results show that the selected optimal solutions of mix design of SHCC
are consistent with the defined performance objectives and design sce-
narios. The results reveal the complexity of optimal design of SHCC
considering a wide range of mix design variables which interact with
each other and have complicated coupling effects. The complexity of
mix design of SHCC reflects the significance of data-driven methods for
the high design efficiency.

5. Conclusions

This study proposes a new method for prediction of properties and
multi-objective optimization of SHCC by integrating machine learning
and evolutionary optimization algorithms. A tree-based pipeline opti-
mization tool is adopted to automatically configure machine learning
models for high accuracy in prediction of compressive strength, tensile
strength, and ductility. Based on the predictive models, five objective
functions and six design scenarios are considered.

Based on the above investigations, the following conclusions are
drawn:

e The developed machine learning models are capable of predicting
the mechanical properties of SHCC. The coefficient of determination
of the predictive models for the compressive strength, tensile
strength, and ductility are 0.95, 0.97, and 0.93, respectively, as
evaluated using the test datasets.

In the multi-objective optimization of SHCC, UNSGA-III demon-
strates better performance than NSGA-III in terms of hypervolume
indicator. In the investigated design scenarios, UNSGA-III achieves
higher values of hypervolume indicator than NSGA-III. The Pareto
optimal solutions are evaluated using the TOPSIS method for selec-
tion of the final optimal solutions, which are dependent on the
defined performance objectives and design scenarios.

The proposed method for prediction and multi-objective optimiza-
tion provides an alternative solution for efficient development of
SHCC because the method is capable of generating plausible mix
design solutions for different design scenarios with particle prefer-
ence of the material properties. The plausible solutions can be vali-
dated by a reduced number of tests.
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Based on the developed method, it is promising to consider the other
design variables such as the particle size of materials and investigate
other important properties of SHCC such as flowability and durability.
Extensive tests should be conducted to evaluate the performance of the
proposed method. It is also interesting to test the applicability of the
method for other families of high-performance fiber-reinforced cemen-
titious composites such as ultra-high-performance concrete.
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