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A B S T R A C T   

This study develops a framework for property prediction and multi-objective optimization of strain-hardening 
cementitious composites (SHCC) based on automated machine learning. Three machine learning models are 
developed to predict the compressive strength, tensile strength, and ductility of SHCC. A tree-based pipeline 
optimization method is enhanced and used to enable automatic configuration of machine learning models, which 
are trained using three datasets considering 14 mix design variables and achieve reasonable prediction accuracy. 
With the predictive models, five objective functions are formulated for mechanical properties, life-cycle cost, and 
carbon footprint of SHCC, and the five objective functions are optimized in six design scenarios. The objective 
functions are optimized using innovative optimization and decision-making techniques (Unified Non-dominated 
Sorting Genetic Algorithm III and Technique for Order of Preference by Similarity to Ideal Solution). This 
research will promote efficient development and applications of high-performance SHCC in concrete and con
struction industry.   

1. Introduction 

Strain-hardening cementitious composite (SHCC) is a family of high- 
performance fiber-reinforced cementitious composites that are capable 
of resisting higher tensile loads after they are cracked. SHCC is also 
known as engineered cementitious composite and bendable concrete in 
different contexts. SHCC features high crack resistance, ductility, 
toughness, and control of crack width (Li, 2003). SHCC attracts 
increasing interest in concrete and construction industry since it out
performs conventional fiber-reinforced concrete in terms of 
post-cracking properties (Nguyễ;n et al., 2021; Xu et al., 2020, 2021; 
Meng and Khayat, 2016) and durability (Liu et al., 2017) under various 
threats (Jun and Mechtcherine, 2010). After cracked, SHCC has retained 
load-carrying capabilities with controlled crack widths usually narrower 
than 100 μm (Li, 2019). The fine cracks benefit long-term durability 
because microcracks do not highly compromise the impermeability of 
SHCC (Li, 2019). Besides the exceptional mechanical properties and 
durability, SHCC can be prepared using high-volume waste materials to 
reduce material cost and carbon footprint. For example, high-volume fly 

ash is usually used to prepare SHCC with improved sustainability and 
improve fresh and hardened properties (Bao et al., 2019). The use of 
supplementary cementitious materials also promoted self-healing of 
microcracks in SHCC, which further improved the long-term durability 
(Li and Herbert, 2012). The use of polymeric fibers such as polyvinyl 
alcohol (PVA) and polypropylene (PP) fibers in SHCC was capable of 
significantly enhancing the fire resistance and mitigating explosive 
spalling of SHCC exposed to high temperatures (Li et al., 2017a). Due to 
the superior material properties of SHCC, many successful structural 
applications were reported. SHCC was used to construct and repair en
gineering structures to enhance the resilience to various threats such as 
earthquake, impact, and fire, as well as service life while reducing 
maintenance costs (Li et al., 2017b, c; Liu et al., 2019). 

Since the desired material properties of SHCC vary in different ap
plications, the mix design of SHCC should be tailored for different use 
cases. In the literature, theoretical models based on micromechanics 
were developed to design SHCC by mechanistically tuning the matrix, 
fiber, and fiber-matrix interface (Kanda and Li, 1999). The micro
mechanics models intrinsically link the key mechanical properties of 

* Corresponding author. 
E-mail address: yi.bao@stevens.edu (Y. Bao).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2021.129665 
Received 15 August 2021; Received in revised form 10 October 2021; Accepted 7 November 2021   

mailto:yi.bao@stevens.edu
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2021.129665
https://doi.org/10.1016/j.jclepro.2021.129665
https://doi.org/10.1016/j.jclepro.2021.129665
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2021.129665&domain=pdf


Journal of Cleaner Production 329 (2021) 129665

2

SHCC with the material parameters that can be quantitatively evaluated 
through experiments such as flexural tests for evaluating the toughness 
of cementitious matrix and single fiber pullout tests for evaluating the 
fiber-matrix interface bond strength and toughness. Other important 
methods included lattice models and extended finite element models 
(Kang and Bolander, 2016; Huang and Zhang, 2016). However, the 
design of SHCC for practical applications still involves extensive 
experimental efforts that are time consuming and costly because mul
tiple parameters must be determined through tests (Kanda and Li, 1999). 
The demand for efforts is exacerbated by the fact that the mechanical 
properties and sustainability of SHCC are sensitive to many mix design 
variables related to adopted raw materials (Lepech et al., 2008; 
Tosun-Felekoğlu et al., 2017; Zhang et al., 2016). In a nutshell, there is a 
lack of effective and efficient methods to simultaneously optimize the 
mechanical properties, cost, and sustainability of SHCC for different 
intended industrial applications. 

Besides the methods based on theoretical models, data-driven 
intelligent prediction and optimization methods received increasing 
attention in the development of materials. For prediction of material 
properties, machine learning models were developed to link mix design 
with properties (Huang et al., 2021; Ke and Duan, 2021; Lu et al., 
2021a–c; Sun et al., 2021). Trained machine learning models were used 
to predict compressive strengths and elastic moduli of various types of 
concrete (Cook et al., 2019; Han et al., 2020; Marani et al., 2020). 
Recently, micromechanics models were integrated with machine 
learning models to enable reasonable prediction of tensile strength and 
ductility (Guo et al., 2021a). On the other hand, advanced optimization 
techniques such as metaheuristic optimization were developed to opti
mize the mix design of concrete (Sun et al., 2021; Zhang et al., 2020), 
while the mechanical properties of concrete were predicted by 
high-fidelity predictive models. Inspired by the previous studies, it is 
hypothesized that predictive models based on machine learning can be 
integrated with optimization techniques for property prediction and mix 
design optimization of SHCC. It is further posited that multiple objective 
functions can be considered simultaneously to optimize the mix design 

of SHCC. 
With the above hypothesis, this research aims to develop a new 

framework for property prediction and multi-objective optimization of 
SHCC, to promote the efficacy and efficiency in development and 
structural applications of SHCC. To this end, this research has four ob
jectives and contributions: (1) to establish a framework integrating ca
pabilities of property prediction and multi-objective optimization for 
SHCC; (2) to develop high-fidelity predictive models to predict the 
compressive strength, tensile strength, and ductility of SHCC; (3) to 
present objective functions for optimizing the compressive strength, 
tensile strength, ductility, material cost, and carbon footprint of SHCC; 
and (4) to demonstrate the framework for multi-objective optimization 
of SHCC mixtures in six design scenarios. 

Compared with previous research on prediction and optimization of 
concrete with data-driven methods, this research is novel in three as
pects: (1) This research develops a method to automate the configura
tion of machine learning models and hyperparameter tuning based on a 
Tree-based Pipeline Optimization Tool (TPOT) (Olson and Moore, 
2019). The TPOT combines a tree representation of machine learning 
models with a genetic algorithm to optimize the prediction accuracy. (2) 
This research considers a wide range of raw materials and mix design 
variables in datasets used to train machine learning models and in
tegrates multiple data processing methods to improve the quality of 
datasets. (3) This research utilizes Unified Non-dominated Sorting Ge
netic Algorithm III (UNSGA-III) (Seada and Deb, 2014) for 
multi-objective optimization of SHCC and selects Pareto optimal solu
tions using the Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) (Hwang and Yoon, 1981). This study is expected to 
promote development of SHCC for the concrete and construction 
industry. 

The remainder of the paper is organized as follows: Section 2 pre
sents the methodology of surrogate modeling-based optimization. Sec
tion 3 discusses the developed machine learning models. Section 4 
discusses the optimization process and the optimal design solutions of 
SHCC. Section 5 summarizes the conclusions. 

Fig. 1. Flowchart of the proposed method for prediction and multi-objective optimization.  
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2. Methodology 

2.1. Overview 

Fig. 1 shows the presented framework for data-driven prediction and 
design optimization of SHCC through integrating automated machine 
learning, data processing, and multi-objective optimization. The 
framework includes seven steps: (1) Three datasets are established by 
collecting test data from previous publications such as papers and re
ports, as elaborated in Section 2.2. (2) Data cleaning is performed using 
the isolation forest method to identify and remove anomalous data from 
the three datasets, as elaborated in Section 2.3. (3) High-fidelity pre
dictive models are developed using the processed datasets and the TPOT 
for automated machine learning and hyperparameter tuning, as 

elaborated in Section 2.4. (4) Different design objectives are defined 
using the surrogate models, as elaborated in Section 2.5. (5) Multi- 
objective optimization problems are defined, as elaborated in Section 
2.6. (6) The UNSGA-III is applied to solve the defined multi-objective 
optimization problems, as elaborated in Section 2.7. (7) The TOPSIS is 
used to select the optimal solution, as elaborated in Section 2.8. 

2.2. Development of dataset 

Datasets are essential for development of predictive models based on 
machine learning. This study develops three large datasets for the 
compressive strength, tensile strength, and ductility of SHCC by 
extracting 745 test data from references (Ding et al., 2018a, 2018b; Guo 
et al., 2021b; Kim et al., 2007; Lepech et al., 2008; Li et al., 2002, 2017a, 

Table 1 
Summary statistics of the design variables.  

Number Design variable Unit Range Mean Median Standard deviation 

1 Cement-to-binder ratio 1 0.152–1 0.474 0.413 0.218 
2 Fly ash-to-binder ratio 1 0–0.848 0.350 0.494 0.306 
3 Slag-to-binder ratio 1 0–0.808 0.128 0.000 0.209 
4 Rice husk-to-binder ratio 1 0–0.36 0.005 0.000 0.032 
5 Limestone-to-binder ratio 1 0–0.577 0.025 0.000 0.083 
6 Metakaolin-to-binder ratio 1 0–0.094 0.002 0.000 0.014 
7 Silica fume-to-binder ratio 1 0–0.206 0.017 0.000 0.038 
8 Sand-to-binder ratio 1 0–1.4 0.406 0.360 0.205 
9 Water-to-binder ratio 1 0.11–0.80 0.267 0.260 0.082 
10 Superplasticizer content % 0–2.7 0.807 0.500 0.614 
11 Fiber volume % 0–3 1.890 2.000 0.434 
12 Fiber length mm 6–27 12.01 12.00 3.604 
13 Fiber diameter μm 12–39 33.49 39.00 8.611 
14 Fiber Young’s modulus GPa 4–200 60.03 42.80 37.71  

Fig. 2. Normal density functions of the investigated mechanical properties of SHCC: (a) compressive strength, (b) tensile strength, and (c) ductility.  

Fig. 3. The variance inflation factors corresponding to the developed datasets. The horizontal axis is in logarithmic scale.  
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2019, 2019; Lin et al., 2020; Said and Razak, 2015; Turk and Nehdi, 
2018; Wang et al., 2020; Xu et al., 2019a, 2019b; Yu et al., 2017, 2018, 
2019, 2020, 2019; Zheng et al., 2018; Zhou et al., 2010, 2019; Zhu et al., 
2012). The numbers of data points for the compressive strength, tensile 
strength, and ductility are 264, 244, and 237, respectively. A total of 14 
design variables are selected according to reference (Guo et al., 2021a). 
Table 1 shows the design variables and their varying ranges, the mean 
and median values, as well as the standard deviation. The table indicates 
large variations of the units, distributions, and ranges of the variables. 

Statistical analysis was performed to evaluate the distributions of 
mechanical properties of SHCC in the established datasets. Fig. 2 shows 
the normal density functions of the compressive strength, tensile 
strength, and ductility. In this research, ductility refers to the ultimate 
tensile strain corresponding to peak tensile stress in the constitutive 
relationship of a SHCC mixture. The average values of the compressive 
strength, tensile strength, and ductility are 50 MPa, 5 MPa, and 3%, 
respectively. 

Multicollinearity is a common problem in multivariate regression 
analysis and compromises the prediction accuracy when the input var
iables are highly correlated (Chatterjee and Hadi, 2015). This study 
diagnoses existence of multicollinearity using the variance inflation 
factor as elaborated in reference (Moré, 1978). Overall, the variance 
inflation factor increases with the multicollinearity extent. When there 
is no multicollinearity, the variance inflation factor is equal to one, 
which is the smallest value. A variance inflation factor that is larger than 
five indicates significant multicollinearity (James et al., 2013). Fig. 3 
shows that 9 out of 14 variables are highly correlated, indicating that it 
is necessary to process the data to eliminate multicollinearity. 

2.3. Data cleaning 

Datasets developed using previous publications generally contain 
anomalous data. Anomalies can be generated by different causes such as 
the operation errors in experiments, data entry, and data processing 
(Zimek and Schubert, 2017). This study performs data cleaning to 
identify and remove anomalous data using a decision tree algorithm 
based on the isolated forest method (Liu et al., 2008). The idea is that 
anomalous data have different features and can be separated from the 
normal data. The isolated forest method has two steps: (1) to train an 
ensemble of binary decision trees based on a dataset; and (2) to evaluate 
the anomaly score of each data point based on the ensemble model. 

2.4. Tree-based pipeline optimization (TPOT) 

The prediction accuracy of a machine learning model depends on its 
architecture, dataset, and hyperparameters (Pappa, 2020). It is tedious 
and unreliable to manually optimize the architecture, dataset, and 
hyperparameters. This study proposes to maximize the prediction ac
curacy through employing the TPOT that automatically configures 
machine learning models, processes dataset, and tunes hyperparameters 
based on a genetic algorithm (Olson and Moore, 2019; Willis et al., 
1997). In this study, the TPOT considers various types of data processing 
and machine learning operators. Data processing is conducted to pre
pare the input data for training of machine learning models. In data 
processing, multiple algorithms are considered for feature preprocessing 
and construction. Feature preprocessing is applied to make the variables 
more meaningful and representative, while feature construction is 
applied to generate new variables and eliminate old variables, aiming to 
improve the performance of machine learning model. Multiple machine 
learning operators, including linear methods such as logistic regression 
and Ridge, individual tree-based methods such as decision tree, and 
ensemble tree-based models such as XGBoost and random forest (Olson 
and Moore, 2019) are considered by TPOT. Combination of machine 
learning operators is also considered using a stacking technique, which 
applies multiple machine learning operators to the dataset and uses the 
predictions of operators as the inputs of a machine learning operator, 
called meta-learner (Sikora, 2015). 

Since Section 2.2 indicates occurrence of multicollinearity, two 
methods are applied to eliminate multicollinearity, which are principal 
component analysis (Wold et al., 1987) and independent component 
analysis (Comon, 1994). Although TPOT considers the two component 
analysis methods for configuration, it is possible that neither of the 
methods is selected by TPOT. Therefore, TPOT is modified to select a 
component analysis method if multicollinearity is existed. TPOT algo
rithm follows the following four sequential steps: (1) A set of 100 ma
chine learning models with random configurations are generated, and 
the cross-validation accuracy of the models is evaluated using the 
established dataset. (2) The models are evaluated based on two criteria, 
which are cross-validation accuracy and number of operators. The top 
20 machine learning models are selected by constructing a Pareto-front 
based on the two criteria according to NSGA-II (Deb et al., 2002). (3) 
New machine learning models are generated by performing three ge
netic operations (crossover, mutation, and selection) (Olson and Moore, 
2019; Willis et al., 1997) with the 20 selected models. (4) Steps 2 and 3 
are repeated for 100 times. The configuration of the machine learning 
model and the hyperparameters determined from the above steps are 
elaborated in Section 3. 

2.5. Design objectives 

Five objectives are considered for optimization of SHCC, as listed in 

Table 2 
Description of the design objectives.  

Design objective Description Goal 

F1 Compressive strength Maximization 
F2 Tensile strength Maximization 
F3 Ductility Maximization 
F4 Carbon footprint Minimization 
F5 Material cost Minimization  

Table 3 
The density, carbon footprint, and cost of materials.  

Number Material Density (kg/m3) CO2-e (kg/kg) Cost ($/kg) References 

1 Cement 3130 0.832 0.11 (Chiaia et al., 2014; Heirman et al., 2009) 
2 Fly ash 2350 0.009 0.046 (Heirman et al., 2009; Purnell, 2013) 
3 Slag 2880 0.019 0.10 (Aydın and Baradan, 2013; Purnell, 2013) 
4 Rice husk ash 2140 0.013 0.113 (Gursel et al., 2016; Hossain and Elsayed, 2018; Sathawane et al., 2013) 
5 Limestone powder 2700 0.017 0.122 (Heirman et al., 2009; Müller et al., 2014) 
6 Metakaolin 2620 0.42 0.50 (Heath et al., 2014; Poon et al., 2001) 
7 Silica fume 2170 0.0003 0.50 (Habert et al., 2013; Nepomuceno et al., 2012) 
8 Sand 2640 0.0025 0.014 (Chiaia et al., 2014; Heirman et al., 2009) 
9 Water 1000 0.0003 0 (Chiaia et al., 2014; Heirman et al., 2009) 
10 Superplasticizer 1080 0.720 3.0 (Heirman et al., 2009; Long et al., 2015) 
11 PVA fiber 1300 3.43 8.0 (Pakravan and Ozbakkaloglu, 2019; Yew et al., 2015) 
12 PE fiber 970 4.08 11.0 (Pakravan and Ozbakkaloglu, 2019; Ranade, 2014; Yu et al., 2020) 
13 PP fiber 900 2.70 1.75 (Ahangari et al., 2013; Chen et al., 2021; Pakravan and Ozbakkaloglu, 2019) 
14 Steel fiber 7800 2.75 4.50 (Chen et al., 2021; Chiaia et al., 2014; Pakravan and Ozbakkaloglu, 2019)  
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Table 2. Three objective functions (F1, F2, and F3) are defined for the 
mechanical properties, including compressive strength, tensile strength, 
and ductility. The fourth objective function (F4) is defined to enhance 
sustainability by minimizing carbon footprint. The unit carbon footprint 
(CF) for 1 m3 of SHCC is defined as: 

CF =
∑n

k=0
Mk × CO2−e,k (1)  

where n is the number of the ingredient types; Mk is the mass of k-th 
ingredient; CO2−e,k is the carbon dioxide equivalent of the k-th 
ingredient. 

The fifth objective function (F5) is defined to improve economic 
benefits by minimizing material cost. The unit material cost for 1 m3 of 
SHCC is defined as: 

C =
∑n

k=0
Mk × ck (2)  

where ck is the cost of 1 kg of the k-th ingredient. 
Table 3 lists the inventory for the unit carbon footprint and cost as 

well as density of ingredients of SHCC. Seven types of binder are 
considered, including cement and six types of supplementary cementi
tious materials such as slag, fly ash, and rice husk ash, which were 
otherwise landfilled as industrial solid wastes. Four types of fibers are 
considered, which are PVA fiber, PP fiber, polyethylene (PE) fiber, and 
steel fiber. The unit cost of each ingredient is average of different values 
reported in references. The physical and mechanical properties of the 
fibers are listed in Table 4. 

2.6. Multi-objective design scenarios 

Based on the five design objectives, this study investigates six multi- 
objective design problems for optimization of SHCC to accommodate 
different applications and scenarios, as listed in Table 5. DS1 and DS4 are 
defined to maximize the mechanical properties of SHCC; DS2 and DS5 
are defined to maximize the mechanical performance and minimize the 
carbon footprint; DS3 and DS6 are defined to maximize the mechanical 
performance and minimize the material cost and carbon footprint. 

2.7. Multi-objective optimization 

This study adopts an evolutionary algorithm UNSGA-III for multi- 
objective optimization (Seada and Deb, 2014). UNSGA-III was devel
oped based on the Non-dominated Sorting Genetic Algorithm III 
(NSGA-III) (Deb and Jain, 2014), which was previously developed and 
commonly used for multi-objective optimization (Seada and Deb, 2014). 
In general, a multi-objective optimization problem involves conflicting 

objectives, so in general, the optimal solutions of different objectives are 
different. UNSGA-III is employed to generate a set of optimal solutions, 
called Pareto optimal solutions. With a Pareto optimal solution, none of 
the objective functions can be further improved without degrading the 
other objective functions, as elaborated in reference (Seada and Deb, 
2014). The numbers of iterations and population size are set to 300 and 
100. The two values are selected by trial and error to obtain 
near-optimal solutions and avoid premature convergence. A design 
constraint is imposed to ensure that the mass of binder is equal to the 
sum of mass of cement and supplementary cementitious materials: 
(

∑7

i=1
Vi − 1

)2

< ε (3)  

where Vi is the i-th design variable in Table 1; and ε is the tolerance, 
which is set to 0.001. The upper and lower bounds of the variables are 
defined in Table 1. 

2.8. Selection of optimal solutions 

This study adopts TOPSIS for decision-making of multi-objective 
optimization through ranking the Pareto optimal solutions obtained 
from UNSGA-III (Hwang and Yoon, 1981). The Pareto optimal solution 
ranked as the highest is selected as the final design solution of SHCC. The 
basic mechanism of TOPSIS is to determine the distance from each so
lution to the ideal solution and the distance from each solution to the 
worst solution in a n-dimensional objective space, where n is the number 
of objective functions. The solution with the first rank has the shortest 
distance from the ideal solution and the longest distance from the worst 
solution. The process of TOPSIS to rank m number of Pareto optimal 
solutions of a multi-objective problem with n number of objective 
functions is as follows:  

• The objective function values of the Pareto optimal solutions are 
normalized by: 

ηi,j =
ai,j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑m
k=1a2

k,j

√ (4)  

where ai,j and ηi,j are the actual and normalized values of the j-th 
objective function value corresponding to the i-th Pareto optimal 
solution.  

• The ideal and worst solutions can be determined by: 

Table 4 
The physical and mechanical properties of fibers.  

Fiber type Length (mm) Diameter (μm) Young’s modulus (GPa) 

PVA 8–12 39 42.8 
PE 12–18 20–25 100 
PP 10–12 12–18 6 
Steel 27 40 200  

Table 5 
The proposed multi-objective design scenarios.  

Design scenarios Design objective 

F1 F2 F3 F4 F5 

DS1 ✕ ✓ ✓ ✕ ✕ 
DS2 ✕ ✓ ✓ ✓ ✕ 
DS3 ✕ ✓ ✓ ✓ ✓ 
DS4 ✓ ✓ ✓ ✕ ✕ 
DS5 ✓ ✓ ✓ ✓ ✕ 
DS6 ✓ ✓ ✓ ✓ ✓ 

Note: the symbol “✕” means “not included”, and the symbol “✓” means 
“included”. 

S+ =
{(

Min
(
ηi,j

)
| i = 1, 2, …, m | j ∈ J −

)
,

(
Max

(
ηi,j

)
| i = 1, 2, …, m | j ∈ J+

)}
=

{
s+

1 , s+
2 , …, s+

n

}
(5a)  

S− =
{(

Max
(
ηi,j

)
| i = 1, 2, …, m | j ∈ J −

)
,

(
Min

(
ηi,j

)
| i = 1, 2, …, m | j ∈ J+

)}
=

{
s−

1 , s−
2 , …, s−

n

}
(5b)   
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where S+ and S− are the ideal and worst solutions; n and m are the 
number of objective functions and solutions; J+ is associated with the 
objective functions to be maximized; J – is associated with the objective 
functions to be minimized.  

• The L2-norm distance from the Pareto optimal solution to the ideal 
and worst solutions are defined as: 

di,I =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
ηi,j − s+

j
)2

√
√
√
√ (6a)  

di,W =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
ηi,j − s−

j
)2

√
√
√
√ (6b)  

where di,I and di,W are the distances from the i-th Pareto optimal solution 
to the ideal and the worst solutions, respectively; and s+

j and s−
j are the j- 

th components of the ideal and the worst solutions, respectively.  

• The similarity score of each of the Pareto optimal solutions can be 
determined as: 

δi =
di,W

di,I + di,W
(7)    

• The Pareto optimal solutions are ranked based on the similarity 
score. The Pareto optimal solution with the highest similarity score is 
ranked the first and selected as the final solution. 

Fig. 4. Depiction of the configuration of the machine learning model determined by the TPOT.  

Table 6 
The hyperparameters of the machine learning models.  

Machine learning model Hyperparameter name Optimal hyperparameter 

SVM Epsilon 1 
Loss function L1 loss 
Regularization parameter 20 

AdaBoost Learning rate 0.01 
Loss function Squared error 
Number of estimators 200 

XGBoost Learning rate 0.1 
Loss function Squared error 
Maximum depth 9 
Minimum child weight 4 
Number of estimators 100 
Subsample ratio 0.9  

Fig. 5. Comparison of the predicted and actual values of (a) compressive strength, (b) tensile strength, and (c) ductility.  
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3. Machine learning models 

This section presents the machine learning models developed using 
the TPOT. The configuration and hyperparameter tuning of machine 
learning models are presented in Section 3.1. The prediction accuracy of 
the machine learning models is evaluated in Section 3.2. 

3.1. Architecture and hyperparameters 

Fig. 4 shows the configuration of machine learning model deter
mined using the TPOT, which automates the model configuration and 
hyperparameter tuning processes through the steps shown in Fig. 1. 
Compared with TPOT in previous research, this study modifies the TPOT 
by incorporating a component analysis module for eliminating multi
collinearity of mix design variables. With the modified TPOT, once the 
datasets are formed and cleaned, multiple machine learning models are 
combined based on a stacking technique for ensemble machine learning 
used to predict the properties of SHCC. The predictions from a machine 
learning model are used as the input variables of another predictive 
model, as elaborated in reference (Pavlyshenko, 2018). In this study, a 
linear support vector machine (SVM) (Cortes and Vapnik, 1995) and 
adaptive boosting (AdaBoost) (Freund and Schapire, 1996) are applied 
to predict the inputs of the meta-learner. Finally, an extreme gradient 
boosting algorithm (XGBoost) (Chen and Guestrin, 2016) is selected as 
the meta-learner. 

Multicollinearity is eliminated through independent component 
analysis. New variables are generated through polynomial feature 
transform. The new variables include polynomial combinations of input 
variables. For example, if the input variables are a and b, the results of 
polynomial feature transform include 1, a, b, a2, ab, and b2 (Swamyna
than, 2019). Then, the new variables are normalized by Equation (8): 

z =
x − u

σ (8)  

where x is an input variable; u is the average of the input variable; and σ 
is the standard deviation. 

Table 6 lists the hyperparameters of machine learning models 
derived by the TPOT. A total of 12 hyperparameters are automatically 
tuned to improve the prediction accuracy of the machine learning 
models including SVM, AdaBoost, and XGBoost in the ensemble model. 

3.2. Prediction accuracy 

Five performance metrics are used to assess the developed predictive 
models, which are the coefficient of determination (R2), maximum error 
(ME), mean absolute error (MAE), mean square error (MSE), and mean 
absolute deviation (MAD). 

• The coefficient of determination measures the proportion of vari
ability of actual values: 

R2(P, A) = 1 −

∑n
i=1(pi − ai)

2

∑n
i=1[ai − mean(ai)]

2 (9)  

where P = {p1, p2, …, pn}f and A = {a1, a2, …, an} are two vectors 

Table 7 
The performance metrics of the machine learning models.  

Dataset Performance 
metric 

Mechanical properties 

Compressive 
strength 

Tensile 
strength 

Ductility 

Training R2 0.990 0.998 0.993 
ME 9.773 0.939 1.619 
MAE 0.589 0.072 0.105 
MSE 3.614 0.031 0.047 
MAD 0.029 0.009 0.040 

Testing R2 0.954 0.965 0.931 
ME 18.26 1.710 2.454 
MAE 4.125 0.568 0.507 
MSE 30.01 0.535 0.563 
MAD 3.165 0.467 0.287  

Fig. 6. Comparison of different machine learning methods for (a) compressive strength, (b) tensile strength, and (c) ductility. The filled and empty markers represent 
the performance of machine learning models with the test and training datasets, respectively. 

Fig. 7. Hypervolume indicator for a set of solutions determined for an opti
mization problem with two objective functions to be minimized, namely f1 and 
f2; ai is the i-th solution. 

S. Mahjoubi et al.                                                                                                                                                                                                                               



Journal of Cleaner Production 329 (2021) 129665

8

containing the predicted and actual values; n is the number of observed 
data points.  

• Maximum error measures the worst-case error: 

ME(P, A) = max(|p1 − a1|, |p2 − a2|, …, |pn − an|) (10)  

where the notation |.| denotes the absolute value.  

• Mean absolute error measures the average magnitude of prediction 
errors: 

MAE(P, A) =
1
n

∑n

i=1
|pi − ai| (11)    

• Mean square error is the average squared difference between the 
predicted and actual values: 

MSE(P, A) =

∑n
i=1(pi − ai)

2

n
(12)    

• Mean absolute deviation (MAD) measures the variability of error: 

MAD(P, A) = median(|p1 − a1|, |p2 − a2|, …, |pn − an|) (13) 

Fig. 5 compares the prediction results against the actual values. The 
smallest R2 of the developed machine learning models is 0.93, implying 
that the developed models are capable of reasonably predicting the key 

mechanical properties of SHCC. 
The performance metrics of the developed models for predicting the 

compressive strength, tensile strength, and ductility are listed in Table 7. 
The results corresponding to the training dataset and testing dataset 
show high accuracy. Therefore, the developed models are capable of 
predicting the mechanical properties of SHCC with reasonable accuracy. 

Fig. 6 compares the prediction accuracy of the proposed method with 
the prediction accuracy of a previous research on predictive models 
based on artificial neural network (ANN), support vector machine 
(SVM), classification and regression trees (CART), and XGBoost as 
elaborated in reference (Guo et al., 2021). The proposed method dem
onstrates higher prediction accuracy in terms of MSE and R2. 

Although the training accuracy of the XGBoost model is comparable 
with the training accuracy of the proposed method, the test accuracy of 
the proposed method is higher than that of the XGBoost model, espe
cially for the compressive strength. Taking the results of test dataset of 
the compressive strength for example, the MSE of the proposed method 
and the XGBoost model in the reference are 30 MPa and 46 MPa, 
respectively, and the R2 of the proposed method and the XGBoost model 
in the reference are 0.95 and 0.92, respectively. 

4. Multi-objective optimization 

With the predictive models in Section 3, this section presents the 
multi-objective optimization of SHCC based on the five objective func
tions and six design scenarios in Section 2. 

Fig. 8. Hypervolume indicator of the provided solutions for the best trials corresponding to (a) DS1, (b) DS2, (c) DS3, (d) DS4, (e) DS5, and (f) DS6.  
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4.1. Optimization process 

Multi-objective optimization is performed using UNSGA-III and 
NSGA-III, respectively. A hypervolume indicator is used to evaluate the 
solutions. The hypervolume indicator is defined as the volume of 
optimal solutions in the objective space with respect to a reference point 
(Zitzler and Thiele, 1998), as shown in Fig. 7. A higher hypervolume 
indicator means a better solution. The reference point of each 
multi-objective is set by the minimum values of compressive strength, 

tensile strength, or ductility, and the maximum values of carbon foot
print and material cost of SHCC mixtures. 

Fig. 8 plots the hypervolume results corresponding to the design 
scenarios. The hypervolume indicators increase with the number of it
erations, indicating improvement of the Pareto solutions. The hyper
volume gradually increases to a certain value, showing a stabilization 
trend. The results indicate that the number of iterations is adequate for 
the optimization algorithms to converge. UNSGA-III achieves higher 
hypervolume indicators than NSGA-III, meaning that UNSGA-III has 

Fig. 9. Parallel coordinates plot of objective designs for the Pareto optimal solutions obtained by UNSGA-III corresponding to (a) DS1, (b) DS2, (c) DS3, (d) DS4, (e) 
DS5, and (f) DS6. The red lines represent the final solution selected by TOPSIS. 

Table 8 
Final solutions for mix design of SHCC.  

Design variable Design scenarios 

DS1 DS2 DS3 DS4 DS5 DS6 

Cement-to-binder ratio 0.69 0.20 0.13 0.16 0.15 0.44 
Fly ash-to-binder ratio 0.07 0.27 0.62 0.63 0.62 0.15 
Slag-to-binder ratio 0.04 0.24 0.07 0 0 0.12 
Rice husk-to-binder ratio 0.02 0 0 0.10 0.03 0 
Limestone-to-binder ratio 0.08 0.07 0.09 0.06 0.07 0.07 
Metakaolin-to-binder ratio 0.02 0.06 0.02 0.02 0.08 0.08 
Silica fume-to-binder ratio 0.07 0.14 0.06 0.02 0.03 0.04 
Sand-to-binder ratio 0.68 1.37 1.39 0.97 1.39 1.4 
Water-to-binder ratio 0.18 0.42 0.44 0.13 0.13 0.21 
Superplasticizer content 2.21 2.02 1.79 1.98 2.58 2.61 
Fiber type PE PP PP PE PE PE 
Fiber volume (%) 2.53 2.05 2.63 2.08 1.96 1.82 
Fiber length (mm) 17 12 11 15 17 18 
Fiber diameter (μm) 21 13 18 25 24 24 
Material properties       
Compressive strength (MPa) 92.27 57.45 58.34 109.24 95.36 92.75 
Tensile strength (MPa) 18.68 15.31 13.37 16.92 18.64 18.19 
Ductility (%) 9.53 7.51 8.52 9.16 8.73 9.12 
Unit material cost ($/m3) 1588.78 286.25 236.28 1216.87 527.87 673.83 
Unit carbon footprint (kg/m3) 733.67 289.19 212.86 534.05 580.44 504.26  
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better performance in multi-objective optimization of SHCC and thus is 
recommended. 

4.2. Optimal solutions 

With the multi-objective optimization solutions, TOPSIS is per
formed to select the optimal solutions for different design scenarios. 
Fig. 9 shows the Pareto optimal solutions obtained by UNSGA-III. The 
final solutions selected by TOPSIS are shown in red color, and the other 
solutions are shown in grey color. Different design objectives and their 
ranges are considered in different design scenarios, consistent with Ta
bles 2 and 3. 

A desired solution has large values for F1 to F3 and small values for F4 
and F5, so the sequence of values of F4 and F5 is opposite to those of F1 to 
F3. The selected optimal solutions in different design scenarios represent 
the most plausible optimal solutions of mix design for SHCC. For 
example, the optimal solution for DS6 has desired compressive strength, 
tensile strength, ductility, carbon footprint, and cost, simultaneously. 
Specifically, the compressive strength, tensile strength, and ductility of 
the optimal mixture for DS6 are 93 MPa, 18 MPa, and 9 mm, respec
tively, and its unit carbon footprint and cost are 504 kg and $673 per 
cubic meter, respectively. It is noted that the optimal mix designs are 
different for different design scenarios. For example, the optimal solu
tion for DS1, which does consider the carbon footprint and material cost, 
achieves a compressive strength, tensile strength, and ductility of 92 
MPa, 19 MPa, and 10 mm, respectively. 

Table 8 summarizes the final solutions of mix design and the corre
sponding material properties of SHCC for different design scenarios. The 
results show that the selected optimal solutions of mix design of SHCC 
are consistent with the defined performance objectives and design sce
narios. The results reveal the complexity of optimal design of SHCC 
considering a wide range of mix design variables which interact with 
each other and have complicated coupling effects. The complexity of 
mix design of SHCC reflects the significance of data-driven methods for 
the high design efficiency. 

5. Conclusions 

This study proposes a new method for prediction of properties and 
multi-objective optimization of SHCC by integrating machine learning 
and evolutionary optimization algorithms. A tree-based pipeline opti
mization tool is adopted to automatically configure machine learning 
models for high accuracy in prediction of compressive strength, tensile 
strength, and ductility. Based on the predictive models, five objective 
functions and six design scenarios are considered. 

Based on the above investigations, the following conclusions are 
drawn:  

• The developed machine learning models are capable of predicting 
the mechanical properties of SHCC. The coefficient of determination 
of the predictive models for the compressive strength, tensile 
strength, and ductility are 0.95, 0.97, and 0.93, respectively, as 
evaluated using the test datasets. 

• In the multi-objective optimization of SHCC, UNSGA-III demon
strates better performance than NSGA-III in terms of hypervolume 
indicator. In the investigated design scenarios, UNSGA-III achieves 
higher values of hypervolume indicator than NSGA-III. The Pareto 
optimal solutions are evaluated using the TOPSIS method for selec
tion of the final optimal solutions, which are dependent on the 
defined performance objectives and design scenarios. 

• The proposed method for prediction and multi-objective optimiza
tion provides an alternative solution for efficient development of 
SHCC because the method is capable of generating plausible mix 
design solutions for different design scenarios with particle prefer
ence of the material properties. The plausible solutions can be vali
dated by a reduced number of tests. 

Based on the developed method, it is promising to consider the other 
design variables such as the particle size of materials and investigate 
other important properties of SHCC such as flowability and durability. 
Extensive tests should be conducted to evaluate the performance of the 
proposed method. It is also interesting to test the applicability of the 
method for other families of high-performance fiber-reinforced cemen
titious composites such as ultra-high-performance concrete. 
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