Granulation of Large Temporal Databases: An Allan Variance Approach

Lorina Sinanaj'©?, Hossein Haeri>®P, Satya Prasad Maddipatla’®°, Liming Gao*®¢, Rinith Pakala'
¢, Niket Kathiriya' ©f, Craig Beal*®#, Sean Brennan®®", Cindy Chen'®, and Kshitij Jerath*>@i

LComputer Science Department, University of Massachusetts Lowell, 220 Pawtucket St, Lowell, USA

2Mechanical Engineering Department, University of Massachusetts Lowell, Lowell, USA
3Mechanical Engineering Department, The Pennsylvania State University, University Park, USA
4Mechanical Engineering Department, Bucknell University, Lewisburg, USA

{lorina_sinanaj, hossein_haeri, rinith_pakala, niket_kathiriya} @ student.uml.edu, {cindy_chen, kshitij_jerath} @uml.edu,

Keywords:

Abstract:

1 INTRODUCTION

{lug358, szm888, snb10} @psu.edu, cbeal @bucknell.edu

Big Data, Data Reduction, Temporal Granulation, Allan Variance.

As the use of Big Data begins to dominate various scientific and engineering applications, the ability to conduct
complex data analyses with speed and efficiency has become increasingly important. The availability of
large amounts of data results in ever-growing storage requirements and magnifies issues related to query
response times. In this work, we propose a novel methodology for granulation and data reduction of large
temporal databases that can address both issues simultaneously. While prior data reduction techniques rely
on heuristics or may be computationally intensive, our work borrows the concept of Allan Variance (AVAR)
from the fields of signal processing and sensor characterization to efficiently and systematically reduce the size
of temporal databases. Specifically, we use Allan variance to systematically determine the temporal window
length over which data remains relevant. Large temporal databases are then granulated using the AVAR-
determined window length. Averaging over the resulting granules produces aggregate information for each
granule, resulting in significant data reduction. The query performance and data quality are evaluated using
existing standard datasets, as well as for two large datasets that include temporal information for vehicular and
weather data. Our results demonstrate that the AVAR-based data reduction approach is efficient and maintains
data quality, while leading to an order of magnitude improvement in query execution times compared to three
existing clustering-based data reduction methods.

over time. This has led to a growing interest in
the development of data mining techniques capable
in the automatic extraction of patterns, anomalies,

Whether we are monitoring software systems, track-
ing applications, financial trading analytics, business
intelligence tools, or other temporal systems, time-
series data flows through our data pipelines and appli-
cations at warp speed, enabling us to discover hidden
and valuable information on how that data changes

https://orcid.org/0000-0003-4687-5809
https://orcid.org/0000-0002-6772-6266
https://orcid.org/0000-0002-5785-3579
https://orcid.org/0000-0002-0159-4010
https://orcid.org/0000-0001-7442-4170
https://orcid.org/0000-0002-4146-3402
https://orcid.org/0000-0001-7193-9347
https://orcid.org/0000-0001-9844-6948
https://orcid.org/0000-0002-8712-8108
i@ nhttps://orcid.org/0000-0001-6356-9438

=1 I B = N e I =)

trends and other useful knowledge from data (John-
ston, 2001), (Liu and Motoda, 2002).

However, such hundreds of terabytes of data pose
an I/O bottleneck—both while writing the data into
the storage system and while reading the data back
during analysis. Given this magnitude and faced with
the curse of dimensionality which requires exponen-
tial running time to uncover significant knowledge
patterns (Keogh and Mueen, 2017), much research
has been devoted to the data reduction task (Januzaj
et al., 2004). Dealing with a reduced set of represen-
tative and relevant data (instead of enormous amounts
of raw and potentially redundant data), has the poten-
tial to significantly benefit data analysis.

Traditional data reduction approaches have pro-
posed methods such as data compression (Rehman

et al., 2016), data cube aggregation (Gray et al.,
1997), sampling (Madigan and Nason, 2002), cluster-
ing (Kile and Uhlen, 2012), among others. One of the
most notable techniques to reduce data while limit-
ing loss of important information is to use cluster rep-
resentations of data instead of the original instances.
Unfortunately, many widely-used clustering methods
such as K-means (MacQueen et al., 1967), K-medoids
(Kaufmann, 1987), Fuzzy C-means (Bezdek et al.,
1984), etc., can be computationally expensive and
often rely on heuristics for choosing the appropriate
number of clusters to use.

To overcome these drawbacks, we propose a gran-
ulation and data reduction method based on Allan
Variance (AVAR) (Allan, 1966), (Haeri et al., 2021)
for large temporal databases. In time-series data, or-
der and time are fundamental elements that are cru-
cial to the meaning of the data. However, there is a
trade-off between how much past information should
be used to make predictions about the future. Specifi-
cally, this trade-off directly relates to the window size
of past time-series data. For example, using the most
recent information (i.e. the smallest time window)
for prediction may be useful, but it may also contain
noisy data which does not fully capture the true trends
of the time-series data. On the other hand, using a
large amount of historical data (i.e. large time win-
dows) may lead to the incorporation of old data that
captures older time-series trends that have become ir-
relevant, and hence not useful for making predictions
about the near future (Lu et al., 2018). Allan variance
provides a systematic way of resolving this trade-off
and identifying the appropriate granule size, as dis-
cussed in Section 3. The time complexity of the pro-
posed method is O(n) where n is the number of input
data points. After segmenting the time-series dataset
into granules according to the characteristic timescale
given by AVAR, we use the average value of the gran-
ules as partition representatives instead of the origi-
nal data points. As a result, a reduced representation
of the data is produced without significantly losing
important information, while still being computation-
ally efficient. While time-series data is a primary fo-
cus of this work, we also demonstrate that the AVAR-
based granulation approach can be applied to other
non-temporal attributes as well. Moreover, the data
sets may have both time-series and non-time-series
data. A comparative evaluation of standard data sets
that have non-time-series data is included in Section
5.4.

The rest of the paper is organized as follows. In
Section 2, we discuss related work. Section 3 de-
scribes the AVAR approach for finding the character-
istic timescale over which measurements are relevant.

The proposed algorithms and theoretical analysis of
the algorithms are presented in Section 4. Section 5
discusses the various experiments on a set of standard
data sets, as well as on large data sets pertaining to
vehicular and weather data. Section 5 also discusses
the associated data reduction and query performance
results. The conclusions and future work follow in
Section 6.

2 RELATED WORK

Granular computing is an information processing
paradigm to represent and process data into chunks
or clusters of information called information granules
(Pedrycz, 2001). Information granules are a collec-
tion of entities grouped together by similarity, prox-
imity, indistinguishability and functionality (Zadeh,
1997). The process of forming information granules
is called granulation. In this section, we briefly re-
view the related work which investigate data reduc-
tion based on granules or clusters.

Lumini and Nanni (Lumini and Nanni, 2006)
present a data reduction method based on cluster-
ing (CLUT). The CLUT approach adopts the fuzzy
C-means clustering algorithm to divide the original
dataset into granules, then use the centroid of each
granule as the representative instance to achieve the
reduced dataset. The authors use the Hartigan’s
greedy heuristic (Hartigan, 1975) to select the optimal
number of clusters. The time complexity for the fuzzy
C-means method (Bezdek et al., 1984) is O(n?) with
the increase in the size of the original data, as a num-
ber of successive iterations need to be completed with
the intention to converge on an optimal set of parti-
tions. In addition, requiring a priori specification of
the number of clusters by the Hartigan’s method, adds
more computational complexity to the overall cost.

Olvera et al. (Olvera-Lopez et al., 2010) achieve
data reduction by using a Prototype Selection based
Clustering method (PSC). PSC first divides the orig-
inal dataset into clusters using the C-means algo-
rithm, then checks each cluster if it is homogeneous,
such that all instances belong to the same class, or
not. For the final reduced prototype set, PSC selects
the set of the mean prototypes from each homoge-
neous cluster and the border prototypes from each
non-homogeneous cluster.

Sun et al. (Sun et al., 2019) propose to achieve
fast data reduction using granulation-based instances
importance labeling (FDR-GIIL). The approach uses
K-means to generate the granules and then labels the
importance of each instance in each granule using the
Hausdorff distance (Henrikson, 1999). Data reduc-

tion is achieved by eliminating those instances which
have the lowest importance labels, until a user-defined
reduction ratio is reached. However, K-means al-
gorithm (MacQueen et al., 1967) is computationally
expensive with high volume datasets. Similar to the
fuzzy C-means algorithm, when the number of input
data points n increases, it is observed that the time
complexity becomes O(n?).

For Big Data, the previous related works are time
consuming because the used clustering algorithms of-
ten rely on heuristics such as Hartigan’s statistics, rule
of thumb, elbow method, cross-validation, etc. (Kod-
inariya and Makwana, 2013) to choose the appropri-
ate number of clusters or granules. Additionally, they
need to process many iterations in order to converge
to optimal cluster centers. This leads to a quadratic
time complexity which is very prohibitive for large
datasets. To the best of our knowledge, this paper is
the first to present a systematic granular data reduc-
tion method for temporal databases using Allan Vari-
ance, which does not rely on heuristics and successive
iterations to process data into information granules.

3 ALLAN VARIANCE

Allan Variance (AVAR) was first proposed to char-
acterize the time drift or instability in atomic clocks
(Allan, 1966), but it later became a practical method
for sensor noise characterization (Jerath and Bren-
nan, 2011). In its original context, AVAR was de-
veloped to quantify the drift and its correlation with
time. In the context of signal processing, Allan vari-
ance characterizes the noise in a sensor by quanti-
fying the variance observed in measurements across
various timescales (Jerath et al., 2018). If the tem-
poral data stream from a sensor is correlated across
time, then AVAR can help identify the timescale over
which such correlations are most stable. By iden-
tifying this stable correlation time, AVAR can sys-
tematically quantify the trade-off between aggregat-
ing enough data to remove noise, but not aggregat-
ing so much data such that signals whose character-
istics have drifted are incorporated. Drawing inspi-
ration from these classical applications of AVAR in
signal processing and sensor characterization, the au-
thors recently proposed a novel method which utilizes
AVAR to identify the characteristic timescale of any
given temporal data set with numerical entries (Haeri
et al., 2021)(Sinanaj. et al., 2021). Given noisy tem-
poral data that follows a certain unknown pattern, the
characteristic timescale determines the time horizon
over which measurements yield a near-optimal mov-
ing average estimate. Specifically, our method pro-

poses that estimation (or averaging) tasks should not
use any measurements that are older than the charac-
teristic timescale (Haeri et al., 2021). This forms the
basis of our granulation strategy.

3.1 AVAR-informed Characteristic
Timescale

Allan variance (or two-sample variance) of a given
temporal data sety = {y1,y2, ...,y } is mathematically
defined as the expected variance of two successive
averaged groups of measurements, i.e. data blocks,
at a given timescale or window size m (Allan, 1966),
(Jerath et al., 2018). Specifically, the Allan variance
is given by:

oim = 1E[G -5 M)

where J; is simple moving average of the measure-
ments at time &, averaged over the window length m,
and is given by:

I
Yk:%‘Z Vi (2)

i=k—m

To numerically estimate AVAR, we can compute
average of the term (7 — ¥%_,,)> across all possible
time steps k as follows (Sesia and Tavella, 2008):

A2\ 1 S 2
GA(m) - 2(1’! — 2]’)1) k:§+l (yk Yk—m) (3)

Figure 1(a) shows uncorrelated temporal data
(more specifically Gaussian white noise), and Fig-
ure 1(d) shows the corresponding Allan variance
curve evaluated at several different window lengths
or timescales. It is observed that for the uncorre-
lated Gaussian white noise, Allan variance decreases
as the timescale or averaging window length m in-
creases. This is intuitive because as we average across
time blocks of larger size m, these averages yy, include
more time-series data and also tend closer to the mean
value of the Gaussian white noise.

On the other hand, if data points are correlated in
time, there is a possibility of the Allan variance in-
creasing with increasing window lengths. For exam-
ple, Figure 1(b) shows a random walk process with
its prototypical drift over time. It is intuitively under-
stood that averages yy taken across increasingly larger
window lengths m will also be larger due to the un-
derlying drift behavior of the random walk. Thus, as
seen in Figure 1(e), the AVAR increases as block size
increases since the data is correlated in time and the
most relevant measurements to any point at £ is its im-
mediate neighboring measurement at k — 1 and k+ 1.

Noise (Uncorrelated)

Signal (Correlated)

Signal + Noise

20 20 20
. m% .
=
% 0 0 0
-10 -10 -10
20 20 20
(a) (b) (c)
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
time step [k] time step [K] time step [k]
10"
10’ 12 |
[}
10 <!
Ql
8 Q!
X E!
) [
x 10° 100 6 o
< B!
z 8!
4 &1
<1
-1 5!
o (d) 107t (e) (f) |
10° 10° 102 100 10° 102 10° 10' 102

window length (m)

window length (m)

window length (m)

Figure 1: Characteristic timescale determines the time horizon over which averaging data points yields a near optimal results.
(a) Gaussian white noise (b) Random walk signal. (c) Random walk corrupted with Gaussian white noise. Figure (d), (e), and
(f) show AVAR of the signals on top calculated at various window lengths (1 < m < n/4).

A lower value of the AVAR at a given timescale in-
dicates lower bias and reduced variance between data
aggregated at that timescale.

In this work, however, we are more interested in
cases like the one in Figure 1(c) where a correlated
signal is corrupted with an uncorrelated noise. In
this case, we face a trade-off between averaging over
more data points to help eliminate noise, and aver-
aging over fewer data points to help avoid drift as
seen in the random walk behavior. Allan variance can
help systematically resolve this trade-off by explic-
itly identifying the characteristic timescale at which
data remains relevant, as shown in Figure 1(f). This
AVAR-determined window length (or characteristic
time scale) will be used to separate the original dataset
into granules to achieve data reduction.

3.2 Fast AVAR Calculation

Although AVAR yields valuable information regard-
ing the characteristic timescale of the temporal data,
it still needs to be efficiently computed for large data
sets. To accomplish this, we use the algorithm sug-
gested in (Maddipatla et al., 2021) and constrain the
potential window lengths to powers of 2, i.e m = 27
where p € Z*. Then we can quickly estimate the
expression in (1) using a simple dynamic program-
ming method explained in Algorithm 1, which has
O(n) running time, where n is the number of in-
put data points. The algorithm first constructs a list
of exponentially growing window length candidates

T = {29,222 ...}, Then, for each window length,
starting from T = 1, the algorithm calculates the asso-
ciated AVAR by averaging 0.5(Y; — Y, 1)? across all
valid k values. Meanwhile, it pre-computes the next
temporal list Y’ by averaging adjacent data values Y}
and Y1 1. A detailed description of the algorithm can
be found in our earlier work (Maddipatla et al., 2021).

Algorithm 1: Fast AVAR calculator

Input: a set Y of raw temporal data points
Output: a set 4 of AVAR values and a set 7
of associated timescales

construct 7 = {1,2,4,8,...,27} such that
2P < Y.length/2 < 2P+!
for 1€ 7 do
Y’ = empty list
k=1
c=0
while k < Y.length do
c= C—|—0.5(Yk—Yk+1)2
add 0.5(Y; + Yis1) to Y’
k=k+2
end
add W
Y=Y

to 4

end
return 4 and T

The theoretical analysis and the experiments in
Figure 2 prove that the running time for the Algorithm

1 is O(n). In the first iteration where T = 1, the algo-
rithm will perform n x 1 computations, in the second
iteration because T = 2, the number of calculations
will be n x %, in the third iteration T = 4, so the num-
ber of AVAR calculations is n X % and so on until the
m-th iteration where T = 27. In the last iteration the
total number of calculations is 7 x ()”. Adding all
the calculations in each iteration yields a geometric
series with the first term is n, the common ratio is %,
and the number of terms is m. Using the sum formula
for a finite geometric series we can calculate the total

time complexity of Algorithm 1:

S=Y (5 =")

Since the common ratio in this geometric series
is % (less than 1), the series converges with sum
S = O(n) = 2n. The linear complexity time of the
fast AVAR calculator is also shown in Figure 2, where
the execution time is linear and proportional to the
number of measurements in the data. Being able to
efficiently compute the AVAR characteristic window
length for large amounts of data is crucial, because
the number of the final granules or clusters in the re-
duced dataset is determined by the temporal aggrega-
tion timescale given by the fast AVAR algorithm.

350

0 10 20 30 40 50 60
Number of measurements (x 106)

Figure 2: Fast AVAR calculator execution time.

4 AVAR-BASED GRANULATION

This section presents the structure of the pro-
posed AVAR-based granulation approach for tempo-
ral databases by describing the overall workflow of
the technique and the theoretical analysis of the algo-
rithm complexity, using the AVAR-informed charac-
teristic timescale.

4.1 System Architecture

The current state-of-the-art granulating temporal data
algorithms require successive iterations and hence
significant computational effort. In addition, they also
often rely on heuristics for choosing how to parti-
tion the original data. These are computationally ex-
pensive operations, especially for temporal databases
with a large number of rows. The main issue with
using heuristics to specify the number of clusters in
advance, is that the final result will be sensitive to the
initialization of parameters. A practical approach is to
compare the outcomes of multiple runs with different
k-number of clusters and choose the best one based on
a predefined criterion. However, this method is also
very time consuming due to the large number of itera-
tions that the algorithm needs to carry out (MacQueen
etal., 1967).

In our study, we propose an AVAR-based granu-
lation technique on large temporal databases, that in
O(n) time complexity takes as input the n raw data
points, systematically determines the time window
over which data is relevant, and calculates the aggre-
gated information of the relevant data for each time
window. Compared to previous approaches where
authors used heuristics (Kodinariya and Makwana,
2013) to determine the optimal number of partitions
(granules), in our work the number of partitions is
systematically determined by the AVAR characteris-
tic timescale itself.

Figure 3 shows the overall workflow of the
proposed method including four steps: (1) Pre-
processing: A simple pre-processing step is applied
on the raw dataset (if it is not originally sorted) to sort
the data points in time prior to applying the AVAR al-
gorithm, (2) Allan variance calculation: The AVAR
algorithm takes as input the sorted temporal database,
and outputs a characteristic timescale over which the
measurements are relevant and should be averaged
across, (3) Granulation: The granulation algorithm
takes in input the AVAR timescale, partitions the data
in a series of non-overlapping time interval segments
and generates aggregated information for each inter-
val, and (4) Data preparation: Aggregated informa-
tion for each partition will then be used as representa-
tive instances for the new reduced dataset. As a result,
at a later stage, data mining methods can analyze the
data faster due to the decrease in volume without los-
ing data quality.

Compared to the other methods in the related
works section, the AVAR-based technique systemat-
ically identifies a characteristic timescale at which
measurements are relevant, representative and sta-
ble without relying on iterations or heuristics. As

Raw

Temporal
Database

AVAR

Characteristic Timescale
(block size)

Reduced

Temporal
Database

Insert

Sort in time

Apply AVAR

aggregated data

Calculate 154
block averages |® (@

Time

Figure 3: System Architecture—Schematic view of data granulation process based on Allan Variance.

a limitation to this method, input data should be
sorted in time before getting processed. However,
the worst-case time complexity when sorting the
data is O(nlog(n)) (Mishra and Garg, 2008). Even
with sorting operations included in the assessment,
the presented AVAR-based granulation methodology
performs better compared to methods that compute
a large number of iterations and use heuristics to
achieve approximate cluster representatives in O(n?).

4.2 AVAR Granulation Approach

A challenge in large sized databases is to evaluate
complex queries over a continuous stream of inputs.
The key idea is to reduce the volume using moving
window aggregations, i.e. the calculations of aggre-
gates in a series of non-overlapping (tumbling) win-
dows. Tumbling windows (Helsen et al., 2017) are
a series of fixed-sized, non-overlapping, and contigu-
ous time intervals where tuples are grouped in a single
window based on time. A tuple in the database cannot
belong to more than one tumbling window. In the pro-
posed algorithm, AVAR method determines the size
of the tumbling window over which the measurements
are relevant.

The complete temporal granulation process de-
fined according to the proposed methodology is de-
scribed by Algorithm 2. The algorithm takes as an
input the set of the original data points and the AVAR
characteristic timescale Tayar, and returns the set of
the granule representatives. Initially, it starts by se-
quentially scanning every data point in the original
set associated with their respective timestamp values.
It then partitions the data points into different time in-
tervals, by checking which window interval the times-
tamps fall into (if statement). Before jumping to a

new time window interval (else statement), the al-
gorithm calculates the average value for the current
granule and inserts that value in the representatives
set.

In Algorithm 2, the data is scanned only once in-
side the while loop. Each step inside the “if” and
“else” statements takes only O(1) time as it does
not contain loops, recursion or call to any other non-
constant time function. As a result, time complexity
of the AVAR-based granulation algorithm becomes
O(n), where n is the number of input data points. This
time complexity is linear and proportional to the size
of the original data. If we combine the time complex-
ity of Algorithm 1 with the time complexity of Al-
gorithm 2, the total time complexity of the proposed
approach is simply O(n). The more voluminous the
original data is, the slower the reduction algorithm
will be. However, our approach is a pre-processing
step to prepare the data for the future data analysing
techniques. Efficiency is achieved because data ana-
lytical methods can analyze the data faster due to the
decrease in volume without losing data quality.

The space complexity of the proposed algorithm
is the amount of memory space it needs to run ac-
cording to its input size. If the number of Information
Granules generated by the algorithm is ¢ and the input
size is n, the storage requirement for the algorithm to
complete its task is O(ng).

5 EXPERIMENTS

In the following we present experimental results that
assess the performance of the AVAR method in the
granulation algorithm. As the experimental basis, a
simulation environment is used to produce a large

20 T T T T T T T

1.5

0.0

Friction coefficient
s

20 I L L L L L L

AWM s

(b)

B
16)

tic timescale (m

ist

Characteri

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6
Time (hours)

2 100 102 10* 108
Window length m [# of samples]

Figure 4: (a) Friction data. Negative values are outliers but we retained them to show that the technique is robust under
different scenarios. (b) Allan variance for vehicular friction measurements containing 91 million data points, evaluated across
various window lengths.The minimum point in the AVAR curve indicates the characteristic timescale of the data.

amount of temporal information for vehicular data.
Each tuple contains information about road-tire fric-
tion measurements at a certain point in time.

On this dataset we perform three separate experi-
ments: (1) we apply the AVAR method to determine
the characteristic timescale over which measurements
are relevant, (2) we apply the granulation algorithm
based on the AVAR output, on data of different sizes
to observe the algorithm execution time with respect
to input data size, and (3) on the input dataset and on
the reduced dataset, we run the same exact query to
analyze the performance of our reduction method. In
addition experimental analysis is conducted to com-
pare the proposed method against the competitors in
the related works.

The test results show that performing the same
type of query in the reduced dataset compared to ex-
ecuting the query in the original data, not only drasti-
cally reduces the query execution time but it can also
generate close results with a relatively low absolute
error.

Hardware: The platform of our experimentation is a
PC with a 2.60 GHz Single Core CPU, 64 GB RAM
using PostgreSQL 10.12 on Linux kernel 3.10.0.

5.1 Characteristic Timescale of
Vehicular Data

In this subsection, we evaluate the characteristic
timescale of the vehicular friction measurements by
calculating the AVAR across various window lengths
using the Algorithm 1. Figure 4(a) shows the pattern
of the friction values over time and Figure 4(b) shows
the corresponding AVAR curve. In Figure 4(a) we can
observe negative values in the form of outliers in the
friction data. As a future work, outliers will be re-
moved from the original dataset but for now we are
retaining them to show that the proposed granulation

technique is robust under different scenarios. Figure
4(b) indicates that the size of the granule to be used is
equal to the characteristic timescale of the data, which
points to the minimum AVAR value in the graph. The
reader may also note that the Allan variance curve in-
dicates the presence of two local minima, which arise
due to the presence of periodic sinusoid patterns in
the temporal data. In Section 5.3, we also investigate
the effectiveness of AVAR-based granulation of real-
world weather datasets where the periodicity is inher-
ent in the dataset, and where we also found multiple
minima in the Allan variance curve.

Algorithm 2: AVAR-based temporal granu-
lation algorithm

Input: a set Y of raw temporal data points
and timescale Tavar
Output: a set Y’ of granule representatives

initialize windowgq; and windows;;e=TAVAR

g=1 // Information Granules counter

while y € Y do

if timestamp(y) € window interval then
| inserty in Information Granule /G,

else

set windowgsays as
(windowggr+windowgize)

shift window interval (Windowgy; ,
Windowg g +windowsi,)

calculate the average y, for all
yelG,

add y, to Y’

q=q+1

end
end
return Y’

350

300

250

200

150

100

Execution time (seconds)

50

25 5.0 7.5 10.0 125 150 17.5 200 225 250
Data size (GB)

Figure 5: Execution time of the AVAR-based granulation
algorithm.

5.2 Time Efficiency of AVAR-based
Granulation Algorithm

To measure the time efficiency of the AVAR-based
granulation algorithm, we will gradually increment
the size of the data to be granulated. We initially start
by applying the granulation algorithm on a temporal
database of size 2.5 GB (=~ 32 million data points),
and we measure its execution time. We repeat these
steps by applying the algorithm on data with differ-
ent sizes up to 25 GB (= 320 million data points) and
present the results in Figure 5.

From these results, we observe that for larger
amounts of input data, the algorithm takes more
time to execute. However, the increase in execution
time is linear to the size of the input data, once
again proving our theoretical algorithm analysis that
the time complexity for our proposed AVAR-based
granulation technique is O(n), where n is the number
of input data points.

5.3 Effectiveness of AVAR-based
Granulation Technique

We evaluate the proposed approach on a vehicular in-
formation dataset of size 7216 MB, which consists of
91,475,050 tuples measured at a time range of around
25 hours. Each tuple holds road-tire friction val-
ues associated with their respective timestamps. The
purpose of AVAR-based granulation is to reduce the
query execution time without losing important infor-
mation from data reduction. To show that this tech-
nique efficiently produces a reduced representation of
the data without losing data quality, we run the same
query on both datasets, the original and the reduced,
and we analyze the query execution time as well as
the query results. We use a query to output the av-
erage friction value for a given interval in time. The

12000

—a—QOriginal data Reduced data

10000
8000
6000
4000

2000

Execution time (milliseconds)

Time intervals queried (hours)

Figure 6: The runtime rising tendency of the query as more
data is analyzed

query is run for different time intervals, to observe
how the query execution time changes when an in-
creasingly number of tuples have to be analyzed. We
show that after using our approach, data can be an-
alyzed faster due to the decrease in volume, without
losing important information.

First, we show that the query execution time can
be reduced drastically after applying the AVAR-based
granulation algorithm. The size of the reduced dataset
after the granulation technique with a characteristic
timescale of 16 milliseconds is 426 MB, with the
total number of tuples being 5,717,191. The storage
requirement is efficiently reduced as shown by the
calculated reduction rate of ~ 94 %. Experimental
results in Figure 6 show that for the same time
interval, the query takes less time to execute in the
reduced data compare to executing it in the original
data. In addition, we observe that for the original
dataset, the runtime growth of the query is higher
with the growth of the amount of data queried. From
these results we can observe that the benefits of data
reduction processes are sometimes not evident when
the data is small; they begin to become obvious when
the datasets start growing in size and more instances
have to be analyzed.

Second, we show that we do not lose data quality
while reducing the temporal database in a representa-
tive subset. The advantage of using representatives is
that besides improving query execution time, it also
improves the model generalization for the use of data
mining techniques in the future. We measured the
average, minimum and maximum friction values for
different time intervals on both datasets. Numerical
results are shown in Table 1. In addition we calcu-
lated the percentage error rate for the average friction
values in increasing time intervals of 1 hour and we
show the graph results in Figure 7.

From Table 1 we can observe that for the aver-
age (AVG) query, the error is occurring at the 5/ or
6" decimal place. This event mostly happens due

Table 1: Query performance on the friction data.

AVG(friction) AVG query error

Interval of time

MIN(friction)

MIN query error MAX(friction) MAX query error

Original data Reduced data Percentage ~Absolute Original data Reduced data Percentage ~Absolute Original data Reduced data Percentage ~Absolute

between *2020-06-15

05:00:00” and *2020-06-15 0.754902 0.754902 1.14E-05 8.60E-08 -1.608
05:10:00"
between 2020-06-15
05:10:00" and 2020-06-15 0.654777 0.654776 1.05E-04 6.87E-07 0.253

05:20:00
between *2020-06-15
05:20:00" and *2020-06-15
05:30:00
between *2020-06-15

0.600036 0.600037 1.97E-04 1.18E-06 0.349

05:30:00" and *2020-06-15 0.686079 0.686078 1.46E-04 1.00E-06 -0.723
05:40:00"
between *2020-06-15
05:40:00” and *2020-06-15 0.849033 0.849026 8.27E-04 7.02E-06 -1.536
05:50:00"
between 2020-06-15
05:50:00” and "2020-06-15 0.897936 0.897934 2.36E-04 2.12E-06 0.633

06:00:00°

to the computer representation for binary floating-
point numbers in the IEEE Standard for Floating-
Point Arithmetic (IEEE 754)(IEEE, 2019). IEEE
754 standard, for floating point representation, al-
lows 23 bits for the fraction. 23 bits is equivalent
to log;((23) ~ 6 decimal digits. Beyond those num-
ber of significant digits, accuracy is not preserved,
hence round-off starts to occur as reported in Table
1. The absolute error values, mostly due to numeri-
cal accuracy round-off, are extremely small, proving
that the AVAR-based granulation technique in tempo-
ral databases keeps the quality of the original data.
Nevertheless, the vehicular friction values round to
the 4" decimal place, already have enough accuracy
for vehicular control application.

For the minimum (MIN) and maximum (MAX)
queries, even though the absolute error is larger due
to the presence of outliers (as observed in Figure
4(Top)), the results are still close in value to each
other. A good approach in the future is to apply a
filtering algorithm that removes the outliers prior to
applying the AVAR granulation approach.

From Figure 7 we notice that the more data that is
used, the smaller the percentage error is. This is of-
ten a characteristic of the round-off error (Goldberg,
1991). Using a finite number of bits to represent real
numbers which can have infinitely many digits, re-
quires an approximate representation. Rounding er-
ror occurs as the difference between the calculated
approximation of a number and its exact mathemat-
ical value. The IEEE standard uses round-to-nearest
method where results are rounded to the nearest rep-
resentable value. As more data is calculated, round-
ing up and down many times causes the cumulative
round-off error to decrease.

We further tested our proposed AVAR-based gran-
ulation technique on NASA’s Solar and Meteorology
dataset (NASA,) for the Boston area with coordi-
nates latitude 42.3601 and longitude -71.0589. These
data were obtained from the NASA Langley Research

-0.929 42214 0.679 1.559 1.326 14.968 0.233
0324 28170 0071 0.949 0870 8349 0079
0.431 23.460 0.082 0.839 0.770 8.246 0.069
-0.258 64.385 0.466 1.732 1.532 11.571 0.200
-1.011 34.193 0.525 1.413 1.084 23.317 0.329
0.728 14.931 0.095 1.074 0.975 9.214 0.099
1.60E-04
1.40E-04
1.20E-04
x
S 1.00E-04
5 8.00E-05
°
3
£ 600505
g
5 4.008-05
2.00E-05
0.00E+00

Time intervals queried (hours)

Figure 7: Percentage error rate for the average friction val-
ues

Center (LaRC) POWER Project funded through the
NASA Earth Science/Applied Science Program. The
datasets contain 177480 records for the time range
from 01/01/1980 to 01/31/2021. The temperature
dataset and humidity dataset provide hourly tempera-
ture and specific humidity at 2 meters high above sea
level, respectively. The columns — year, month, day,
and hour are converted into the sequential hour and
the AVAR graph is plotted for hourly temperature and
humidity data, shown in Figures 8 and 9, respectively.

The AVAR for temperature data interestingly
shows that there are two local minima for the granu-
lation window length: the first minimum occurs at 16
hours and the second occurs at 256 hours. We then
generate two granulated temperature datasets with
window length as 16 hours and one with window
length as 256 hours. The query performance result
for average (AVG), minimum (MIN) and maximum
(MAX) for both granulated datasets are shown in Ta-
ble 2 and Table 3. For the larger granulation window
length, data are compacted at greater level, however,
when answering min and max queries, the error rate
is higher than using the smaller granulation window
length.

Figure 9 shows that the AVAR for humidity data
is minimized at a window length of 256 hours. The

40 102

| i gobd 3 3 }
30| | { & | - & !
| g 3 1 B B |

20 4%] ; ; 1
o % |] 4 t F i i 10
[¢) { 1 b A 1 1 i g8
= 9 A% 3 4 b 3 o

f } 2 .

@ 10 k- : R LT £ ®
=] A% ‘R5k” i i 5 X16 X 256
& ! : ’ 4 1 ATy 5 Y5785 $ 5257
2 3 U I ! g S
5’ ‘ 2
e | y b i ‘I i y o

i { a ¥ N B 10

<108 i P 1 ¥ | -

| I LRI . |
! 1 LI A | ' ¥ i
5o I - !
30 I
0 2 4 6 8 10 12 14 16 18 100 10 102 10° 10 105

Time (Hours) x10* Window length (Hours)

Figure 8: AVAR of temperature of the Solar and Meteorology dataset calculated at various window lengths. (a) Temperature
data (b) AVAR curve showing the two characteristic window length = 16 hours and length = 256 hours.

25 10
20|
1
. { ¢ i i | ¢ &
A i B L & i u 1
15 T ') _) ‘(£ i & 3 | 100 »
EEEEERE' § I . @ i : X 256
| 1 I TN E ; : 4 Y 09813
1 4 4 :)\ H k. . | o R b
108 I 2k § L & i 5 R CE R
| B 4% 1Y B § H R AR i} {
18 xi A% A% . i H
5 | {] i L o F 8¢ i 4 B
" W I / i 107"

)
0 2 4 6 8 10 12 14 16 18 10° 10! 102 108 10* 10°
¥ 4 .
Time (Hours) x10 Window length(Hours)

Figure 9: AVAR of humidity of the Solar and Meteorology dataset calculated at various window lengths. (a) Humidity data
(b) AVAR curve showing the characteristic window length = 256 hours.

Humidity (g/kg)
Allan Variance

Table 2: Query performance on the Temperature data: Granulation using first minimum of Allan variance.

AVG(Temperature) AVG query error MIN(Temperature) MIN query error MAX(Temperature) MAX query error
Interval of time
Original data ~ Reduced data Percentage ~ Absolute Original data Reduced data Percentage ~ Absolute Original data Reduced data Percentage ~Absolute

between *2001-01-01
00:00:00" and "2005-01-19 9.136 9.141 0.054 0.005 -23.02 -19.294 16.185 3.726 38.01 31.659 16.708 6.351
00:00:00"
between 2005-01-19
00:00:00" and *2009-02-06 9.141 9.135 0.065 0.006 -21.64 -18.025 16.705 3.615 35.39 30.203 14.656 5.187
00:00:00"
between *2009-02-06
00:00:00" and "2013-02-24 9.788 9.79 0.02 0.002 -24.31 -19.039 21.682 5.271 35.59 31.579 11.27 4.011
00:00:00"
between '2013-02-24
00:00:00" and "2017-03-14 9.473 9.471 0.021 0.002 -25.92 -21.368 17.561 4.552 35.74 30.58 14.437 5.16
00:00:00"
between "2017-03-14
00:00:00" and *2021-03-31 9.642 9.643 0.01 0.001 -22.74 -19.341 14.947 3.399 35.61 30.86 13.338 4.75
23:00:00"

Table 3: Query performance on the Temperature data: Granulation using second minimum of Allan variance.

AVG(Temperature) AVG query error MIN(Temperature) MIN query error MAX(Temperature) MAX query error
Interval of time
Original data Reduced data Percentage ~ Absolute Original data Reduced data Percentage = Absolute Original data Reduced data Percentage Absolute

between "2001-01-01
00:00:00" and *2005-01-19 9.136 9.082 0.591 0.054 -23.02 -12.426 46.02 10.594 38.01 26.821 29.436 11.189
00:00:00"
between 2005-01-19
00:00:00" and *2009-02-06 9.141 9.233 1.006 0.092 -21.64 -9.135 57.786 12.505 35.39 24.729 30.124 10.661
00:00:00
between 2009-02-06
00:00:00" and "2013-02-24 9.788 9.747 0.418 0.041 -24.31 -7.143 70.617 17.167 35.59 24.427 31.365 11.163
00:00:00
between '2013-02-24
00:00:00" and *2017-03-14 9.473 9.438 0.369 0.035 -25.92 -10.597 59.116 15.323 35.74 25.457 28.771 10.283
00:00:00
between 2017-03-14
00:00:00" and *2021-03-31 9.642 9.666 0.248 0.024 -22.74 -11.002 51.618 11.738 35.61 26.142 26.588 9.468
23:00:00

Table 4: Query performance on the Humidity data.

AVG(Humidity) AVG query error

Interval of time

Original data ~ Reduced data Percentage ~ Absolute Original data

between "2001-01-01

00:00:00" and "2005-01-19 6.487 6.474 0.2 0.013 0.49
00:00:00
between *2005-01-19
00:00:00" and *2009-02-06 6.786 6.81 0.353 0.024 0.61
00:00:00
between 2009-02-06
00:00:00" and "2013-02-24 6.939 6.927 0.172 0.012 0.49
00:00:00
between *2013-02-24
00:00:00” and *2017-03-14 6.673 6.662 0.164 0.011 0.43

00:00:00”
between *2017-03-14
00:00:00" and *2021-03-31 6.87 6.87 0 0 0.55
23:00:00”

humidity is defined as the ratio of the mass of wa-
ter vapor to the total mass of air at 2 meters, and has
units of g/kg. The query performance results for aver-
age (AVG), minimum (MIN) and maximum (MAX)
are shown in Table 4, and show comparable perfor-
mance to the other data sets, with the query error for
averaging being especially low.

5.4 Comparative Evaluation

Comparison experiments are conducted by compar-
ing the proposed AVAR-based granulation algorithm
with the other clustering data reduction methods in
the related works. Five datasets selected from the UCI
Repository (Dua and Graff, 2019) with different sizes
are reduced to demonstrate the effectiveness of the
AVAR approach. The chosen datasets (Segmentation,
Magic, Letter, Shuttle, Covertype) are considered as
“large” datasets by the competitors FDR-GIIL (Sun
etal., 2019), CLU (Lumini and Nanni, 2006) and PSC
(Olvera-Lopez et al., 2010). CLU and PSC are not ap-
plicable to run in the Covertype dataset (250,000 in-
stances), because they are very expensive when large
datasets are processed. A description of these datasets
is given in Table 5.

Table 5: Description of datasets.

Number of Number of
Dataset . X
instances attributes

Segmentation 2100 19
Magic 19,020 10
Letter 20,000 16
Shuttle 58,000 9
Covertype 250,000 54

There are two key experiments conducted in this
section; (i) measurement of the query performance
in each dataset after they have been reduced by the
AVAR-based approach and (ii) evaluation of how fast
the execution time of the proposed AVAR approach is

MIN(Humidity)

MIN query error MAX(Humidity) MAX query error

Reduced data Percentage ~ Absolute Original data Reduced data Percentage =~ Absolute

1.341 173.673 0.851 20.63 14.807 28.225 5.823
1.699 178.524 1.089 20.51 14.678 28.434 5.832
2.086 325.714 1.596 19.71 14.958 24.109 4.752
1.532 256.279 1.102 19.84 15916 19.778 3.924
1.562 184 1.012 20.02 14.978 25.184 5.042

compared to the existing clustering based data reduc-
tion methods.

Figure 10, 11, 12, 13 and 14 show the AVAR cal-
culated at various window lengths for each dataset.
We can observe from the graphs in Figures 8-
12(a), how each data has different characteristics and
shapes. Some of them have a large number of out-
liers (Shuttle and Covertype), while some others have
many repetitive data points (Letter). It is important to
see how the AVAR-method performs against different
kind of data, so that future work can be planned to
make the method applicable in more general cases.

The first step in the proposed granulation process
measures the characteristic window length at the min-
imum AVAR, shown in Figures 8-12(b). The next step
is to use this window length to separate the data into
granules and generate the aggregated information for
each such granule. After the reduction step is per-
formed, we observe the query performance for each
reduced dataset.

For the Segmentation dataset, we measured the
average, minimum and maximum rawblue values
where rawred was between a given interval. For
the Magic dataset, we measured the average, mini-
mum and maximum fConc values where £Size was
between a given interval. For the Letter dataset,
we measured the average, minimum and maximum
box_width values where horizontal position was
between a given interval. For the Shuttle dataset,
we measured the average, minimum and maxi-
mum Column_7 values where time was between
a given interval. For the Covertype dataset, we
measured the average, minimum and maximum
hillshade_index_noon values where slope was be-
tween a given interval.

Numerical results for each data are shown in Ta-
bles 6, 7, 8, 9 and 10. For the AVERAGE query we
can observe that the absolute error is almost always
close to 0, indicating that there is little difference be-
tween the results in the original and the reduced data.
There are special cases where the absolute error is
large, as in certain intervals of Table 9 and 10 which

5120
= 100
52
2 8 4
2 6
2w
2

0

0 20 40 60 80 100
RAWRED-MEAN
(@)

AVAR

100k

120 140 160 10°

Y 0.813667 e ‘
10 10? 10°
Window length (m)
(b)

Figure 10: AVAR of the Segmentation dataset calculated at various window lengths. (a)Segmentation data (b)AVAR curve
showing the characteristic window length=4 units.

1
09
08
07
06
05
04
03
02
01

0

fConc

0 1 2 3 4
fSize
(a)

Figure 11: AVAR of the Magic dataset calculated at various window lengths.

characteristic window length = 128 units.

14 °
L L]
w 12 e @ o * o
3 e o & o o o
S 10 ¢ & o o o+ &
p s & & & s & &
° 8 e & & s & o s o
g * & s & s s o
5 6 s & 3 8 & 8 s o
g e & & & & & o
4 s & 3 s s o
s s & s
2 .- . °
s s e
o & @
o 2 4 6 8 10
x-box horizontal position of box
@

102 3
<
3l X 128 i
2 10 Y 6.80534e-05
104k i i 3
s 6 100 10! 102 10° 10*
Window length (m)
(b)

(a) Magic data (b) AVAR curve showing the

X 64
Y 0.0256162

L]
. 10°
* .
e z
>
<
102 =
12 14 16 10

10! 102 108 10*
Window length (m)
(®)

Figure 12: AVAR of the Letter dataset calculated at various window lengths. (a) Letter data (b) AVAR curve showing the

characteristic window length = 64 units.

X 64
Y 1.61999

120 102
100 . "
80 o
60 e
~ °
g w <10k
3 . <
I . [=y .
20 0 20 040 Lo 80 1004 °®126 140
L]
-0 ., 10°
-60 10°
Time
(a)

10°
Window length (m)
®)

Figure 13: AVAR of the Shuttle dataset calculated at various window lengths. (a) Shuttle data (b) AVAR curve showing the

characteristic window length = 64 units.

300
250
200
150
100

50

Hillshade index at noon,
summer solstice

0

0 10 20 30 40
Slope in degrees

(@)

1 02 T T E|
<
=
< X 2048

Y 159563
1 00 1 1
50 60 70 102 104
Window length (m)

®)

Figure 14: AVAR of the Covertype dataset calculated at various window lengths. (a) Covertype data (b) AVAR curve showing
the characteristic window length = 2048 units.

Table 6: Query performance on the Segmentation data.

Ttz @if AVG(RAWBLUE-MEAN) AVG query error MIN(RAWBLUE-MEAN) MIN query error MAX(RAWBLUE-MEAN) MAX query error

RERREpQUEAN Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute

[0, 29] 9.506 9.506 0.000 0.000 0.000 0.000 0.000 0.000 26.111 25.083 3.937 1.028
[29, 58] 39.698 39.778 0.202 0.080 18.333 24.417 33.186 6.084 54.111 51.639 4.568 2472
[58, 871 55.188 55.161 0.049 0.027 50.000 51.278 2.556 1.278 70.778 65.389 7.614 5.389
[87, 116] 92.963 92.877 0.093 0.086 72.000 72.250 0.347 0.250 107.444 103.639 3.541 3.805
[116, 145] 118.453 118.543 0.076 0.090 103.667 105.778 2.036 2.111 137.111 136.000 0.810 1.111

Table 7: Query performance on the Magic data.

AVG(fConc) AVG query error MIN(£Conc) MIN query error MAX(fConc) MAX query error
Interval of £Size

Original data Reduced data Percentage =~ Absolute Original data ~Reduced data Percentage ~ Absolute Original data Reduced data Percentage =~ Absolute

[2.0,2.5] 0.594 0.596 0.337 0.002 0.290 0.492 69.655 0.202 0.893 0.734 17.805 0.159
[2.5,3.0] 0.377 0.378 0.265 0.001 0.116 0.265 128.448 0.149 0.885 0.49 44.633 0.395
[3.0,3.5] 0.221 0.221 0.000 0.000 0.049 0.174 255.102 0.125 0.638 0.262 58.934 0.376
[3.5,4.0] 0.153 0.154 0.654 0.001 0.025 0.120 380.000 0.095 0.292 0.177 39.384 0.115
[4.0,4.5] 0.080 0.085 6.250 0.005 0.013 0.068 423.077 0.055 0.155 0.102 34.194 0.053

Table 8: Query performance on the Letter data.

Tt 6iF AVG(box_width) AVG query error MIN(box_width) MIN query error MAX(box_width) MAX query error

Lerlee i pEsEem Original data Reduced data Percentage ~ Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage ~ Absolute

[0, 3] 2.592 2.610 0.694 0.018 0.000 0.281 0.000 0.281 5.000 3.906 21.880 1.094
[3, 6] 5.235 5243 0.153 0.008 2.000 4.156 107.800 2.156 9.000 6.516 27.600 2.484
[6,9] 7.408 7.409 0.013 0.001 4.000 6.703 67.575 2.703 12.000 8.297 30.858 3.703
[9,12] 8.567 8.567 0.000 0.000 6.000 7.797 29.950 1.797 14.000 9.703 30.693 4.297
[12,15] 11.259 11.375 1.030 0.116 9.000 11.375 26.389 2.375 14.000 11.375 18.750 2.625

Table 9: Query performance on the Shuttle data.

AVG(column_7) AVG query error MIN(column_7) MIN query error MAX(column_7) MAX query error
Interval of time

Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage ~ Absolute

[25, 45] 44.626 44.625 0.002 0.001 -16.000 37.531 334.569 53.531 104.000 50.750 51.202 53.250
[45, 65] 34.178 34.178 0.000 0.000 -26.000 28.000 207.692 54.000 105.000 48.016 54.270 56.984
[65, 85] 6.857 6.720 1.998 0.137 3.000 3.188 6.267 0.188 48.000 44.078 8.171 3.922
[85, 105] 2.156 2.039 5.427 0.117 -27.000 0.565 102.093 27.565 22.000 5.516 74.927 16.484
[105, 125] 0.321 -2.560 897.508 2.881 -43.000 -20.688 51.888 22312 3.000 1.203 59.900 1.797

Table 10: Query performance on the Covertype data.

AVG(hillshade_index_noon) AVG query error MIN(hillshade_index_noon) MIN query error MAX(hillshade_index_noon) MAX query error
Interval of slope

Original data Reduced data Percentage ~ Absolute Original data ~ Reduced data Percentage ~ Absolute Original data ~ Reduced data Percentage Absolute

[0, 10] 232452 232.383 0.030 0.069 219.000 227.854 4.043 8.854 249.000 237.337 4.684 11.663
[10, 20] 222.861 222.766 0.043 0.095 194.000 213.032 9.810 19.032 254.000 229.754 9.546 24.246
[20, 30] 204.780 204.199 0.284 0.581 162.000 190.453 17.564 28.453 254.000 212414 16.372 41.586
[30, 40] 184.955 182.371 1.397 2.584 126.000 172.000 36.508 46.000 252.000 190.098 24.564 61.902
[40, 50] 149.370 122.424 18.040 26.946 87.000 122.424 40.717 35.424 240.000 122.424 48.990 117.576
is explained by the presence of outliers in those in- AVAR-based granulation approach. As the number of
tervals of the original data. The presence of outliers outliers increases, so does the absolute error.
has a more obvious effect in the results of the MINI- While the competitors pick K-means or fuzzy C-
MUM and MAXIMUM queries. In such queries there means to decide on the number of clusters, the AVAR
is a larger gap in the results between the original and approach sets the size of the cluster by using the char-
the reduced data, hence the absolute error is worse. acteristic window length on available data. The com-
As a recommendation in the future, a filtering algo- parative experiments show that the AVAR-method can

I‘Ithm fOI' the Outliers removal Wlll be used before the Still give good performance results in preserving data

Table 11: Execution time of large datasets (seconds).

Dataset Number of instances Number of attributes
Segmentation 2100 19
Magic 19,020 10
Letter 20,000 16
Shuttle 58,000 9
Covertype 250,000 54

quality even in data streams that are not time-series.
In the future we plan to extend this approach for both
spatio-temporal data. Next, the execution time of the
competitor algorithms FDR-GIIL, CLU and PSC are
added for each dataset to show the improvement in
the computational cost of the proposed AVAR-based
granulation method. The corresponding results are
recorded in Table 11. The ‘-’ sign indicates that
the execution time of the algorithm is more than 100
hours, as we can see for CLU and PSC which have an
expensive computational cost when data increases in
size (Covertype data). Nevertheless, we have shown
that the AVAR approach can be executed for data up to
~ 90,000,000 instances (friction data). For temporal
data, while the other approaches perform two dimen-
sional clustering, the AVAR approach generates clus-
ters based on the characteristic timescale. The AVAR-
based method will offer fewer advantages for datasets
that are more complex or for which averaging is less
useful.

When the characteristic AVAR window size is
small, the number of the representative prototypes
is larger, hence there is a higher insertion cost of
these instances in the new reduced table (Segmenta-
tion dataset). When the characteristic AVAR window
size is large, the number of the representative proto-
types is smaller, hence there is a lower insertion cost
of these instances in the new reduced table (Magic
dataset). When the characteristic AVAR window size
is the same for two different datasets, the dataset with
a larger number of instances will have a higher com-
putational cost than the dataset with a lower number
of instances (Letter and Shuttle datasets). From Ta-
ble 11 it can be concluded that the execution time of
our algorithm is much smaller than the compared al-
gorithms, proving once again that the AVAR approach
is fast when applied on Big data.

AVAR Execution time (seconds)

window size \yAR FDR-GIL. CLU PSC

4 0.286 39 6.0 7.0

128 0.217 88.6 167.1 172.1
64 0.210 14.5 2172 2262
64 0.351 30.9 2774 288.4
2048 0.321 649.7 - -

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have proposed a computation-
ally efficient granulation algorithm for large tempo-
ral databases using Allan Variance. The proposed
method systematically determines the characteristic
timescale over which data is relevant and calculates
the aggregated information for each time window.
The total time complexity of this approach is O(n),
which is an improvement from existing algorithms
O(n?). Experimental results show that the proposed
technique considerably reduces the query execution
time by reducing the storage requirement, while pre-
serving data integrity. Overall, the presented ap-
proach increases query efficiency due to the decrease
in data volume while preserving the quality of the re-
sult of the queries.

In the future, we plan to incorporate an outlier-
removal filtering algorithm to our method and further
improve this approach for spatio-temporal databases
with respect to both their time domain and spatial
layouts. One interesting challenge is that in multi-
dimensional data, different granularities may exist.
Choosing the appropriate level of detail or granularity
is crucial. To mitigate this challenge, we plan to ex-
tend the AVAR-based approach to represent different
levels of resolution by creating a hierarchical struc-
ture of spatio-temporal data. In addition, we will fo-
cus whether and when to recalculate the characteristic
timescale, as the AVAR estimator would be useful in
an incremental scenario when data keeps coming in.
Furthermore, we intend to construct dynamic AVAR
estimators which can cope with local changes in the
temporal and spatial characteristic sizes.

Acknowledgements

This material is based upon work supported by
the National Science Foundation under Grant No.

1932138. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

Conflict of interest statement

On behalf of all authors, the corresponding author
states that there is no conflict of interest.

REFERENCES

Allan, D. W. (1966). Statistics of atomic frequency stan-
dards. Proceedings of the IEEE, 54(2):221-230.
Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM:
The fuzzy c-means clustering algorithm. Computers

& Geosciences, 10(2-3):191-203.

Dua, D. and Graff, C. (2019). UCI machine learning repos-
itory, 2017. URL http://archive.ics.uci.edu/ml.

Goldberg, D. (1991). What every computer scientist should
know about floating-point arithmetic. ACM Comput-
ing Surveys (CSUR), 23(1):5-48.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Re-
ichart, D., Venkatrao, M., Pellow, F., and Pirahesh, H.
(1997). Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery, 1(1):29-53.

Haeri, H., Beal, C. E., and Jerath, K. (2021). Near-
optimal moving average estimation at characteristic
timescales: An Allan variance approach. IEEE Con-
trol Systems Letters, 5(5):1531-1536.

Hartigan, J. A. (1975). Clustering algorithms. John Wiley
& Sons, Inc.

Helsen, J., Peeters, C., Doro, P., Ververs, E., and Jordaens,
P. J. (2017). Wind farm operation and maintenance
optimization using big data. In 2017 IEEE Third Inter-
national Conference on Big Data Computing Service
and Applications (BigDataService), pages 179-184.

Henrikson, J. (1999). Completeness and total boundedness
of the Hausdorff metric. MIT Undergraduate Journal
of Mathematics, 1:69-80.

IEEE (2019). IEEE standard for floating-point arithmetic.
IEEE Std 754-2019 (Revision of IEEE 754-2008),
pages 1-84.

Januzaj, E., Kriegel, H.-P., and Pfeifle, M. (2004). DBDC:
Density-based distributed clustering. In Interna-
tional Conference on Extending Database Technol-
0gy, pages 88—105. Springer.

Jerath, K., Brennan, S., and Lagoa, C. (2018). Bridging the
gap between sensor noise modeling and sensor char-
acterization. Measurement, 116:350 — 366.

Jerath, K. and Brennan, S. N. (2011). GPS-free terrain-
based vehicle tracking performance as a function of
inertial sensor characteristics. In Dynamic Systems
and Control Conference, volume 54761, pages 367—
374.

Johnston, W. (2001). Model Visualization, page 223-227.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Kaufmann, L. (1987). Clustering by means of medoids. In
Proc. Statistical Data Analysis Based on the L1 Norm
Conference, Neuchatel, 1987, pages 405-416.

Keogh, E. and Mueen, A. (2017). Curse of dimensional-
ity. In Encyclopedia of Machine Learning and Data
Mining, pages 314-315.

Kile, H. and Uhlen, K. (2012). Data reduction via clustering
and averaging for contingency and reliability analysis.
International Journal of Electrical Power & Energy
Systems, 43(1):1435-1442.

Kodinariya, T. M. and Makwana, P. R. (2013). Review on
determining number of cluster in k-means clustering.
International Journal, 1(6):90-95.

Liu, H. and Motoda, H. (2002). On issues of instance selec-
tion. Data Min. Knowl. Discov., 6:115-130.

Lu, J., Liu, A., Dong, F, Gu, F., Gama, J., and Zhang,
G. (2018). Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineer-
ing, 31(12):2346-2363.

Lumini, A. and Nanni, L. (2006). A clustering method
for automatic biometric template selection. Pattern
Recognition, 39(3):495-497.

MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297.
Oakland, CA, USA.

Maddipatla, S. P., Haeri, H., Jerath, K., and Brennan,
S. (2021). Fast Allan Variance (FAVAR) and Dy-
namic Fast Allan Variance (D-FAVAR) Algorithms for
both Regularly and Irregularly Sampled Data. IFAC-
PapersOnlLine, 54(20):26-31.

Madigan, D. and Nason, M. (2002). Data reduction: sam-
pling. In Handbook of data mining and knowledge
discovery, pages 205-208.

Mishra, A. D. and Garg, D. (2008). Selection of best sorting
algorithm. [International Journal of intelligent infor-
mation Processing, 2(2):363-368.

NASA. Prediction of Worldwide Energy Resource
(POWER) datasets. https://power.larc.nasa.gov/.

Olvera-Lépez, J. A., Carrasco-Ochoa, J. A., and Martinez-
Trinidad, J. F. (2010). A new fast prototype selection
method based on clustering. Pattern Analysis and Ap-
plications, 13(2):131-141.

Pedrycz, W. (2001). Granular computing: An introduc-
tion. In Proceedings joint 9th IFSA world congress
and 20th NAFIPS international conference (Cat. No.
0ITH8569), volume 3, pages 1349-1354. IEEE.

Rehman, M. H., Liew, C. S., Abbas, A., Jayaraman, P. P,
Wah, T. Y., and Khan, S. U. (2016). Big data reduction
methods: a survey. Data Science and Engineering,
1(4):265-284.

Sesia, I. and Tavella, P. (2008). Estimating the Allan vari-
ance in the presence of long periods of missing data
and outliers. Metrologia, 45(6).

Sinanaj., L., Haeri., H., Gao., L., Maddipatla., S., Chen.,
C., Jerath., K., Beal., C., and Brennan., S. (2021). Al-
lan Variance-based Granulation Technique for Large
Temporal Databases. In Proceedings of the 13th Inter-
national Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management
- KMIS,, pages 17-28. INSTICC, SciTePress.

Sun, X., Liu, L., Geng, C., and Yang, S. (2019). Fast data re-
duction with granulation-based instances importance
labeling. IEEE Access, 7:33587-33597.

Zadeh, L. A. (1997). Toward a theory of fuzzy information
granulation and its centrality in human reasoning and
fuzzy logic. Fuzzy sets and systems, 90(2):111-127.

